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Fubini Numbers and Polynomials of Graphs

Zsófia Kereskényi-Balogh and Gábor Nyul

Abstract. In this paper, we introduce the Fubini number and Fubini
polynomial of a graph in connection with the enumeration of ordered
independent partitions of its set of vertices. We prove several properties
of them, and study how these notions cover other variants of Fubini
numbers and polynomials for special graphs.
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1. Introduction

Fubini numbers are the ordered analogues of Bell numbers. The nth Fubini

number Fn =
n∑

k=0

k!
{
n
k

}
(n ≥ 0) counts the ordered partitions of a set with

n elements, where
{
n
k

}
denotes a Stirling number of the second kind. Their

denomination is due to L. Comtet [14] in view of Fubini’s theorem in mathe-

matical analysis. The related nth Fubini polynomial is Fn(x) =
n∑

k=0

k!
{
n
k

}
xk

(n ≥ 0). For a classical reference on Fubini numbers and polynomials, see
[27].

Fubini numbers have several restricted variants and generalizations.
If n ≥ m ≥ 0, then the nth m-nonconsecutive Fubini number F

(m)
n =

n∑

k=0

k!
{
n
k

}(m) =
n∑

k=m

k!
{
n−m
k−m

}
is the number of those ordered partitions of

an n-element set in which two distinct elements are not allowed to be in
the same block whenever the difference of their indices is at most m. (De-
tails about m-nonconsecutive Stirling numbers of the second kind

{
n
k

}(m),
which are equal to

{
n−m
k−m

}
if m ≤ k ≤ n, can be found, e.g., in [12,13];
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for more references, see [21]). Obviously, F
(0)
n = Fn. We can also define the

nth m-nonconsecutive Fubini polynomial as F
(m)
n (x) =

n∑

k=0

k!
{
n
k

}(m)
xk =

n∑

k=m

k!
{
n−m
k−m

}
xk. H. Prodinger [25] proved that

F (m)
n =

1
2m

m+1∑

k=1

[
m + 1

k

]

Fn−m−1+k,

where
[
m+1
k

]
denotes an (unsigned) Stirling number of the first kind.

For n, r ≥ 0, the nth r-Fubini number Fn,r =
n∑

k=0

(k + r)!
{
n
k

}
r

counts

those ordered partitions of a set with n+r elements where the first r elements
belong to distinct blocks. They were introduced by I. Mező and G. Nyul [24].
(The r-Stirling numbers of the second kind were first defined by L. Carlitz
[11], A. Z. Broder [9], and later rediscovered by R. Merris [23]. We use the
parametrization where

{
n
k

}
r

is the number of partitions of an (n+r)-element
set into k + r nonempty subsets such that the first r elements have to be in
distinct blocks.) By definition, Fn,0 = Fn and Fn,1 = Fn+1. The nth r-Fubini

polynomial is Fn,r(x) =
n∑

k=0

(k + r)!
{
n
k

}
r
xk.

Fubini numbers can be also defined for multisets. Let m1, . . . ,ms be
positive integers and n = m1 + · · ·+ms. Denote by Fn,(m1,...,ms) the number
of ordered partitions of an n-element multiset where the underlying set con-
tains s elements whose multiplicities are m1, . . . ,ms. Then Fn,(1,...,1) = Fn.
M. Griffiths and I. Mező [19] investigated Stirling numbers of the second kind
for special multisets, and they derived the formula

Fn,(m,1,...,1) =
n∑

k=1

k∑

l=1

(−1)k−l

(
k

l

)(
m + l − 1

m

)

ln−m.

Finally, we mention briefly a few more variants of Fubini numbers and
polynomials without going into details, because they lie beyond the scope of
this paper. We can prescribe certain restrictions on the cardinalities of the
blocks, such restricted and associated Fubini numbers can be found in [5,10].
Fubini type polynomials related to Whitney and r-Whitney numbers appear
in [4,15]. Recently, G. Rácz [26] studied Fubini–Lah numbers and polynomi-
als, where not only the partition itself but also the blocks are ordered.

In our paper, we introduce Fubini numbers and Fubini polynomials of
graphs, which notions cover ordinary, m-nonconsecutive Fubini numbers and
polynomials, r-Fubini numbers and polynomials as special cases, and it will
turn out that they are closely connected with the variant for multisets, as
well.

2. Fubini Numbers and Polynomials of Graphs

Let G be a simple (finite) graph. A partition of V (G) is said to be an inde-
pendent partition if each block is an independent vertex set, in other words,
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if adjacent vertices belong to distinct blocks. In [17], B. Duncan and R. Peele
introduced Stirling numbers of the second kind and Bell numbers for graphs.{
G
k

}
(0 ≤ k ≤ |V (G)|) and BG count independent partitions of V (G) into

k and an arbitrary number of blocks, respectively. These numbers already
appeared before in the literature in connection with graph colourings, but
the above-mentioned authors were the first who considered them from an
enumerative point of view, as generalizations of classical Stirling and Bell
numbers. A detailed study was given in [21], and several recent results can
be found in [1–3,16,18,20,22]. One can define the corresponding Bell poly-

nomial BG(x) =
|V (G)|∑

k=0

{
G
k

}
xk of the graph G, which notion is actually one of

the variants of the σ-polynomials, see [7,8].
Then, we define the Fubini number FG of the graph G to be the num-

ber of ordered independent partitions of V (G). Since the number of or-
dered independent partitions of V (G) into k nonempty subsets is k!

{
G
k

}

(0 ≤ k ≤ |V (G)|), we immediately obtain FG =
|V (G)|∑

k=0

k!
{
G
k

}
, where sum-

mation could be taken from the chromatic number χ(G).
Now, it is straightforward to define the Fubini polynomial of the graph G

as FG(x) =
|V (G)|∑

k=0

k!
{
G
k

}
xk. Clearly, a combinatorial meaning can be assigned

to this polynomial. Namely, for c ≥ 1, FG(c) is the number of c-coloured
ordered independent partitions of V (G), where distinct blocks can have the
same colour.

Since FG(1) = FG, it will be sufficient to prove our theorems for Fu-
bini polynomials, the similar property follows by a substitution for Fubini
numbers.

We can immediately give four examples of Fubini numbers and polyno-
mials for special graphs:

• Simply, FKn
= n! and FKn

(x) = n!xn for the n-vertex complete graph
Kn, since each block is a singleton in the only independent partition of
V (Kn).

• We have FEn
= Fn and FEn

(x) = Fn(x) for the n-vertex empty graph
En, because every subset of V (En) is independent.

• If P
(m)
n is the n-vertex m-path graph (n ≥ m), i.e., a simple graph where

two vertices are adjacent if and only if their indices differ by at most m,
then F

P
(m)
n

= F
(m)
n and F

P
(m)
n

(x) = F
(m)
n (x).

• Finally, in [21] we introduced the graph Rn,r consisting of n isolated
vertices and a clique with r vertices, in other words, the disjoint union
of En and Kr, to study r-Stirling numbers of the second kind and r-
Bell numbers through graphs. For this graph, we have FRn,r

= Fn,r and
FRn,r

(x) = xrFn,r(x).

Fubini numbers and polynomials of graphs satisfy the deletion–contraction
relation.
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Theorem 2.1. If G is a simple graph and e ∈ E(G), then FG = FG−e − FG/e

and FG(x) = FG−e(x) − FG/e(x).

Proof. The assertion follows by the standard argument. A c-coloured ordered
independent partition of V (G − e) is a c-coloured ordered independent par-
tition of V (G) if the endpoints of e belong to distinct blocks. Otherwise, it
corresponds to a c-coloured ordered independent partition of V (G/e). There-
fore, FG−e(c) = FG(c) + FG/e(c) for any c ≥ 1. �

The Fubini number and polynomial of a graph can be expressed as a
linear combination of ordinary Fubini numbers and polynomials. We call them
Berceanu type identities, since C. Berceanu [6] proved it for Bell numbers (see
also [21]).

Theorem 2.2. If G is a simple graph with chromatic polynomial pG(x) =
|V (G)|∑

j=0

ajx
j, then

FG =
|V (G)|∑

j=0

ajFj and FG(x) =
|V (G)|∑

j=0

ajFj(x).

Proof. It can be easily proved by induction on the number of edges. The
induction step depends on the fact that deletion–contraction relations hold
for both the chromatic polynomials and Fubini polynomials of graphs. �

Using formal power series, the following Dobiński type formulas can be
derived for the Fubini number and polynomial of a graph.

Theorem 2.3. If G is a simple graph, then

FG =
∞∑

j=0

pG(j)
2j+1

and FG(x) =
1

x + 1

∞∑

j=0

pG(j)
(

x

x + 1

)j

.

Proof. It is known (see, e.g., [21]) that the chromatic polynomial of G is

pG(x) =
|V (G)|∑

k=0

{
G
k

}
xk, where xk denotes the kth falling factorial of x. More-

over, we need the reformulation
∞∑

j=0

(
j+k
k

)
xj = (1 − x)−k−1 of the binomial

series to obtain

∞∑

j=0

pG(j)
(

x

x + 1

)j

=
∞∑

j=0

|V (G)|∑

k=0

{
G

k

}

jk
(

x

x + 1

)j

=
|V (G)|∑

k=0

k!
{

G

k

} ∞∑

j=k

(
j

k

)(
x

x + 1

)j
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=
|V (G)|∑

k=0

k!
{

G

k

}(
x

x + 1

)k ∞∑

j=0

(
j + k

k

) (
x

x + 1

)j

=
|V (G)|∑

k=0

k!
{

G

k

}(
x

x + 1

)k

(x + 1)k+1 = (x + 1) FG(x).

�
The expected value of the chromatic polynomial transform of a geomet-

ric random variable can be expressed by the Fubini polynomial of the graph.

Theorem 2.4. Let G be a simple graph with chromatic polynomial pG(x), and
ξ be a geometric random variable with parameter 0 < p ≤ 1 in the sense that
P(ξ = j) = (1 − p)jp (j ≥ 0). Then

EpG(ξ) = FG

(
1 − p

p

)

.

Especially, for parameter p = 1
2 , we have EpG(ξ) = FG.

Proof. After the necessary convergence considerations, it follows from Theo-
rem 2.3 that

FG

(
1 − p

p

)

= p

∞∑

j=0

pG(j) (1 − p)j =
∞∑

j=0

pG(j)P(ξ = j) = EpG(ξ).

�
Remark. For the graphs En, Kn, P

(m)
n , Rn,r, and a geometric random vari-

able ξ with parameter p, Theorems 2.3 and 2.4 give

Fn(x) =
1

x + 1

∞∑

j=0

jn
(

x

x + 1

)j

, n!xn =
1

x + 1

∞∑

j=0

jn
(

x

x + 1

)j

,

F (m)
n (x) =

1
x + 1

∞∑

j=0

jm(j − m)n−m

(
x

x + 1

)j

,

xrFn,r(x) =
1

x + 1

∞∑

j=0

jnjr
(

x

x + 1

)j

,

and

Eξn = Fn

(
1 − p

p

)

, Eξn = n!
(

1 − p

p

)n

,

E(ξm(ξ − m)n−m) = F (m)
n

(
1 − p

p

)

, E(ξnξr) =
(

1 − p

p

)r

Fn,r

(
1 − p

p

)

.

In the rest of the paper, we study Fubini numbers and polynomials for
trees, m-trees and cycle graphs.

Theorem 2.5. If G is a tree with n ≥ 2 vertices, then

FG =
Fn + Fn−1

2
and FG(x) =

xFn(x) + xFn−1(x)
x + 1

.
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Proof. For a tree G with n vertices, it is proved in [21,28] that
{
G
0

}
= 0 and

{
G
k

}
=

{
n−1
k−1

}
(1 ≤ k ≤ n). Using the recurrence relation for Stirling numbers

of the second kind, we have

xFn(x) + xFn−1(x)

=
n∑

k=0

k!
{

n

k

}

xk+1 +
n−1∑

k=0

k!
{

n − 1
k

}

xk+1

=
n−1∑

k=1

k!
({

n − 1
k − 1

}

+ k

{
n − 1

k

})

xk+1 + n!xn+1 +
n−1∑

k=0

k!
{

n − 1
k

}

xk+1

=
n−1∑

k=1

k!
{

n − 1
k − 1

}

xk+1 + n!xn+1 +
n−1∑

k=0

(k + 1)!
{

n − 1
k

}

xk+1

= x

n∑

k=1

k!
{

n − 1
k − 1

}

xk +
n∑

k=1

k!
{

n − 1
k − 1

}

xk

= (x + 1)
n∑

k=0

k!
{

G

k

}

xk = (x + 1)FG(x).

�
Remark. For an (n + 1)-vertex tree, Theorems 2.2 and 2.3 give

xFn+1(x) + xFn(x)
x + 1

=
n∑

j=0

(−1)n−j

(
n

j

)

Fj+1(x)

=
1

x + 1

∞∑

j=0

j(j − 1)n
(

x

x + 1

)j

.

Before stating the following theorem, we need to recall the recursive
definition of m-trees (m ≥ 0). The only m-vertex m-tree is the m-vertex
complete graph. If n ≥ m + 1, then an n-vertex m-tree is obtained from an
(n − 1)-vertex m-tree by adding a new vertex and joining it to an m-vertex
clique of the original graph. (For m = 0 and m = 1, m-trees are empty graphs
and trees, respectively.)

Theorem 2.6. If m ≥ 0 and G is an m-tree with n ≥ m + 1 vertices, then

FG =
(m + 1)!

2m
Fn,(m+1,1,...,1).

Proof. It can be found in [21,28] that
{
G
k

}
= 0 (0 ≤ k ≤ m − 1) and

{
G
k

}
=

{
n−m
k−m

}
(m ≤ k ≤ n) for an n-vertex m-tree G; therefore, FG =

n∑

k=m

k!
{
n−m
k−m

}
.

The theorem is proved by induction on m. If m = 0, then G is the n-
vertex empty graph, while the multiset in question is actually an n-element
set; hence, both sides of the equation are equal to Fn. Then, suppose that
m ≥ 1 and the statement holds for m − 1.

For this m, we use induction on n. If n = m + 1, then G is the (m + 1)-
vertex complete graph, the multiset contains m+1 identical elements; hence,
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FG = (m + 1)! and Fm+1,(m+1) = 2m. Now, suppose that n ≥ m + 2 and the
assertion is true till n − 1.

To prove the formula for n, consider an n-element multiset with one ele-
ment having multiplicity m+1, hereafter referred to as multiple element, and
all the other elements having multiplicity 1. We enumerate the Fn,(m+1,1,...,1)

ordered partitions of this multiset. Two types of such ordered partitions can
be distinguished depending on whether the multiple element occurs in the
last block.

If the last block contains at least one copy of the multiple element, then
it can happen that it is a singleton, or it has cardinality at least two. In both
cases, we can assign to this ordered partition an ordered partition of the
multiset in which the multiple element has only multiplicity m by omitting
the last block, or by deleting one copy of the multiple element from the last
block, respectively. Therefore, the first induction hypothesis gives that the
number of those ordered partitions of our original multiset where the last
block contains at least one copy of the multiple element is

2Fn−1,(m,1,...,1) = 2 · 2m−1

m!

n−1∑

k=m−1

k!
{

n − m

k − m + 1

}

=
2m

(m + 1)!

n−1∑

k=m−1

k!(m + 1)
{

n − m

k − m + 1

}

.

On the other hand, if the last block does not contain the multiple ele-
ment, then denote by j the number of distinct elements in the other blocks
including the multiple one (j = 1, . . . , n − m − 1), which means that those
blocks have m + j elements altogether. For a fixed j, these elements can be
chosen in

(
n−m−1

j−1

)
ways, then by the second induction hypothesis and the

recurrence of binomial coefficients we obtain that the number of possibilities
is

(
n − m − 1

j − 1

)

Fm+j,(m+1,1,...,1) =
(

n − m − 1
j − 1

)
2m

(m + 1)!

m+j∑

k=m

k!
{

j

k − m

}

=
2m

(m + 1)!

((
n − m

j

)

−
(

n − m − 1
j

)) m+j∑

k=m+1

k!
{

j

k − m

}

.

Consequently, using the binomial transformation identity and the recur-
rence of classical Stirling numbers of the second kind, the number of those
ordered partitions where the last block contains no copies of the multiple
element is

2m

(m + 1)!

n−m−1∑

j=1

((
n − m

j

)

−
(

n − m − 1
j

)) m+j∑

k=m+1

k!
{

j

k − m

}

=
2m

(m + 1)!

n−1∑

k=m+1

k!
n−m−1∑

j=k−m

((
n − m

j

)

−
(

n − m − 1
j

)){
j

k − m

}
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=
2m

(m + 1)!

n−1∑

k=m+1

k!
({

n − m + 1
k − m + 1

}

−
{

n − m

k − m

}

−
{

n − m

k − m + 1

})

=
2m

(m + 1)!

n−1∑

k=m+1

k!(k − m)
{

n − m

k − m + 1

}

=
2m

(m + 1)!

n−1∑

k=m−1

k!(k − m)
{

n − m

k − m + 1

}

.

Summarizing, the number of ordered partitions of our multiset is

2m

(m+ 1)!

n−1∑

k=m−1

k!(m+ 1)
{ n − m

k − m+ 1

}
+

2m

(m+ 1)!

n−1∑

k=m−1

k!(k − m)
{ n − m

k − m+ 1

}

=
2m

(m+ 1)!

n∑

k=m

k!
{n − m

k − m

}
=

2m

(m+ 1)!
FG.

�

Remark. Combining the results of H. Prodinger [25], M. Griffiths, I. Mező
[19] and our Theorem 2.6, for n ≥ m ≥ 1, we obtain the identity

m∑

k=1

[
m

k

]

Fn−m+k = m!
n∑

k=1

k∑

l=1

(−1)k−l

(
k

l

)(
m + l − 1

m

)

ln−m.

Theorem 2.7. If Cn is the cycle graph with n ≥ 3 vertices, then

FCn
=

Fn + (−1)n

2
and FCn

(x) =
xFn(x) + (−1)nx2

x + 1
.

Proof. The proof is by induction on n. In the induction step, for n ≥ 4, we
have FCn

(x) = FPn
(x)−FCn−1(x) by Theorem 2.1, and beside the induction

hypothesis we apply Theorem 2.5 for the n-vertex path graph Pn. �

Remark. For the graph Cn, Theorems 2.2 and 2.3 give

xFn(x) + (−1)nx2

x + 1
=

n∑

j=0

(−1)n−j

(
n

j

)

Fj(x) + (−1)n(x − 1)

=
1

x + 1

∞∑

j=0

((j − 1)n + (−1)n(j − 1))
(

x

x + 1

)j

.

3. Appendix

We close our paper with a few words about Bell polynomials of graphs. As
mentioned before, in [21] we investigated Stirling numbers of the second kind
and Bell numbers for graphs. However, we could prove the corresponding
properties of Bell polynomials of graphs, as well. The deletion–contraction
relation and the Berceanu type identity also hold for Bell polynomials, we
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have BG(x) = xmBn−m(x) if G is an m-tree with n ≥ m + 1 vertices, and
Dobiński’s formula becomes

BG(x) =
1

exp(x)

∞∑

j=0

pG(j)
j!

xj .
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