Affine extensions of loops

Ágota Figula and Karl Strambach

1 Introduction

Most of the known examples of loops L with strong relations to geometry have classical groups as the groups generated by their left translations ([7], [10], [9],[6], [8], Chapter 9, [12], Chapters 22 and 25, [4], [5]). These groups G may be seen as subgroups of the stabilizer of 0 in the group of affinities of suitable affine spaces \mathcal{A}_{n}, and as the elements of the loops L one can often take certain projective subspaces of the hyperplane at infinity of \mathcal{A}_{n}. The semidirect products $T \rtimes G$, where T is the translation group of the affine space \mathcal{A}_{n}, have in many cases a geometric interpretation as motion groups of affine metric geometries. In the papers [4], [5] three dimensional connected differentiable loops are constructed which have the connected component of the motion group of the 3 -dimensional hyperbolic or pseudo-euclidean geometry as the group topologically generated by the left translations and which are Bol, Bruck or left A-loops. The set of the left translations of these loops induces on the plane at infinity the set of left translations of a loop isotopic to the hyperbolic plane loop (cf. [12], Chapter 22, p. 280, [9], p. 189). This and the fact that, up to our knowledge, there are only few known examples of sharply transitive sections in affine metric motion groups, motivated us to seek a simple geometric procedure for an extension of a loop realized as the image Σ^{*} of a sharply transitive section in a subgroup G^{*} of the projective linear group $P G L(n-1, \mathbb{K})$ to a loop realized as the image of a sharply transitive section in a group $\Delta=T^{\prime} \rtimes C$ of affinities of the n-dimensional space $\mathcal{A}_{n}=\mathbb{K}^{n}$ over a commutative field \mathbb{K}. Moreover, we desire that T^{\prime} is a large subgroup of affine translations and that $\alpha(C)=G^{*}$ holds for the canonical homomorphism $\alpha: G L(n, \mathbb{K}) \rightarrow P G L(n, \mathbb{K})$. We show that this goal can be achieved if in the ($n-1$)-dimensional projective

[^0]hyperplane E of infinity of \mathcal{A}_{n} for G^{*} there exists an orbit \mathcal{O} of m-dimensional subspaces such that Σ^{*} acts sharply transitively on \mathcal{O}, if there is a subspace of dimension $(n-1-m)$ having empty intersection with any element of \mathcal{O} and if the restriction of α^{-1} to Σ^{*} defines a bijection from $\alpha^{-1}\left(\Sigma^{*}\right)$ onto Σ^{*}.

In the third section we demonstrate that our construction successfully can be applied to sharply transitive sections in unitary and orthogonal groups $S U_{p_{2}}(n, F)$ of positive index p_{2} over ordered pythagorean n-real fields F. In this way we obtain many non-isotopic topological loops. The groups generated by the left translations of these loops are semidirect products $T \rtimes C$, where T is the full translation group of \mathcal{A}_{n} and where $\alpha(C)$ is a non-solvable normal subgroup of $\alpha\left(S U_{p_{2}}(n, F)\right)$.

In the last section we take for the groups G unitary or orthogonal Lie groups of any positive index in order to obtain differentiable loops L such that the group topologically generated by the left translations of L is a pseudounitary motion group or the connected component of a pseudo-euclidean motion group.

2 Some basic notations of loop theory

A set L with a binary operation $(x, y) \mapsto x \cdot y$ is called a loop if there exists an element $e \in L$ such that $x=e \cdot x=x \cdot e$ holds for all $x \in L$ and the equations $a \cdot y=b$ and $x \cdot a=b$ have precisely one solution which we denote by $y=a \backslash b$ and $x=b / a$. The left translation $\lambda_{a}: y \mapsto a \cdot y: L \rightarrow L$ is a bijection of L for any $a \in L$. Two loops $\left(L_{1}, \cdot\right)$ and $\left(L_{2}, *\right)$ are isotopic if there are three bijections $\alpha, \beta, \gamma: L_{1} \rightarrow L_{2}$ such that $\alpha(x) * \beta(y)=\gamma(x \cdot y)$ holds for any $x, y \in L_{1}$. A loop (L, \cdot) is called topological if L is a topological space and the mappings $(x, y) \mapsto x \cdot y,(x, y) \mapsto x \backslash y,(x, y) \mapsto y / x: L^{2} \rightarrow L$ are continuous. A loop (L, \cdot) is called differentiable if L is a C^{∞}-differentiable manifold and the mappings $(x, y) \mapsto x \cdot y,(x, y) \mapsto x \backslash y,(x, y) \mapsto y / x: L^{2} \rightarrow L$ are differentiable.
A loop L is a Bol loop if the identity $x(y \cdot x z)=(x \cdot y x) z$ holds. A Bruck loop is a Bol loop (L, \cdot) satisfying the automorphic inverse property, i.e. the identity $(x \cdot y)^{-1}=x^{-1} \cdot y^{-1}$ for all $x, y \in L$. A loop L is a left A-loop if each $\lambda_{x, y}=\lambda_{x y}^{-1} \lambda_{x} \lambda_{y}: L \rightarrow L$ is an automorphism of L.
Let G be the group generated by the left translations of L and let H be the stabilizer of $e \in L$ in the group G. The left translations of L form a subset of G acting on the cosets $\{x H ; x \in G\}$ such that for any given cosets $a H$ and $b H$ there exists precisely one left translation λ_{z} with $\lambda_{z} a H=b H$.
Conversely let G be a group, let H be a subgroup of G and let $\sigma: G / H \rightarrow G$ be a section with $\sigma(H)=1 \in G$ such that the subset $\sigma(G / H)$ generates G
and acts sharply transitively on the space G / H of the left cosets $\{x H, x \in G\}$ (cf. [12], p. 18). We call such a section sharply transitive. Then the multiplication defined by $x H * y H=\sigma(x H) y H$ on the factor space G / H or by $x * y=\sigma(x y H)$ on $\sigma(G / H)$ yields a loop $L(\sigma)$. If N is the largest normal subgroup of G contained in H then the factor group G / N is isomorphic to the group generated by the left translations of $L(\sigma)$.
Two loops L_{1} and L_{2} having the same group G as the group generated by the left translations and the same stabilizer H of $e \in L_{1}, L_{2}$ are isomorphic if there is an automorphism of G leaving H invariant and mapping $\sigma_{1}(G / H)$ onto $\sigma_{2}(G / H)$. The automorphisms of a loop L corresponding to a sharply transitive section $\sigma: G / H \rightarrow G$ are given by the automorphisms of G leaving H and $\sigma(G / H)$ invariant. If two loops are isotopic then the groups generated by their left translations are isomorphic ([13], Theorem III.2.7, p. 65). Loops L and L^{\prime} having the same group G generated by their left translations are isotopic if and only if there is a loop $L^{\prime \prime}$ isomorphic to L^{\prime} having G again as the group generated by its left translations and there exists an inner automorphism τ of G mapping $\sigma^{\prime \prime}(G / H)$ belonging to $L^{\prime \prime}$ onto the set $\sigma(G / H)$ corresponding to L (cf. [12], Theorem 1.11. pp. 21-22).

3 Affine extensions

Let G be a subgroup of the general linear group $G L(n, \mathbb{K})$ over a commutative field \mathbb{K}. Denote by α the canonical epimorphism from $G L(n, \mathbb{K})$ onto $P G L(n, \mathbb{K})$. The kernel Z of α is the centre of $G L(n, \mathbb{K})$. Let \tilde{H} be a subgroup of G with $Z \cap G \leq \tilde{H}$ such that for the pair $G^{*}=\alpha(G)$ and $H^{*}=\alpha(\tilde{H})$ there exists a sharply transitive section $\sigma^{*}: G^{*} / H^{*} \rightarrow G^{*}$ determining a loop L^{*}. Moreover, we assume that $\Sigma^{*}:=\sigma^{*}\left(G^{*} / H^{*}\right)$ generates G^{*} and that for the preimage $(\alpha \mid G)^{-1}\left(\Sigma^{*}\right)=\Sigma \subseteq G$ one has $\tilde{H} \cap \Sigma=\{1\}$. Then the mapping α induces a bijection from Σ onto Σ^{*}.

We denote by \mathcal{A}_{n} the n-dimensional affine space \mathbb{K}^{n} and by E the projective hyperplane of dimension $(n-1)$ at infinity of \mathcal{A}_{n}. Let U^{*} be an m-dimensional subspace of E having H^{*} as the stabilizer of U^{*} in G^{*}. Let \mathcal{X} be the set

$$
\mathcal{X}=\left\{\gamma U^{*} ; \gamma \in \Sigma^{*}\right\} .
$$

The elements of \mathcal{X} may be seen as the elements of L^{*} such that U^{*} is the identity of L^{*} and the multiplication is given by $X^{*} \circ Y^{*}=\tau_{U^{*}, X^{*}}^{*}\left(Y^{*}\right)$ for all $X^{*}, Y^{*} \in \mathcal{X}$, where $\tau_{U^{*}, X^{*}}^{*}$ is the unique element of the sharply transitive set Σ^{*} of the linear transformations of E mapping U^{*} onto X^{*}.

Let $A=T \rtimes S$ be the semidirect product consisting of affinities of $\mathcal{A}_{n}=$ \mathbb{K}^{n}, where T is the translation group of \mathcal{A}_{n} and S is the stabilizer of $0 \in \mathcal{A}_{n}$
isomorphic to the group $G L(n, \mathbb{K})$. We consider the group G as a subgroup of S in the group $\Theta=\mathbb{K}^{n} \rtimes G$ of affinities of \mathcal{A}_{n}. The subgroup \tilde{H} of S fixes the point $0 \in \mathcal{A}_{n}$ and the subspace U^{*} of the hyperplane E. Let U be the $(m+1)$-dimensional affine subspace containing 0 and intersecting E in U^{*}. If H is the stabilizer of U in the group Θ, then one has $\tilde{H}=H \cap \Theta_{0}$, where Θ_{0} is the stabilizer of the point 0 in Θ.

Let W be a subspace of \mathcal{A}_{n} such that W contains 0 , has affine dimension $(n-m-1)$ and intersects any subspace of the set $\mathcal{Z}:=\{\rho(U) ; \rho \in \Sigma\}$ only in 0 . Let T_{W} be the group of affine translations $x \mapsto x+w: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}$ with $w \in W$. Then W intersects any subspace $\delta(Y)$, where $\delta \in T_{W}$ and $Y \in \mathcal{Z}$, in precisely one point. Moreover, the stabilizer of $\delta(Y)$ in T_{W} consists only of the identity.

Theorem 1. The subset $\Xi=T_{W} \Sigma=\left\{\tau \rho ; \tau \in T_{W}, \rho \in \Sigma\right\}$ of the group $\Theta=T \rtimes G$ acts sharply transitively on the set

$$
\mathcal{U}=\{\psi(U) ; \psi \in \Xi\}=\{\psi(U) ; \psi \in \Theta\} .
$$

The elements of \mathcal{U} can be taken as the elements of a loop L_{Ξ} which has U as the identity and for which the multiplication is defined by

$$
X \circ Y=\tau_{U, X}(Y) \quad \text { for all } \quad X, Y \in \mathcal{U},
$$

where $\tau_{U, X}$ is the unique element of Ξ mapping U onto X.
The set Ξ is the set of the left translations of L_{Ξ} and generates a group Δ which is a semidirect product $\Delta=T^{\prime} \rtimes C$, where the normal subgroup T^{\prime} consists of translations of the affine space \mathcal{A}_{n} and C is a subgroup of G with $\alpha(C)=G^{*}$.

There is a sharply transitive section $\sigma: \Delta / \hat{H} \rightarrow \Delta$ such that $\sigma(\Delta / \hat{H})=$ Ξ, the group \hat{H} is the stabilizer of U in Δ and the subgroup $T^{\prime} \cap \hat{H}$ consists of all translations $x \mapsto x+u: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}$ with $u \in U$.

Proof. Let D_{1} and D_{2} be elements belonging to \mathcal{U}. We show that there is precisely one element $\beta \in \Xi$ with $\beta\left(D_{1}\right)=D_{2}$. Let $D_{1}^{*}=D_{1} \cap E$ and $D_{2}^{*}=D_{2} \cap E$, where E is the hyperplane at infinity of \mathcal{A}_{n}. Thus there exists precisely one element $\rho^{*} \in \Sigma^{*}$ and hence there exists precisely one element $\rho \in \Sigma$ with $\alpha(\rho)=\rho^{*}$ such that $\rho^{*}\left(D_{1}^{*}\right)=D_{2}^{*}$. The subspaces $\rho\left(D_{1}\right)$ and D_{2} intersect E in D_{2}^{*}. In the group T_{W} there exists precisely one translation τ mapping the point $\rho\left(D_{1}\right) \cap W$ onto the point $D_{2} \cap W$. Hence the element $\beta=\tau \rho$ is the only element in Ξ mapping D_{1} onto D_{2} and the set Ξ is a sharply transitive set on \mathcal{U}. It follows that the subspaces in \mathcal{U} can be taken as the elements of a loop L_{Ξ} having U as the identity, such that the multiplication is defined as in the assertion of the theorem.

The group Δ generated by the left translations of L_{Ξ} is a subgroup of $\Theta=T \rtimes G$. Let \hat{H} be the stabilizer of U in Δ. Since Ξ is the image of a sharply transitive section $\sigma: \Delta / \hat{H} \rightarrow \Delta$ we have $\Delta(U)=\Xi \hat{H}(U)=\Xi(U)$. Let T_{U} be the group of affine translations $x \mapsto x+u: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}$ with $u \in U$. Since $W \oplus U=\mathbb{K}^{n}$ we have that $T=T_{W} \times T_{U}$. Thus one has $\Delta T(U)=\Delta T_{W} T_{U}(U)=\Delta T_{W}(U)=\Delta(U)$ since $T_{W} \leq \Delta$. For the group Λ of dilatations $x \mapsto a x: \mathcal{A}_{n} \rightarrow \mathcal{A}_{n}$ with $a \in \mathbb{K} \backslash\{0\}$ we have that $T \Lambda$ is a normal subgroup of $\Theta \Lambda$ and $\Lambda(U)=U$. Moreover $\Theta(U)=\Delta T \Lambda(U)$ since the kernel of the restriction of $\alpha: G L(n, \mathbb{K}) \rightarrow P G L(n, \mathbb{K})$ to G consists only of dilatations.

The group Δ contains a normal subgroup N fixing the hyperplane E at infinity pointwise. Since Σ^{*} generates G^{*} we see that Δ / N is isomorphic to G^{*}.

Let $T^{\prime}=T \cap \Delta$. Then Δ is the semidirect product of $\Delta=T^{\prime} \rtimes C$, where C is the stabilizer of 0 in Δ and $C N / N$ is isomorphic to G^{*}.

4 Applications

Let R be an ordered pythagorean field and let $K=R(i)$ be the algebraic extension of R such that $i^{2}=-1$. Let $F \in\{R, K\}$ and let $V=F^{n}$ be an n-dimensional F-vector space for a fixed $n \geq 3$. The automorphism $a \mapsto \bar{a}: F \rightarrow F$ is the identity if $F=R$ or the involutory automorphism fixing R elementwise and mapping i onto $-i$ if $F=K$. Denote by $\mathcal{M}_{n}(F)$ the set of the $(n \times n)$-matrices over F. If $A=\left(a_{i, j}\right)$ is a matrix in $\mathcal{M}_{n}(F)$ then $\bar{A}^{t}=\left(\bar{a}_{j, i}\right)$. Let $\mathcal{H}(n, F)$ be the set of positive definite hermitian $(n \times n)-$ matrices, i.e. the set

$$
\mathcal{H}(n, F)=\left\{A \in \mathcal{M}_{n}(F) ; A=\bar{A}^{t} \text { with } \bar{v}^{t} A v>0 \text { for all } v \in V \backslash\{0\}\right\} .
$$

We assume that the field R is n-real which means that the characteristic polynomial of every matrix in $\mathcal{H}(n, F)$ splits over K into linear factors. Thus this polynomial splits into linear factors already over R (cf. [8], p. 14). The class of n-real fields contains the class of totally real fields (cf. [8], p. 13), which is larger than the class of real closed fields and the class of hereditary euclidean fields. A hereditary euclidean field k is an ordered field such that every formally real algebraic extension of k has odd degree over k (cf. [15], Satz 1.2 (3), p. 197).

The group

$$
U(n, F)=\left\{B \in G L(n, F) ; B \bar{B}^{t}=I_{n}\right\},
$$

where I_{n} is the identity in $G L(n, F)$, is called the orthogonal group for $F=R$
and the unitary group for $F=K$. Let

$$
J_{\left(p_{1}, p_{2}\right)}=\operatorname{diag}(1, \ldots, 1,-1, \ldots,-1)
$$

be the diagonal $(n \times n)$-matrix such that the first p_{1} entries are 1 and the remaining p_{2} entries are -1 . We have $p_{1}+p_{2}=n$. The matrix $J_{\left(p_{1}, p_{2}\right)}$ defines a hermitian form on F^{n} for $F=K$ and an orthogonal form for $F=R$ by

$$
\bar{v}^{t} J v=\sum_{i=1}^{p_{1}} \bar{v}_{i} v_{i}-\sum_{j=p_{1}+1}^{n} \bar{v}_{j} v_{j} .
$$

Let $p_{2}>0$. The unitary (orthogonal) group of index p_{2} is the set

$$
U_{p_{2}}(n, F)=\left\{A \in G L_{n}(F) ; \bar{A}^{t} J_{\left(p_{1}, p_{2}\right)} A=J_{\left(p_{1}, p_{2}\right)}\right\} .
$$

Since the group $U_{p_{2}}(n, F)$ is isomorphic to the group $U_{\left(n-p_{2}\right)}(n, F)$ (cf. [14], Proposition 9.11, p. 153) we may assume that $p_{1} \geq p_{2}$. Let

$$
\Omega_{\left(p_{1}, p_{2}\right)}(F)=U_{p_{2}}(n, F) \cap U(n, F) \text { and } \Sigma_{\left(p_{1}, p_{2}\right)}(F)=U_{p_{2}}(n, F) \cap \mathcal{H}(n, F)
$$

The group $\Omega_{\left(p_{1}, p_{2}\right)}(F)$ is the direct product $\Omega_{\left(p_{1}, p_{2}\right)}(F)=U\left(p_{1}, F\right) \times U\left(p_{2}, F\right)$, where $U\left(p_{1}, F\right)$ may be identified with the group $\left(\begin{array}{cc}U\left(p_{1}, F\right) & 0 \\ 0 & I_{p_{2}}\end{array}\right)$ and $U\left(p_{2}, F\right)$ may be identified with the group $\left(\begin{array}{cc}I_{p_{1}} & 0 \\ 0 & U\left(p_{2}, F\right)\end{array}\right)$; here $I_{p_{i}}$ is the identity in $G L\left(p_{i}, F\right)$ (cf. [8], Theorem 9.13, p. 123).

According to [8] (Theorem 9.11, p. 121) the set $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ is the image of a sharply transitive section $\sigma^{\prime}: U_{p_{2}}(n, F) / \Omega_{\left(p_{1}, p_{2}\right)}(F) \rightarrow U_{p_{2}}(n, F)$ such that the corresponding loop $L_{\left(p_{1}, p_{2}\right)}$ is a Bruck loop.

The group $G_{\left(p_{1}, p_{2}\right)}$ generated by the set $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ of the left translations of $L_{\left(p_{1}, p_{2}\right)}$ is contained in the group $S U_{p_{2}}(n, F):=\left\{A \in U_{p_{2}}(n, F) ; \operatorname{det} A=1\right\}$ (cf. [8], 9.14, p. 124). Thus the loop $L_{\left(p_{1}, p_{2}\right)}$ corresponds also to the section $\sigma: S U_{p_{2}}(n, F) / \Phi \rightarrow S U_{p_{2}}(n, F)$,
where $\Phi:=\left(U\left(p_{1}, F\right) \times U\left(p_{2}, F\right)\right) \cap S U_{p_{2}}(n, F)$.
The kernel of the restriction of $\alpha: G L(n, F) \rightarrow P G L(n, F)$ to the group $S U_{p_{2}}(n, F)$ consists of the matrices $D_{a}=\operatorname{diag}(a, \ldots, a), a \in F \backslash\{0\}$ and $a^{n}=1$. Moreover one has $a \bar{a}=1$ since any matrix D_{a} satisfies $\bar{D}_{a}^{t} J_{\left(p_{1}, p_{2}\right)} D_{a}=$ $J_{\left(p_{1}, p_{2}\right)}$. Thus any matrix D_{a} is contained in Φ and α induces a bijection from $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ onto $\alpha\left(\Sigma_{\left(p_{1}, p_{2}\right)}(F)\right)$. The set $\alpha\left(\Sigma_{\left(p_{1}, p_{2}\right)}(F)\right)$ is the image of a sharply transitive section

$$
\sigma^{*}: \alpha\left(S U_{p_{2}}(n, F)\right) / \alpha(\Phi) \rightarrow \alpha\left(S U_{p_{2}}(n, F)\right)
$$

which corresponds to a Bruck loop $L_{\left(p_{1}, p_{2}\right)}^{*}$.

The elements of $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ are matrices $A \in S U_{p_{2}}(n, F)$ satisfying the relations $A=\bar{A}^{t}$ and $\bar{v}^{t} A v>0$ for all $v \in V \backslash\{0\}$. With A also A^{-1} is contained in $\Sigma_{\left(p_{1}, p_{2}\right)}(F)\left([8] 1.11\right.$, p. 16). Because of $B^{-1}=\bar{B}^{t}$ for all $B \in \Phi$ and $\bar{B}^{t} A B \in \Sigma_{\left(p_{1}, p_{2}\right)}(F)([8] 1.11$, p. 16) one has

$$
\begin{equation*}
B^{-1} A B \in \Sigma_{\left(p_{1}, p_{2}\right)}(F) \text { for all } B \in \Phi \text { and } A \in \Sigma_{\left(p_{1}, p_{2}\right)}(F) \text {. } \tag{1}
\end{equation*}
$$

Since σ is a section every element S of $S U_{p_{2}}(n, F)$ can be written in a unique way as $S=S_{1} C$ with $S_{1} \in \Sigma_{\left(p_{1}, p_{2}\right)}(F)$ and $C \in \Phi$. The set

$$
\Sigma_{\left(p_{1}, p_{2}\right)}(F)^{G_{\left(p_{1}, p_{2}\right)}}=\left\{Y^{-1} X Y ; X \in \Sigma_{\left(p_{1}, p_{2}\right)}(F), Y \in G_{\left(p_{1}, p_{2}\right)}\right\}
$$

is invariant with respect to the conjugation by the elements $S \in S U_{p_{2}}(n, F)$:

$$
\begin{gathered}
S^{-1} Y^{-1} X Y S=C^{-1} S_{1}^{-1} Y^{-1} X Y S_{1} C= \\
{\left[\left(C^{-1} S_{1}^{-1} C\right)\left(C^{-1} Y^{-1} C\right)\right]\left(C^{-1} X C\right)\left[\left(C^{-1} Y C\right)\left(C^{-1} S_{1} C\right)\right] \in \Sigma_{\left(p_{1}, p_{2}\right)}(F)^{G_{\left(p_{1}, p_{2}\right)}} .}
\end{gathered}
$$

Hence the group $G_{\left(p_{1}, p_{2}\right)}$, which is generated also by $\Sigma_{\left(p_{1}, p_{2}\right)}(F)^{G_{\left(p_{1}, p_{2}\right)}}$, is a normal non central subgroup of $S U_{p_{2}}(n, F)$. Then according to Théoréme 5 in [2] p. 70 the group $G_{\left(p_{1}, p_{2}\right)}$ coincides with $S U_{p_{2}}(n, F)$ if $F=K$. If $F=R$ and $\left(n, p_{2}\right) \neq(4,2)$ then the group $G_{\left(p_{1}, p_{2}\right)}$ contains the commutator subgroup $\left[S U_{p_{2}}(n, F)\right]^{\prime}=: \mathcal{K}_{\left(n, p_{2}\right)}$ of $S U_{p_{2}}(n, F)$ ([3], p. 63 and pp. 58-59). If $F=R$ and $\left(n, p_{2}\right)=(4,2)$ then the commutator subgroup $\mathcal{K}_{(4,2)}$ is isomorphic to the direct product $P S L_{2}(R) \times P S L_{2}(R)([3]$, p. 59). Since the hermitian matrices in the set $\Sigma_{(2,2)}(F)$ depend on 3 free parameters ([8], 9.12, p. 122) the group $G_{(2,2)}$ contains $\mathcal{K}_{(4,2)}$. Therefore in any case the group $G_{\left(p_{1}, p_{2}\right)}$ is a normal subgroup of $S U_{p_{2}}(n, F)$ containing $\mathcal{K}_{\left(n, p_{2}\right)}$.

The group $G_{\left(p_{1}, p_{2}\right)}$ leaves the value $\bar{v}^{t} J_{\left(p_{1}, p_{2}\right)} v$ invariant since

$$
\bar{v}^{t}\left(\bar{A}^{t} J_{\left(p_{1}, p_{2}\right)} A\right) v=\bar{v}^{t} J_{\left(p_{1}, p_{2}\right)} v \text { for } A \in S U_{p_{2}}(n, F)
$$

We see the group $G_{\left(p_{1}, p_{2}\right)}$ as a subgroup of the stabilizer of the element 0 in the group A of affinities of $\mathcal{A}_{n}=F^{n}$, and the group $\alpha\left(G_{\left(p_{1}, p_{2}\right)}\right):=G_{\left(p_{1}, p_{2}\right)}^{*}$ as a subgroup of the group $P G L(n, F)$ which acts on the $(n-1)$-dimensional projective hyperplane E at infinity of \mathcal{A}_{n}.

We embed the affine space \mathcal{A}_{n} into the n-dimensional projective space $P_{n}(F)$ such that $\left(x_{1}, \cdots, x_{n}\right) \mapsto F^{*}\left(1, x_{1}, \cdots, x_{n}\right), x_{i} \in F$ for all $1 \leq i \leq n$ and $F^{*}=F \backslash\{0\}$. With respect to this embedding the hyperplane E consists of the points $\left\{F^{*}\left(0, x_{1}, \cdots, x_{n}\right), x_{i} \in F\right.$, not all $\left.x_{i}=0\right\}$. The cone in \mathcal{A}_{n} which is described by the equation

$$
\begin{equation*}
\sum_{i=1}^{p_{1}} \bar{x}_{i} x_{i}-\sum_{j=p_{1}+1}^{n} \bar{x}_{j} x_{j}=0 \tag{*}
\end{equation*}
$$

intersects E in a hyperquadric C; the points $\left\{F^{*}\left(0, x_{1}, \cdots, x_{n}\right)\right\}$ of C satisfy the equation (*). The hypersurface C of E divides the points of $E \backslash C$ into two regions R_{1} and R_{2}. A point $F^{*}\left(0, x_{1}, \cdots, x_{n}\right)$ belongs to R_{1} if and only if $\sum_{i=1}^{p_{1}} \bar{x}_{i} x_{i}>\sum_{j=p_{1}+1}^{n} \bar{x}_{j} x_{j}$. It belongs to R_{2} if and only if $\sum_{i=1}^{p_{1}} \bar{x}_{i} x_{i}<\sum_{j=p_{1}+1}^{n} \bar{x}_{j} x_{j}$. The group $\alpha\left(S U_{p_{2}}(n, F)\right)=S U_{p_{2}}(n, F) / \Lambda^{\prime}$, where Λ^{\prime} is the group of dilatations contained in $S U_{p_{2}}(n, F)$, leaves R_{1}, R_{2} as well as C invariant since for any $f \in F$ and $v \in V=F^{n}$ one has $\left(\bar{f} \bar{v}^{t}\right) J_{\left(p_{1}, p_{2}\right)}(f v)=(\bar{f} f)\left(\bar{v}^{t} J_{\left(p_{1}, p_{2}\right)} v\right)$ and $\bar{f} f>0$. The group $\alpha(\Phi)=\Phi /\left(\Phi \cap \Lambda^{\prime}\right)$ leaves the subspace

$$
W_{1}^{*}=\left\{\left(0, x_{1}, \ldots, x_{p_{1}}, 0, \ldots, 0\right) ; x_{i} \in F\right\} \subseteq E
$$

as well as the subspace

$$
W_{2}^{*}=\left\{\left(0, \ldots, 0, x_{p_{1}+1}, \ldots, x_{n}\right) ; x_{i} \in F\right\} \subseteq E
$$

invariant. The intersection $W_{1}^{*} \cap W_{2}^{*}$ is empty since $W_{i}^{*} \subseteq R_{i}, i=1,2$.
Let $W_{i}, i=1,2$, be the p_{i}-dimensional affine subspace of \mathcal{A}_{n} containing 0 such that $W_{i} \cap E=W_{i}^{*}$. Thus $W_{1} \cap W_{2}=\{0\}$. Let \tilde{W}_{j} be a p_{j}-dimensional affine subspace of \mathcal{A}_{n} such that $p_{j}=n-p_{i}$ and \tilde{W}_{j} intersects W_{i} only in the point 0 . Thus \tilde{W}_{j} intersects any subspace of the set

$$
\mathcal{Z}_{i}=\left\{\rho\left(W_{i}\right), \rho \in G_{\left(p_{1}, p_{2}\right)}\right\}=\left\{\lambda\left(W_{i}\right), \lambda \in \Sigma_{\left(p_{1}, p_{2}\right)}(F)\right\},
$$

where $i \neq j$, only in 0 . Affine subspaces \tilde{W}_{j} with these properties exist, one can take for instance $\tilde{W}_{j}=\rho\left(W_{j}\right) \in \mathcal{Z}_{j}$.

Let Θ be the semidirect product $\Theta=T \rtimes G_{\left(p_{1}, p_{2}\right)}$, where T is the translation group of \mathcal{A}_{n}. According to Theorem 1 the set $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)}=\left\{T_{\tilde{W}_{j}} \Sigma_{\left(p_{1}, p_{2}\right)}(F)\right\}$, $i \neq j$, acts sharply transitively on the set

$$
\mathcal{U}_{i}=\left\{\psi\left(W_{i}\right) ; \psi \in \Xi_{\left(p_{i}, \tilde{W}_{j}\right)}\right\} .
$$

Thus a loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is realized on \mathcal{U}_{i}.
The group $S U_{p_{2}}(n, K)$ acts irreducibly on the vector space $V=K^{n}$ and the commutator subgroup $\mathcal{K}_{\left(n, p_{2}\right)}$ of $S O_{p_{2}}(n, R)$ acts irreducibly on $V=R^{n}$ (cf. [1], Theorem 3.24, p. 136). Hence the group Δ generated by the left translations $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)}$ of the loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ contains all translations of the affine space \mathcal{A}_{n}. It follows that Δ is the semidirect product $\Delta=T \rtimes C$ of the translation group T by a subgroup C of the stabilizer of $0 \in \mathcal{A}_{n}$ in the group A of affinities. If $F=K$ then C is isomorphic to $S U_{p_{2}}(n, K)$ and the stabilizer \hat{H} of W_{i} in Δ is the semidirect product $T_{W_{i}} \rtimes \Phi$ since any
element $g \in G_{\left(p_{1}, p_{2}\right)}=S U_{p_{2}}(n, K)$ has a unique representation as $g=g_{1} g_{2}$ with $g_{1} \in \Sigma_{\left(p_{1}, p_{2}\right)}(K)$ and $g_{2} \in \Phi$. If $F=R$ then C is a normal subgroup of $S O_{p_{2}}(n, R)$ containing $\mathcal{K}_{\left(n, p_{2}\right)}$ and the stabilizer \hat{H} of W_{i} in Δ is the semidirect product $T_{W_{i}} \rtimes \Gamma$, where $\Gamma=\Phi \cap C$.

For $p_{1}>p_{2}$ the loop $L_{\left(p_{1}, \tilde{W}_{2}\right)}$ is never isotopic to a loop $L_{\left(p_{2}, \tilde{W}_{1}\right)}$. This follows from the fact that the stabilizer $H_{k}, k=1,2$, of the identity of $L_{\left(p_{k}, \tilde{W}_{l}\right)}$ with $l \neq k$ in Δ contains the group $T_{W_{k}}$ as the largest normal subgroup consisting of affine translations. Since $T_{W_{1}}$ is not isomorphic to $T_{W_{2}}$ one has that H_{1} is not isomorphic to H_{2}. (cf. [13], Theorem III.2.7, p. 65)

Now we consider the loops $L_{\left(p_{i}, W_{j}\right)}$ and $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ for $W_{j} \neq \tilde{W}_{j}$. According to (1) the subspaces W_{1} and W_{2} are invariant under the subgroup Φ of the stabilizer of $0 \in \mathcal{A}_{n}$ in the group A of affinities. Hence if $g \in \Phi$ then one has $g \Sigma_{\left(p_{1}, p_{2}\right)}(F) g^{-1}=\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ and $g T_{W_{k}} g^{-1}=T_{W_{k}}, k=1,2$, for the group $T_{W_{k}}=\left\{x \mapsto x+w_{k} ; w_{k} \in W_{k}\right\}$. This yields $g \Xi_{\left(p_{i}, W_{j}\right)} g^{-1}=\Xi_{\left(p_{i}, W_{j}\right)}$. For $W_{j} \neq \tilde{W}_{j}$ the group Φ does not normalize the translation group $T_{\tilde{W}_{j}}$. Therefore

$$
\begin{gathered}
g T_{\tilde{W}_{j}} \Sigma_{\left(p_{1}, p_{2}\right)}(F) g^{-1}=\left(g T_{\tilde{W}_{j}} g^{-1}\right)\left(g \Sigma_{\left(p_{1}, p_{2}\right)}(F) g^{-1}\right)= \\
\left(g T_{\tilde{W}_{j}} g^{-1}\right) \Sigma_{\left(p_{1}, p_{2}\right)}(F) \neq \Xi_{\left(p_{1}, \tilde{W}_{j}\right)}
\end{gathered}
$$

for suitable elements $g \in \Phi$. This means that not all elements of Φ induce automorphisms of $L_{\left(p_{i}, \tilde{W}_{j}\right)}$. Therefore the loops $L_{\left(p_{i}, W_{j}\right)}$ and $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ are not isomorphic if $W_{j} \neq \tilde{W}_{j}$.

Proposition 2. Any loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is a topological loop with respect to the topology induced on the set \mathcal{U} by the topology on the set of the p_{i}-dimensional subspaces of \mathcal{A}_{n} which is derived from the topology of the topological field F.

Proof. Since R is an ordered field, R as well as $K=R(i)$ are topological fields with respect to the topology given by the ordering of R. Then the ring $\mathcal{M}_{n}(F)$ of $(n \times n)$-matrices over F is a topological ring such that the open ε-neighbourhoods of $0 \in \mathcal{M}_{n}(F)$ consist of matrices $\left(c_{i, j}\right)$ with $\left|c_{i j}\right|<\varepsilon$. The group $G L(n, F) \leq \mathcal{M}_{n}(F)$ is a topological group. Since the set $Z=\{\operatorname{diag}(a, \ldots, a), a \in F \backslash\{0\}\}$ is a closed subgroup of $G L(n, F)$ the group $P G L(n, F)=G L(n, F) / Z$ is a topological group. The subgroups $S U_{p_{2}}(n, F)$ and $\Phi=\left(U\left(p_{1}, F\right) \times U\left(p_{2}, F\right)\right) \cap S U_{p_{2}}(n, F)$ are closed subgroups of $G L(n, F)$. Moreover $S U_{p_{2}}(n, F) Z / Z$ as well as $\Phi Z / Z$ are closed subgroups of $\operatorname{PGL}(n, F)$.

The affine space $\mathcal{A}_{n}=F^{n}$ and the $(n-1)$-dimensional projective hyperplane E carry topologies derived from the topology of the field F (cf. [11],

Chapter XI). The semidirect product $A=T \rtimes G L(n, F)$ is a topological group consisting of continuous affinities; it induces on the hyperplane E a continuous group of projective collineations. Any subset of A is a topological space with respect to the topology induced from A and any subgroup of A becomes a topological group in this manner.

Let Q_{1} be a fixed p_{i}-dimensional subspace of \mathcal{A}_{n} and let \mathcal{Q} be the set of the affine $\left(n-p_{i}\right)$-dimensional affine subspaces with $\left|Q_{1} \cap Q\right|=1$ for $Q \in \mathcal{Q}$. The set \mathcal{Q} also carries a topology determined by the topology of F. The set \mathcal{Q}^{*} of intersections Q^{*} of the affine subspaces Q of \mathcal{Q} with E inherits the topology of the Graßmannian manifold of the $\left(n-p_{i}-1\right)$-dimensional subspaces of the hyperplane E. The geometric operation $\left(Q, Q_{1}\right) \mapsto Q \cap Q_{1}: \mathcal{Q} \rightarrow Q_{1}$ is continuous.

On the topological space $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ a topological Bruck loop $L_{\left(p_{1}, p_{2}\right)}$ is realized by the multiplication

$$
\begin{equation*}
A \circ B=\sqrt{A B^{2} A} \text { for all } A, B \in \Sigma_{\left(p_{1}, p_{2}\right)}(F) \tag{2}
\end{equation*}
$$

where $X \mapsto \sqrt{X}$ is the inverse map of the bijection $X \mapsto X^{2}: \Sigma_{\left(p_{1}, p_{2}\right)}(F) \rightarrow$ $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ (cf. [8] (1.14), p. 17 and (9.1) Theorem (4), p. 108, [12], p. 121). We denote by $\left[\rho\left(W_{i}\right)\right]^{*}$ with $\rho \in \Sigma_{\left(p_{1}, p_{2}\right)}(F)$ the intersection of the subspace $\rho\left(W_{i}\right)$ with the hyperplane E and by \mathcal{Z}_{i}^{*} the set $\left\{\left[\rho\left(W_{i}\right)\right]^{*} ; \rho \in \Sigma_{\left(p_{1}, p_{2}\right)}(F)\right\}$. For the elements of the loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ one can take the elements of the set

$$
\mathcal{U}_{\left(p_{i}, \tilde{W}_{j}\right)}=\left\{\psi\left(W_{i}\right) ; \psi \in \Xi_{\left(p_{i}, \tilde{W}_{j}\right)}\right\}=\left\{\tau \rho\left(W_{i}\right) ; \tau \in T_{\tilde{W}_{j}}, \rho \in \Sigma_{\left(p_{1}, p_{2}\right)}(F)\right\} .
$$

The subspace \tilde{W}_{j} is homeomorphic to the group $T_{\tilde{W}_{j}}$, and the set \mathcal{Z}_{i} is homeomorphic to $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$. Any element $\tau \rho\left(W_{i}\right) \in \mathcal{U}_{\left(p_{i}, \tilde{W}_{j}\right)}$ is uniquely determined by $\left[\rho\left(W_{i}\right)\right]^{*}$ and $\left(\tau \rho\left(W_{i}\right)\right) \cap \tilde{W}_{j}$. The mapping

$$
\omega: \tau \rho\left(W_{i}\right) \mapsto\left(\left(\tau \rho\left(W_{i}\right)\right) \cap \tilde{W}_{j},\left[\rho\left(W_{i}\right)\right]^{*}\right)
$$

from $\mathcal{U}_{\left(p_{i}, \tilde{W}_{j}\right)}$ onto the topological product $\tilde{W}_{j} \times \mathcal{Z}_{i}^{*}$ is a bijection such that

$$
\omega^{-1}:\left(w, Z^{*}\right) \mapsto w \vee Z^{*}
$$

where $w \vee Z^{*}$ is the p_{i}-dimensional affine subspace containing $w \in \tilde{W}_{j}$ and intersecting E in $Z^{*} \in \mathcal{Z}_{i}^{*}$. Since the geometric operations of joining and of intersecting of distinct subspaces are continuous maps, ω is a homeomorphism.

Let $\left(w_{k}, Z_{k}^{*}\right) \in \tilde{W}_{j} \times \mathcal{Z}_{i}^{*}$ with $k=1,2$ and let $\tau_{k} \rho_{k}\left(W_{i}\right)$ be the subspaces of $\mathcal{U}_{\left(p_{i}, \tilde{W}_{j)}\right)}$ such that $\omega\left(\tau_{k} \rho_{k}\left(W_{i}\right)\right)=\left(w_{k}, Z_{k}^{*}\right)$. The multiplication given by

$$
\begin{equation*}
\left(w_{1}, Z_{1}^{*}\right) \circ\left(w_{2}, Z_{2}^{*}\right)=\left(w_{3}, Z_{3}^{*}\right) \tag{3}
\end{equation*}
$$

where $Z_{3}^{*}=\left[\rho_{1} \rho_{2}\left(W_{i}\right)\right]^{*}$ and

$$
w_{3}=\tau_{1}\left[\rho_{1}\left(\tau_{2} \rho_{2}\left(W_{i}\right)\right) \cap \tilde{W}_{j}\right]=\tau_{1}\left[\left(\rho_{1}\left[\tau_{2} \rho_{2}\left(W_{i}\right) \cap \tilde{W}_{j}\right] \vee\left[\rho_{1} \rho_{2}\left(W_{i}\right)\right]^{*}\right) \cap \tilde{W}_{j}\right]
$$

yields a topological loop. This loop is homeomorphic to $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ since $\left[\rho_{1} \tau_{2} \rho_{2}\left(W_{i}\right)\right]^{*}=\left[\rho_{1} \rho_{2}\left(W_{i}\right)\right]^{*}$ and $\left[\tau_{1} \rho_{1} \tau_{2} \rho_{2}\left(W_{i}\right)\right]^{*}=\left[\rho_{1} \rho_{2}\left(W_{i}\right)\right]^{*}$.

5 Special cases: \mathbb{R} and \mathbb{C}

Proposition 3. The loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is a differentiable loop diffeomorphic to \mathbb{R}^{d}, where $d=\varepsilon\left(p_{j}+p_{1} p_{2}\right)$, with $\varepsilon=1$ if $F=\mathbb{R}$ and $\varepsilon=2$ if $F=\mathbb{C}$.

If $F=\mathbb{C}$ then the group Δ generated by the left translations of $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is the semidirect product $\mathbb{C}^{n} \rtimes S U_{p_{2}}(n, \mathbb{C})$ and the stabilizer of W_{i} in Δ is the semidirect product $\mathbb{C}^{p_{i}} \rtimes \Pi$, where Π is an epimorphic image of the direct product $S U\left(p_{1}, \mathbb{C}\right) \times S U\left(p_{2}, \mathbb{C}\right) \times S O_{2}(\mathbb{R})$.

If $F=\mathbb{R}$ then Δ is the semidirect product $\mathbb{R}^{n} \rtimes S O_{p_{2}}(n, \mathbb{R})^{\circ}$, where $S O_{p_{2}}(n, \mathbb{R})^{\circ}$ is the connected component of $S O_{p_{2}}(n, \mathbb{R})$, and the stabilizer of W_{i} in Δ is the semidirect product $\mathbb{R}^{p_{i}} \rtimes\left(S O\left(p_{1}, \mathbb{R}\right) \times S O\left(p_{2}, \mathbb{R}\right)\right)$.

Proof. Clearly the topological manifold $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ carries the differentiable structure of the real differentiable manifold $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)}$ which is the topological product of $T_{\tilde{W}_{j}}$ and $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$.

According to Section 4 the group Δ topologically generated by the left translations $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)}$ is the semidirect product $\Delta=F^{n} \rtimes C$, where C contains the commutator subgroup of $S U_{p_{2}}(n, F)$.

If $F=\mathbb{C}$ then $C=S U_{p_{2}}(n, \mathbb{C})$ and the stabilizer \hat{H} of W_{i} in Δ is the semidirect product $T_{W_{i}} \rtimes \Phi$ with $\Phi=\left[U_{p_{1}}(\mathbb{C}) \times U_{p_{2}}(\mathbb{C})\right] \cap S U_{p_{2}}(n, \mathbb{C})$ which is a maximal compact subgroup of $S U_{p_{2}}(n, \mathbb{C})([16]$, p. 28). The groups $S U_{p_{2}}(n, \mathbb{C})$ and Φ are connected therefore the groups Δ and \hat{H} are connected. Since Δ is the topological product $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)} \times \hat{H}=\Xi_{\left(p_{i}, \tilde{W}_{j}\right)} \times T_{W_{i}} \times \Phi$ it follows that the manifold $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)}$ and hence the loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ are diffeomorphic to an affine space.

If $F=\mathbb{R}$ then C is a subgroup of $S O_{p_{2}}(n, \mathbb{R})$ containing the commutator subgroup $\mathcal{K}_{\left(n, p_{2}\right)}$. According to [3] p. 57 the factor group $S O_{p_{2}}(n, \mathbb{R}) / \mathcal{K}_{\left(n, p_{2}\right)}$ has order 2. Hence $\mathcal{K}_{\left(n, p_{2}\right)}$ is the connected component of $S O_{p_{2}}(n, \mathbb{R})$. The group $\Phi=\left[O_{p_{1}}(\mathbb{R}) \times O_{p_{2}}(\mathbb{R})\right] \cap S O_{p_{2}}(n, \mathbb{R})$ is not connected since the factor group $O\left(p_{i}, \mathbb{R}\right) / S O\left(p_{i}, \mathbb{R}\right)$ has order 2 ([14], Corollary 9.37, p. 158) and the product $\alpha_{1} \alpha_{2}$ with $\alpha_{i} \in O\left(p_{i}, \mathbb{R}\right)$, but $\alpha_{i} \notin S O\left(p_{i}, \mathbb{R}\right)$ for $i=1,2$, is an element of $S O_{p_{2}}(n, \mathbb{R})$. The group $S O_{p_{2}}(n, \mathbb{R})$ is homeomorphic to the topological product $\Sigma_{\left(p_{1}, p_{2}\right)}(\mathbb{R}) \times \Phi$. Since $S O_{p_{2}}(n, \mathbb{R})$ has two connected
components and Φ is not connected the manifold $\Sigma_{\left(p_{1}, p_{2}\right)}(\mathbb{R})$ is connected. It follows that the group C generated by $\Sigma_{\left(p_{1}, p_{2}\right)}(\mathbb{R})$ is connected and hence isomorphic to the connected component $S O_{p_{2}}(n, \mathbb{R})^{\circ}=\mathcal{K}_{\left(n, p_{2}\right)}$ of $S O_{p_{2}}(n, \mathbb{R})$. Thus the group $\Delta=T \rtimes C$ is connected. Moreover Δ is the topological product $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)} \times \hat{H}=\Xi_{\left(p_{i}, \tilde{W}_{j}\right)} \times T_{W_{i}} \times(\Phi \cap \hat{H})$. Since $\Delta, \Xi_{\left(p_{i}, \tilde{W}_{j}\right)}$ and $T_{W_{i}}$ are connected, the group $\Phi \cap \hat{H}$ is connected and hence a maximal compact subgroup of $S O_{p_{2}}(n, \mathbb{R})$. This yields that $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)}$ and $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ are diffeomorphic to an affine space.

The group Δ is the topological product $\Xi_{\left(p_{i}, \tilde{W}_{j}\right)} \times \hat{H}$. Thus for the real dimension of $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ one has

$$
\begin{gathered}
\operatorname{dim} L_{\left(p_{i}, \tilde{W}_{j}\right)}=\operatorname{dim} \Xi_{\left(p_{i}, \tilde{W}_{j}\right)}=\operatorname{dim} \Delta-\operatorname{dim} \hat{H} \\
\operatorname{dim}_{\mathbb{R}} T_{W_{i}}+\operatorname{dim}_{\mathbb{R}} T_{\tilde{W}_{j}}+\operatorname{dim} S U_{p_{2}}(n, F)-\operatorname{dim}_{\mathbb{R}} T_{W_{i}}-\operatorname{dim}(C \cap \hat{H}) .
\end{gathered}
$$

If $F=\mathbb{C}$ then the group $\Phi=C \cap \hat{H}$ is an epimorphic image of the direct product $S U\left(p_{1}, \mathbb{C}\right) \times S U\left(p_{2}, \mathbb{C}\right) \times S O_{2}(\mathbb{R})$ (cf. [16], p. 28). This yields $\operatorname{dim} L_{\left(p_{i}, \tilde{W}_{j}\right)}=\left[\left(p_{1}+p_{2}\right)^{2}-1\right]+2 p_{j}-\left(p_{1}^{2}-1\right)-\left(p_{2}^{2}-1\right)-1=2 p_{j}+2 p_{1} p_{2}$ since the dimension of a unitary group $S U_{k}(m, \mathbb{C})$ is equal to $(m-1)^{2}+$ $2(m-1)$ for $0 \leq k \leq m$ ([16], p. 26 and p. 28). It follows that $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is diffeomorphic to $\mathbb{R}^{2\left(p_{j}+p_{1} p_{2}\right)}$.

The group Δ is the semidirect product $\Delta=\mathbb{C}^{n} \rtimes C$, where C is the group $S U_{p_{2}}(n, \mathbb{C})$ and the stabilizer \hat{H} is the semidirect product $T_{W_{i}} \rtimes \Phi$, where Φ is an epimorphic image of $S U\left(p_{1}, \mathbb{C}\right) \times S U\left(p_{2}, \mathbb{C}\right) \times S O_{2}(\mathbb{R})$.

If $F=\mathbb{R}$ then $C \cap \hat{H}=S O\left(p_{1}, \mathbb{R}\right) \times S O\left(p_{2}, \mathbb{R}\right)([16]$, p. 31 and p. 38). It follows that

$$
\begin{gathered}
\operatorname{dim} L_{\left(p_{i}, \tilde{W}_{j}\right)}=\frac{1}{2}\left(p_{1}+p_{2}\right)\left(p_{1}+p_{2}-1\right)+p_{j}-\frac{1}{2} p_{1}\left(p_{1}-1\right)-\frac{1}{2} p_{2}\left(p_{2}-1\right)= \\
p_{j}+p_{1} p_{2} .
\end{gathered}
$$

Hence the loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is diffeomorphic to $\mathbb{R}^{p_{j}+p_{1} p_{2}}$.
The group Δ is the semidirect product $\Delta=\mathbb{R}^{n} \rtimes C$, where C is the group $S O_{p_{2}}(n, \mathbb{R})^{\circ}$ and the stabilizer \hat{H} of W_{i} in Δ is the semidirect product $\mathbb{R}^{p_{i}} \rtimes\left(S O\left(p_{1}, \mathbb{R}\right) \times S O\left(p_{2}, \mathbb{R}\right)\right)$.

The loop $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is diffeomorphic to the manifold $\tilde{W}_{j} \times \mathcal{Z}_{i}$ since \mathcal{Z}_{i} is diffeomorphic to $\Sigma_{\left(p_{1}, p_{2}\right)}(\mathbb{R})$. The mapping $\left(x, D^{*}\right) \mapsto x \vee D^{*}$ assigning to a point $x \in \mathcal{A}_{n}=F^{n}, F \in\{\mathbb{R}, \mathbb{C}\}$ and to an element D^{*} of the Graßmannian manifold of the $\left(p_{i}-1\right)$-dimensional F-subspaces of the hyperplane E the affine subspace D containing x and intersecting E in D^{*} is differentiable. Also the mapping $D \rightarrow D \cap \tilde{W}_{\dot{j}}$ assigning to a p_{i}-dimensional affine F subspace D of \mathcal{A}_{n} the point $D \cap W_{j}$ is differentiable. Since the loop realized on $\Sigma_{\left(p_{1}, p_{2}\right)}(F)$ by the multiplication (2) is differentiable, the representation of $L_{\left(p_{i}, \tilde{W}_{j)}\right)}$ on the manifold $\tilde{W}_{j} \times \mathcal{Z}_{i}$ by the multiplication (3) yields that $L_{\left(p_{i}, \tilde{W}_{j}\right)}$ is differentiable.

References

[1] E. Artin, Geometric Algebra, Interscience Publishers, New York London, 1957.
[2] J. A. Dieudonné, Sur les groupes classiques, Hermann, Paris, 1958.
[3] J. A. Dieudonné, La géométrie des groupes classiques, Ergebnisse der Mathematik und ihrer Grenzgebiete, Springer Verlag, Berlin Heidelberg New York, 1971.
[4] Á. Figula, 3-dimensional Bol loops as sections in non-solvable Lie groups, accepted for publication in Forum Math.
[5] Á. Figula, 3-dimensional loops on non-solvable reductive spaces, accepted for publication in Adv. Geometry.
[6] E. Gabrieli, H. Karzel, Point reflection geometries, geometric K-loops and unitary geometries, Resultate Math. 32 (1997), 66-72.
[7] B. Im, K-loops in the Minkowski world over an ordered field, Resultate Math. 25 (1994), 60-63.
[8] H. Kiechle, Theory of K-Loops, Lecture Notes in Mathematics. 1778. Springer-Verlag, Berlin, 2002.
[9] E. Kolb, A. Kreuzer, Geometry of kinematic K-loops, Abh. Math. Sem. Univ. Hamburg 65 (1995), 189-197.
[10] A. Konrad, Hyperbolische loops über Oktaven und K-loops, Resultate Math. 25 (1994), 331-338.
[11] H. Lenz, Vorlesungen über projektive Geometrie, Akademische Verlagsgesellschaft Geest and Portig, Leipzig, 1965.
[12] P. T. Nagy and K. Strambach, Loops in Groups Theory and Lie Theory, de Gruyter Expositions in Mathematics. 35. Berlin, New York, 2002.
[13] H. O. Pflugfelder, Quasigroups and Loops: Introduction, HeldermannVerlag, Berlin, 1990.
[14] I. R. Porteous, Topological Geometry, Van Nostrand Reinhold Company, London, 1969.
[15] A. Prestel and M. Ziegler, Erblich euklidische Körper, J. Reine Angew. Math. 274-275 (1975), 196-205.
[16] J. Tits, Tabellen zu den einfachen Lie Gruppen and ihren Darstellungen, Lecture notes in mathematics 40. Springer Verlag, Berlin, 1967.

Ágota Figula
Mathematisches Institut
der Universität Erlangen-Nürnberg
Bismarckstr. $1 \frac{1}{2}$,
D-91054 Erlangen, Germany, figula@mi.uni-erlangen.de and
Institute of Mathematics, University of Debrecen
P.O.B. 12, H-4010 Debrecen, Hungary, figula@math.klte.hu

Karl Strambach
Mathematisches Institut
der Universität Erlangen-Nürnberg
Bismarckstr. $1 \frac{1}{2}$,
D-91054 Erlangen, Germany,
strambach@mi.uni-erlangen.de

[^0]: ${ }^{1} 2000$ Mathematics Subject Classification: 20N05, 51F25, 12D15, 51N30, 51M05.
 ${ }^{2}$ Key words and phrases: loop, Bol loops, unitary and orthogonal geometries with positive index.

