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A B S T R A C T   

Objectives: The COVID-19 pandemic is considered a major threat to global public health. The aim of our study was 
to use the official epidemiological data to forecast the epidemic curves (daily new cases) of the COVID-19 using 
Artificial Intelligence (AI)-based Recurrent Neural Networks (RNNs), then to compare and validate the predicted 
models with the observed data. 
Methods: We used publicly available datasets from the World Health Organization and Johns Hopkins University 
to create a training dataset, then we employed RNNs with gated recurring units (Long Short-Term Memory - 
LSTM units) to create two prediction models. Our proposed approach considers an ensemble-based system, which 
is realized by interconnecting several neural networks. To achieve the appropriate diversity, we froze some 
network layers that control the way how the model parameters are updated. In addition, we could provide 
country-specific predictions by transfer learning, and with extra feature injections from governmental con
straints, better predictions in the longer term are achieved. We have calculated the Root Mean Squared Loga
rithmic Error (RMSLE), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE) to 
thoroughly compare our model predictions with the observed data. 
Results: We reported the predicted curves for France, Germany, Hungary, Italy, Spain, the United Kingdom, and 
the United States of America. The result of our study underscores that the COVID-19 pandemic is a propagated 
source epidemic, therefore repeated peaks on the epidemic curve are to be anticipated. Besides, the errors be
tween the predicted and validated data and trends seem to be low. 
Conclusion: Our proposed model has shown satisfactory accuracy in predicting the new cases of COVID-19 in 
certain contexts. The influence of this pandemic is significant worldwide and has already impacted most life 
domains. Decision-makers must be aware, that even if strict public health measures are executed and sustained, 
future peaks of infections are possible. The AI-based models are useful tools for forecasting epidemics as these 
models can be recalculated according to the newly observed data to get a more precise forecasting.   
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1. Introduction 

1.1. Coronavirus disease – 2019 (COVID-19) 

The current form of the severe acute respiratory syndrome noted as 
COVID-19, is caused by a new variant of formerly known highly path
ogenic Coronaviridae. The infection allegedly began to spread from 
Wuhan, the capital of Hubei province, China, at the end of 2019 [1,2]. 
On March 11, 2020, the World Health Organization (WHO) has char
acterized the COVID-19 as a global pandemic. Early genome sequencing 
has found that the new virus, which was named SARS-CoV-2 by the 
International Committee on Taxonomy of Viruses, showed a 79.6% 
homology with SARS-CoV, and has 96% sequence identity with bat 
coronavirus, suggesting a common origin from SARSr-CoV (severe acute 
respiratory syndrome-related Coronavirus). Also, the suspected host was 
thought to be a bat species, Rhinolophus affinis (a horseshoe bat), but the 
SARS-COV-2 probably needs an intermediate host [2,3]. 

Symptoms associated with the COVID-19 may include fever, cough, 
shortness of breath, muscle aches, confusion, headache, sore throat, 
runny nose, chest pain, diarrhea, nausea, and vomiting [4]. The incu
bation period of the virus was estimated to be between 1 and 14 days (5 
days on average) [5]. Several transmission routes have been identified 
including respiratory droplets/aerosols, direct contact with virally 
contaminated objects, and possibly fecal-oral transmission [6]. It seems 
probable that those with a fulminant disease are most infectious, but 
reports have identified asymptomatic and pre-symptomatic virus shed
ding as well. There was also a lack of definite data regarding tertiary and 
quaternary spreading among humans, but it seems probable that the 
person who has been exposed to the infection has acquired some (at least 
temporary) immunity [7]. 

1.2. The daily number of newly diagnosed infections - epidemic curves 

The initial epidemic curves of the COVID-19 outbreak from Hubei, 
China showed a mixed pattern, indicating that early cases were likely 
from a continuous common source e.g., from several zoonotic events in 
Wuhan, followed by secondary and tertiary transmission providing a 
propagated source for the later cases [8]. 

The propagated (or progressive source) epidemic curve visualizes the 
spread of an infectious agent that may be transmitted from human to 
human starting from with a single index case, that continues to further 
infect other individuals. This shows up as a series of peaks on the 
epidemic curve that starts with the index case, followed by successive 
waves of the infection set apart with respect to the incubation period of 
the pathogen. The waves continue to follow each other until appropriate 
mitigation measures, prevention, or treatment are implemented, or the 
pool of the susceptible population becomes infected. This is a theoretic 
curve, that is generally influenced by lots of other factors [8]. 

Several studies investigated the impact of different interventions 

concerning minimizing contact rates in the population to retard the 
infection spread, minimize COVID-19 mortality rates and health care 
utilization, or suppress the epidemic per se. Flattening the curve by 
reducing peak incidence may limit overall case fatality rates. Never
theless, most of the early forecasts and simulations started from Bell- 
shaped curves, that fail to account for the progressive nature of the 
current outbreak given the known secondary, tertiary even quaternary 
transmissibility of the virus. Taking this into account, it is suggested that 
the number of cases might rise once again after pandemic control 
measures are no longer in effect [9]. It is also possible that the dynamics 
and the characteristics of the pandemic might be connected to the new 
variants of the virus [10]. 

1.3. Insights into predicting the COVID-19 transmission using AI 

Various mathematical models may demonstrate and predict the dy
namics of different infectious diseases [11]. These models, used to 
simulate the dynamics of infectious diseases, may be based on statistical, 
mathematical, empirical, or machine-learning methods [12]. The first 
attempts to use Artificial Intelligence (AI) in medicine were made in the 
1970s. Initially, AI was used to implement programs to help clinical 
decision-making, but to date, its use is gaining more and more wide
spread acceptance in biomedical sciences [13]. One class of AI, a form of 
artificial neural networks, the Recurrent Neural Networks (RNNs) with 
Long Short-Term Memory (LSTM) were previously used to model and 
forecast the influenza epidemic, with strong competitiveness and reli
able results [14,15]. 

During the COVID-19 pandemic, various simulation studies reported 
the use of different AI-based methods to forecast the projections of the 
COVID-19. Concerning the use of LSTM, Ghany et al. (2021) reported 
using the LSTM algorithm with ten hidden units to predict the spread of 
the COVID-19 in terms of confirmed cases and deaths in six gulf coun
tries [16]. In India, a data-driven model based on LSTM was used to 
predict cases and recoveries, considering the imposed governmental 
preventive measures like lockdown and isolation [17]. Additionally, 
Chimmula and Zhang (2020) reported one of the early studies that uti
lized LSTM networks to simulate the trends of COVID-19 transmission in 
Canada in order to help public health decision-makers and healthcare 
workers by building a fully automated, real-time forecasting model for 
COVID-19 [18]. Furthermore, Kırbaş et al. (2020) discussed in their 
article the prediction of new cases of COVID-19 in several European 
countries using three approaches, namely, Auto-Regressive Integrated 
Moving Average (ARIMA), Nonlinear Autoregression Neural Network 
(NARNN), and Long-Short Term Memory (LSTM) [19]. Interestingly, 
Kırbaş and colleagues found that the LSTM model was the most accurate 
one. In Saudi Arabia, a deep learning model using LSTM was also used 
for predicting COVID-19 trends in the country [20]. The forecasting 
accuracy of the LSTM model used in the Saudi study was also compared 
with predictions obtained by ARIMA and Nonlinear Autoregressive 
Artificial Neural Networks (NARANN). The LSTM model has revealed a 
better accuracy in forecasting the total number of COVID-19 cases for 
one week ahead in comparison with NARANN and ARIMA models [20]. 

1.4. Rationale and aim of the study 

The use of AI-based approaches in forecasting the projections of 
COVID-19 has been a remark of the pandemic crisis. Various mitigation 
strategies were imposed by public health authorities in different coun
tries worldwide, and these measures may vary in their intensity, dura
tion, and application. Therefore, reaching a robust and reliable AI-based 
model for COVID-19 forecasting is considered a challenging mission, 
especially at the early stages of the pandemic when no enough data can 
be found. Our present study aimed to use the publicly available official 
COVID-19 data during the early stage of the pandemic crisis as a training 
dataset, to predict the possible outcomes of the COVID-19 pandemic 
(epidemic curve of new cases) using AI-based RNNs, and further, to Fig. 1. The historical datasets of different countries from first pandemic wave.  
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compare the predictions with the observed data. The model proposed in 
this study has been applied to forecast the epidemic curves of the first 
and second pandemic waves in six countries. 

2. Materials and methods 

2.1. Data 

We used the publicly available datasets from the WHO and Johns 
Hopkins University for the following countries to create the training 
dataset: Austria, Belgium, China (Hubei), Czech Republic, France, 
Germany, Hungary, Iran, Italy, Netherlands, Norway, Portugal, 
Slovenia, Spain, Switzerland, United Kingdom (UK) and the United 
States of America (USA) [7,21]. Given that most infected people in 
China were from Hubei province, only data from that province was 
included. For each country, the date of the first reported infection was 
set as Day 1 for the disease time scale. (Fig. 1). 

When determining the date of the first illness (first identified case), 
point-source outbreaks were omitted (e.g., those cases where single 
verified cases were isolated, and no further transmission has occurred). 
This was important to avoid distortion of the propagated epidemic 
curves. In Belgium, for example, the first illness occurred on February 
02, 2020, and there were no further cases reported for up to 26 days. The 
next illness occurred on March 01, 2020. The inclusion of the early case 
from February would contribute to a false learning rule for the AI, hence 
corrupting the results. As for Hubei Province, the first officially available 
data was on January 22, 2020. This cannot be considered as the first day 
of the illness, thus the first infection was arbitrarily defined to occur on 
January 01, 2020. To account for the extreme variability of daily inci
dent cases reported which probably reflects delays in reporting pro
cedures, a moving average was used (covering 3 days) for the Hubei 
dataset. 

Accordingly, an epidemic curve was obtained for each country with a 
time series where the first day denotes the day of the first confirmed 
case, and each successive day indicating the number of newly confirmed 
cases that day. To account for the country-specific differences in the size 
of the population, the number of daily new cases was normalized for 
100.000 inhabitants in each country. The observation period varies for 
each country, given the difference of time elapsed since the disease 
initiation in that country. Accordingly, the longest time series covers the 
observation period of 90 days. e.g., in Hubei, with the first 22 days 
lacking valid data and the next 68 days having data. The shortest 
observation period was in Slovenia with only 30 days. 

The training data set was obtained by averaging the daily incidence 
rates per 100 000 inhabitants across the 17 countries included, for each 
day in the time series. When calculating the average, missing data was 
left blank, i.e., NULL, e.g., countries that did not contain data for a 
specific day were excluded from the calculation of average. The 

resulting training data set is shown in Fig. 2. It should be noted that the 
first part of the data set (up to the initial 30 days since Day 1 of the 
epidemic) contains data for almost all the countries listed, whereas the 
end of the data set contains only data from Hubei (Fig. 2). 

In order to test our model more accurately, we also examined the 
second waves’ data. To obtain more accurate results for the second 
wave, we have created an interconnected neural network model, whose 
first part is the base RNN trained on the first wave data. The second part 
of the extended model is the neural network component trained on the 
second wave dataset. The second wave data for each country under 
study consisted of 85 days. Of these, the first 60 days were used for 
retraining and the next 25 days for prediction. The training datasets used 
per country for the second wave are presented in Fig. 3. However, for 
each country, the course of the pandemic is different, so the first day of 
the second wave is determined by country. The first day of the second 
wave in each country is shown in Table 1. 

2.2. RNNs-based models for prediction 

The state-of-the-art for time series analysis is AI-based analytic tools, 
which have the best prediction performance. Recurrent Neural Net
works (RNNs) are specifically designed to cope with sequential input, 
characteristic of textual or temporal data. This architecture is a neural 
network-based architecture, that contains hidden layers chained ac
cording to the time step, with a possibility to predict the next sequence 
element(s). A time series has a special temporal form, where the input to 
the i-th hidden layer is at the i-th time-step that has a corresponding x(i) 
observation. In its original form, a simple RNN tries to predict the next 
sequence element, however, for the purpose of the current analysis, an 
encoder-decoder variant is a more natural choice, similarly, to machine 
translation [22]. 

For our specific scenario this means that during the encoder phase 
including time steps 1, …,t the RNN is fed with the already known time 
series data (the average of the number of new cases normalized to 100 
000 inhabitants for day 1…t, respectively), followed by prediction in the 
decoder phase for the future time steps t+1, …,T. In our analysis, T =
t+1 = 90 days is the longest known (Hubei) time interval. Since this 

Fig. 2. The training dataset. Average daily new infections per 100.000 in
habitants (line ) and the Number of datasets (line ). 

Fig. 3. The observed datasets of different countries from second 
pandemic wave. 

Table 1 
The day 1. of the second wave.  

Country Day 1 

France 2020.09.13 
Germany 2020.10.23 
Italy 2020.10.13 
Spain 2020.09.13 
Hungary 2020.10.13 
UK 2020.09.13 
USA 2020.10.13  
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covers quite a long data sequence, we have used gated recurring units 
(namely Long Short-Term Memory – LSTM units) [15]. Fig. 4 depicts our 
RNN architecture showing how unknown time series elements are pre
dicted. Fig. 4 also shows how the information collected in the first t 
time-steps are aggregated with a fully connected (dense) neural network 
layer and a consequent regression output layer to determine a predicted 
number of new patients as x(t+1). 

We used our own approach to design the architecture and build the 
encoder-decoder process according to the problem. The construction of 
the network begins with a Sequence Layer, followed by the LSTM blocks 
shown in Fig. 4, which have a memory capability for the previous state. 
With this feedback process, the prediction can get much closer to the real 
one. Dropout layers were added to the LSTM layers of the network to 
control overfitting. Dropout is a regularization method where input and 
recurrent connections to LSTM units are probabilistically excluded from 
activation and weight updates while training a network. It has the effect 
of reducing overfitting and improving model performance. 

We experimented by gradually increasing the epoch number from 50 
to 300. The best results were obtained after 150 epochs. In later epochs, 
there was an inconsistency in both machine capability and the accuracy 
score. To save training time, we have implemented mini-batch gradient 
descent in the training process, and the batch size we used was 8. To 
optimize the training process, we took advantage of the ADAM opti
mizer by setting the learning rate at 1e-4 and reduced it by 1e-6 for each 
subsequent epoch. 

As for adjusting the hyperparameters (number and components of 
LSTM layers, dropout probability, optimizer, mini-batch size, learning 
rate) of our neural model we have applied the Bayesian algorithm, 
which is well suited for optimizing hyperparameters of classification and 
regression models. During the evaluation of the results, we have used 
this trained basic model, but for each country, the state of the basic 
model was updated with the help of the training data set of that country. 

In predicting the second wave, we had much more metadata avail
able, such as viral replication rates, mortality data, numbers indicating 
the extent of restrictions imposed by governments. Adding these extra 
features to the system we have developed a solution that takes better 
account of the circumstances in the prediction, so we can get a more 
accurate prediction of the number of new cases per day. For the second 
wave prediction, we have created an interconnected neural network 
model, whose first part is the base RNN trained on the first wave data. 
The second part of the extended model is the neural network component 
trained on the second wave dataset and augmented with the metadata 
mentioned above. After these two components were connected 
following their training, they have undergone a state update, which 
consisted of a retraining step regarding the specific country data to be 
predicted. The essence of the connected model is that the states of the 
two sub-networks are updated simultaneously for a given country and 

the final decision is reached as the weighted sum of the outputs of the 
two networks. These weight parameters are also embedded in the 
interconnected neural architecture so adjusted automatically during the 
training process. 

To assess the possible specificities regarding the countries, two ap
proaches were used for prediction as follows: 

• Prediction 1: An algorithm to update the training step and subse
quent prediction was formulated. This updating step is based on the 
general recommendations of transfer learning that considers the 
already known time interval for the given country and re-training is 
done in small increments of the RNN network accordingly [22]. 
Thus, we start predicting the first unknown element x(t+1) from the 
last 5% of the known data, and the same principle is applied to each 
subsequent element. Moreover, after each prediction steps our RNN 
architecture was re-trained, and the subsequent elements were pre
dicted with this updated RNN.  

• Prediction 2: We start predicting the first unknown element x(t+1) 
from the last known x(t), and all the subsequent elements are pre
dicted only from the preceding ones. Here the rules depicted from the 
training data set are used, not retraining occurs. 

The intuitive interpretations of the difference between Prediction 1 
and Prediction 2 are as follows. Prediction 2 makes its predictions 
utilizing the information derived from the training data set, reflective of 
the trends in the average time series. It follows those predictions will 
comply primarily with the Hubei time series, especially in the far future. 
Therefore Prediction 2 shows the highest fidelity to the country-specific 
future scenario if the approach to mitigate the epidemic is similar to that 
in Hubei. Accordingly, this scenario is also reflective of a country- 
specific future state given the practices of Hubei were followed in said 
country. On the other hand, Prediction 1 is yielded after the neural 
network is retrained after any prediction, providing more valid insight 
into what is expected if the country goes on with the mitigation practices 
seen during the observation period. This intuition can be also used for 
the evaluation of the second wave of the pandemic because in this case, 
the prediction architecture includes the neural network which was 
trained during the first wave. 

2.3. Validation 

For the learning dataset, we used the data from the first pandemic 
wave. That is, we took the available factual data from the first case re
ported in a country until April 10, 2020. Based on that, we have made 
the above-mentioned two predictions (1 and 2). Moreover, for the 
validation process, we used the factual data of the first wave. By country, 
we considered 85–90 days from the first case reported. Thus, the number 

Fig. 4. The Recurrent Neural Network (RNN) Architecture used for Prediction.  
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of days predicted varied from country to country in the same way as for 
the learning dataset. The amount of Root Mean Squared Logarithmic 
Errors (RMSLE) was used for validation. In our analysis, the possible bias 
regarding the different ratios between the observed and predicted values 
are interpreted using the RMSLE. Let n be the number of days used for 
validation. Let p_1i and p_2i be the number of new cases per day ob
tained using the two prediction methods in the examined time interval 
and let a_i be the actual data for the given days. Err1 and Err2 will be 
RMSLE for Prediction 1 and Prediction 2, respectively, where: 

Err1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(log(p1i + 1) − log(ai + 1))2

√

Err2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(log(p2i + 1) − log(ai + 1))2

√

We have calculated also the Root Mean Square Error (RMSE) and the 
Mean Absolute Percentage Error (MAPE), as follows: 

RMSE1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(p1i − ai)

2

√

RMSE2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(p2i − ai)

2

√

MAPE1 =
100
n

∑n

i=1

⃒
⃒
⃒
⃒
p1i − ai

ai

⃒
⃒
⃒
⃒

MAPE2 =
100
n

∑n

i=1

⃒
⃒
⃒
⃒
p2i − ai

ai

⃒
⃒
⃒
⃒

2.4. Comparison with other models 

In Luo et al. (2021), a simple LSTM model and the XGBoost algorithm 
were compared on US COVID-19 data [23]. The training set contains 
data between April 2020 and September 2020, while the prediction is 
given for 30 days. It is shown that the predicted number of new cases has 
a high correlation with the previous week’s cases. The key features used 
by the model are the mean and the number of new confirmed cases per 
day over the previous 7 days. In addition, the day of the week is also a 
major contributor to the model. This indicates that the number of new 
confirmed cases is strongly correlated with whether the given day was a 

working one or not. In contrast to our model, neither Wuhan data were 
included nor metadata from other restriction measures were used. The 
model forecasting for the first week shows similar accuracy to our 
model, but over longer periods, our approach is much closer to the real 
behavior [23]. 

Also, Bhimala et al. (2021) [24] have used LSTM-based models to 
predict the epidemic situation in India. The authors were looking for a 
relationship between weather conditions and virus spread, so they 
added additional metadata such as temperature and humidity to the 
basic model. It has been found that the basic LSTM model gave good 
approximations with relatively small errors only for a 1–2-day forecast, 
while when weather data were included, the prediction reliability 
improved significantly over a weekly time scale. We did not include 
weather data in the training of our model because we have found that for 
European countries this information is not so relevant. However, after 
including other metadata (e.g., mortality rates, virus spread rates, 
quantified data from government restrictions), our model has also 
improved significantly compared to the model developed in the first 
wave. Nevertheless, it was not sufficient to make small modifications to 
the model architecture as in Bhimala et al.’s study, because it still does 
not solve the issue of long-term forecasting. Therefore, we have 
re-designed our model to contain several subnetworks, so that we could 
obtain a good prediction for the longer term by achieving sufficient 
diversity. 

Additionally, In Kafieh et al. (2021) [25], the main objective was to 
predict outbreaks in nine countries - Iran, Germany, Italy, Japan, Japan, 
Korea, Switzerland, Spain, China, and the United States of America. Data 
between 22 January and 30 July 2020 were used for training and the 
period 1–31 August 2020 for testing. A multivariate LSTM model is used 
for prediction by considering the number of occurrences in each class 
(confirmed/advanced/cured) as input and predicting the values of all 
three-time series for the next time step (multiple-input multiple-output 
(MIMO) format). Although good results were obtained on the test 
dataset, the behavior of the predicted epidemic curve for the following 
months deviated significantly from the real trend. Specifically, a 
smoothed curve is the model output, which is typical for LSTM models 
that attempt to predict over the long term from an incomplete learning 
data set. We have also experienced this phenomenon in our work hence 
the combination of several models and the injection of extra features 
have been applied to overcome it. In this way, we have reached a more 
realistic behavior. 

Fig. 5. Observation and predictions for France During the First Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 
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3. Results 

This section shows the outcomes for Prediction 1 and Prediction 2 
of the individual country-level data for France, Germany, Hungary, 
Italy, Spain, the United Kingdom (UK), and the United States of America 
(USA) (Figs. 5–18). In each graph, the first day represents the first 
illness/case of each country. The yellow line represents the factual data 
of the first wave for 85–91 days from the first illness/case. For each 
country, the learning database was provided by the data available up to 
10 April 2020. The values obtained by the two prediction methods for 
each country are represented by blue and green lines. The blue line 
shows Prediction 1, and the green line shows Prediction 2. 

For each main graph, the small graph in the upper right corner 
contains the daily error values calculated for the predictions. The more 
accurate the prediction, the smaller the RMSLE error. It should be noted 
that if the error function is parallel to the x-axis, it means that the trend 
of the prediction is the same as the real trend, only at a lower or higher 
scale. Also, total Root Mean Square Error (RMSE), Root Mean Squared 
Logarithmic Errors (RMSLE), and the Mean Absolute Percentage Error 
(MAPE) by country are shown in Tables 2 and 3. 

4. Discussion 

The COVID-19 pandemic has impacted most life sectors including 
healthcare services provision, economy, politics, education, and social 
life [26–29]. Additionally, the pandemic sheds the light on challenges of 
countries’ preparedness and crisis management [30]. Consequently, this 
global crisis has opened avenues for more effective and efficient appli
cation of AI in various aspects of fighting and tackling infectious dis
eases, which will help various authorities for better preparedness to 
meet the predicted repercussions of the disease spread, based on AI 
models. At the early stage of the COVID-19 outbreak when little data 
were available regarding the nature and transmissibility of SARS-CoV-2, 
modeling studies have attempted to predict the epidemic outcomes 
using the Susceptible-Exposed-Infectious-Recovered (SEIR) model, 
based on data from Wuhan, China; the starting point of the outbreak 
[31]. Besides, forecasting and predicting the COVID-19 trajectories was 
not the only application of AI during the current pandemic. AI has been 
adopted in contact tracing, tracking public health behaviors, and 
currently in COVID-19 case detection and vaccination [32–34]. More
over, various AI-based approaches have been reported in the literature 
and were used to forecast the COVID-19 outcomes. For example, the 

Fig. 6. Observation and predictions for France During the Second Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 

Fig. 7. Observation and predictions for Germany During the First Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 

L.R. Kolozsvári et al.                                                                                                                                                                                                                           



Informatics in Medicine Unlocked 25 (2021) 100691

7

adaptive neuro-fuzzy inference system hybrid model (ANFIS) that was 
used to predict the confirmed cases in China [35], and the Modified 
Auto-Encoder for Modeling Time Series that was proposed to model the 
transmission dynamics of the COVID-19 and evaluating the in
terventions [36]. 

Since March 2020, we have had the opportunity in our present study 
to use the declared numbers of daily new cases of COVID-19 to predict 
our models and to compare the predicted trajectories with the observed 
data. Our proposed model could be considered for describing the curve 
in most of the situations similar to that at the beginning of the pandemic 
(scarce knowledge on the virus, limited ability to track cases, molecular 
tests available but with low rates of processability, strict lockdown as a 
major countermeasure). To better assess the applicability of our models 
in further pandemic stages, forecasting the trajectories of new cases of 
COVID-19 were reported for six countries during the first pandemic 
wave and second pandemic wave as well. During the first pandemic 
wave, we can notice in the models that Prediction 1 is more accurate for 
some countries (Hungary, Italy, UK, USA), while Prediction 2 is more 
accurate for others (France, Germany, Spain). In countries that imposed 

strict measures (e.g., strict lockdown), for example, France, Hungary, 
Italy, and Spain, the predicted models and observed data were closely 
similar with better accuracy, however, this was not the case in the UK 
and the USA. The reason behind this could be linked to the fact that the 
learning dataset was based mainly on data from Hubei province where a 
strict total lockdown was imposed there, unlike the UK and the USA. 
Besides. this is likely because the countermeasures differed from those 
applied in Wuhan and then Europe, and because at the very beginning, 
tests were not available (or were too expensive). This corroborates the 
hypothesis that our proposed model works better in specific conditions/ 
contexts. 

On the other hand, projections of the second pandemic waves using 
prediction 1 and prediction 2 models in France, Hungary, Italy, and 
Spain revealed closely similar trends of both prediction models. 
Nevertheless, the prediction models seem to be not working well with 
UK and USA data. This could be caused by the same reasons explained 
above during the first pandemic wave or might be influenced by the 
emergence of the new variants (mutations) of the virus [10]. 

The findings of our study underscore that the COVID-19 pandemic is 

Fig. 8. Observation and predictions for Germany During the Second Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 

Fig. 9. Observation and predictions for Hungary During the First Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 
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a propagated source outbreak, therefore repeated peaks on the epidemic 
curve (rise of the daily number of newly diagnosed infections) are to be 
anticipated. Predictions that were made using AI-based RNNs further 
implicate that albeit the majority of investigated countries are near or 
over the peak of the curve, they should prepare for a series of succes
sively high peaks in the near future, until all susceptible people will be 
infected by the SARS-CoV-2, or effective preventive (e.g., vaccination) 
or treatment options will become available and utilized effectively. 
These scenarios are similar to other known propagated source epi
demics, e.g., SARS and measles [37]. 

Albeit suppression and mitigation measures can reduce the incidence 
of infection, COVID-19 disease, given its relatively high transmissibility 
reflected by average R0 values of 3.28, will continue to spread, most 
likely [38]. Accordingly, public health measures must be implemented 
as the incubation period of the virus may be long (1–14 days, but there 
are some opinions, that this can be 21 days), during which time 
asymptomatic or pre-symptomatic spreading may ensue. Moreover, 
currently, it is uncertain whether those who were diagnosed with 
COVID-19 infection will acquire sufficient immunity or not [5]. Finally, 
data from countries with warm climates suggest that summer is unlikely 

to stop the pandemic, as the virus was already spreading in Australia and 
South Africa as well [7,9]. This is why the recurrence of another peak is 
very likely, and the end of the pandemic cannot be accurately predicted 
at this time. 

Nevertheless, recent publications showed that the earlier the miti
gation attempts are in place (e.g., border closure, closing schools, the 
lockdown of the country, curfew), the more effective is the reduction of 
the spread of the epidemic [9]. In fact, analyzing the effects of a sup
pression strategy concerning the COVID-19, it was shown that early 
implementation of suppression at 0.2 deaths per 100 000 population per 
week could save 30.7 million lives compared to late implementation of 
these measures at 1.6 deaths per 100 000 population per week [39]. This 
seems to be the case in the countries, which had prior knowledge 
regarding coronavirus infections (e.g., China, Singapore, Hong Kong), as 
they were more prepared to implement public health measures, and had 
more equipment as well as health care personnel in place to mitigate the 
spread of infections. Those countries, that failed to implement efficient 
and strict mitigation policies in a timely manner, were facing difficulty 
in controlling the spread of the disease, as is the case of Italy, the UK and 
the USA [38]. There are some new research data denoting that the 

Fig. 10. Observation and predictions for Hungary During the Second Pandemic Wave. The small graph in the upper right corner shows the daily error values 
(RMSLE) calculated for the predictions. 

Fig. 11. Observation and predictions for Italy During the First Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 
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lockdown measures are not as effective as the vaccination of the popu
lation, but these need more investigations and time to establish [40]. 

To the best of our knowledge, our study is among the scarce litera
ture that modeled the predicted evolution of the newly diagnosed in
fections using AI-based Recurrent Neural Networks, during the early 
period of the first pandemic wave. Most studies to the date of conducting 
our study on the first wave expected a single peak of the epidemic curve, 
but some fear the emergence of future peaks when mitigation- 
suppression measures will be discontinued. According to our model, 
this can even happen, if strict measures are sustained. 

Nevertheless, the are some limitations to our study. As the nature of 
SARS-COV-2 is relatively unknown or dynamic, and it is prone to mu
tations, the prediction of the spread of the pandemic is not an easy 
mission. Factors that influenced the reported new cases per day, for 
example, the efficiency of reporting, the different quality and timing of 
public health measures, country-specific age-pyramid, and chronic dis
ease burden of the population were not included in our training data set 
due to lack of reliable data. We did not investigate the number of deaths 
and recoveries, as we found no reliable data at that time (during early 

stages of the pandemic). Similarly, the data regarding diagnostic tests 
performed per country, or death rates were omitted, given they are 
highly influenced by the countries’ economic wellbeing, health care 
systems, facilities and capacities, and other factors [41,42]. There are 
lots of unforeseen uncertainties and coincidences which could not be 
implemented in our model, for example, there were days when a large 
number of people have been diagnosed with COVID-19 on one day (for 
example in care homes in France or Hungary) that caused a large in
crease in the number of the daily new cases [38]. The effect of vacci
nation against COVID-19 seems to be ground-breaking, but this has to be 
proven for a longer period of time, as the vaccine rollouts have been only 
started at the end of 2020 [40,43]. 

5. Conclusion 

The approach we have proposed provides a much more realistic 
prediction over a longer period. By optimizing classical recurrent neural 
network models, adding extra features, and combining transfer learning 
with a complex architecture of interconnected subnetworks, we can 

Fig. 12. Observation and predictions for Italy During the Second Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 

Fig. 13. Observation and predictions for Spain During the First Pandemic Wave. The small graph in the upper right corner shows the daily error values (RMSLE) 
calculated for the predictions. 
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predict the entire epidemic curve of a given wave of an epidemic with 
good approximation accuracy based on a few weeks of data from the 
outbreak. 

However, the emergence of different viral mutations also changes 
the behavior of the epidemic curve, for which the presented neural 
network model is not fully prepared yet. This is because the behavior of 
the training dataset strongly influences the prediction behavior. Our 
plans include improving this shortcoming of our model. Since the pa
rameters of the mathematical models describing epidemic spread are 
easily updatable, we can use different mathematical approaches (e.g., 
SEIR) to simulate the epidemic spread process by considering the 
occurrence of multiple mutations. The outputs of these simulations are 
then used as a training data set to further develop the neural network 
model. The validation process will be based on the effects of currently 
available COVID-19 virus variants (e.g., the British or the Indian mu
tations). Thus, the overall future goal is to develop a much more flexible 
prediction model. The influence of this global epidemic has dug deep 
into the day-to-day conduct of everyone, with unforeseen challenges still 
pending for governments and policymakers. Starting from this, 
everyone, especially decision-makers must be aware, that the current 
situation might be just the beginning, and even if strict public health 

measures are executed and sustained, future peaks of infections are 
possible. The findings of our study underscore that the COVID-19 
pandemic is a propagated source epidemic, therefore repeated peaks 
of the rise of the daily number of newly diagnosed infections are to be 
anticipated. In countries where strict control measures were imposed, 
the predicted models were closely similar to the observed data. The AI- 
based predictions might be useful tools and can be recalculated ac
cording to the newly observed data to get a more precise forecast of the 
pandemic, taking into account the new variants of the virus and the 
effect of the available vaccination possibilities. AI-based predictions, 
which include the wider knowledge about the virus and the prevention, 
are expected to provide public health practitioners and decision-makers 
with sufficient data that would be useful in improving countries’ pre
paredness to the next stage of a pandemic. 
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