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Abstract

First we give a construction of bridges derived from a general Markov process
using only its transition densities. We give sufficient conditions for their existence and
uniqueness (in law). Then we prove that the law of the radial part of the bridge with
endpoints zero derived from a special multidimensional Ornstein-Uhlenbeck process
equals the law of the bridge with endpoints zero derived from the radial part of the
same Ornstein-Uhlenbeck process. We also construct bridges derived from general
multidimensional Ornstein-Uhlenbeck processes.

1 Introduction

In this paper we are dealing with deriving bridges and radial parts from Markov processes.

By a bridge from a to b over [0, T ] derived from a Markov process Z we mean a process

obtained by conditioning Z to start in a at time 0 and arrive at b at time T , where

T > 0. For the construction of such a bridge we use only transition densities. Important

examples are provided by Wiener bridges and Bessel bridges, which have been extensively

studied and find numerous applications. See, for example, Karlin and Taylor [8, Chapter

15], Fitzsimmons, Pitman and Yor [3], Baudoin [1], Privault and Zambrini [9] and Yor and

Zambotti [11]. Our construction of bridges is motivated by Karlin and Taylor [8] and Revuz

and Yor [10]. By the radial part of a process with values in Rd we mean its euclidean norm.

We examine whether the operations deriving bridges and radial parts commute starting

from the same Markov process. In case of a multidimensional standard Wiener process and

in case of certain multidimensional Ornstein-Uhlenbeck processes we show that the answer

is yes if we consider bridges with endpoints zero. We emphasize that Yor and Zambotti in

[11] have already proved this for a multidimensional standard Wiener process. Moreover,

they showed that the law of the radial part of the multidimensional Wiener bridge with

endpoints different from zero is only equivalent and not equal to the law of the corresponding

multidimensional Bessel bridge.

We proceed as follows. In Section 2 we give a construction of a bridge derived from a

general Markov process using its transition densities. We give sufficient conditions for its
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existence and uniqueness (in law). In Sections 3 and 5 we prove that the operations deriving

bridges and radial parts commute starting from multidimensional standard Wiener processes

and from certain multidimensional Ornstein-Uhlenbeck processes, respectively. In Section 4

we study bridges derived from general multidimensional Ornstein-Uhlenbeck processes.

2 Construction of bridges

In what follows, let (E, E) be a complete separable metric space endowed with the σ-

algebra of its Borel subsets, let T > 0, let (Zt)06t6T be a time-homogeneous Markov

process with state space (E, E) admitting transition densities (pZ
t )0<t6T with respect to

a fixed σ-finite measure λ on E (i.e., P(Zt ∈ A |Zs) =
∫

A
pZ

t−s(Zs, y) λ(dy) P-a.s. for all

A ∈ E , 0 6 s < t 6 T ), and let a, b ∈ E.

If pZ
t (x, b) > 0 for all x ∈ E, 0 < t 6 T , and

ps,t(x, y) :=
pZ

t−s(x, y)pZ
T−t(y, b)

pZ
T−s(x, b)

, x, y ∈ E, 0 6 s < t < T,(2.1)

then by a bridge from a to b over [0, T ] derived from Z we could understand a Markov

process (Yt)06t6T with initial distribution P(Y0 = a) = 1 and with transition densities

(ps,t)06s<t<T , provided that such a process exists (see, e.g., Fitzsimmons, Pitman and Yor

[3, Proposition 1], Fitzsimmons [2, Proposition 2.2]). But this definition does not apply for

example in case of a d-dimensional Bessel bridge with d > 1 and with b = 0, since

for the transition densities (pR
t )t>0 of the d-dimensional Bessel process (Rt)t>0 we have

pR
t (x, 0) = 0 for all x > 0, t > 0 (see, e.g., Revuz and Yor [10, p. 446] or Section 3).

The motivation how to modify (2.1) is inspired by Karlin and Taylor [8, p. 267] and

Revuz and Yor [10, Chapter XI, §3]. For ε > 0, denote by B(b, ε) the open ball in E

with centre at b and radius ε. Let (Y ε
t )06t6T denote (Zt)06t6T conditioned that

ZT ∈ B(b, ε). In virtue of Karlin and Taylor [8, (9.17)], for x, y ∈ E, 0 6 s < t < T , the

transition densities of Y ε are given by

pY ε

s,t (x, y) = pZ
t−s(x, y)

∫
B(b,ε)

pZ
T−t(y, z) λ(dz)∫

B(b,ε)
pZ

T−s(x, z) λ(dz)
,

provided that
∫

B(b,ε)
pZ

T−s(x, z) λ(dz) 6= 0. Indeed, by Proposition 7.2 in Kallenberg [5],

P(Y ε
t ∈ A |Y ε

s = x) = P(Zt ∈ A |Zs = x, ZT ∈ B(b, ε)) =
P(Zt ∈ A, ZT ∈ B(b, ε) |Zs = x)

P(ZT ∈ B(b, ε) |Zs = x)

=

∫
A

∫
B(b,ε)

pZ
t−s(x, y)pZ

T−t(y, z) λ(dy)λ(dz)∫
B(b,ε)

pZ
T−s(x, z) λ(dz)

=

∫

A

pY ε

s,t (x, y) λ(dy)

for all A ∈ E . We can think of the desired bridge as the limit of Y ε as ε ↓ 0, hence our

definition is the following.
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2.1 Definition. For x, y ∈ E and 0 6 s < t < T , let

ps,t(x, y) := pZ
t−s(x, y) lim

ε↓0

∫
B(b,ε)

pZ
T−t(y, z) λ(dz)∫

B(b,ε)
pZ

T−s(x, z) λ(dz)
(2.2)

if the right hand side exists, and ps,t(x, y) := 0 otherwise.

By a bridge from a to b over [0, T ] derived from Z we mean a Markov process

(Yt)06t6T with initial distribution P(Y0 = a) = 1, with P(YT = b) = 1 and with transition

densities (ps,t)06s<t<T provided that such a process exists.

Note that the Markov process (Yt)06t6T (if it exists) is in general not time-homogeneous.

Moreover, additional conditions on (pZ
t )0<t6T are needed to assure that (Yt)06t6T admits

a version having sample paths with some regularity properties such as continuity.

2.2 Lemma. Suppose that (ps,t)06s<t<T defined by (2.2) satisfy the following properties:

(i) for all 0 6 s < t < T , the function (x, y) 7→ ps,t(x, y) is measurable,

(ii) for all x ∈ E and 0 6 s < t < T , the function y 7→ ps,t(x, y) is a probability

density,

(iii) for all x, z ∈ E and 0 6 s < t < u < T , the Kolmogorov-Chapman equation

ps,u(x, z) =
∫

E
ps,t(x, y)pt,u(y, z) λ(dy) holds.

Then there exists a unique probability measure PZ
a,b,T on

(
E [0,T ], E [0,T ]

)
such that the

coordinate process (Xt)06t6T on
(
E[0,T ], E [0,T ]

)
under PZ

a,b,T is a bridge from a to b

over [0, T ] derived from Z.

Consequently, if (Yt)06t6T is a bridge from a to b over [0, T ] derived from Z then

its law on
(
E[0,T ], E [0,T ]

)
is PZ

a,b,T .

Proof. For x ∈ E, A ∈ E and 0 6 s < t < T , let µs,t(x, A) :=
∫

A
ps,t(x, y) λ(dy),

µs,T (x,A) := 1A(b), where 1A denotes the indicator function of the set A. Then

µs,t is a transition probability for all 0 6 s < t 6 T , and one can check easily that the

Kolmogorov-Chapman equation µs,u(x,A) =
∫

E
µs,t(x, dy)µt,u(y,A) holds for all x ∈ E,

A ∈ E , 0 6 s < t < u 6 T . By Revuz and Yor [10, Chapter III, Theorem 1.5], there exists

a unique probability measure PZ
a,b,T on

(
E [0,T ], E [0,T ]

)
such that the coordinate process

(Xt)06t6T is Markov under PZ
a,b,T with transition probabilities (µs,t)06s<t6T and with

initial distribution PZ
a,b,T (X0 = a) = 1.

Moreover, PZ
a,b,T (XT = b) = PZ

a,b,T (XT = b |X0 = a) = µ0,T (a, {b}) = 1. 2

The proof of the next lemma is trivial.

2.3 Lemma. If f : E → R is a continuous function then

lim
ε↓0

1

λ(B(x, ε))

∫

B(x,ε)

f(z) λ(dz) = f(x)(2.3)

for all x ∈ E. Consequently, if f, g : E → R are continuous functions such that

f(z) = g(z) λ-a.e. z ∈ E then f(z) = g(z) for all z ∈ E.
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2.4 Lemma. If for each 0 < t 6 T , the probability density pZ
t satisfies the properties

(i) the function (x, y) 7→ pZ
t (x, y) is continuous,

(ii) for all x0 ∈ E, there is a δ > 0 such that sup
x∈B(x0, δ)

sup
y∈E

pZ
t (x, y) < ∞,

(iii) for all y0 ∈ E, there is a δ > 0 such that sup
x∈E

sup
y∈B(y0, δ)

pZ
t (x, y) < ∞,

(iv) for all y ∈ E, we have
∫

E
pZ

t (x, y) λ(dx) < ∞,

then the Kolmogorov-Chapman equation

pZ
s+t(x, z) =

∫

E

pZ
s (x, y)pZ

t (y, z) λ(dy)(2.4)

holds for all x, z ∈ E and all s, t > 0 with s + t 6 T . (Compare with Fitzsimmons,

Pitman and Yor [3, (2.3)], Fitzsimmons [2, (1.9)].)

Proof. For x ∈ E, A ∈ E and 0 < t 6 T , let µZ
t (x,A) :=

∫
A

pZ
t (x, y) λ(dy). Let us

fix s, t > 0 with s + t 6 T . Then for all A ∈ E the Kolmogorov-Chapman equation

µZ
s+t(x,A) =

∫
E

µZ
s (x, dy)µZ

t (y, A) holds for PZs-a.e. x ∈ E, where PZs denotes the

distribution of Zs (see, e.g., Kallenberg [5, Corollary 7.3]). Thus for all A ∈ E
∫

A

pZ
s+t(x, z) λ(dz) =

∫

E

pZ
s (x, y)

(∫

A

pZ
t (y, z)λ(dz)

)
λ(dy)

=

∫

A

(∫

E

pZ
s (x, y)pZ

t (y, z)λ(dy)

)
λ(dz) PZs-a.e. x ∈ E.

Hence we obtain that for PZs-a.e. x ∈ E, equation (2.4) holds for λ-a.e. z ∈ E. By

assumptions (i) and (iii) and the dominated convergence theorem, both sides of equation

(2.4) are continuous in z ∈ E for every fixed x ∈ E. By Lemma 2.3, if x ∈ E such

that (2.4) holds for λ-a.e. z ∈ E then it holds for all z ∈ E. By assumptions (i), (ii) and

(iv) and the dominated convergence theorem, both sides of equation (2.4) are continuous in

x ∈ E for every fixed z ∈ E. The measure PZs is clearly σ-finite, hence, again by Lemma

2.3, we conclude that (2.4) holds for all x, z ∈ E and all s, t > 0 with s + t 6 T . 2

2.5 Lemma. Suppose that the densities (pZ
t )0<t6T satisfy the following properties:

(i) for all 0 < t 6 T , the function (x, y) 7→ pZ
t (x, y) is continuous,

(ii) for all x, z ∈ E and all s, t > 0 with s+ t 6 T , the Kolmogorov-Chapman equation

(2.4) holds,

(iii) for all x ∈ E and all 0 < t 6 T , we have pZ
t (x, b) > 0.

Then (2.1) holds, and the functions (ps,t)06s<t<T satisfy conditions of Lemma 2.2.

Proof. Clearly, assumptions (i), (iii) and Lemma 2.3 imply (2.1). Using (i) and (ii), it is

easy to check that the functions (ps,t)06s<t<T satisfy conditions of Lemma 2.2. 2
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2.6 Lemma. Let E = [0,∞), let λ be the Lebesgue measure on [0,∞), and let b = 0.

Suppose that the densities (pZ
t )0<t6T satisfy the following properties:

(i) for all 0 < t 6 T , the function (x, y) 7→ pZ
t (x, y) is continuous,

(ii) for all x, z ∈ [0,∞) and all s, t > 0 with s + t 6 T , the Kolmogorov-Chapman

equation (2.4) holds,

(iii) for all x, y ∈ [0,∞) and all 0 6 s < t < T , the limit lim
ε↓0

pZ
T−t(y,ε)

pZ
T−s(x,ε)

exists,

(iv) for all 0 6 s < t < T and all x ∈ [0,∞), there is a δ > 0 such that

sup
y∈[0,∞)

sup
0<ε<δ

pZ
T−t(y, ε)

pZ
T−s(x, ε)

< ∞.

Then for all x, y ∈ [0,∞), 0 6 s < t < T , we have

ps,t(x, y) = pZ
t−s(x, y) lim

ε↓0
pZ

T−t(y, ε)

pZ
T−s(x, ε)

,(2.5)

and the functions (ps,t)06s<t<T satisfy conditions of Lemma 2.2.

Proof. Assumptions (i), (iii) and L’Hospital’s rule yield (2.5). For every 0 6 s < t < T ,

measurability of (x, y) 7→ ps,t(x, y) follows from (2.5) and assumptions (i) and (iii). For

every 0 6 s < t < T and x ∈ [0,∞), the function y 7→ ps,t(x, y) is a probability density,

since by the assumptions and the dominated convergence theorem,

∫ ∞

0

ps,t(x, y) dy =

∫ ∞

0

lim
ε↓0

pZ
t−s(x, y)pZ

T−t(y, ε)

pZ
T−s(x, ε)

dy

= lim
ε↓0

1

pZ
T−s(x, ε)

∫ ∞

0

pZ
t−s(x, y)pZ

T−t(y, ε) dy = 1.

For every 0 6 s < t < u < T and x, z ∈ [0,∞), the Kolmogorov-Chapman equation

ps,u(x, z) =
∫∞
0

ps,t(x, y)pt,u(y, z) dy follows from (2.5) and assumptions (i)–(iii). 2

3 The case of a standard d-dimensional Wiener process

Let (Bt)t>0 be a standard d-dimensional Wiener process and T > 0 be fixed. Let

(Xt)06t6T be the bridge with endpoints zero over [0, T ] derived from (Bt)t>0 (called the

d-dimensional Wiener bridge between 0 and 0 over [0, T ]). Let Rt = ‖Bt‖, t > 0 be the

radial part of (Bt)t>0 (called the d-dimensional Bessel process), where ‖ · ‖ denotes the

euclidean norm. Let (Yt)06t6T be the bridge with endpoints zero over [0, T ] derived from

(Rt)t>0 (called the d-dimensional Bessel bridge between 0 and 0 over [0, T ]). As it

is explained by Yor and Zambotti in [11], a simple invariance by rotation argument implies

that the laws of (‖Xt‖)06t6T and (Yt)06t6T coincide. Intuitively, taking bridges with

endpoints zero and taking radial parts commutate in case of a standard Wiener process, or,
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in other words, the radial part of a Wiener bridge with endpoints zero is the Bessel bridge

with endpoints zero. We want to show this result by computing the transition densities of

the processes (‖Xt‖)06t6T and (Yt)06t6T to demonstrate our method which will also work

for certain multidimensional Ornstein-Uhlenbeck processes.

It is well known that the transition densities of the process (Bt)t>0 is

pB
t (x, y) =

1

(2πt)d/2
exp

{
−‖x− y‖2

2t

}
, t > 0, x, y ∈ Rd.

To demonstrate how to prove Markov property for the radial part of certain Markov processes

and how to calculate their transition densities, we consider the radial part of (Bt)t>0 for

d > 2. We use the ideas due to Karlin and Taylor [7, Chapter 7, Section 6] and Revuz and

Yor [10, Chapter VI, Proposition 3.1]. Taking t > 0, 0 < t1 < · · · < tn, b > 0 and

x(1), . . . , x(n−1), x ∈ Rd, we have

P (Rtn+t < b |Bt1 = x(1), . . . , Btn−1 = x(n−1), Btn = x) = P (Rtn+t < b |Btn = x)

= P (Rt < b |B0 = x) =

∫

‖y‖<b

1

(2πt)d/2
exp

{
−‖x− y‖2

2t

}
dy

for almost every x ∈ Rd (with respect to the Lebesgue measure). Introducing polar

coordinates y = (y1, . . . , yd) by

y1 = r sin θ1 · · · sin θd−3 sin θd−2 sin θd−1,

y2 = r sin θ1 · · · sin θd−3 sin θd−2 cos θd−1,

y3 = r sin θ1 · · · sin θd−3 cos θd−2,

...

yd−1 = r sin θ1 cos θ2,

yd = r cos θ1,

we obtain

P (Rt < b |B0 = x) =

∫ b

0

rd−1

(2πt)d/2
exp

{
−‖x‖

2 + r2

2t

}
Gd(r, x) dr

for almost every x ∈ Rd, where

Gd(r, x) =

∫

[0,π]d−2×[0,2π]

(sin θ1)
d−2 · · · (sin θd−2) exp

{
1

t

d∑

k=1

xkyk

}
dθ1 . . . dθd−1

with x = (x1, . . . , xd). Clearly, the integral
∫
‖y‖<b

exp
{
−‖x−y‖2

2t

}
dy as a function of x

depends only on ‖x‖, hence we may put x = (0, . . . , 0, ‖x‖), and so we obtain

P (Rt < b |B0 = x) =

∫ b

0

rd−1

(2πt)d/2
exp

{
−‖x‖

2 + r2

2t

}
Hd(r, x) dr
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for almost every x ∈ Rd, where

Hd(r, x) = 2π

∫ π

0

(sin θ1)
d−2 exp

{
r‖x‖

t
cos θ1

}
dθ1

d−2∏

k=2

∫ π

0

(sin θk)
d−k−1 dθk.

By Gradstein and Ryzhik [4, 8.431], for x 6= 0 we have

∫ π

0

(sin θ1)
d−2 exp

{
r‖x‖

t
cos θ1

}
dθ1 =

Γ
(
ν + 1

2

)
Γ

(
1
2

)
(

r‖x‖
2t

)ν Iν

(
r‖x‖

t

)
,

where ν = d
2
− 1 and Iν denotes the modified Bessel function of index ν defined by

Iν(z) =
∞∑

m=0

(z/2)2m+ν

m!Γ(ν + m + 1)
, z > 0.

Moreover, if k is a positive integer then
∫ π

0
(sin θ)k dθ = ck

(k−1)!!
k!!

, where ck = π if k is

even and ck = 2 if k is odd. Consequently,

P (Rtn+t < b |Bt1 = x(1), . . . , Btn−1 = x(n−1), Btn = x) =

∫ b

0

pR
t (‖x‖, r) dr

for almost every x ∈ Rd, where

pR
t (x, y) =





yν+1

txν
exp

{
−x2 + y2

2t

}
Iν

(xy

t

)
if x, y > 0,

y2ν+1

2νtν+1Γ(ν + 1)
exp

{
−y2

2t

}
if x = 0, y > 0,

(3.1)

and pR
t (x, 0) := lim

y↓0
pR

t (x, y) = 0 if x > 0. Hence

P (Rtn+t < b |Bt1 , . . . , Btn) =

∫ b

0

pR
t (Rtn , r) dr P-a.s.

Clearly, the process (Rt)t>0 is adapted to the filtration (FB
t )t>0, where FB

t :=

σ(Bs, 0 6 s 6 t), hence we conclude that (Rt)t>0 is a time-homogeneous Markov pro-

cess with transition densities (pR
t )t>0. Note that formula (3.1) is valid also for d = 1 with

pR
t (x, 0) := lim

y↓0
pR

t (x, y) =
√

2
πt

exp
{
−x2

2t

}
if x > 0 (see, e.g., Revuz and Yor [10, p. 446]).

Obviously, for all t > 0 and z ∈ Rd, we have

sup
x, y∈Rd

pB
t (x, y) = (2πt)−d/2,

∫

Rd

pB
t (x, z) dx = 1,

hence by Lemmas 2.2, 2.4 and 2.5 we obtain the existence of the Wiener bridge (Xt)06t6T

and its transition densities

pX
s,t(x, y) =

(
T − s

2π(t− s)(T − t)

)d/2

exp

{
−‖x− y‖2

2(t− s)
− ‖y‖2

2(T − t)
+

‖x‖2

2(T − s)

}
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for all x, y ∈ Rd and all 0 6 s < t < T .

As in case of the Bessel process, one can prove that (‖Xt‖)06t6T is again a Markov

process and obtain its transition densities :

p
‖X‖
s,t (x, y) =

yν+1

(t− s)xν

(
T − s

T − t

)ν+1

exp

{
− x2 + y2

2(t− s)
− y2

2(T − t)
+

x2

2(T − s)

}
Iν

(
xy

t− s

)

for all 0 6 s < t < T and all x, y > 0, and

p
‖X‖
s,t (0, y) =

y2ν+1

2ν(t− s)ν+1Γ(ν + 1)

(
T − s

T − t

)ν+1

exp

{
− y2

2(t− s)
− y2

2(T − t)

}

for all 0 6 s < t < T and all y > 0.

The aim of the following discussion is to prove that the densities (pR
t )t>0 satisfy condi-

tions of Lemmas 2.4 and 2.6. It is known that

Iν(z) =
(z/2)ν

Γ(ν + 1)
[1 + O(z2)] as z ↓ 0, Iν(z) =

ez

√
2πz

[1 + O(z−1)] as z →∞.

(For the second statement see Gradstein and Ryzhik [4, 8.451].) Hence

c1

[
zν1(0,1)(z) + z−1/2ez1[1,∞)(z)

]
6 Iν(z) 6 c2

[
zν1(0,1)(z) + z−1/2ez1[1,∞)(z)

]

with some 0 < c1 < c2 for all z > 0. Thus

c1ft(x, y) 6 pR
t (x, y) 6 c2ft(x, y)(3.2)

for all x, y, t > 0, where

ft(x, y) := t−d/2yd−1e−(x2+y2)/(2t)1(0,1)(xy/t) + t−1/2(y/x)(d−1)/2e−(x−y)2/(2t)1[1,∞)(xy/t).

Using (3.2) we obtain sup
x>0

sup
y>0

pR
t (x, y) < ∞ for all t > 0. Indeed, for all t > 0 we have

sup
0<xy<t

pR
t (x, y) 6 c2t

−d/2 sup
y>0

yd−1e−y2/(2t) < ∞,

sup
xy>t, y<x

pR
t (x, y) 6 c2t

−1/2,

sup
xy>t, y>x

pR
t (x, y) = sup

α>1

sup
xy>t, y=αx

pR
t (x, y) = sup

α>1

sup
x>
√

t/α

pR
t (x, αx)

6 sup
α>1

sup
x>
√

t/α

c2t
−1/2α(d−1)/2e−(α−1)2x2/(2t) = c2t

−1/2 sup
α>1

α(d−1)/2e−(α−1)2/(2α) < ∞.

Moreover, for all y, t > 0, we have

∫ ∞

0

pR
t (x, y) dx 6 c2t

−d/2yd−1

(∫ t/y

0

e−x2/(2t) dx +

∫ ∞

t/y

e−(x−y)2/(2t) dx

)
< ∞.

Furthermore, by (3.2), for all x > 0 and all 0 6 s < t < T , we have

sup
y>0

sup
0<ε<(T−s)/x

pR
T−t(y, ε)

pR
T−s(x, ε)

6 c2

c1

(
T − s

T − t

)d/2

exp

{
x2

2(T − s)
+

T − s

2x2

}
.
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Using limz→0 z−νIν(z) = 1/(2νΓ(ν + 1)) and Lemmas 2.2, 2.4, 2.6, one can prove the

existence of the Bessel bridge (Yt)06t6T and calculate its transition densities. It turns out

that the transition densities of the processes (‖Xt‖)06t6T and (Yt)06t6T coincide. By

Lemma 2.2, their laws on
(
[0,∞)[0,T ], (B([0,∞)))[0,T ]

)
coincide.

Note that, as a by-product, we proved that the Kolmogorov-Chapman equation∫∞
0

pR
s (x, y)pR

t (y, z) dy = pR
s+t(x, z) holds for all x, z > 0 and all s, t > 0, hence

∫ ∞

0

ye−γy2

Iν(αy)Iν(βy) dy =
1

2γ
exp

{
α2 + β2

4γ

}
Iν

(
αβ

2γ

)
(3.3)

for all α, β, γ > 0. (Compare with Gradstein and Ryzhik [4, 8.663].) In other words, we

obtained a probabilistic proof of (3.3).

4 Bridges derived from general multidimensional

Ornstein-Uhlenbeck processes

Let us consider the d-dimensional stochastic differential equation (SDE)
{

dZt = AZt dt + Σ dWt, t > 0,

Z0 = 0,
(4.1)

where A ∈ Rd×d, Σ ∈ Rd×r and (Wt)t>0 is a standard r-dimensional Wiener process. It

is known that there exists a strong solution of equation (4.1), namely

Zt =

∫ t

0

e(t−s)AΣ dWs, t > 0,(4.2)

and pathwise uniqueness for (4.1) holds. (See, e.g., Karatzas and Shreve [6, 5.6].) The

process (Zt)t>0 is a time-homogeneous Gauss-Markov process, which is called a general

d-dimensional Ornstein-Uhlenbeck (OU) process. From (4.2) we obtain

Zt = e(t−s)AZs +

∫ t

s

e(t−u)AΣ dWu

for all 0 6 s < t, thus the conditional distribution of Zt with respect to Zs = x is a

normal distribution with mean e(t−s)Ax and variance matrix
∫ t

s

e(t−u)AΣΣ>e(t−u)A> du =

∫ t−s

0

e(t−s−v)AΣΣ>e(t−s−v)A> dv.

Hence if ΣΣ> is a (strictly) positive definite matrix (necessarily r > d ) then (Zt)t>0 has

transition densities (pZ
t )t>0 given by

pZ
t (x, y) =

1√
(2π)d det(Vt)

exp

{
−1

2
(y − etAx)>V −1

t (y − etAx)

}
(4.3)

for all x, y ∈ Rd and all t > 0, where

Vt :=

∫ t

0

e(t−v)AΣΣ>e(t−v)A> dv, t > 0.
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We also have

pZ
t (x, y) =

1√
(2π)d det(Vt)

exp

{
−1

2
(x− e−tAy)>Ṽ −1

t (x− e−tAy)

}

for all x, y ∈ Rd and all t > 0, where

Ṽt :=

∫ t

0

e−vAΣΣ>e−vA> dv, t > 0.

If all the eigenvalues of A have negative real parts then Vt = V − etAV etA> , t > 0, where

V is the unique solution of the algebraic matrix equation AV + V A> = −ΣΣ> given by

V =
∫∞
0

euAΣΣ>euA> du. (See, e.g., Karatzas and Shreve [6, 5.6 A].)

Obviously, for all t > 0 and z ∈ Rd, we have

sup
x, y∈Rd

pZ
t (x, y) =

1√
(2π)d det(Vt)

,

∫

Rd

pZ
t (x, z) dx = det(e−tA).

Hence by Lemmas 2.2, 2.4 and 2.5 we obtain the existence of the general Ornstein-Uhlenbeck

bridge (Xt)06t6T over [0, T ] with endpoints zero and its transition densities

pX
s,t(x, y) =

√
det(ṼT−s)

(2π)d det(Ṽt−sṼT−t)

× exp

{
− 1

2
(x− e−(t−s)Ay)>Ṽ −1

t−s(x− e−(t−s)Ay)− 1

2
y>Ṽ −1

T−ty +
1

2
x>Ṽ −1

T−sx

}(4.4)

for all x, y ∈ Rd and all 0 6 s < t < T .

5 The case of certain Ornstein-Uhlenbeck processes

Let us consider the d-dimensional SDE
{

dZt = aZt dt + σ dWt, t > 0,

Z0 = 0,
(5.1)

where a, σ ∈ R such that σ 6= 0, and (Wt)t>0 is a standard d-dimensional Wiener process.

By (4.2), the SDE (5.1) has a strong solution given by

Zt = σ

∫ t

0

ea(t−s) dWs, t > 0,(5.2)

and pathwise uniqueness for (5.1) holds.

Let T > 0 be fixed. Let (Xt)06t6T be the bridge with endpoints zero over [0, T ]

derived from (Zt)t>0. Let Rt := ‖Zt‖, t > 0 be the radial part of (Zt)t>0. Let (Yt)06t6T

be the bridge with endpoints zero over [0, T ] derived from (Rt)t>0. Our aim is to show

that the transition densities of the processes (‖Xt‖)06t6T and (Yt)06t6T coincide. In fact,

we obtain the result of Section 3 as a special case with a = 0 and σ = 1.
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From (4.3) we obtain the transition densities of the OU process (Zt)t>0 :

pZ
t (x, y) =

1

(2πσ2κ(a, t))d/2
exp

{
−‖y − eatx‖2

2σ2κ(a, t)

}
, t > 0, x, y ∈ Rd,

where κ(a, t) = e2at−1
2a

for a 6= 0, and κ(0, t) = t.

As in case of the d-dimensional Bessel process, one can prove that (Rt)t>0 is a time-

homogeneous Markov process with transition densities

pR
t (x, y) =





e−aνtyν+1

σ2κ(a, t)xν
exp

{
−e2atx2 + y2

2σ2κ(a, t)

}
Iν

(
eatxy

σ2κ(a, t)

)
if x, y > 0,

y2ν+1

2ν(σ2κ(a, t))ν+1Γ(ν + 1)
exp

{
− y2

2σ2κ(a, t)

}
if x = 0, y > 0,

where ν = d
2
− 1, and pR

t (x, 0) := lim
y↓0

pR
t (x, y) = 0 if d > 2, x > 0, and pR

t (x, 0) :=

lim
y↓0

pR
t (x, y) =

√
2

πσ2κ(a,t)
exp

{
− e2atx2

2σ2κ(a,t)

}
if d = 1, x > 0.

By (4.4), the transition densities of the OU bridge (Xt)06t6T is

pX
s,t(x, y) =

(
κ(a, T − s)

2πσ2κ(a, t− s)κ(a, T − t)

)d/2

× exp

{
−‖y − ea(t−s)x‖2

2σ2κ(a, t− s)
− e2a(T−t)‖y‖2

2σ2κ(a, T − t)
+

e2a(T−s)‖x‖2

2σ2κ(a, T − s)

}

for all 0 6 s < t < T and all x, y ∈ Rd.

As in case of the d-dimensional Bessel process, one can prove that (‖Xt‖)06t6T is again

a Markov process and one can calculate its transition densities :

p
‖X‖
s,t (x, y) =

e−aν(t−s)yν+1

σ2κ(a, t− s)xν

(
κ(a, T − s)

κ(a, T − t)

)ν+1

Iν

(
ea(t−s)xy

σ2κ(a, t− s)

)

× exp

{
−e2a(t−s)x2 + y2

2σ2κ(a, t− s)
− e2a(T−t)y2

2σ2κ(a, T − t)
+

e2a(T−s)x2

2σ2κ(a, T − s)

}

for all 0 6 s < t < T and all x, y > 0, and

p
‖X‖
s,t (0, y) =

y2ν+1

2ν(σ2κ(a, t− s))ν+1Γ(ν + 1)

(
κ(a, T − s)

κ(a, T − t)

)ν+1

× exp

{
− y2

2σ2κ(a, t− s)
− y2

2σ2κ(a, T − t)

}

for all 0 6 s < t < T and all y > 0.

As in Section 3, one can check that the densities (pR
t )t>0 satisfy conditions of Lemmas 2.4

and 2.6 and one obtains the existence of the bridge (Yt)06t6T and its transition densities.

It turns out that the transition densities of the processes (‖Xt‖)06t6T and (Yt)06t6T

coincide. By Lemma 2.2, their laws on
(
[0,∞)[0,T ], (B([0,∞)))[0,T ]

)
coincide.
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in: Prog. Probab., Birkhäuser 33, 101–134 (1992).

[4] I. Gradstein and I. Ryzhik, Tables of Integrals, Series, and Products. Academic

Press, 1980.

[5] O. Kallenberg, Foundations of Modern Probability. Springer-Verlag New York Berlin

Heidelberg, 1997.

[6] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, 2nd

Edition. Springer-Verlag Berlin Heidelberg, 1991.

[7] S. Karlin and M. Taylor, A First Course in Stochastic Processes. Academic Press,

New York, San Francisco, London, 1975.

[8] S. Karlin and M. Taylor, A Second Course in Stochastic Processes. Academic Press,

New York, San Francisco, London, 1981.

[9] N. Privault and J-C. Zambrini, Markovian bridges and reversible diffusion processes

with jumps. Ann. Inst. H. Poincaré Prob. Stat. 40, 599–633 (2004).
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