Affine extensions of loops
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1 Introduction

Most of the known examples of loops L with strong relations to geometry
have classical groups as the groups generated by their left translations ([7],
[10], [9],[6], [8], Chapter 9, [12], Chapters 22 and 25, [4], [5]). These groups
GG may be seen as subgroups of the stabilizer of 0 in the group of affinities of
suitable affine spaces A,,, and as the elements of the loops L one can often
take certain projective subspaces of the hyperplane at infinity of A,. The
semidirect products T' x G, where T is the translation group of the affine
space A,,, have in many cases a geometric interpretation as motion groups of
affine metric geometries. In the papers [4], [5] three dimensional connected
differentiable loops are constructed which have the connected component
of the motion group of the 3-dimensional hyperbolic or pseudo-euclidean
geometry as the group topologically generated by the left translations and
which are Bol, Bruck or left A-loops. The set of the left translations of
these loops induces on the plane at infinity the set of left translations of a
loop isotopic to the hyperbolic plane loop (cf. [12], Chapter 22, p. 280, [9],
p. 189). This and the fact that, up to our knowledge, there are only few
known examples of sharply transitive sections in affine metric motion groups,
motivated us to seek a simple geometric procedure for an extension of a loop
realized as the image >* of a sharply transitive section in a subgroup G* of
the projective linear group PGL(n — 1,K) to a loop realized as the image
of a sharply transitive section in a group A = T’ x C of affinities of the
n-dimensional space A, = K" over a commutative field K. Moreover, we
desire that 7" is a large subgroup of affine translations and that a(C) = G*
holds for the canonical homomorphism « : GL(n,K) — PGL(n,K). We
show that this goal can be achieved if in the (n — 1)-dimensional projective
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hyperplane FE of infinity of A, for G* there exists an orbit O of m-dimensional
subspaces such that ¥* acts sharply transitively on O, if there is a subspace
of dimension (n — 1 — m) having empty intersection with any element of O
and if the restriction of a~! to ¥* defines a bijection from a~!(3*) onto X*.

In the third section we demonstrate that our construction successfully can
be applied to sharply transitive sections in unitary and orthogonal groups
SU,,(n, F) of positive index p, over ordered pythagorean n-real fields F. In
this way we obtain many non-isotopic topological loops. The groups gener-
ated by the left translations of these loops are semidirect products T' x C,
where T is the full translation group of A4, and where a(C') is a non-solvable
normal subgroup of a(SU,,(n, F)).

In the last section we take for the groups G unitary or orthogonal Lie
groups of any positive index in order to obtain differentiable loops L such that
the group topologically generated by the left translations of L is a pseudo-
unitary motion group or the connected component of a pseudo-euclidean
motion group.

2 Some basic notations of loop theory

A set L with a binary operation (z,y) — x-y is called a loop if there exists an
element e € L such that x = e-x = x-e holds for all x € L and the equations
a-y = band x-a = b have precisely one solution which we denote by y = a\b
and x = b/a. The left translation A\, : y — a-y: L — L is a bijection of L
for any a € L. Two loops (Li,-) and (Lg, *) are isotopic if there are three
bijections «, 8,7y : Ly — Lo such that a(x) * 5(y) = v(x - y) holds for any
x,y € Ly. Aloop (L,-) is called topological if L is a topological space and
the mappings (z,y) — = -y, (z,y) — z\y, (z,y) — y/x : L* — L are contin-
uous. A loop (L, -) is called differentiable if L is a C*°-differentiable manifold
and the mappings (z,y) — z-vy, (z,y) — z\y, (z,y) — y/x : L* — L are
differentiable.

A loop L is a Bol loop if the identity x(y - xz) = (x - yx)z holds. A Bruck
loop is a Bol loop (L, -) satisfying the automorphic inverse property, i.e. the
identity (z-y) ' =27 '-y M forall z,y € L. Aloop L is a left A-loop if each
Azy = Ay Aey : L — L is an automorphism of L.

Let G be the group generated by the left translations of L and let H be the
stabilizer of e € L in the group G. The left translations of L form a subset of
G acting on the cosets {zH;x € G} such that for any given cosets aH and
bH there exists precisely one left translation A\, with A\,aH = bH.
Conversely let G be a group, let H be a subgroup of G and let 0 : G/H — G
be a section with ¢(H) = 1 € G such that the subset o(G/H) generates G



and acts sharply transitively on the space G/H of the left cosets {vH,x € G}
(cf. [12], p. 18). We call such a section sharply transitive. Then the mul-
tiplication defined by 2 H x yH = o(xH)yH on the factor space G/H or by
xxy = o(zyH) on o(G/H) yields a loop L(c). If N is the largest normal
subgroup of G contained in H then the factor group G/N is isomorphic to
the group generated by the left translations of L(o).

Two loops L; and Ly having the same group G as the group generated by
the left translations and the same stabilizer H of e € Lq, Ly are isomorphic
if there is an automorphism of G leaving H invariant and mapping o1(G/H)
onto 09(G/H). The automorphisms of a loop L corresponding to a sharply
transitive section o : G/H — G are given by the automorphisms of G leaving
H and o(G/H) invariant. If two loops are isotopic then the groups generated
by their left translations are isomorphic ([13], Theorem II1.2.7, p. 65). Loops
L and L' having the same group G generated by their left translations are
isotopic if and only if there is a loop L” isomorphic to L' having G again as
the group generated by its left translations and there exists an inner auto-
morphism 7 of G mapping ¢”(G/H) belonging to L” onto the set o(G/H)
corresponding to L (cf. [12], Theorem 1.11. pp. 21-22).

3 Affine extensions

Let G be a subgroup of the general linear group GL(n,K) over a commu-
tative field K. Denote by a the canonical epimorphism from GL(n,K) onto
PGL(n,K). The kernel Z of « is the centre of GL(n,K). Let H be a sub-
group of G with ZNG < H such that for the pair G* = a(G) and H* = a(H)
there exists a sharply transitive section ¢* : G*/H* — G* determining a loop
L*. Moreover, we assume that ¥* := ¢*(G*/H*) generates G* and that for
the preimage (a|G)~'(X*) = ¥ C G one has HNY. = {1}. Then the mapping
« induces a bijection from ¥ onto ¥*.

We denote by A, the n-dimensional affine space K™ and by E the pro-
jective hyperplane of dimension (n — 1) at infinity of A,. Let U* be an
m-~dimensional subspace of E having H* as the stabilizer of U* in G*. Let
X be the set

X ={yU"yex}.

The elements of X may be seen as the elements of L* such that U* is the
identity of L* and the multiplication is given by X* o Y™ = 7. y.(Y™) for all
X*, Y € X, where 7. y. is the unique element of the sharply transitive set
>* of the linear transformations of £ mapping U* onto X*.

Let A =T x S be the semidirect product consisting of affinities of A, =
K™, where T is the translation group of A4, and S is the stabilizer of 0 € A,
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isomorphic to the group GL(n,K). We consider the group G as a subgroup
of S in the group © = K" x G of affinities of A,,. The subgroup H of S fixes
the point 0 € A,, and the subspace U* of the hyperplane E. Let U be the
(m + 1)-dimensional affine subspace containing 0 and intersecting F in U*.
If H is the stabilizer of U in the group ©, then one has H = H N O, where
Oy is the stabilizer of the point 0 in ©.

Let W be a subspace of A,, such that W contains 0, has affine dimension
(n —m — 1) and intersects any subspace of the set Z := {p(U);p € X} only
in 0. Let Ty be the group of affine translations z — = + w : A, — A, with
w € W. Then W intersects any subspace §(Y'), where § € Ty and Y € Z,
in precisely one point. Moreover, the stabilizer of 6(Y) in Ty consists only
of the identity.

Theorem 1. The subset = = TywY = {rp;7 € Tw,p € X} of the group
© =T x G acts sharply transitively on the set

U={PU)y eE}={yU);¢y € O}

The elements of U can be taken as the elements of a loop L= which has U as
the identity and for which the multiplication is defined by

XoY=mx(Y) foral XY elU,

where Ty x is the unique element of = mapping U onto X.

The set = is the set of the left translations of Lz and generates a group
A which is a semidirect product A = T' x C, where the normal subgroup T’
consists of translations of the affine space A, and C is a subgroup of G with
a(C) = G~

There is a sharply transitive section o : A/H — A such that J(A/H)
=, the group H is the stabilizer of U in A and the subgroup T' N H consists
of all translations x — v +u : A, = A, withu e U.

Proof. Let D; and Dy be elements belonging to &4. We show that there
is precisely one element § € = with §(D;) = Dy. Let Df = Dy N E and
D = DyN E, where E is the hyperplane at infinity of \A,,. Thus there exists
precisely one element p* € X* and hence there exists precisely one element
p € ¥ with a(p) = p* such that p*(D7) = Dj. The subspaces p(D;) and Ds
intersect I/ in Dj. In the group Ty there exists precisely one translation 7
mapping the point p(D;) N W onto the point Dy N . Hence the element
8 = 7pis the only element in = mapping D; onto Dy and the set = is a sharply
transitive set on U. It follows that the subspaces in U can be taken as the
elements of a loop L= having U as the identity, such that the multiplication
is defined as in the assertion of the theorem.



The group A generated by the left translations of Lz is a subgroup of
© = T x G. Let H be the stabilizer of U in A. Since Z is the image of a
sharply transitive section ¢ : A/H — A we have A(U) = ZEH(U) = Z(U).
Let Ty be the group of affine translations z — = +u : A, — A, with
w € U. Since W @& U = K" we have that T" = Ty, x Ty;. Thus one has
AT(U) = ATwTy(U) = ATw(U) = A(U) since Ty < A. For the group
A of dilatations = — azx : A, — A, with a € K\{0} we have that TA is a
normal subgroup of OA and A(U) = U. Moreover ©(U) = ATA(U) since
the kernel of the restriction of a : GL(n,K) — PGL(n,K) to G consists only
of dilatations.

The group A contains a normal subgroup N fixing the hyperplane E at
infinity pointwise. Since ¥* generates G* we see that A/N is isomorphic to
G*.

Let 7" =T NA. Then A is the semidirect product of A =T" x C, where
C' is the stabilizer of 0 in A and CN/N is isomorphic to G*. O

4 Applications

Let R be an ordered pythagorean field and let K = R(i) be the algebraic
extension of R such that > = —1. Let F € {R,K} and let V = F" be
an n-dimensional F-vector space for a fixed n > 3. The automorphism
a v+ a: F — F is the identity if F' = R or the involutory automorphism
fixing R elementwise and mapping ¢ onto —i if ' = K. Denote by M,,(F)
the set of the (n x n)-matrices over F. If A = (q;;) is a matrix in M,,(F)
then A' = (@;;). Let H(n, F) be the set of positive definite hermitian (n x n)-
matrices, i.e. the set

H(n, F)={A e M,(F); A= A" with v"Av > 0 for all v € V\{0}}.

We assume that the field R is n-real which means that the characteristic
polynomial of every matrix in H(n, F) splits over K into linear factors. Thus
this polynomial splits into linear factors already over R (cf. [8], p. 14). The
class of n-real fields contains the class of totally real fields (cf. [8], p. 13),
which is larger than the class of real closed fields and the class of hereditary
euclidean fields. A hereditary euclidean field & is an ordered field such that
every formally real algebraic extension of k£ has odd degree over k (cf. [15],
Satz 1.2 (3), p. 197).
The group
Un,F)={B € GL(n,F); BB" = I,},

where [, is the identity in GL(n, F'), is called the orthogonal group for F' = R



and the unitary group for F' = K. Let
Jprpo) = diag(L,...,1,=1,...,—1)

be the diagonal (n x n)-matrix such that the first p; entries are 1 and the
remaining p, entries are —1. We have p; +p, = n. The matrix Jy,, ;,) defines
a hermitian form on F™ for F' = K and an orthogonal form for F' = R by

p1 n
Q_JtJ’U = E V;0; — E Q_}jvj-
i=1

Jj=p1+1
Let ps > 0. The unitary (orthogonal) group of index py is the set
UPQ(n, F) = {A € GLn(F), Atj(pl’pQ)A = J(p17p2)}'

Since the group Uy, (n, F) is isomorphic to the group Up,—p,)(n, ) (cf. [14],
Proposition 9.11, p. 153) we may assume that p; > py. Let

Q(P17P2)<F) = Up2<n, F) N U(n, F) and E(p17p2)(F) = UPQ(TZ,F) N H(n, F)

The group €, p,)(F) is the direct product 2, p,)(F) = U(p1, F') x U(p2, F),

where U(p;, F') may be identified with the group ( Ul é’ F) IO ) and
D2

U(pa, F') may be identified with the group ( Iy, 0 ) ; here I, is the

0 U(p27 F)
identity in GL(p;, F) (cf. [8], Theorem 9.13, p. 123).

According to [8] (Theorem 9.11, p. 121) the set Xy, ,,)(F) is the image of
a sharply transitive section o’ : Uy, (n, ') /Qp, po) (F') = Up,(n, F') such that
the corresponding loop Ly, ;,) is a Bruck loop.

The group G, p,) generated by the set X, ,)(F) of the left translations
of Ly, p,) is contained in the group SU, (n, F) := {A € Uy, (n, F); det A =1}
(cf. [8],9.14, p. 124). Thus the loop L, ,,) corresponds also to the section

o:SUy,(n, F)/® — SU,,(n, F),
where @ := (U(p1, F) x U(pa, F')) N SU,,(n, F).

The kernel of the restriction of a: GL(n, F) — PGL(n, F') to the group
SU,,(n, F) consists of the matrices D, = diag(a,...,a), a € F\{0} and
a" = 1. Moreover one has aa = 1 since any matrix D, satisfies D! J(,, ) Do =
Jip1 po)- Thus any matrix D, is contained in ® and « induces a bijection
from 3, po) (F') onto a3y, po)(F)). The set a(X(,, 1) (F)) is the image of a
sharply transitive section

o a(SUp (n, F))/a(®) = a(SUp,(n, F))
which corresponds to a Bruck loop Lty o)
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The elements of X, ,,)(F) are matrices A € SU,,(n, F) satisfying the
relations A = A! and v'Av > 0 for all v € V\{0}. With A also A7! is
contained in X, ,,)(F) ([8] 1.11, p. 16). Because of B! = B' for all B € ®
and B'AB € ¥, »,)(F) ([8] 1.11, p. 16) one has

B7'AB € X, p)(F) for all B€ ® and A € Sy, ) (F). (1)

Since o is a section every element S of SU,,(n, F') can be written in a
unique way as S = S,C with S; € X, ,,)(F) and C' € ®. The set

E(m,m)(F)G(pl’pQ) = {YilXY; X € Z(m,m)(F)?Y € G(m,pz)}
is invariant with respect to the conjugation by the elements S € SU,,(n, F') :
STWYIXYS =C'S'YTIXY S 0 =

(CTSTO)CTY OO XC)(CTIYCYCT10)] € Sy oy (F) 1.

Hence the group G;, p,), Which is generated also by Z(pl,m)(F)G(Plva), is a
normal non central subgroup of SU,,(n, F'). Then according to Théoréme 5
in [2] p. 70 the group Gy, p,) coincides with SU,,(n, F) if F = K. If F =R
and (n,p2) # (4,2) then the group G, p,) contains the commutator subgroup
[SUp, (n, F)]" =: K(npy) of SU,,(n, F) ([3], p. 63 and pp. 58-59). If FF = R
and (n,p2) = (4,2) then the commutator subgroup /(42 is isomorphic to
the direct product PSLy(R) x PSLy(R) ([3], p. 59). Since the hermitian
matrices in the set ¥ (22)(F') depend on 3 free parameters ([8], 9.12, p. 122)
the group G a9y contains K4 2). Therefore in any case the group Gy, p,) is a
normal subgroup of SU,,(n, F) containing K, ).
The group Gy, p,) leaves the value ©'Jy,, ,,)v invariant since

V(A iy o) A)v = 0 gy poyv Tor A € SUp, (n, F).

We see the group G, p,) as a subgroup of the stabilizer of the element 0 in
the group A of affinities of A, = F™, and the group a(G,, p,)) = Gy o) 35
a subgroup of the group PGL(n, F') which acts on the (n — 1)-dimensional
projective hyperplane F at infinity of A,,.

We embed the affine space A, into the n-dimensional projective space
P,(F) such that (1, -+ ,x,) — F*(1,21,--- ,2,), v, € Fforall1 <i<mn
and F* = F\{0}. With respect to this embedding the hyperplane E consists
of the points {F*(0, 21, -+ ,z,),z; € F,not all z; = 0}. The cone in A,
which is described by the equation

(*) Z T;T; — zn: Tjr; = 0

i=1 Jj=p1+1



intersects E in a hyperquadric C'; the points { F*(0, 21, -+ ,x,)} of C satisfy

the equation (x). The hypersurface C' of E divides the points of F\C' into

two reglons R1 and Ry. A point F*(0,zq,--- ,z,) belongs to Ry if and only

if Z Tiw; > Z zjx;. It belongs to Ry if and only if Z Tiw; < Z zjx;.
=1 Jj=p1+1 =1 Jj=p1+1

The group a(SU,,(n, F)) = SU,,(n, F)/A’, where A" is the group of dilata-
tions contained in SU,,(n, F), leaves Ry, Ry as well as C' invariant since for
any f € F and v € V = F" one has (f0')J(p, po) (JV) = (FF) (0" Jpy po)v) and
ff > 0. The group a(®) = ®/(P N A’') leaves the subspace

Wi ={0,21,...,2,,0,....0);2, € F} CE
as well as the subspace
Wy ={(0,...,0,2p,41,....,2,);2;, € F} CFE

invariant. The intersection W} N Wy is empty since W C R;,i = 1, 2.

Let W;,i = 1,2, be the p;-dimensional affine subspace of A,, containing 0
such that W; N E = W;. Thus Wy N W, = {0}. Let W; be a pj;-dimensional
affine subspace of A, such that p; = n —p; and Wj intersects W; only in the
point 0. Thus Wj intersects any subspace of the set

= {p( ) p e G (p1,p2) } = {)‘(M/Z)? AE E(th)(F)}v

where 7 # j, only in 0. Affine subspaces VT/J with these properties exist, one
can take for instance W; = p(W;) € Z;.

Let © be the Semldlrect product © =T x G, p,), where T is the transla-
tion group of A,. According to Theorem 1 the set =, iy = {113, Xy, po) (F)},
1 # j, acts sharply transitively on the set

U = {p(Wi)i ¢ € Z i -

Thus a loop L(pi,W]-) is realized on U;.

The group SU,,(n, K) acts irreducibly on the vector space V = K" and
the commutator subgroup i, p,) of SO,,(n, R) acts irreducibly on V' = R"
(cf. [1], Theorem 3.24, p. 136). Hence the group A generated by the left
translations =, W) of the loop L, W) contains all translations of the affine
space A,. It follows that A is the semidirect product A = T x C' of the
translation group 7' by a subgroup C' of the stabilizer of 0 € A,, in the
group A of affinities. If ' = K then C is isomorphic to SU,,(n, K) and

the stabilizer H of W; in A is the semidirect product Ty, x @ since any



element g € Gy, p,) = SU,,(n, K) has a unique representation as g = g1 9>
with g1 € Xy, po)(K) and g, € ®. If F = R then C is a normal subgroup of
SO,,(n, R) containing K, ,,) and the stabilizer H of W; in A is the semidirect
product Ty, x I', where ' = &N C.

For p; > p, the loop L(phm) is never isotopic to a loop L(pg,VVl)'
This follows from the fact that the stabilizer Hy, kK = 1,2, of the identity
of Lo i) with | # k in A contains the group Ty, as the largest normal
subgroup consisting of affine translations. Since Ty, is not isomorphic to
Tw, one has that H; is not isomorphic to Hy. (cf. [13], Theorem II1.2.7, p.
65)

Now we consider the loops L, w;) and L, vy for W; # W;. According
to (1) the subspaces W; and W5 are invariant under the subgroup ® of the
stabilizer of 0 € A,, in the group A of affinities. Hence if g € ® then one
has gX, p) (F)g™' = Zppo(F) and ¢Tw, 9" = Tw,, k = 1,2, for the
group Ty, = {z — =+ wp;wy € Wi} This yields g=,, w)9™" = Zp.w))-
For W, # Wj the group ® does not normalize the translation group TWj-
Therefore

9T, S (F)9 = (9T5,07 ) (98 1m) (F)g ™) =

(gTng_l)Z(pl,Pz)(F) # E(pth)
for suitable elements g € ®. This means that not all elements of ® induce
automorphisms of L, ;). Therefore the loops L, w,) and L, y , are

not isomorphic if W, # Wj.

Proposition 2. Any loop L(pi,vi/j) 1s a topological loop with respect to the
topology induced on the set U by the topology on the set of the p;-dimensional
subspaces of A, which is derived from the topology of the topological field F .

Proof. Since R is an ordered field, R as well as K = R(i) are topologi-
cal fields with respect to the topology given by the ordering of R. Then
the ring M,,(F) of (n x n)-matrices over F' is a topological ring such that
the open e-neighbourhoods of 0 € M,,(F) consist of matrices (¢; ;) with
lc;;| < e. The group GL(n,F) < M,(F) is a topological group. Since
the set Z = {diag(a,...,a),a € F\{0}} is a closed subgroup of GL(n, F)
the group PGL(n, F) = GL(n,F)/Z is a topological group. The subgroups
SU,,(n, F) and ® = (U(p1, F) x U(ps, F')) NSU,,(n, F') are closed subgroups
of GL(n, F'). Moreover SU,,(n, F)Z/Z as well as ®Z/Z are closed subgroups
of PGL(n, F).

The affine space A,, = F™ and the (n — 1)-dimensional projective hyper-
plane E carry topologies derived from the topology of the field F' (cf. [11],
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Chapter XI). The semidirect product A = T x GL(n, F') is a topological
group consisting of continuous affinities; it induces on the hyperplane E a
continuous group of projective collineations. Any subset of A is a topological
space with respect to the topology induced from A and any subgroup of A
becomes a topological group in this manner.

Let Q1 be a fixed p;-dimensional subspace of A,, and let Q be the set of the
affine (n — p;)-dimensional affine subspaces with |@Q1NQ| =1 for Q € Q. The
set Q also carries a topology determined by the topology of F'. The set Q* of
intersections @* of the affine subspaces ) of Q with E inherits the topology
of the Grafimannian manifold of the (n — p; — 1)-dimensional subspaces of
the hyperplane E. The geometric operation (Q, Q1) — QN @y : Q — @ is
continuous.

On the topological space Xy, ,,,)(F) a topological Bruck loop Ly, ,,) is
realized by the multiplication

Ao B=+VAB?A for all A, B € S, ) (F), (2)

where X + /X is the inverse map of the bijection X +— X2 : ¥, ,,\(F) —
Yprpo) (F) (cf. [8] (1.14), p. 17 and (9.1) Theorem (4), p. 108, [12], p. 121).
We denote by [p(W;)]* with p € X, ,,)(F) the intersection of the subspace
p(W;) with the hyperplane £ and by Z; the set {[p(W;)]*; p € Xp, po)(F)}
For the elements of the loop L(pi,Wj) one can take the elements of the set

Uiy = {0Wi); © € Z, iyt = {mp(Wi); 7 € Ty p € Xy o) (F) )

The subspace Wj is homeomorphic to the group TWj» and the set Z; is homeo-
morphic to Xy, ,,)(F). Any element 7p(W;) € Uy, 1) s uniquely determined

by [p(W)]* and (7p(W;)) N W;. The mapping
W Tp(Ws) = ((Tp(Wa)) N Wy, [p(W3)]")
from Z/{(piwj) onto the topological product VVQ x Z! is a bijection such that
wl(w, ZF) w27,

where w V Z* is the p;-dimensional affine subspace containing w € Wj and
intersecting EF in Z* € Z'. Since the geometric operations of joining and
of intersecting of distinct subspaces are continuous maps, w is a homeomor-
phism.

Let (wy, Z;) € W, x Z; with k = 1,2 and let 74px(W;) be the subspaces
of Uy, vir,) such that w(rrpr(W;)) = (wy, Zj;). The multiplication given by

J

(waik)o(wZ?Z;) = (w37Z§)7 (3)
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where Z5 = [p1p2(W;)]* and

ws = 11[p1(r2p2(Wi)) N W] = 71 [ (pa[r2p2 (W) N WSTV [p1pa(W3)]7) N

yields a topological loop. This loop is homeomorphic to L(pi,Wj) since
[p172p2(W3)]" = [p1p2(Wi)]" and [11p17202(Wi)]" = [p1p2(W3)]". o

5 Special cases: R and C

Proposition 3. The loop L(piij) is a differentiable loop diffeomorphic to
R, where d = e(pj + p1p2), withe =1 if F =R ande =2 if F = C.

If I = C then the group A generated by the left translations of L(pi,vi/j)
is the semidirect product C* x SU,,(n,C) and the stabilizer of W; in A is
the semidirect product CPi x 11, where I1 is an epimorphic image of the direct
product SU (py,C) x SU(p2,C) x SO2(R).

If F = R then A is the semidirect product R™ x SO,,(n,R)°, where
SO,,(n,R)° is the connected component of SO,,(n,R), and the stabilizer
of Wi in A is the semidirect product RPi x (SO(p1, R) x SO(py, R)).

Proof.  Clearly the topological manifold L, v 1,) carries the differentiable
structure of the real differentiable manifold = E ;) which is the topologi-
cal product of Ty, and X, p,)(F).

According to Section 4 the group A topologically generated by the left
translations = Epo ;) 18 the semidirect product A = F™ x C, where C' contains
the commutator subgroup of SU,,(n, F).

If F = C then C' = SU,,(n,C) and the stabilizer H of W; in A is the
semidirect product Ty, x ¢ with ® = [U,, (C) x U,,(C)] N SU,,(n,C) which
is a maximal compact subgroup of SU,,(n,C) ([16], p. 28). The groups
SU,,(n,C) and ® are connected therefore the groups A and H are connected.
Since A is the topological product = E ;) X H= E s, ;) % Ty, x @ it follows
that the manifold = E ;) and hence the loop L, Wi, are diffeomorphic to
an affine space.

If FF =R then C is a subgroup of SO,,(n,R) containing the commutator
subgroup K, p,). According to [3] p. 57 the factor group SO,,(n, R)/K p,)
has order 2. Hence K, ,,) is the connected component of SO,,(n,R). The
group ® = [O,, (R) x O,,(R)] N SO,,(n,R) is not connected since the factor
group O(p;,R)/SO(p;,R) has order 2 ([14], Corollary 9.37, p. 158) and
the product oy with o; € O(p;,R), but a; ¢ SO(p;,R) for i = 1,2, is
an element of SO,,(n,R). The group SO,,(n,R) is homeomorphic to the
topological product X, p,)(R) x ®. Since SO,,(n,R) has two connected
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components and ® is not connected the manifold ¥, ,,)(R) is connected.
It follows that the group C' generated by X, ,,,)(IR) is connected and hence
isomorphic to the connected component SO, (n,R)® = K, p,) of SOp,(n,R).
Thus the group A = T x C' is connected. Moreover A is the topological
product =, W) X H = E s W) X Tw, x (PN H) Since A, = S and

Ty, are connected, the group ® N H is connected and hence a maximal
compact subgroup of SO,,(n,R). This yields that S, and L, .y are
diffeomorphic to an affine space.

The group A is the topological product E(pi,vi/j) x H. Thus for the real
dimension of L(pi,VVj) one has

dimL, ) = dimZ, 5 ) = dimA — dimH
dimg Ty, + dimpTyy, + dimSUp, (n, F) — dimpTw, — dim(C' N H).

If FF = C then the group ® = C NH is an epimorphic image of the direct
product SU(py, C) x SU(p2, C) x SO2(R) (cf. [16], p. 28). This yields
dimLe, ) = [(pr +p2)* = 1 +2p; = (9 = 1) = (0 — 1) — 1 = 2p; + 2p1py
since the dimension of a unitary group SUg(m,C) is equal to (m — 1)? +
2(m —1) for 0 < k < m ([16], p. 26 and p. 28). It follows that L, yy., is

diffeomorphic to R2(Pitripz),

The group A is the semidirect product A = C" x C, where C'is the group
SU,,(n,C) and the stabilizer H is the semidirect product Ty, x ®, where ®
is an epimorphic image of SU(p1, C) x SU(p2, C) x SO,(R).

If F =R then CNH = SO(p1,R) x SO(py, R) ([16], p. 31 and p. 38).
It follows that

dimL(pi,Wj) = %(pl +p2)(p1 +p2—1)+p; — %Pl(]?l -1) - %Pz(pz —-1) =
Dj + P1p2-
Hence the loop L, . is diffeomorphic to RPitPip2,

The group A is the semidirect product A = R™ x C, where C' is the
group SO,,(n,R)° and the stabilizer H of W in A is the semidirect product
RPi % (SO(p1,R) x SO(p2, R)).

The loop L(pi,Wj) is diffeomorphic to the manifold Wj X Z; since Z; is
diffeomorphic to Xy, ,,)(R). The mapping (x, D*) — x V D* assigning to a
point z € A, = F", F € {R,C} and to an element D* of the Grafmannian
manifold of the (p; — 1)-dimensional F-subspaces of the hyperplane E the
affine subspace D containing x and intersecting E in D* is differentiable.
Also the mapping D — D N V~VJ assigning to a p;-dimensional affine F-
subspace D of A,, the point D N Wj is differentiable. Since the loop realized
on X(p, p)(F) by the multiplication (2) is differentiable, the representation of
L(pl 1,y on the manifold W, x Z; by the multiplication (3) yields that L))
is differentiable.
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