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It is pointed out that increasingly attractive interactions, represented by partially concave local potential
in the Lagrangian, may lead to the degeneracy of the blocked, renormalized action at the gliding cutoff
scale by tree-level renormalization. A quantum counterpart of this mechanism is presented in the two-
dimensional sine-Gordon model. The presence of Quantum Censorship is conjectured which makes the
loop contributions pile up during the renormalization and thereby realize an approximate semiclassical
effect.
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1. Introduction

A necessary condition for classical physics to emerge from
quantum fluctuations is the high excitation level density or in
other words, the strong degeneracy. The first condition is well
known from the early days of Quantum Mechanics, the second way
of expressing it implies decoherence [1,2]. This is a sharp contrast
to the usual scenario of the semiclassical limit where the trajec-
tories around the classical one are supposed to dominate the path
integral. The solution of this apparent conflict arises from the re-
mark that the dominance of the path integral by the saddle point
is easy to establish for the transition amplitudes between pure
states in a finite system only. Decoherence arises from degeneracy
in a clear manner as soon as mixed states and density matrices
are considered [3]. Another source of the degeneracy is the ther-
modynamical limit, the inclusion of soft modes in the system. The
degeneracy of a realistic system is supposed to occur in both ways.

A large degree of degeneracy opens new problems owing to the
increased quantum fluctuations. In fact, when the integrand in the
path integral becomes approximately constant for infinitely many
modes then the system is strongly coupled and renders our analyt-
ical methods inefficient. One may wonder whether one encouters
such a scenario in the usual path integral, corresponding to either
Euclidean partition function or real time transition amplitude in
the thermodynamical limit. The goal of this work is to monitor the
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degree of degeneracy by means of the functional RG method in a
model where a condensate is expected.

2. Degeneracy and functional RG method

There have been a number of works using the functional RG
method for models with spontaneously broken symmetry. For
instance, the O (N) symmetric scalar model was considered in
Ref. [8] in d dimensions for N � 3 where the average action, cal-
culated in the one-loop approximation was found to be degenerate
for small enough field amplitudes. But the degeneracy appears in
the constrained path integral, used in this scheme as a strongly
coupled dimensional model defined on the (d − 1)-dimensional
sphere in the momentum space and renders the results unreliable.

The local potential was obtained for the same model in the ef-
fective action by an approximate solution of the evolution equation
[9]. The degeneracy has been identified here, too, in the unsta-
ble region. The omitted terms in the approximate expression for
the potential were proportional to εdeg , the extent of the non-
degeneracy of the action in the unstable region. The problem with
this result is that the small parameter of the loop expansion, used
to derive the evolution equation of the average potential is O(ε−1

deg)

rendering the uncertainty of the solution O(ε0
deg). The ansatz for

the effective action has been improved in Ref. [10] by including
the wave function renormalization constant but the local potential
was reduced to a simple quartic polynomial and such a trunca-
tion prevents us to address the issue of degeneracy. The limit of a
large number of fields offers exact solutions and the effective ac-
tion was shown to be degenerate in this limit [11]. But as soon as
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the inverse of the number of fields becomes comparable with some
dimensionless measure of degeneracy then this limit becomes mis-
leading from the point of view of our problem. In addition, the
Higgs mode was totally ignored in favor of the Goldstone modes
in the argument, an unreliable approximation when a possible de-
viation from an infinitely degenerate situation is sought.

Another attempt to see the impact of the degeneracy on the
dynamic was based on the use of sharp cut-off. The tree-level
evolution of the local potential of the blocked bare action was
followed in Ref. [4]. The saddle point for the blocking when the
cut-off is lowered as k → k − �k is trivial for large enough k. For
smaller k the action develops non-trivial minima for fluctuations
at the gliding cut-off and inhomogeneous saddle points appear.
The result is a dynamical Maxwell-cut, the degeneracy of the bare
action for small wave numbers and small values of the conden-
sate. This method has two weak points. One is that one cannot
include wave function renormalization constant when sharp cut-
off is used. The other is that the variation of the bare action for
the first appearance of the instability is εdeg = O(�k/k) and the
small parameter of the expansion where the loop-integral is car-
ried out on a shell of thickness �k in the momentum space is
O(�k/k)/εdeg = O((�k/k)0).

When dealing with the average or the bare action we have to
rely on the loop-expansion eventhough the approximate or exact
solution of the evolution equation resums partially or completely
the higher loop contributions. We have seen that the degeneracy
arising with the condensate renders these approaches unreliable.
No loop expansion is evoked in deriving the evolution equation
of the effective action in Refs. [12,11,13] and one would hope
that this method remains applicable for condensates. But the trun-
cation of the evolution equation brings the problem back. The
effective action is convex by definition and the resulting Maxwell-
cut hides the dominant physics, related to domain walls as soft,
non-perturbative modes behind a degenerate effective action func-
tional. The evolution is described by an autonomous equation thus
the information about the dynamics of the unstable, degenerate
region must be provided by the way it is joined to the stable, non-
degenerate part of the dynamics. The non-analyticity prevents us
to use the traditional Landau–Ginzburg double expansion strategy
and we have no guidance left to perform the unavoidable trun-
cation of the functional differential equation in this region. The
generator functional, or the effective action in particular is always
used in Quantum Field Theory as a book-keeping device to manip-
ulate hierarchical equations for different Green-functions. No con-
vergence or existence issues are raised in this manner. But as soon
as the functional is born by solving non-linear equations rather
than assuming the availability of functional Taylor series we face
a radically more difficult mathematical issue, reminiscent of the
bound state problem.

There is another problem when the evolution of the effective
action is considered in the presence of condensate. The effective
action approaches a singular limit, set by the Maxwell-cut in a
manner which is determined by the suppression term introduced
in this scheme. This latter stabilizes the dynamics and provides
the analytical continuation to derive an evolution equation in the
vicinity of a singularity. It seems that the singularity is avoided for
sufficiently strongly scale dependent suppressions [14] indicating
that the analytical continuation provided by the arbitrary suppres-
sion term may not be unique and artificial fixed points might be
generated at the edge of the non-convex region. This problem is
absent for sharp cut-off where each mode is taken into account
with its original dynamics and no analytical continuation is made.

We make a step forward in this work by increasing the nu-
merical flexibility of the functionals followed in the evolution for
the two-dimensional sine-Gordon model. We still rely on the gra-
dient expansion but renounce the expansion in the field amplitude
and allow arbitrary field dependence during the evolution in the
hope that such a richer ansatz allows us to reach better the for-
mation of the condensate. We shall consider the evolution of the
bare action given by the Wegner–Houghton equation during the
lowering of a sharp cut-off. It is found for certain values of the
coupling constants that the quantum fluctuations prevent the sys-
tem from developing a degeneracy despite the emergence of the
Maxwell-cut in the effective potential. What is new in this result
is that an almost degenerate, regular dynamics is now established
without relying on the non-unique, regulating effects of an arbi-
trary suppression mechanism. Guided by an analogous problem
in General Relativity such a quantum fluctuation generated way
to reproduce the salient feature of the semiclassical physics with-
out saddle points might be called the Quantum Censorship (QC)
in Quantum Field Theory [7]. QC may not be established in some
other part of the coupling constant space because one cannot dis-
cover a degeneracy by means of a numerical method of finite
accuracy. Analytical methods are even less useful for such a degen-
erate dynamics. Therefore, the reliable clarification of the presence
or absence of QC remains to be an open problem.

3. Saddle points of the RG equations

We start by inspecting the way the renormalization group
method, the most promising non-perturbative tool in quantum
field theory, indicates the presence of condensate in the vacuum.
The question one wants to clarify is the scale where the conden-
sate shows up first as a singularity in the renormalized dynamics
as the cutoff of the theory is lowered.

The renormalized trajectory of a quantum system maps out the
scale dependence of the effective parameters of the system. It is
one of the basic tenets of the renormalization group procedure
that the critical behaviors, the singular dependence of the IR ob-
servables on the UV parameters, builds up by scanning through
infinitely wide scale regions rather by a singularity observed at a
finite scale. Correspondingly, the renormalized trajectory should at
least be continuous in the scale parameter, an expectation which
has already been justified for local quantum field theories [5]. But
the continuity of the renormalized trajectory in the cutoff does not
exclude other singularities.

Let us consider a Euclidean theory characterized by the action
Sk[φ], k being the sharp UV cutoff, and write the field variable
as φ + φ′ where the supports of φ and φ′ in Fourier space are
|p| < k − �k and k − �k < |p| < k, respectively. An infinitesimal
blocking step corresponds to integrating out the modes close to
the cutoff, giving the functional integration

e− 1
h̄ Sk−�k[φ] =

∫
D

[
φ′]e− 1

h̄ Sk[φ+φ′], (1)

which may possess a saddle point. The derivatives of the trajec-
tory with respect to the cutoff are obviously singular at the scale
where this saddle point appears or disappears. Such a tree-level
renormalization has been found in the spinodal instability (SI) re-
gions and was responsible for the degeneracy of the blocked action
at the cutoff scale for certain homogeneous background field φ in
the φ4 and the sine-Gordon (SG) model [4,6], a dynamical gener-
alization of the Maxwell-cut.

The blocking (1) yields a functional finite difference equation
whose solution lies well beyond our analytical capabilities. It is
usually handled by imposing rather simple restrictions, either by
ignoring altogether the loop contributions to the blocking or re-
stricting the evolution of the action into few coupling constants. In
the context of the SG model one retains some Fourier coefficients
of Vk(φ) in the local potential approximation [6],
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Sk[φ] =
∫
x

[
1

2
(∂φx)

2 + Vk(φx)

]
. (2)

The saddle points considered were plane waves and the degen-
eracy of the action for modes at the cutoff was found by re-
covering the potential V SI

k (φ) = −k2φ2/2 in the SI region, in a
certain interval for φ. The inhomogeneous saddle points generate
non-perturbative soft modes, the zero modes corresponding to the
breakdown of the external, space–time symmetries. Beyond these
intervals for the field the theory appeared to be stable, without
unexpected soft modes. At the end of the intervals, at the border
of the stable and unstable regions the loop corrections make the
potential non-analytical [4] and the truncation of the potential, be-
hind any expansion scheme, becomes highly suspicious.

Beyond the problem of justifying the omission of the loop cor-
rection or the possible non-analytical structures in the potential
there is an even more fundamental issue here. The finite difference
equation (1) contains infinitely many higher loop contributions
which are suppressed by the small parameter εk = h̄�k/k| ln λmin|,
λmin being the smallest eigenvalue of δ2 S[φ]/δφδφ. The availabil-
ity of the loop expansion is assumed in deriving the evolution
equation which in turn resums the expansion in the differential
equation limit, �k/k → 0. There are two ways εk can become large,
either for k → 0 or for λmin → 0. The first possibility, a singular
thermodynamical limit, is discarded for the usual, local models.
The second alternative, the case of degenerate action is more re-
alistic. Once the blocked action becomes exactly degenerate at the
cutoff scale where it is supposed to describe best the dynamics
then the integral in (1) obeys no expansion anymore and we have
no analytical tool left to tackle the problem. Therefore, certain sin-
gularities of the renormalized trajectory, such as the degeneracy of
the action may have serious consequences.

4. SG model

The theory considered in this work is defined by the ac-
tion of (2) in two-dimensional Euclidean space–time where the
bare potential at the initial cutoff, kinit = Λ = 1, is V B(Φ) =
k2ũB cos(

√
8πβrΦ). It exhibits a Z2 symmetry φ(x) → −φ(x)

and periodicity in the internal space, φ(x) → φ(x) + 2π/β (β =√
8πβr). The evolution of the local potential is governed by the

Wegner–Houghton equation [15] in d = 2

(2 + k∂k)Ṽk(φ) = − 1

4π
ln

(
1 + Ṽ ′′

k (φ)
)
, (3)

in terms of the dimensionless potential Ṽk = k−2 Vk , in the absence
of the non-trivial saddle point in (1). Note that the argument of
the logarithm function is the restoring force acting on the quan-
tum fluctuations at the cutoff and should be positive to justify the
loop expansion. When the argument becomes negative then this
equation is not valid anymore and the saddle point contributions
to the integral of (1) have to be taken in account.

The model is known to exhibit two phases [16,17,6,18], sep-
arated by the Coleman point, βr = 1. The simplest indication is
the change of the sign of the one-loop beta-function for ũ at this
point, ũk ≈ ũB(k2/Λ2)β

2
r −1. The phase βr > 1 or βr < 1 preserves

or breaks the internal symmetries, respectively. The phase with
broken symmetry is equivalent with the neutral sector of the mas-
sive Thirring model [16] and the neutral Coulomb-gas [19]. The
lattice regulated SG model can be mapped to the planar XY model
[20] providing a non-perturbative RG flow.

The symmetry broken phase contains further special points.
Higher, n-th order perturbative contributions generate the poten-
tial un cos(

√
8πβrnΦ) and the corresponding coupling strength
is renormalizable or non-renormalizable for βr < β
(n)
r = 1/n or

βr > β
(n)
r , respectively. Therefore, the theory with β

(n+1)
r <

βr � β
(n)
r has n perturbatively renormalizable parameters apart

of β . The UV scaling regime was found to be very limited due
to intermediate scaling laws, appearing in between the UV and
the approximate SI scaling regimes where all coupling constants
grow with decreasing cutoff [18]. The point β

(4)
r deserves spe-

cial attention. The duality established in the Villain model [21],
(β, u, z) → (2π/β,2z, u/2) where z denotes the vortex fugacity,
maps the XY model without external field, u = 0, into the contin-
uum SG model [20]. A special feature of the continuum SG model
is its non-periodic kinetic energy which suppresses the vortices in
the XY model context, configurations with point singularity. Thus
the z = 0 plane corresponds to the continuum SG model, studied in
this work. The dual of the Coleman-point βr = 1 is the Kosterlitz–
Thouless critical point, β

(4)
r .

The SG model is similar to non-Abelian gauge theories in what
the field variable is compact. The effective potential of a com-
pact variable is flat, the constant being the only function which
is periodic and convex in the same time. Therefore, the effective
potential, Vk=0(Φ) cannot distinguish the phases and one expects
similar phenomena in non-Abelian gauge theories, as well. It was
found that the potential Ṽk(Φ), expressed in units of the cutoff,
solves this problem and can be used to identify the phase struc-
ture [6].

It is natural to represent the periodic potential of the SG model
by a Fourier series. But the Fourier series of the potential V SI

k (φ) =
−k2φ2/2 for −π/β < φ < π/β with its periodic extension seen
approximately in the IR region by following the evolution of a
truncated Fourier series [18], converges badly and all we can as-
certain is that an approximate degeneracy occurs in the symmetry
broken phase. Note that the Fourier-expansion based numerical
solution of different evolution equations [22,12,13,23] suffers the
same problem and it is difficult to decide whether the SI occurs or
not.

We avoid the limitations of a truncated series by solving the
evolution equation for unconstrained potential numerically. The
potential is represented in the algorithm by a spline i.e. a piece-
wise Chebyshev polynomial [7]. The evolution of the coefficients
of the Chebyshev polynomials are followed in this method and the
linear algebra employed becomes singular for degenerate actions.
The internal consistency checks of the algorithm, controlling the
derivatives and the integration adjust the step size, �k dynami-
cally and stops the execution of the computer program when the
partial error in the algorithm reaches the precision of the number
representation in the computer.

5. Coleman point

The theory with βr = 1 separates two phases [16]. The RG
flow in the βr > 1 phase which is usually referred to as the non-
renormalizable phase gives a simple evolution due to the smallness
of ũ. What is more interesting for us is that the potential bar-
rier between two neighboring minima is thinner for large βr and
the fluctuations can “fill up” the minima easier. The result is QC,
the stable, loop-generated and gradual approach of the potential
V SI

k (φ) as the cutoff is lowered with the establishment of exactly
degenerate action for k → 0 only. This scenario was actually es-
tablished in this phase by following the evolution of the local po-
tential, represented by a truncated Fourier expansion [18,24]. The
small βr , or renormalizable phase shows an interesting, more in-
volved structure because the barrier between the minima of the
potential is wider and QC is more difficult to realize. The ap-
proximation [18,24] indeed leads here to degenerate action and
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Fig. 1. The second derivative of the action is plotted as the function of the relative
parameter βr , for various values of the scale k. It goes to approximately zero when
βr < 1 and to 1 when βr > 1.

to tree-level renormalization and QC is prevented to act. The result
is a super-universal, strictly bare parameter independent shape for
the local potential within the unstable region.

The numerical solution of the evolution equation with uncon-
strained potential confirms the flattening of the dimensionless po-
tential for βr > 1, as one can see in Fig. 1 where 1 + Ṽ ′′(φ = 0)

is plotted for different values of the cutoff k. What we see in the
symmetry broken phase, βr < 1, is that the action is nearly degen-
erate, 1 + Ṽ ′′(0) ≈ 0, the argument of the logarithm function in (3)
is nearly vanishing and the evolution is very close to be singular.

6. Descent in β

What is the fate of QC in the small βr phase? As mentioned
above, neither analytical nor numerical methods are available to
our knowledge to answer this question. No analytical method is
known to regulate and to handle functional integrals with constant
integrands. Even if we grant the evolution equation (3), no numer-
ical algorithm, realized by finite computing power can distinguish
exact degeneracy from small but finite variation. What is left is to
collect circumstantial evidences to support our conjecture, spelled
out below.

We start on the analytical side, by noting that the almost de-
generacy of the action at the cutoff as shown in Fig. 1 gener-
ates large amplitude, non-perturbative modes with small but fi-
nite wave numbers, the hallmark of spontaneous symmetry break-
ing. It is the fundamental group symmetry which might break at
this point, the invariance of the theory with respect to the shift
φ(x) → φ(x) + 2π/β . The breakdown of this symmetry is realized
by restricting the functional integral over field configurations with
a given number of topological charge. In fact, the derivation of
the correct Schwinger–Dyson hierarchical equations, obtained for-
mally by performing infinitesimal variation of the field variables,
requires to integrate in the path integral over a field-configuration
space which is closed under smooth deformations. The smallest
domain satisfying this condition consists of a single homotopy
class, describing the propagation of a fixed number of kinks. The
spontaneous breakdown of the fundamental group symmetry is re-
alized by the dynamical restriction of the integration domain of the
path integral for infinitely large systems. The SG model is asymp-
totically free in the UV limit in the symmetry broken phase and
its semiclassical solution reveals stable kinks. The important mes-
sage of this line of thought from our point of view is that the
dynamical stability of kinks lends stability for certain inhomoge-
Fig. 2. The saturation of the curvature at small k for various values of βr . The values
of βr are shown for each curve.

Fig. 3. The sensitivity matrix element up to a sign, S0, as the function of the scale
for various βr . The values of βr are shown for each curve.

neous configurations in the blocking, (1) and thereby may prevent
QC to be realized. The numerical results confirm this tendency.
The scale dependence of the degeneracy 1 + Ṽ ′′(0), depicted in
Fig. 2, indicates that the loop corrections renormalize the action
to a non-degenerate, scale invariant form below a crossover scale
which moves in the IR direction as we penetrate into the sym-
metry broken phase. This result, not foreseen in the previous RG
calculations, requires an unconstrained treatment of the local po-
tential. The horizontal segments in Fig. 2 signal that QC operates
for β

(2)
r < βr < β

(1)
r but with a strength which decreases with βr .

The decrease of QC forces 1 + Ṽ ′′(0) to drop earlier during the
evolution which increases the scale windows of the almost degen-
erate action. For βr < β

(2)
r either the trajectory is stabilized at a

degeneracy level which is not detectable within the accuracy of
the double precision number representation or the steep drop of
the degeneracy continues until we hit true degeneracy and even-
tually generate saddle points. The degree of degeneracy of the
action can be further explored by means of the sensitivity ma-
trix Sk whose elements are the derivatives of the renormalized
quantity Ṽ ′′

k (0) with respect to the bare parameters, in particular

Sk = ∂ Ṽ ′′
k (0)/∂βr in the present case which is shown in Fig. 3. For

approximately βr > β(4) it starts with negative values at the cutoff
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Fig. 4. The curvature in φ = 0 of the action as the function of βr for various scales.
It displays maximal speed for the flow at βr ∼ β

(3)
r .

(not visible in the figure) but traverses zero and becomes positive
at a scale which moves in the UV direction as βr is raised. For
β(3) < βr < β(2) the positive peak is higher and the negative one
is lower than one. For β(4) < βr < β(3) the two peaks have com-
parable heights. There is a separatrix in the renormalization group
flow at βr ∼ β

(3)
r reflecting a competition between Coleman and

Gaussian FP, cf. Fig. 4. Finally, for approximately βr < β(4) Sk stays
negative and develops a strong peak. Such a dependence is consis-
tent with a strengthening degeneracy as βr is decreased between
β(2) and β(3) . The further decrease of βr seems to increase the de-
generacy even more. The dominant, IR part of the matrix element
obeys the approximate scaling law Sk ≈ ±1/k2 with a high accu-
racy until the evolution changes abruptly for βr < β(4) . It is far
from clear if this is a precursor of a turn towards degeneracy.

Note that the appearance of the special values β
(n)
r in the fea-

tures discussed above is natural, these are the βr values where the
UV critical exponent of a coupling constant changes sign, altering
in a profound way the competition between the various Fourier
modes in approaching the degenerate action.

7. Summary

It is pointed out in this Letter that characteristically classi-
cal dynamics, such as the classical collective coordinate generated
Maxwell-cut, might be mimicked by quantum fluctuations with a
surprising accuracy. Such a smearing of the usual singularities of
the tree-level contributions is called QC.

The thumb rule to estimate the strength of QC is to find the
strength of fluctuations which may have similar effects than the
classical saddle points. Note that the functional integration in ques-
tion, the blocking (1), is over a UV subspace of configurations φ′
only and the IR background field φ can stabilize inhomogeneous
saddle points even if the full functional integral of the theory pos-
sesses no such saddle points. The fluctuations around the saddle
points are strong in general if the action has a shallow minimum at
the saddle point. The fluctuations which may wash different saddle
points together are strong if different saddle points are close in the
field space. The distinguished feature of the SG model is the peri-
odicity of its potential which allows us to control the latter type
of fluctuations by the parameter βr and makes this model a good
testing ground for QC.

Circumstantial evidences were presented for the gradual weak-
ening QC in the two-dimensional SG model as the period length
of the potential is increased in the field space. But the final word
about the fate of QC in the small βr part of the phase diagram
remains a provocative open problem.

We have considered vacuum expectation values in this work
from the point of view of QC. Another issue what remains open
whether the full classical behavior, decoherence included can be
reproduced by QC. We plan to return to this problem in a future
publication.
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