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Chapter 1

Introduction

A Finsler metric on a manifold is a family of Minkowski norms on tangent
spaces. There are several geometric quantities in Finsler geometry. The flag
curvature K is an analogue of the sectional curvature in Riemannian geometry.
The Cartan torsion C is a primary quantity. There is another quantity which
is determined by the Busemann-Hausdorff volume form, that is the so-called
distortion τ . The vertical differential of τ on each tangent space gives rise to the
mean Cartan torsion I := τykdxk. C, τ and I are the basic geometric quantities
which characterize Riemannian metrics among Finslers metrics. Differentiating
C along geodesics gives rise to the Landsberg curvature L. The horizontal
derivative of τ along geodesics is the so-called S-curvature S := τ|kyk. The
horizontal derivative of I along geodesics is called the mean Landsberg curvature
J := I|kyk. Besides, from the geodesic coefficients Gi(x, y), we can define the
Berwald curvature B := Bi

jkldxj⊗dxk⊗dxl⊗∂i and the mean Berwald curvature
E := Eijdxi ⊗ dxj , which are defined by

B i
j kl :=

∂3Gi

∂yj∂yk∂yl
, Eij :=

1
2
B m

m ij .

Furthermore, we can define the Douglas curvature D by B and E. Obviously,
τ , I, S , J, C, L and B, E, D all vanish for Riemannian metrics. Thus they
are said to be non-Riemannian. The Riemann curvature measures the shape
of the space while the non-Riemannian quantities describe the change of the
“color” on the space. It is found that the flag curvature is closely related to
these non-Riemannian quantities [AIM][MoSh][Sh2].
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6 CHAPTER 1. INTRODUCTION

Finsler projective geometry is an important part of Finsler geometry. Given
two Finsler metrics F and F̃ on an n-dimensional manifold M . We say F and F̃
to be pointwise projectively related (or the change F → F̃ is a projective change)
if any geodesic of F is also a geodesic of F̃ as a point set and the inverse is
also true. Two regular Finsler metric spaces are said to be projectively related
if there is a diffeomorphism between them such that the pull-back metric is
pointwise projectively related to another one. In general, given a Finsler metric
F on a manifold M , we would like to determine all Finsler metrics on M which
are pointwise projectively related to F . Particularly, it is interesting and mean-
ingful to determine all Finsler metrics on M which are pointwise projectively
related to a locally Minkowski metric on M . Such Finsler metrics are said to
be locally projectively flat. The problem of characterizing and studying locally
projectively flat Finsler metrics is known as Hilbert’s fourth problem.

The Ricci curvature plays an important role in the Finsler projective geom-
etry. It is proved [Sh1] that for two pointwise projectively related Einstein
metrics g and g̃ on an n-dimension compact manifold M , their Einstein con-
stants have the same sign. In addition, if their Einstein constants are negative
and equal, then g = g̃. In section 3, we will continue to study pointwise pro-
jectively related Finsler metrics and give a comparison theorem on the Ricci
curvatures. At the same time, we will take a look at role that S-curvature plays
in Finsler projective geometry. Besides, we will also discuss the projectively
flat Finsler metrics with some special cuevature properties in sections 6 and 7.
One of the important problems in Finsler geometry is to study and characterize
locally projectively flat Finsler metrics.

Another important problem in Finsler geometry is to study and characterize
Finsler metrics of scalar curvature. This problem has not been solved yet, even
for Finsler metrics of constant flag curvature. In section 4, we discuss the Finsler
metrics of scalar curvature and partially determine the flag curvature when F
is of isotropic S-curvature or relatively isotropic mean Landsberg curvature. In
fact, all known Randers metrics F = α + β of scalar curvature (in dimension
n > 2) satisfy S = (n + 1)c(x)F or J + c(x)F I = 0, where c(x) is a function
on M . Motivated by such phenomena, in section 5, we study Randers metrics
satisfying J + c(x)F I = 0 and classify Randers metrics with flag curvature
K = λ(x) and J + c(x)F I = 0. Furthermore, we study Randers metrics with
isotropic S-curvature in section 6. It is known that every locally projectively
flat Finsler metric is of scalar curvature. Using the obtained formula for the flag
curvature in section 4, we classify locally projectively flat Randers metrics with
isotropic S-curvature in section 6. And then, we study and characterize locally
projectively flat Finsler with isotropic S-curvature in section 7.
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The Douglas metrics form a rich class of Finsler metrics including locally
projectively flat Finsler metrics. The class of Douglas metrics is also much
larger than that of Berwald metrics. The study on Douglas metrics will enhance
our understanding on the geometric meaning of non-Riemannian quantities.
In section 8, we discuss Douglas metrics with relatively isotropic Landsberg
curvature or isotropic mean Berwald curvature. Then we introduce the Finsler
metrics of isotropic Berwald curvaure. We prove an equivalence among the
above metrics.
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Chapter 2

Preliminaries

A Finsler metric on a manifold M is a function F : TM → [0,∞) which has the
following properties:

(a) F is C∞ on TM \ {0};
(b) F (x, λy) = λF (x, y), ∀λ > 0;

(c) For any tangent vector y ∈ TxM \ {0}, the following bilinear symmetric
form gy : TxM × TxM → R is positive definite:

gy(u, v) :=
1
2

∂2

∂s∂t

[
F 2(x, y + su + tv)

] |s=t=0.

Let
gij(x, y) :=

1
2

[
F 2

]
yiyj (x, y).

By the homogeneity of F , we have

gy(u, v) = gij(x, y)uivj , F (x, y) =
√

gij(x, y)yiyj .

Let F be a Finsler metric on an n-dimensional manifold. The geodesics of
F are characterized by the following equations:

c̈i(t) + 2Gi (c(t), ċ(t)) = 0, (2.1)

where
Gi =

1
4
gil

{
[F 2]xkylyk − [F 2]xl

}
9



10 CHAPTER 2. PRELIMINARIES

and (gij(x, y)) := (gij(x, y))−1. Gi(x, y) are called the geodesic coefficients of
F .

The Riemann curvature Ry := Ri
kdxk

⊗
∂

∂xi |x : TxM → TxM is a family of
linear maps on tangent spaces, defined by

Ri
k = 2

∂Gi

∂xk
− yj ∂2Gi

∂xj∂yk
+ 2Gj ∂2Gi

∂yjyk
− ∂Gi

∂yj

∂Gj

∂yk
. (2.2)

The Ricci curvature Ric is defined to be the trace of Ry on each tangent space
TxM ,

Ric(y) := Ri
i(x, y).

The Ricci curvature Ric is a positively homogeneous function of degree two on
TM , i.e., Ric(λy) = λ2Ric(y), λ > 0. If F is a Riemannian metric, then

Ri
k(x, y) = Ri

jkl(x)yjyl,

where Ri
jkl(x) denote the coefficients of the Riemannian curvature tensor on M .

In this case, Ric(y) = Rk
jkl(x)yjyl is quadratic in y ∈ TxM .

For a flag P = span{y, u} ⊂ TxM with flagpole y, the flag curvature K(P, y)
is defined by

K(P, y) :=
gy(u,Ry(u))

gy(y, y)gy(u, u) − gy(y, u)2
. (2.3)

When F is Riemannian, K(P, y) = K(P ) is independent of y ∈ P (flagpole). It
is just the sectional curvature of P in Riemannian geometry. We say that F is
of scalar curvature if for any y ∈ TxM , the flag curvature K(P, y) = K(x, y) is
independent of P containing y ∈ TxM , or equivalently,

Ri
k = K(x, y)F 2hi

k, (2.4)

where hi
k := gijhjk and hjk := gjk − Fyj Fyk . F is said to be of constant flag

curvature if K(P, y) = constant. hjk define a tensor field on TM called the
angular metric tensor of F .

To characterize Riemannian metrics among Finsler metrics, we introduce
the quantity

τ(x, y) := ln

[√
det(gij(x, y))

σ(x)

]
,
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where

σ(x) :=
V ol(Bn)

V ol {(yi) ∈ Rn|F (x, y) < 1} .

τ is called the distortion. F is Riemannian if and only if τ = constant [Sh2].
Let

Cijk(x, y) :=
1
4
[F 2]yiyjyk(x, y), Ii(x, y) := gjk(x, y)Cijk(x, y),

A direct computation yields

Ii(x, y) = τyi(x, y).

For y ∈ TxM \ {0}, set

Cy(u, v, w) := Cijk(x, y)uivjwk, Iy(u) := Ii(x, y)ui,

where u = ui ∂
∂xi |x, v = vj ∂

∂xj |x, w = wk ∂
∂xk |x ∈ TxM . The family C :=

{Cy|y ∈ TM \ {0}} is called the Cartan torsion and the family I := {Iy|y ∈
TM \ {0}} is called the mean Cartan torsion. A trivial fact is that a Finsler
metric F is Riemannian if and only if I = 0 (Deicke, 1953, cf. [Sh1]).

To find the relationship between the Riemann curvature and non-Riemanni-
an quantities, we employ the Chern connection on the pull-back tangent bundle
π∗TM where π : TM \{0} → M is the natural projection. Let ωi := π∗θi, where
{θi := dxi} is the local coframe for TM dual to { ∂

∂xi }. The Chern connection
forms are the unique local 1-forms ωi

j satisfying

dωi = ωj ∧ ωi
j ,

dgij = gikωk
j + gkjω

k
i + 2Cijk{dyk + yjωk

j },
Let

ωn+k := dyk + yjωk
j .

We obtain a local coframe {ωi, ωn+i} for T ∗(TM \ {0}). Let

Ωi := dωn+i − ωn+j ∧ ωi
j .

We can express Ωi in the following form

Ωi =
1
2
Ri

klω
k ∧ ωl − Li

klω
k ∧ ωl, (2.5)
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where Ri
kl + Ri

lk = 0. Ri
k in (2.2) and Ri

kl in (2.5) are related by

Ri
k = Ri

kly
l.

With the Chern connection, we define the covariant derivatives of quantities
on TM in the usual way. For example, for a scalar function f , we define f|i and
f.i by

df = f|iωi + f.iω
n+i.

For the mean Cartan torsion I = Iiω
i, define Ii|j and Ii.j by

dIi − Ikωk
i = Ii|jωj + Ii.jω

n+j .

Without much difficulty, one can show that

Ri
kl =

1
3

{
Ri

k.l − Ri
l.k

}
and

Ii = τ.i, Lijk = Cijk|mym, Ji = Ii|mym, (2.6)

where Lijk := gimLm
kl and Ji := gjkLijk [Sh2]. We obtain the Landsberg curva-

ture L := Lijkdxi ⊗ dxj ⊗ dxk and the mean Landsberg curvature Jy = Jidxi.
Let

S(x, y) :=
d

dt
[τ(σ(t), σ̇(t))]t=0,

or equivalently
S = τ|mym.

We call S the S-curvature [Sh3]. We say S-curvature is isotropic if there exists
a scalar function c(x) on M such that S(x, y) = (n + 1)c(x)F (x, y). If c(x) =
constant, we say that F has constant S-curvature. S-curvature S(x, y) is the
rate of change of τ along geodesics and measures the averages rate of change of
(TxM,Fx) in the direction y ∈ TxM . If (M,F ) is modeled on a single Minkowski
space, then S = 0 ([Sh2][Sh3]). Many known Finsler metrics of constant (scalar)
flag curvature actually have constant (isotropic) S-curvature ([CMS][Sh6]).

Let

Di
jkl :=

∂3

∂yj∂yk∂yl

(
Gi − 1

n + 1
∂Gm

∂ym
yi

)
. (2.7)

It is easy to verify that D := Di
jkldxj ⊗ ∂i ⊗ dxk ⊗ dxl is a well-defined tensor

on TM \ {0}. We call D the Douglas tensor. By a direct computation, one can
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express Di
jkl as follows.

Di
jkl := B i

j kl −
2

n + 1

{
Ejkδi

l + Ejlδ
i
k + Eklδ

i
j +

∂Ejk

∂yl
yi

}
. (2.8)

A Finsler metric is called a Douglas metric if D = 0. By (2.8), one can easily see
that every Berwald metric is a Douglas metric. There are many non-Berwaldian
Douglas metrics. For example, a Randers metric F = α+β is a Douglas metric
if and only if β is closed but F = α + β is a Berwald metric if and only if β is
parallel with respect to α [BaMa1].

Consider two pointwise projectively related Finsler metrics F and F̃ . We
have the following important lemma:

Lemma 2.1.([Ra]) Let F and F̃ be two Finsler metrics on a manifold M . F
and F̃ are pointwise projectively related if and only if there is a scalar function
P on TM such that

G̃i = Gi + Pyi (2.9)

with P = F̃;kyk/(2F̃ ), where lower “ ; ” denotes the horizontal covariant deriv-
ative with respect to the Berwald connection of F and this P is called the
projective factor.

Plugging (2.9) into (2.2), one obtains

R̃i
k = Ri

k + Ξδi
k + τkyi, (2.10)

where
Ξ := P 2 − P;kyk, τk := 3(P;k − PPyk) + Ξyk .

Furthermore, we have

R̃ic(y) = Ric(y) + (n − 1)Ξ(y). (2.11)

Now, let us consider a projectively flat Finsler metric F = F (x, y). By (2.9), its
geodesic coefficients are in the form Gi = Pyi. Then, we have

Ri
k = Ξδi

k + τkyi,

where
Ξ := P 2 − Pxkyk, τk := 3(Pxk − PPyk) + Ξyk .
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Using the following facts (cf. [Sh2][Sh3])

Ry(y) = 0, gy(Ry(u), v) = gy(u,Ry(v)),

we can show that τk = −ΞF−1Fyk and

Ri
k = Ξ

{
δi
k − F−1Fykyi

}
. (2.12)

Thus F is of scalar curvature with

K =
Ξ
F 2

=
P 2 − Pxkyk

F 2
. (2.13)

Hence one immediately obtains the following
Proposition 2.2. Every locally projectively flat Finsler metric is of scalar

curvature.
This fact is due to L. Berwald.



Chapter 3

Curvature Properties in
Finsler Projective
Geometry

In this section, we will first discuss an interesting result given by Rapcsák on
pointwise projectively related Finsler metrics. Given two Finsler metrics F and
F̃ on M . Let g := F 2 = gij(x, y)yiyj and g̃ := F̃ 2 = g̃ij(x, y)yiyj . One can
easily verify that the geodesic coefficients G̃i = G̃i(x, y) of g̃ are related to that
of g by

G̃i = Gi +
1
4
g̃il

{∂g̃;k

∂yl
yk − g̃;l

}
,

where g̃;k := g̃ij;kyiyj denote the covariant derivatives of g̃ with respect to g,

g̃;k :=
∂g̃

∂xk
− ∂Gl

∂yk

∂g̃

∂yl
.

We simply denote ∇g̃ := g̃;kdxk which is a 1-form on TM \{0}. We immediately
conclude that g̃ is pointwise projective equivalent to g if and only if there is a
scalar function P on TM such that

∂g̃;k

∂yl
yk − g̃;l = 2P

∂g̃

∂yl
. (3.1)

15
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Lemma 3.1.([ChSh1]) g̃ is pointwise projectively related to g if and only if
there is a scalar function P on TM such that

g̃;k = P
∂g̃

∂yk
+ 2

∂P

∂yk
g̃. (3.2)

In this case

P =
g̃;kyk

4g̃
. (3.3)

Suppose that the projective equivalence is trivial, P = 0, then g̃ is horizontally
parallel with respect to g, ∇g̃ = 0.

Proof. First we assume that g̃ is pointwise projective to g. Then (3.1) holds
for some scalar function P on TM . Contracting (3.1) with yl yields

g̃;kyk = 4P g̃. (3.4)

By (3.1) and (3.4), we obtain

2P
∂g̃

∂yl
=

∂

∂yl

[
g;kyk

]
− 2g̃;l

=
∂

∂yl

[
4P g̃

]
− 2g̃;l.

This gives (3.2). Conversely, if (3.2) holds, then

∂g̃;k

∂yl
yk − g̃;l = yk ∂

∂yl

{
P

∂g̃

∂yk
+ 2

∂P

∂yk
g̃
}
−

{
P

∂g̃

∂yl
+ 2

∂P

∂yl
g̃
}

= 2
∂P

∂yl
g̃ + P

∂g̃

∂yl
+ 2P

∂g̃

∂yl
− P

∂g̃

∂yl
− 2

∂P

∂yl
g̃

= 2P
∂g̃

∂yl
.

This gives (3.1). Q.E.D.
By Lemma 3.1, we obtain the following
Theorem 3.2.([ChSh1]) Let (M, g) be a complete Finsler manifold and

g̃ another Finsler metric on M , which is pointwise projectively related to g.
Suppose that

R̃ic ≤ Ric. (3.5)

Then the projective equivalence is trivial. Further, g̃ is horizontally parallel
with respect to g, ∇g̃ = 0 and the Riemann curvatures are equal, R̃ = R.



17

Proof. By Lemma 2.1, there is a scalar function P on TM, such that (2.9)
holds. Fix an arbitrary vector y ∈ TxM \ {0} and let c(t) denote the geodesic
of g with ċ(0) = y. By assumption, g is complete, hence c(t) is defined for
−∞ < t < ∞. Let

P (t) := P (ċ(t)).

Observe that
P ′(t) = P;k(ċ(t))ċk(t).

By assumption and (2.11),

P;kyk − P 2 =
1

n − 1

(
Ric − R̃ic

)
≥ 0.

Thus
P ′(t) − P (t)2 ≥ 0.

Let

P0(t) :=
P (y)

1 − P (y)t
.

P0(t) satisfies
P ′

0(t) − P0(t)2 = 0.

To compare P (t) with P0(t), define

h(t) := exp
{
−

∫ t

0

[P (s) + P0(s)]ds
}{

P (t) − P0(t)
}

.

Observe that

h′(t) = exp
{
−

∫ t

0

[P (s) + P0(s)]ds
}{

P ′(t) − P ′
0(t) + P0(t)2 − P (t)2

}
≥ 0.

Note that h(0) = 0. Thus h(t) ≥ 0 for t > 0 and h(t) < 0 for t < 0. This implies
that

P (t) ≥ P0(t), t > 0,

P (t) ≤ P0(t), t < 0.

Assume that P (y) �= 0. Let to = 1/P (y). If P (y) > 0, then to > 0 and

P (ċ(to)) ≥ lim
t→t−o

P0(t) = ∞.
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If P (y) < 0, then to < 0 and

P (ċ(to)) ≤ lim
t→t+o

P0(t) = −∞.

Both are impossible. Therefore, P (y) = 0 for any y ∈ TM and G̃i = Gi. By
(2.10), we conclude that the Riemann curvatures are equal, R̃ = R. Q.E.D.

Example 3.3. Theorem 3.2 is false if the completeness of g is weakened to
the positive completeness. Let | · | and 〈 , 〉 denote the standard Euclidean norm
and inner product in Rn. Define

ϕ(y) : =

√|y|2 − (|x|2|y|2 − 〈x,y〉2) + 〈x,y〉
1 − |x|2 ,

ϕ̄(y) : = ϕ(−y),

ϕ̃(y) : =

√|y|2 − (|x|2|y|2 − 〈x,y〉2)
1 − |x|2 =

1
2

{
ϕ(y) + ϕ̄(y)

}
,

where y ∈ TxBn(1) = Rn. ϕ(y) > 0 is determined by the following identity,

x +
y

ϕ(y)
∈ ∂Bn(1).

ϕ, ϕ̄ and ϕ̃ are Finsler metrics on the unit ball Bn(1) ⊂ Rn. ϕ and ϕ̃ are the
Funk metric and the Klein metric on the unit ball Bn(1), respectively. We have

1
2
ϕ ≤ ϕ̃. (3.6)

ϕ and ϕ̃ have the following geodesic coefficients Gi and G̃i, respectively,

Gi =
1
2
ϕyi,

G̃i =
1
2
(ϕ − ϕ̄)yi.

Note that ϕ is only positively complete. By a direction computation, we obtain
the Ricci curvatures of ϕ̃ and ϕ,

R̃ic = −(n − 1)ϕ̃2, Ric = −(n − 1)
1
4
ϕ2.

By (3.6), we see that
R̃ic ≤ Ric.
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Thus the Ricci curvature condition (3.5) holds. But G̃i �= Gi, even ϕ̃ is complete.
The above example also shows that if the inequality in (3.5) is reversed, then
the conclusion in Theorem 3.2 is false.

According to Theorem 3.2, if two Ricci-flat Finsler metrics are pointwise
projectively related and one of them is complete, then the projective equivalence
is trivial and the Riemann curvatures are equal. One can show if two negative
Ricci-constant Finsler metrics are pointwise projectively related and one of them
is complete, then they are isometric up to a scaling. These facts are proved in
[Sh1]. In the positive Ricci-constant case, we have the following

Corollary 3.4.([ChSh1]) Let g and g̃ be pointwise projectively related Ein-
stein metrics on a compact n-manifold with Ric = (n−1)g and R̃ic = (n−1)g̃.
Suppose that g̃ ≤ g, then g̃ = g.

Now we take a look at the role that S-curvature plays in the projective
geometry of Finsler manifolds. From the definition, for a vector y ∈ TxM \ {0},
the S-curvature S(x, y) is given by

S(x, y) =
∂Gi

∂yi
(x, y) − yi ∂

∂xi

(
lnσ(x)

)
, (3.7)

See [Sh3][Sh9] for detailed discussion on the S-curvature. We first have the
following

Lemma 3.5.([ChSh1]) Let g and g̃ be Finsler metrics on an n-manifold M .
Suppose that g̃ is pointwise projectively related to g. Then the projective factor
P is given by

P =
1

n + 1

(
S̃ − S

)
− yi ∂

∂xi

[
ln f

]
, (3.8)

where f = f(x) is a scalar function on M determined by dVg̃ = (1/fn+1) dVg.
Proof. By assumption, the geodesic coefficients of g and g̃ satisfy

G̃i = Gi + Pyi.

This implies that
∂G̃i

∂yi
=

∂Gi

∂yi
+ (n + 1)P. (3.9)

Express dVg̃ = σ̃(x)dx1 · · · dxn. The S-curvature of g̃ is given by

S̃ =
∂G̃i

∂yi
− yi ∂

∂xi

(
ln σ̃(x)

)
. (3.10)
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Let

f(x) :=
(σ(x)

σ̃(x)

) 1
n+1

. (3.11)

f(x) is a well-defined function on M , although σ(x) and σ̃(x) depend on the
local coordinates. The volume forms of g and g̃ are related by

dVg̃ = σ̃(x)dx1 · · · dxn =
1

f(x)n+1
σ(x)dx1 · · · dxn =

1
f(x)n+1

dVg.

It follows from (3.7), (3.9) and (3.10) that

P =
1

n + 1

[
S̃ − S + yi ∂

∂xi

(
ln σ̃

)
− yi ∂

∂xi

(
lnσ

)]
=

1
n + 1

(
S̃ − S

)
− yi ∂

∂xi

(
ln f

)
.

This proves Lemma 3.5. Q.E.D.
By Lemma 3.5, we obtain an additional conclusion to Theorem 3.2 for pro-

jectively related Finsler metrics with the same S-curvatures.
Theorem 3.6.([ChSh1]) Let (M, g) be a complete Finsler manifold and

g̃ another Finsler metric on M , which is pointwise projectively related to g.
Suppose that both g and g̃ satisfy

R̃ic ≤ Ric, S̃ = S.

Then the projective equivalence between g and g̃ is trivial. Further, g̃ is hori-
zontally parallel with respect to g, the Riemann curvatures are equal, R̃ = R,
and dVg̃ is proportional to dVg.

Now suppose that g̃ and g be pointwise projectively related Riemannian
metrics on an n-dimensional manifold M . We know that the S-curvature of any
Riemannian metric always vanishes. Thus by Lemma 3.5, the projective factor
P is given by

P = −yi ∂

∂xi

[
ln f

]
,

where f is a positive function on M which is defined in Lemma 3.5. In this case,
we can get

R̃ic(y) = Ric(y) +
n − 1

f
D2

gf, (3.12)
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where D2
gf denotes the Hessian of f with respect to g. From (3.12), we can

prove the following theorem.
Theorem 3.7.([ChSh1]) Let g and g̃ be pointwise projectively related Rie-

mannian metrics on a compact manifold M . Assume that one of the following
conditions is satisfied,

(a) trgR̃ic ≤ sg,

(b) trgR̃ic ≥ sg,

then the projective equivalence is trivial. Further, g̃ is parallel with respect to
g, the Riemann curvatures are equal, R̃ = R, and dVg̃ is proportional to dVg.
Here trgR̃ic denotes the trace of the Ricci curvature R̃ic of g̃ with respect to g
and sg := trgRic denotes the trace of the Ricci curvature Ric of g with respect
to g. The function sg is called the scalar curvature of g.

Proof. For Riemann metric, the Ricci curvature becomes a quadratic form
on each tangent space TxM . Thus at each point x ∈ M , there is an orthonormal
basis {ei}n

i=1 for (TxM, gx) such that

R̃ic(y) =
n∑

i=1

λi (yi)2, y = yiei.

The trace of R̃ic with respect to g is given by

trgR̃ic =
n∑

i=1

λi, (3.13)

and the trace of Ric with respect to g is just the scalar curvature sg of g. Taking
the trace on both sides of (3.12) with respect to g, we obtain

trgR̃ic − sg =
n − 1

f
∆gf. (3.14)

Let r := 1
n−1 (trgR̃ic − sg). Equation (3.14) becomes

∆gf = r f. (3.15)

We assume that M is compact. Integrating (3.15) over M , we obtain∫
M

r f dVg = 0.
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Now we assume that
r ≤ 0, or r ≥ 0,

then r = 0. Thus the function f determined by dVg̃ = 1
fn+1 dVg satisfies

∆gf = r f ≡ 0.

Since M is compact, we conclude that f = constant. Therefore, the projective
factor P = 0 by Lemma 3.5 and dVg̃ is proportional to dVg. By Lemma 3.1, g̃
is horizontally parallel with respect to g too. Q.E.D.

Because the S-curvature of any Berwald metric vanishes and its spray coef-
ficients can be induced by a Riemannian metric, the equation (3.12) still holds
for the projective equivalence from a Berwald space to a Riemann space. Hence,
Theorem 3.7 can be generalized as follows.

Theorem 3.8([Ch1]) Let g be a Riemann metric on a compact manifold
M and g̃ a Berwald metric on M which is pointwise projectively related to g.
Assume that one of the following conditions is satisfied,

(a) trgR̃ic ≤ sg,

(b) trgR̃ic ≥ sg,

then the conclusion in Theorem 3.7 holds.

If we modify the inequality (3.5) in Theorem 3.2 into equality, we have the
following theorem.

Theorem 3.9.([Ch1]) Let F be a Finsler metric on a manifold M and F̃
a another Finsler metric on M which is pointwise projectively related to F .
Suppose that both F and F̃ satisfy

R̃ic = Ric.

Then F is complete if and only if F̃ is complete. In this case, along any geodesic
c(t) of F or F̃ ,

F (ċ(t))
F̃ (ċ(t))

= constant.

Proof. Let c(t) be an arbitrary unit speed geodesic in (M,F ) and

F̃ (t) := F̃ (ċ(t)), P (t) := P (ċ(t)).
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Observe that

F̃ ′(t) = F̃;k(ċ(t))ċk(t), P ′(t) = P;k(ċ(t))ċk(t).

From Lemma 2.1, we have

P (t) = F̃ ′(t)/[2F̃ (t)]. (3.16)

Let

f(t) :=
1√
F̃ (t)

.

(3.16) becomes
P (t) = −f ′(t)/f(t). (3.17)

Now, we assume that R̃ic = Ric. From (2.11), we have Ξ := P 2 − P;jy
j = 0.

Thus for any unit speed geodesic c(t) of F , we have

P ′(t) − P 2(t) = 0. (3.18)

Let f(0) := a > 0, f
′
(0) := b. Then, from (3.18), we get

P (t) = − b

a + bt
.

Thus, by (3.17), we obtain

f(t) = a + bt, i.e., F̃ (ċ(t)) =
1

(a + bt)2
.

(i) If b = 0, then f(t) = a. Thus f(t) is defined on I = (−∞, +∞) and
F̃ (ċ(t)) = 1/a2.

(ii) If b > 0, then f(t) is defined on I = (−δ, +∞) and∫ 0

−δ

F̃ (ċ(t)) = +∞ and

∫ +∞

0

F̃ (ċ(t))dt < +∞.

The case when b < 0 is similar, so is omitted.
According to the discussion as above, we can conclude that, if F is complete,

then any unit speed geodesic c(t) of F is defined on (−∞, +∞) and F̃ (ċ(t)) =
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1/a2. In this case, F̃ must be complete. The inverse is also obviously true.
Hence, F is complete if and only if F̃ is complete and

F (ċ(t))
F̃ (ċ(t))

= constant.

Q.E.D.
We note that, the condition that the projective change preserves the Ricci

curvature can not be cancelled.
Example 3.10. Suppose that (M,F ) and (M, F̃ ) are pointwise projectively

related and the projective change is characterized by

G̃i = Gi + Fyi. (3.19)

That is, the projective factor P is just F . Thus we get Pi = yi/F, where
yi = gij(x, y)yj . Since F;i = 0, we get Ξ = F 2 �= 0. Thus the projective change
(3.19) does not preserve the Ricci curvature. In this case, P (t) = F (ċ(t)) = 1.
Then, by (3.17 ), we obtain

f(t) = ae−t.

Hence, if F is complete, f(t) is defined on I = (−∞, +∞), and∫ 0

−∞
F̃ (ċ(t))dt < +∞ and

∫ +∞

0

F̃ (ċ(t))dt = +∞. (3.20)

Furthermore, for any unit speed geodesic c(t) of F ,

F̃ (ċ(t)) = e2t/a2. (3.21)

From (3.20) and (3.21), we see that F̃ is just positively complete and

F (ċ(t))/F̃ (ċ(t)) �= constant.



Chapter 4

Finsler Metrics of Scalar
Curvature

It has been proved that the flag curvature in Finsler geometry is closely related
to some non-Riemannian geometric quantities, such as C,L,J, I and S. Firstly,
the Riemann curvature satisfies the following Bianchi identity [Sh2][AIM]

Ri
k|l − Ri

l|k − Ri
kl|mym = Li

kmRm
l − Li

lmRm
k . (4.1)

Furthermore, we can prove the following important equations [MoSh]

Lijk|mym + CijmRm
k = −1

3
gimRm

k.j −
1
3
gjmRm

k.i (4.2)

−1
6
gimRm

j.k − 1
6
gjmRm

i.k.

Contracting (4.2) with gij gives

Jk|mym + ImRm
k = −1

3
{2Rm

k.m + Rm
m.k} (4.3)

Further, we obtain

S.k|mym − S|k = −1
3
{2Rm

k.m + Rm
m.k}. (4.4)

It is a difficult task to classify Finsler metrics of scalar curvature. All known
Randers metrics of scalar curvature (in dimension n > 2) satisfy S = (n +

25
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1)c(x)F or J + c(x)F I = 0, where c(x) is a scalar function on M . Thus it
is a natural idea to investigate firstly Finsler metrics of scalar curvature with
isotropic S-curvature.

Theorem 4.1.([CMS][ChSh3]) Let (M,F ) be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(x, y). Suppose that the S-
curvature is isotropic,

S = (n + 1)c(x)F (x, y), (4.5)

where c(x) is a scalar function on M . Then there is a scalar function σ(x) on
M such that

K = 3
cxmym

F (x, y)
+ σ(x). (4.6)

In particular, c = constant if and only if K = K(x) is a scalar function on M .
Proof. Plugging (2.4) into (4.4), we obtain

S·k|lyl − S|k = −n + 1
3

K·kF 2. (4.7)

Plugging (4.5) into (4.7) yields

c|l(x)ylF·k − c|k(x)F = −1
3
K·kF 2. (4.8)

It follows from (4.8) that [1
3
K − c|m(x)ym

F (x, y)

]
yk

= 0. (4.9)

Thus

σ := K − 3c|mym

F

is a scalar function on M . This proves the theorem. Q.E.D.
In Theorem 4.1, we partially determine the flag curvature when the S-

curvature is isotropic. This is a generalization of a theorem in [Mo] where
Mo shows that the flag curvature is isotropic, K = K(x) if S = (n + 1)cF for
c =constant. In this case, K = constant when n ≥ 3 by the Schur theorem.

Theorem 4.2([CMS][ChSh3]) Let (M,F ) be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(x, y). Suppose that F has rela-
tively isotropic mean Landsberg curvature,

J + c(x)F I = 0, (4.10)
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where c = c(x) is a C∞ scalar function on M . Then the flag curvature K and
the distortion τ satisfy

n + 1
3

Kyk +
(
K + c(x)2 − cxmym

F (x, y)

)
τyk = 0. (4.11)

(a) If c(x) = constant, then there is a scalar function ρ(x) on M such that

K = −c2 + ρ(x)e−
3τ(x,y)

n+1 , y ∈ TxM \ {0}.
(b) Suppose that F is non-Riemannian on any open subset of M . Then K =

K(x) if and only if K = −c2 is a nonpositive constant. In this case,
ρ(x) = 0.

Proof. By (4.3) and (2.4), we obtain

Jk|mym = −1
3
F 2

{
(n + 1)K·k + 3KIk

}
. (4.12)

By assumption, Jk = −cFIk and Jk = Ik|mym, we obtain

Jk|mym = −c|mymFIk − cFIk|mym = −c|mymFIk + c2F 2Ik.

It follows from (4.12) that

n + 1
3

K·k +
(
K + c2 − cxmym

F

)
Ik = 0. (4.13)

By (2.6), Ik = τ·k. We obtain (4.11).

(a) Suppose that cxm(x) = 0 at some point x ∈ M . Then equation (4.11)
simplifies to

n + 1
3

Kyk +
(
K + c2

)
τyk = 0.

This implies that[(
K + c2

)n+1
3

eτ
]

yk
=

(
K + c2

) (n−2)
3

eτ
{n + 1

3
Kyk +

(
K + c2

)
τyk

}
= 0.

Thus the function (K + c2)
(n+1)

3 eτ is independent of y ∈ TxM . There is a
number ρ(x) such that

K = −c(x)2 + ρ(x)e−
3τ(x,y)

n+1 . (4.14)
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When c(x) = constant, from (4.14), we obtain

K = −c2 + ρ(x)e−
3τ(x,y)

n+1 , y ∈ TxM \ {0}.
Note that ρ(x) is not necessarily a constant.

(b) Suppose that K = K(x) is a scalar function on M . Then (4.11) simplifies
to (

K + c2 − cxmym

F

)
τyk = 0. (4.15)

We claim that c(x) = constant. Suppose this is false. Then there is an
open subset U such that dc(x) �= 0 for any x ∈ U . Clearly, at any x ∈ U ,
K(x) �= −c(x)2 + cxm(x)ym/F (x, y) for almost all y ∈ TxM . By (4.15),
τ·k = Ik = 0. Thus F is Riemannian on U by Deicke’s theorem (cf. [Sh2]).
This contradicts our assumption in the theorem. This proves the claim.
By (4.14) and (4.15), we obtain

ρ(x) τyk = 0. (4.16)

We claim that ρ(x) ≡ 0. If this is false, then there is an open subset U
such that ρ(x) �= 0 for any x ∈ U . By (4.16), we obtain that τyk = Ik = 0
on U . Thus F is Riemannian on U . This again contradicts the assumption
in the theorem. Therefore ρ(x) ≡ 0. We conclude that K = −c2 by (4.14).

Q.E.D.

Finsler metrics with J = 0 are said to be weakly Landsbergian. From Theo-
rem 4.2 (b), we have the following

Corollary 4.3([ChSh3]) For a non-Riemannian weak Landsberg metric,
K = K(x) if and only if K = 0.

According to [ChSh2], for any Randers metric F = α + β, (4.10) holds if
and only if (4.5) holds and β is closed. For a general Finsler metric, (4.10) does
not imply (4.5). Now we combine two conditions (4.5) and (4.10) and give the
following

Theorem 4.4([CMS][ChSh3]) Let (M,F ) be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(x, y). Suppose that

S = (n + 1)c(x)F, J + c(x)F I = 0, (4.17)

where c = c(x) is a scalar function on M . Then there are scalar functions σ(x)
and µ(x) on M , such that the flag curvature is given by

K = 3
cxmym

F (x, y)
+ σ(x) = −3c(x)2 + σ(x)

2
+ µ(x)e−

2τ(x,y)
n+1 . (4.18)
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(a) Suppose that F is non-Riemannian on any open subset of M . Then c(x) =
constant if and only if K = −c2, σ(x) = −c2 and µ(x) = 0.

(b) If c(x) �= constant, then the distortion is given by

τ = ln
[

2µ(x)F (x, y)
6cxmym + 3[σ(x) + c(x)2]F (x, y)

]n+1
2

. (4.19)

Proof. By the above argument, K is given by (4.6) and it satisfies (4.11).
By (4.6), we obtain

cxm(x)ym

F (x, y)
=

1
3

(
K − σ(x)

)
.

Plugging it into (4.11) yields

n + 1
3

Kyk +
(2

3
K + c(x)2 +

1
3
σ(x)

)
τyk = 0.

We obtain [(
2K + 3c(x)2 + σ(x)

)n+1
2

eτ
]

yk
= 0.

Thus there is a scalar function µ(x) on M such that

K = −3c(x)2 + σ(x)
2

+ µ(x)e−
2τ(x,y)

n+1 . (4.20)

Comparing (4.20) with (4.6), we obtain

cxm(x)ym

F (x, y)
= −c(x)2 + σ(x)

2
+

µ(x)
3

e−
2τ(x,y)

n+1 . (4.21)

(a) If c(x) = c is a constant, we claim that µ(x) = 0. If this is false, then
U :=

{
x ∈ M,µ �= 0

}
�= ∅. From (4.21), one can see that τ = τ(x) is a

scalar function on U , hence F is Riemannian on U by Deicke’s theorem.
This contradicts our assumption. Now (4.21) is reduced to σ(x) = −c(x)2

and (4.20) is reduced to K = −c2. The inverse is also true by (4.18).

(b) If c(x) �= constant, then µ(x) �= 0 by (4.21). In this case, we can solve
(4.21) for τ and obtain (4.19).
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Q.E.D.
It follows from Theorem 4.4 that if a Finsler metric of scalar curvature satis-

fies S = (n+1)cF and J+ cF I = 0 for some constant c, then the flag curvature
is given by K = −c2. One would like to know whether or not there are non-
Riemannian, non-locally Minkowskian Finsler metrics with these properties. If
a Randers metric has these properties, then it is, up to a scaling, locally iso-
metric to the generalized Funk metric on the unit ball Bn ⊂ Rn [ChSh2] (cf.
section 5). In dimension two, any Finsler metric with S = 0, J = 0 and K = 0
is locally Minkowskian.

Example 4.5. For an arbitrary number ε with 0 < ε ≤ 1, define

α : =

√
(1 − ε2)(xu + yv)2 + ε(u2 + v2)(1 + ε(x2 + y2))

1 + ε(x2 + y2)

β : =
√

1 − ε2(xu + yv)
1 + ε(x2 + y2)

.

We have

‖β‖α =
√

1 − ε2

√
x2 + y2

ε + x2 + y2
< 1.

Thus F := α + β is a Randers metric on R2. In [ChSh2], we have verified that

S = 3cF, Jy + cF Iy = 0

where

c =
√

1 − ε2

2(ε + x2 + y2)
,

and obtained a formula for the Gauss curvature

K =
−3

√
1 − ε2 (xu + yv)/(1 + ε(x2 + y2))√

(1 − ε2)(xu + yv)2 + ε(u2 + v2)(1 + ε(x2 + y2)) +
√

1 − ε2(xu + yv)

+
7(1 − ε2) + 8ε(ε + x2 + y2)

4(ε + x2 + y2)2
.

Here we are going to compute σ and µ in Theorem 4.4. By a direct compu-
tation we can express the function σ := K − 3(cxu+cyv)

F in (4.18) by

σ =
7(1 − ε2)

4(ε + x2 + y2)2
+

2ε

ε + x2 + y2
.
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That is, the Gauss curvature is given by

K = 3
cxu + cyv

F
+ σ

= −3
√

1 − ε2(xu + yv)
(ε + x2 + y2)2F

+
7(1 − ε2)

4(ε + x2 + y2)2
+

2ε

ε + x2 + y2
.

For any Randers metric F = α + β, the distortion is given by

τ = ln
[F

α
· 1
1 − ‖β‖2

α

] 3
2
.

A direct computation yields

1 − ‖β‖2
α =

ε(1 + ε(x2 + y2))
ε + x2 + y2

.

Then the function µ :=
(
K + 3c2+σ

2

)
e

2τ
3 in (4.18) is given by

µ =
3

ε(ε + x2 + y2)
.

That is, the Gauss curvature can also be given by

K = −3c2 + σ

2
+ µ e−

2τ
3

= −5 − ε2 + 4ε(x2 + y2)
2(ε + x2 + y2)2

+
3
(
1 + ε(x2 + y2)

)
α

(ε + x2 + y2)2F
.
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Chapter 5

Randers Metrics with
L + c(x)FC = 0

Finsler metrics with L = 0 (i.e. Landsberg metrics) can be generalized as fol-
lows. Let F be a Finsler metric on an n-dimensional manifold M . F is said to
have relatively isotropic Landsberg curvature (resp. relatively isotropic mean
Landsberg curvature) if

L + cFC = 0, (resp. J + cF I = 0),

where c = c(x) is a scalar funcrion on M . We note that L/C (resp. J/I)
characterizes the relative growth rate of the Cartan torsion ( resp. the mean
Cartan torsion) along geodesics.

Many interesting Finsler metrics have relatively isotropic L-curvature (J-
curvature) or isotropic S-curvature. For example, the shortest time problem
on a Riemannian manifold (or Zermelo’s problem of navigation on Riemannian
manifolds) gives rise to a Randers metric. By choosing appropriate Riemann
metric h and an external force field W , we can obtain many Randers metrics
with many special non-Rienannian curvature properties as above [Sh4][Sh5].
In particular, on the unit ball Bn in Rn, taking W as the position vector
field, we obtain the well-known Funk metric on Bn with the following curvature
properties: (i) S = (1/2)(n+1)F ; (ii) E = (1/4)(n+1)F−1h; (iii) J+(1/2)F I =
0 and (iv) K = −1/4. Motivated by the properties of Funk metrics, we study
Randers metrics satisfying (i), (ii) or (iii). In this section, we mainly study
Randers metrics with relatively isotropic L-curvature.
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From definition, the mean Landsberg curvature is the mean value of the
Landsberg curvature. Thus if a Finsler metric has relatively isotropic Landsberg
curvature, then it must have relatively isotropic mean Landsberg curvature. We
don’t know whether or not the converse is true too. So far no counter-example
has been found yet. Nevertheless, for Randers metrics, we have the following

Lemma 5.1. For any Randers metric F = α + β, the following are equiva-
lent:

(a) J + c(x)F I = 0;

(b) L + c(x)FC = 0,

where c(x) is a scalar function on M .
Proof. By [Ma], Randers metric F = α + β is C-reducible, that is,

Cijk =
1

n + 1

{
Iihjk + Ijhik + Ikhij

}
. (5.1)

From (5.1) and using hij|m = 0, we obtain

Cijk|mym =
1

n + 1

{
Ii|mymhjk + Ij|mymhik + Ik|mymhij

}
,

that is,

Lijk =
1

n + 1

{
Jihjk + Jjhik + Jkhij

}
. (5.2)

From (5.1) and (5.2), we get

Lijk − cFCijk =
1

n + 1

{
(Ji − cFIi)hjk + (Jj − cFIj)hik + (Jk − cFIk)hij

}
.

Hence, J + cF I = 0 implies that L + cFC = 0. Q.E.D.
Let F = α + β be a Randers metric on an n-dimensional manifold M . An

easy computation yields

gij =
F

α

(
aij − yi

α

yj

α

)
+

(yi

α
+ bi

)(yj

α
+ bj

)
, (5.3)

where yi := aijy
j . By an elementary argument in linear algebra, we obtain

det(gjk) =
(F

α

)n+1

det(aij). (5.4)
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Define bi;j by
bi;jθ

j := dbi − bjθ
j
i ,

where θj
i denotes the Levi-Civita connection forms of α.

Let

rij :=
1
2

(bi;j + bj;i) , sij =
1
2

(bi;j − bj;i) , si
j := aihshj ,

sj := bis
i
j , eij := rij + bisj + bjsi.

Then the geodesic coefficients Gi are given by

Gi = Ḡi +
e00

2F
yi − s0y

i + αsi
0, (5.5)

where Ḡi denote the geodesic coefficients of α, e00 := eijy
iyj , s0 := siy

i and
si
0 := si

jy
j . See [AIM].

Lemma 5.2.([ChSh2]) For a Randers metric F = α + β, the mean Cartan
torsion I = Iidxi and the mean Landsberg curvature J = Jidxi are given by

Ii =
1
2
(n + 1)F−1α−2

{
α2bi − βyi

}
(5.6)

Ji =
1
4
(n + 1)F−2α−2

{
2α

[
(ei0α

2 − yie00) − 2β(siα
2 − yis0) + si0(α2 + β2)

]
+α2(ei0β − bie00) + β(ei0α

2 − yie00)

−2(siα
2 − yis0)(α2 + β2) + 4si0α

2β
}

. (5.7)

Proof. By (2.6), we have Ii = τ·i. From (5.4) and the definition of τ , we get
(5.6). Now we are going to compute Ji. From (2.6), we can get the following

Ji = yj ∂Ii

∂xj
− Ij

∂Gj

∂yi
− 2Gj ∂Ii

∂yj
.

Let
Hi :=

e00

2F
yi − s0y

i + αsi
0.

We can rewrite the expression above on Ji as follows

Ji = yjIi;j − IjH
j
·i − 2HjIi·j , (5.8)
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where Hj
·i := ∂Hj

∂yi , Ii·j = ∂Ii

∂yj and Ii;j are defined by

dIi − Ij
∂Ḡj

∂yi∂yk
dxk = Ii;jdxj + Ii·j

(
dyj +

∂Ḡj

∂yk
dxk

)
.

By a direct computation, we obtain

Ii·j = −n + 1
2

F−2α−2
(
yjα

−1 + bj

)(
α2bi − βyi

)
−(n + 1)F−1α−4yj

(
α2bi − βyi

)
+

n + 1
2

F−1α−2
(
2yjbi − bjyi − βaij

)
Hj

·i =
e00

2F
δj
i +

ei0

F
yj − e00

2F 2

(
yiα

−1 + bi

)
yj

−s0δ
j
i − siy

j + yiα
−1sj

0 + αsj
i.

where bi;0 = bi;jy
j and b0;0 = bi;jy

iyj . Observe that

bi;j = rij + sij = eij − bisj − bjsi + sij .

We have
bi;0 = ei0 − bis0 − siβ + si0, b0;0 = e00 − 2s0β.

By these identities, we obtain

yjIi;j = −n + 1
2

F−2α−2b0;0

(
α2bi − βyi

)
+

n + 1
2

F−1α−2
(
α2bi;0 − b0;0yi

)
= −n + 1

2
F−2α−2

(
e00 − 2s0β

)(
α2bi − βyi

)
+

n + 1
2

F−1α−2
(
(α2ei0 − e00yi) − α2(bis0 + siβ) + 2s0βyi + α2si0

)
.

Plugging them into (5.8) yields (5.7). Q.E.D.
As mentioned in Lemma 5.2, the mean Landsberg curvature J can be ex-

pressed in term of α and β. But the formula is very complicated. We find a
simpler necessary and sufficient condition for J + cF I = 0.

Theorem 5.3.([ChSh2][ChSh3]) Let F = α + β be a Randers metric on a
manifold M . For a scalar function c = c(x) on M , the following are equivalent

(a) J + c(x)F I = 0;

(b) e00 = 2c(α2 − β2) and β is closed.
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Proof. Let
fij := eij − 2c(aij − bibj)

and fi0 := fijy
j , f00 := fijy

iyj . We have

2α(ei0α
2 − yie00) + α2(ei0β − bie00) + β(ei0α

2 − yie00) =
2α(fi0α

2 − yif00) + α2(fi0β − bif00) + β(fi0α
2 − yif00) − 2c(biα

2 − yiβ)F 2.

Plugging it into (5.7), we see that J + cF I = 0 if and only if

(fi0β−bif00)α2+(fi0α
2−yif00)β+4si0α

2β−2(siα
2−yis0)(α2+β2) = 0, (5.9)

(fi0α
2 − yif00) + si0(α2 + β2) − 2(siα

2 − yis0)β = 0. (5.10)

Differentiating (5.10) with respect to yj , yk and yl, we obtain

0 = fijakl + fikajl + filajk − aijfkl − aikfjl − ailfjk

+sij(akl + bkbl) + sik(ajl + bjbl) + sil(ajk + bjbk)
−(2aklsi − aiksl − ailsk)bj

−(2ajlsi − aijsl − ailsj)bk

−(2ajksi − aijsk − aiksj)bl. (5.11)

Contracting (5.11) with akl yields

nfij − λaij + sij(n + 2 + ‖β‖2) − 2(n + 1)sibj + 2(bisj − bjsi) = 0, (5.12)

where λ := aklfkl. Here we have made the use of the identity bkaklsil = −si. It
follows from (5.12) that

fij =
λ

n
aij +

n + 1
n

(sibj + sjbi), (5.13)

sij(n + 2 + ‖β‖2) = (n − 1)(sibj − sjbi). (5.14)

Contracting (5.14) with bi := bra
ri yields

sj = 0.

Plugging it into (5.14) we obtain that

sij = 0
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and
fij =

λ

n
aij . (5.15)

Now equation (5.9) simplifies to

λ(biα
2 − yiβ) = 0. (5.16)

Taking yi = bi in (5.16) we obtain

λ(‖β‖2 − 1)bi = 0. (5.17)

Assume that β �≡ 0. It follows from (5.17) that λ = 0. From (5.15), we conclude
that fij = 0.

Conversely, we suppose that e00 = 2c(α2 − β2). Then

ei0 = 2c(yi − biβ), e00 = 2c(α2 − β2).

We obtain

ei0α
2 − yie00 = −2c(biα

2 − yiβ)β, (5.18)
ei0β − bie00 = −2c(biα

2 − yiβ). (5.19)

Plugging (5.18) and (5.19) into (5.7) yields

Ji =
1
2
(n + 1)α−2

{
− c

[
(biα

2 − yiβ) + (siα
2 − yis0)

]
+ si0α

}
. (5.20)

Further, suppose that β is closed, hence sij = 0. From (5.6) and (5.20), we
obtain

Ji = −1
2
(n + 1)cα−2

{
biα

2 − yiβ
}

= −cF Ii.

This proves the theorem. Q.E.D.
In 2003, Z. Shen has classified all locally projectively flat Randers metrics

with constant flag curvature [Sh7]. He proves that a locally projectively flat
Randers metric with constant flag curvature K = λ is either locally Minkowskian
or after a scaling, isometric to the a Finsler metric on the unit ball Bn in the
following form

Fa =

√|y|2 − (|x|2|y|2 − 〈x,y〉2)
1 − |x|2 ± 〈x,y〉

1 − |x|2 ± 〈a,y〉
1 + 〈a,x〉 , y ∈ TxRn,

where a ∈ Rn is a constant vector with |a| < 1. One can directly verify that Fa,
a �= 0, are locally projectively flat Finsler metrics with negative constant flag
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curvature. Moreover, they have the following properties of the Funk metrics:
(i) S = ±(1/2)(n + 1)F, (ii) E = ±(1/4)(n + 1)F−1h and (iii)J ± (1/2)F I = 0
and (iv) K = − 1

4 . In fact, there are lots of Randers metrics satisfying

E =
1
2
(n + 1)cF−1h, J + cF I = 0.

Besides, the Randers metrics stated as above with c = ± 1
2 , we have the following

example with c = c(x) �= constant.
Example 5.4. For an arbitrary number ε with 0 < ε ≤ 1, define

α : =

√
(1 − ε2)(xu + yv)2 + ε(u2 + v2)(1 + ε(x2 + y2))

1 + ε(x2 + y2)

β : =
√

1 − ε2(xu + yv)
1 + ε(x2 + y2)

.

We have

‖β‖α =
√

1 − ε2

√
x2 + y2

ε + x2 + y2
< 1.

Thus F := α+β is a Randers metric on R2. By a direct computation, we obtain

J + cF I = 0,

where

c =
√

1 − ε2

2(ε + x2 + y2)
.

Moreover, the Gauss curvature of F is given by

K = −3
√

1 − ε2(xu + yv)
(ε + x2 + y2)2F

+
7(1 − ε2)

4(ε + x2 + y2)2
+

2ε

ε + x2 + y2
.

Thus F does not have constant Gauss curvature.
Based on Theorem 5.3, we can classify Randers metrics with scalar flag

curvature K = λ(x) and J + c(x)F I = 0.
Theorem 5.5.([ChSh2][ChSh3]) Let F = α + β ba Randers metric on an

n-dimensional manifold M satisfying

1. K = λ(x) is independent of y ∈ TxM ;

2. J + c(x)F I = 0 for some scalar function c(x) on M .
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Then K = constant = −c2 ≤ 0. Further, F is either locally Minkowskian
(K = −c2 = 0) or in the form

F = Θ ± < a, y >

1+ < a, x >

(K = −c2 = −1/4) after a scaling, where Θ denotes the Funk metric on the
unit ball Bn and a ∈ Rn is a constant vector with |a| < 1.

Proof. By assumption and Theorem 4.2, we know that λ = −c2 is a non-
positive constant. Further, by assumption that J + cF I = 0 and Theorem 5.3,
we know that

eij = 2c(aij − bibj), sij = 0.

Plugging them into (5.5) yields

Gi = Ḡi + c(α − β)yi. (5.21)

Thus F = α + β is pointwise projectively equivalent to α. By assumption,

Ri
k = λF 2

{
δi
k − Fyk

F
yi

}
.

Thus α is of scalar curvature µ := µ(x) and µ = µ(x) must be a constant when
n = dimM > 2. Using (5.21), (2.10) and

bi;jy
iyj = e00 = 2c(α2 − β2), (5.22)

we obtain
Ri

k = R̄i
k + Ξ δi

k + τkyi, (5.23)

where
Ξ = 3c2α2 − 2c2αβ − c2β2.

Then
R̄i

k = Ri
k − Ξδi

k − τkyi = (λ − 3c2)α2δi
k + τ̃kyi.

This implies that
(λ − 3c2)α2

α2
= µ.

It follows that
λ − 3c2 − µ = 0, λ + c2 = 0.

Thus µ = −4c2 = constant, i.e.,

R̄i
k = −4c2α2

{
δi
k − αyk

α
yi

}
.
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First, we suppose that c = 0. It follows from (5.21) that Gi = Ḡi(x, y) are
quadratic in y ∈ Rn for any x. Hence F is a Berwald metric. Moreover,

Ri
k = R̄i

k.

On the other hand, µ = −4c2 = 0 implies that α is flat, R̄i
k = 0. Thus F = α+β

is flat. We conclude that F is locally Minkowskian.
Now suppose that c �= 0. After an appropriate scaling, we may assume that

c = ±1/2. We can express α in the following Klein form

α =

√|y|2 − (|x|2|y|2 − 〈x,y〉2)
1 − |x|2 .

Since β is closed, we can express it in the following form

β = ± 〈x,y〉
1 − |x|2 ± dϕ(y), y = (yi) ∈ TxBn.

It follows from (5.22) that

bi;j = ±(aij − bibj). (5.24)

The Christoffel symbols of α are given by

Γ̄i
jk =

xkδi
j + xjδi

k

1 − |x|2 .

The covariant derivatives of β with respect to α are given by

bi;j = ±
{ ∂2ϕ

∂xi∂xj
+

1
1 − |x|2

(
δij − xi ∂ϕ

∂xj
− xj ∂ϕ

∂xi

)}
,

and
aij − bibj =

1
1 − |x|2

(
δij − xi ∂ϕ

∂xj
− xj ∂ϕ

∂xi

)
− ∂ϕ

∂xi

∂ϕ

∂xj
.

Plugging them into (5.24) yields

∂2ϕ

∂xi∂xj
+

∂ϕ

∂xi

∂ϕ

∂xj
= 0. (5.25)

Let f = exp(ϕ). Then (5.25) simplifies to

∂2f

∂xi∂xj
= 0. (5.26)
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Thus f is a linear function

f = k(1 + 〈a,x〉), k > 0.

We obtain that
ϕ = ln k + ln(1 + 〈a,x〉).

Finally, we find the most general solution for β,

β = ± 〈x,y〉
1 − |x|2 ± 〈a,y〉

1 + 〈a,x〉 , y ∈ TxBn. (5.27)

Q.E.D.



Chapter 6

Randers Metrics with
Isotropic S-Curvature

In this section, we study Randers metrics with isotropic S-curvature. It is
shown that, if a Randers metric is of constant curvature, then it has constant
S-curvature [BaoRo].

Consider a Randers metric F = α + β on a manifold M . Let

ρ := ln
√

1 − ‖β‖2
α

and dρ = ρidxi. According to [Sh3], the S-curvature of F = α + β is given by

S = (n + 1)
{e00

2F
− (s0 + ρ0)

}
, (6.1)

where e00 := eijy
iyj , s0 := siy

i and ρ0 := ρiy
i (cf. section 5). We have the

following
Lemma 6.1.([ChSh2][ChSh3]) Let F = α + β be a Randers metric on an

n-dimensional manifold M . For a scalar function c = c(x) on M , the following
are equivalent

(a) S = (n + 1)cF ;

(b) e00 = 2c(α2 − β2).

Proof. From (6.1), we see that S = (n + 1)cF if and only if

eij = (si + ρi)bj + (sj + ρj)bi + 2c(aij + bibj) (6.2)
si + ρi + 2cbi = 0. (6.3)

43
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On the other hand, e00 = 2c(α2 − β2) is equivalent to the following identity,

eij = 2c(aij − bibj). (6.4)

First suppose that S = (n+1)cF . Then (6.2) and (6.3) hold. Plugging (6.3)
into (6.2) gives (6.4).

Conversely, suppose that (6.4) holds. Contracting (6.4) with bj yields

rijb
j + ‖β‖2si = 2c(1 − ‖β‖2)bi, (6.5)

where we have used the fact sjb
j = 0. Note that

−bjbj;i = (1 − ‖β‖2)ρi. (6.6)

Adding (6.6) to (6.5) gives

−(1 − ‖β‖2)si = 2c(1 − ‖β‖2)bi + (1 − ‖β‖2)ρi. (6.7)

This is equivalent to (6.3) since 1 − ‖β‖2 �= 0. From (6.4) and (6.3), one
immediately obtains (6.2). This proves the lemma. Q.E.D.

By the definitions and (3.7), Eij = (1/2)Syiyj . Hence, if a Finsler metric F
has isotropic S-curvature, S = (n + 1)c(x)F , then F must have isotropic mean
Berwald curvature, E = (1/2)(n + 1)c(x)F−1h. But the converse does not hold
in general. However, for Randers metrics, we have the following

Lemma 6.2.([ChSh2]) Let F = α + β be a Randers metric on an n-
dimensional manifold M . For a scalar function c = c(x) on M , the following
are equivalent

(a) E = (1/2)(n + 1)c(x)F−1h;

(b) e00 = 2c(α2 − β2).

Proof. It follows from Eij = (1/2)Syiyj and (6.1) that

Eij =
1
4
(n + 1)

[e00

F

]
yiyj

. (6.8)

Suppose that e00 = 2c(α2 − β2). Then

e00

F
= 2c(α − β).

Plugging it into (6.8) we obtain

Eij =
1
2
(n + 1)c αyiyj =

1
2
(n + 1)c Fyiyj . (6.9)
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That is, E = 1
2 (n + 1)c F−1h.

Conversely, suppose that (6.9) holds. It follows from (6.8) and (6.9) that[e00

F

]
yiyj

= 2c Fyiyj .

Thus at each point p ∈ M , the following holds on TpM \ {0},
e00

F
= 2cF + η + τ,

where η ∈ T ∗
p M and τ is a constant. By the homogeneity, we conclude that

τ = 0. Then
e00 = 2cF 2 + ηF. (6.10)

Equation (6.10) is equivalent to the following equations,

e00 = 2c(α2 + β2) + ηβ (6.11)
0 = 4cβ + η. (6.12)

By (6.12), we obtain η = −4cβ. Plugging it into (6.11), we obtain

e00 = 2c(α2 − β2).

This completes the proof. Q.E.D.
From Lemma 6.1 and Lemma 6.2, we have the following
Theorem 6.3.([ChSh2]) Let F = α + β be a Randers metric on an n-

dimensional manifold M . For a scalar function c = c(x) on M , the following
are equivalent

(a) S = (n + 1)cF ;

(b) E = (1/2)(n + 1)c(x)F−1h;

(c) e00 = 2c(α2 − β2).

From Theorem 5.3 and Theorem 6.3, we have following
Theorem 6.4.([ChSh2]) Let F = α + β be a Randers metric on an n-

dimensional manifold M . For a scalar function c = c(x) on M , the following
are equivalent,

(a) L + c(x)FC = 0 (or J + cF I = 0);

(b) S = (n + 1)cF and β is closed.
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(c) E = (1/2)(n + 1)c(x)F−1h and β is closed.

In 1997, Bácsó and Matsumoto proved that a Randers metric is a Douglas
metric if and only if β is closed [BaMa1]. From Theorem 6.4, we have the
following result.

Corollary 6.5. Let F = α + β be a Randers metric of Douglas type on an
n-dimensional manifold M . For a scalar function c = c(x) on M , the following
are equivalent,

(a) L + c(x)FC = 0;

(b) S = (n + 1)cF ;

(c) E = (1/2)(n + 1)c(x)F−1h.

Now, we consider a projectively flat Randers metrics with isotropic S-curva-
ture S = (n + 1)c(x)F . First, we know that α is locally projectively flat and
β is closed. According to the Beltrami theorem in Riemann geometry, a Rie-
mannian metric is locally projectively flat if and only if it is of constant sectional
curvature. Thus α is of constant curvature µ. It is locally isometric to the fol-
lowing standard metric αµ on the unit ball Bn ⊂ Rn or the whole Rn for
µ = −1, 0, +1 :

α−1(x, y) =

√|y|2 − (|x|2|y|2− < x, y >2)
1 − |x|2 , y ∈ TxBn ∼= Rn,

α0(x, y) = |y|, y ∈ TxRn ∼= Rn,

α+1(x, y) =

√|y|2 + (|x|2|y|2− < x, y >2)
1 + |x|2 , y ∈ TxRn ∼= Rn.

Theorem 6.6.([CMS][ChSh3])) Let F = α +β be a locally projectively flat
Randers metric on an n-dimensional manifold M and µ denote the constant
sectional curvature of α. Suppose that the S-curvature is isotropic, S = (n +
1)c(x)F . Then F can be classified as follows.

(A) If µ+4c(x)2 ≡ 0, then c(x) = constant and the flag curvature K = −c2 ≤
0.

(A1) If c = 0, then F is locally Minkowskian with K = 0;
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(A2) if c �= 0, then after a scaling, F is locally isometric to the following Randers
metric on the unit ball Bn ⊂ Rn,

F (x, y) = Θ ± < a, y >

1+ < a, x >
, (6.13)

where a ∈ Rn with |a| < 1, and F has negative constant flag curvature
K = − 1

4 .

(B) If µ + 4c(x)2 �= 0, then F is given by

F (x, y) = α(x, y) − 2cxk(x)yk

µ + 4c(x)2
(6.14)

and the flag curvature of F is given by

K = 3
{

cxk(x)yk

F (x, y)
+ c(x)2

}
+ µ

=
3
4

{
µ + 4c(x)2

} F (x,−y)
F (x, y)

+
µ

4
.

(B1) when µ = −1, we can express α = α−1. In this case,

c(x) =
λ+ < a, x >

2
√

(λ+ < a, x >)2 ± (1 − |x|2) ,

where λ ∈ R and a ∈ Rn with |a|2 < λ2 ± 1.

(B2) when µ = 0, we can express α = α0. In this case,

c(x) =
±1

2
√

κ + 2 < a, x > +|x|2 ,

where κ > 0 and a ∈ Rn with |a|2 < κ.

(B3) when µ = 1, we can express α = α+1. In this case,

c(x) =
ε+ < a, x >

2
√

1 + |x|2 − (ε+ < a, x >)2
,

where ε ∈ R and a ∈ Rn with |ε|2 + |a|2 < 1.
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Proof. Assume that α is of constant sectional curvature and β is closed
(hence sij = 0 and si = 0). Let

Φ := bi;jy
iyj , Ψ := bi;j;kyiyjyk.

By (8.56) in [Sh3], we have

KF 2 = µα2 + 3
[ Φ
2F

]2

− Ψ
2F

. (6.15)

Further we assume that S = (n + 1)c(x)F , which is equivalent to

eij = 2c(aij − bibj)

by Lemma 6.1. Since sij = 0, eij = rij = bi;j and the above equation simplifies
to

bi;j = 2c(aij − bibj).

We obtain

Φ = 2c(α2 − β2)
Ψ = 2cxkyk(α2 − β2) − 8c2(α2 − β2)β.

By Theorem 4.1, we know that the flag curvature is in the following form

K =
3cxk(x)yk

F (x, y)
+ σ(x), (6.16)

where σ(x) is a scalar function on M . It follows from (6.16) and (6.15) that

3cxkykF + σF 2 = KF 2 = µα2 + 3
[ Φ
2F

]2

− Ψ
2F

. (6.17)

Using the above formulas for Φ and Ψ, we obtain

2
{

2cxkyk + (σ + c2)β
}

α +
{

2cxkyk + (σ + c2)β
}

β +
{

σ − 3c2 − µ
}

α2 = 0.

This gives

2cxkyk + (σ + c2)β = 0, (6.18)
σ − 3c2 − µ = 0. (6.19)



49

Plugging (6.19) into (6.16) and (6.18) yields

K = 3
{cxk(x)yk

F (x, y)
+ c(x)2

}
+ µ. (6.20)

2cxkyk + (µ + 4c2)β = 0. (6.21)

Now we are ready to determine β and c.

Case 1: Suppose that µ + 4c(x)2 ≡ 0. Then c(x) = constant. It follows from
(6.20) that

K = 3c2 + µ = −c2.

Then Theorem 6.6(A) follows from the classification theorem for projectively
flat Randers of constant curvature [Sh7].

Case 2: Suppose that µ + 4c(x)2 �= 0 on an open subset U ⊂ M . It follows
from (6.21) that

β = − 2cxk(x)yk

µ + 4c(x)2
. (6.22)

Note that β is exact. Let cidxi := dc and ci;jdxj := dci − ckΓ̄k
ijdxj denote

the covariant derivative of dc with respect to α, were Γ̄k
ij denote the Christoffel

symbols of α. We have

ci = cxi(x), ci;j = cxixj (x) − cxk(x)Γ̄k
ij(x).

Similarly, we can define bi;j and bi;j;k. Since β is closed, bi;j = bj;i. In this case,
S = (n + 1)c(x)F is equivalent to

bi;j = 2c(aij − bibj). (6.23)

From (6.22), we have

bi = − 2ci

µ + 4c2
. (6.24)

Plugging (6.24) into (6.23) yields

ci;j = −c(µ + 4c2)aij +
12ccicj

µ + 4c2
. (6.25)
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Next we are going solve (6.25) for c(x) in three cases when µ = −1, 0, 1.

(B1): µ = −1. We can express that α = α−1. We have

aij =
δij

1 − |x|2 +
xixj

(1 − |x|2)2 .

The Christoffel symbols of α are given by

Γ̄k
ij =

xiδk
j + xjδk

i

1 − |x|2 .

Equation (6.25) becomes

cxixj − xicxj + xjcxi

1 − |x|2 = −c(−1 + 4c2)
{ δij

1 − |x|2 +
xixj

(1 − |x|2)2
}

+
12ccxicxj

−1 + 4c2
.

(6.26)
Let

f :=
2c

√
1 − |x|2√±(−1 + 4c2)

,

where the sign depends on the value of c such that ±(−1 + 4c2) > 0. Equation
(6.26) simplifies to

fxixj = 0.

We obtain that f = 〈a, x〉 + λ, where λ ∈ R and a ∈ Rn. Then we obtain

c =
λ + 〈a, x〉

2
√

(λ + 〈a, x〉)2 ± (1 − |x|2) . (6.27)

Plugging (6.27) into (6.22) yields

β =
(λ + 〈a, x〉)〈x, y〉 + (1 − |x|2)〈a, y〉

(1 − |x|2)√(λ + 〈a, x〉)2 ± (1 − |x|2)
and

F =

√|y|2 − (|x|2|y|2 − 〈x, y〉2)
1 − |x|2 +

(λ + 〈a, x〉)〈x, y〉 + (1 − |x|2)〈a, y〉
(1 − |x|2)√(λ + 〈a, x〉)2 ± (1 − |x|2) .

(6.28)
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By a direct computation,

1 − ‖β‖2
α =

(1 − |x|2)
{
± 1 − (|a|2 − λ2)

}
(λ + 〈a, x〉)2 ± (1 − |x|2) .

Clearly, F = α + β is a Randers metric on an open subset of Bn if and only if
|a|2 −λ2 < ±1. In this case, (λ + 〈a, x〉)2 ± (1− |x|2) > 0 for any x ∈ Bn. Thus
F can be extended to the whole Bn. By (6.20), (6.27) and (6.28), we obtain

K = −3
4

±(1 − |x|2)
(λ + 〈a, x〉)2 ± (1 − |x|2) · F (x,−y)

F (x, y)
− 1

4
.

(B2): µ = 0. We can express that α = α0. Equation (6.25) becomes

cxixj = −4c3δij +
3cxicxj

c
. (6.29)

Let U := {x ∈ Rn | c(x) �= 0} and let

f =
1
c2

.

Equation (6.29) simplifies to
fxixj = 8δij . (6.30)

We obtain
f = 4(κ + 2〈a, x〉 + |x|2),

where κ ∈ R and a ∈ Rn such that f(x) > 0 for x ∈ U . Then c = ±1/
√

f is
given by

c =
±1

2
√

κ + 2〈a, x〉 + |x|2 . (6.31)

Plugging (6.31) into (6.22) yields

β = ± 〈a, y〉 + 〈x, y〉√
κ + 2〈a, x〉 + |x|2 ,

and

F = |y| ± 〈a, y〉 + 〈x, y〉√
κ + 2〈a, x〉 + |x|2 . (6.32)
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Note that

1 − ‖β‖2
α =

κ − |a|2
κ + 2〈a, x〉 + |x|2 .

Clearly, F = α + β is a Randers metric on an open subset of Rn if and only if
|a|2 < κ. In this case,

κ + 2〈a, x〉 + |x|2 ≥ κ − |a|2 + (|a| − |x|)2 > 0, ∀x ∈ Rn.

Thus F can be extended to the whole Rn. By (6.20), (6.31) and (6.32), we
obtain

K =
3

4(κ + 2〈a, x〉 + |x|2) · F (x,−y)
F (x, y)

> 0.

(B3): µ = +1. We can express that α = α+1. We have

aij =
δij

1 + |x|2 − xixj

(1 + |x|2)2 .

The Christoffel symbols of α are given by

Γ̄k
ij = −xiδk

j + xjδk
i

1 + |x|2 .

Equation (6.25) becomes

cxixj +
xicxj + xjcxi

1 + |x|2 = −c(1+4c2)
{ δij

1 + |x|2 −
xixj

(1 + |x|2)2
}

+
12ccxicxj

1 + 4c2
. (6.33)

Let

f :=
2c

√
1 + |x|2√

1 + 4c2
.

Equation (6.33) simplifies to fxixj = 0. We obtain that f = ε+ 〈a, x〉. Then we
obtain

c =
ε + 〈a, x〉

2
√

1 + |x|2 − (ε + 〈a, x〉)2 . (6.34)

Thus

β =
(ε + 〈a, x〉)〈x, y〉 − (1 + |x|2)〈a, y〉
(1 + |x|2)√1 + |x|2 − (ε + 〈a, x〉)2 .
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and

F =

√|y|2 + (|x|2|y|2 − 〈x, y〉2)
1 + |x|2 +

(ε + 〈a, x〉)〈x, y〉 − (1 + |x|2)〈a, y〉
(1 + |x|2)√(1 + |x|2) − (ε + 〈a, x〉)2 .

By a direct computation,

1 − ‖β‖2
α =

(1 + |x|2)
{

1 − ε2 − |a|2
}

1 + |x|2 − (ε + 〈a, x〉)2 .

Thus F = α + β is a Randers metric on some open subset of Rn if and only if
ε2 + |a|2 < 1. In this case, 1 + |x|2 − (ε + 〈a, x〉)2 > 0 for all x ∈ Rn. Thus F
can extended to the whole Rn. By (6.20), we obtain

K =
3(1 + |x|2)

4{1 + |x|2 − (ε + 〈a, x〉)2} · F (x,−y)
F (x, y)

+
1
4

>
1
4
.

Q.E.D.
From Theorem 6.6, we obtain some imteresting projectively flat Randers

metrics with isotropic S-curvature.
Example 6.7. Let

F−(x, y) :=

√
(1 − |x|2)|y|2+ < x, y >2

√
(1 − |x|2) + λ2 + λ < x, y >

(1 − |x|2)√(1 − |x|2) + λ2
,

y ∈ TxBn,

where λ ∈ R is an arbitrary constant. The geodesic of F− are straight lines in
Bn. Thus F− is of scalar curvature. One can easily verify that F− is complete in
the sense that every unit speed geodesic of F− is defined on (−∞,∞). Moreover,
F− has strictly negative flag curvature K ≤ −1

4 .
Example 6.8. Let

F0(x, y) :=
|y|√1 + |x|2+ < x, y >√

1 + |x|2 , y ∈ TxRn.

The geodesics of F0 are straight lines in Rn. Thus F0 is of scalar curvature.
One can easily vertify that F0 is positively complete in the sense that every unit
speed geodesic of F0 is defined on (a,∞) for some a ∈ R. Moreover, F0 has
positive flag curvature K > 0.
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Theorem 6.6 is a local classification theorem. If we assume that the manifold
is closed (compact without boundary), the the scalar function c(x) takes much
more special values.

Theorem 6.9.([CMS][ChSh3])) Let F = α + β be a locally projectively
flat Randers metric on an n-dimensional closed manifold M . Let µ denote the
constant sectional curvature of α. Suppose that S = (n + 1)c(x)F .

(a) If µ = −1, then F = α is Riemannian.

(b) If µ = 0, then F is locally Minkowskian.

(c) If µ = 1, then c(x) = f(x)/2
√

1 − f(x)2 so that

F (x, y) = α(x, y) − fxk(x)yk√
1 − f(x)2

,

where f(x) is an eigenfunction of the standard Laplacian of (M,α) correspond-
ing to the eigenvalue λ = n with maxx∈M |f |(x) < 1. Moreover, the flag curva-
ture and the S-curvature of F are given by

K(x, y) =
3

4(1 − f(x)2)
F (x,−y)
F (x, y)

+
1
4
,

S(x, y) =
(n + 1)f(x)
2
√

1 − f(x)2
F (x, y).

Proof. By assumption, the manifold M is closed. Assume that µ+4c2(x) �=
0 on some open subset of M .

When µ �= 0, let

f(x) :=
2c(x)√±(µ + 4c(x)2)

,

where the sign is chosen so that ±(µ + 4c2) > 0. By (6.25), we have

f;i;j = −µfaij .

This gives
∆f = −nµ f. (6.35)

When µ = 0, we take

f(x) :=
1

c(x)2
.
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We have
f;i;j = 8aij .

This gives
∆f = 8n. (6.36)

Case 1: µ = −1. Suppose that 1 − 4c(x)2 �= 0 on M . Integrating (6.35) yields∫
M

|∇f |2dVα = −
∫

M

f∆fdVα = −n

∫
M

f2 dVα

Thus f = 0. This implies that c = 0 and F = α is Riemannian.
Suppose that 1 − 4c(xo)2 �= 0 at some point xo ∈ M . Let (M̃, x̃o) be the

universal cover of (M,xo). We may assume that M̃ is isometric to (Bn, α−1)
with x̃o corresponding to the origin. The Randers metric F is lifted to a complete
Randers metric F̃ on M̃ = Bn. F̃ is given by (6.28). Let c̃(x̃) be the lift of c(x),
which is given by (6.27). Thus 1− 4c̃(x̃)2 �= 0 for all x̃ ∈ Bn. This implies that
1− 4c(x)2 �= 0 for all x ∈ M . By the above argument, we see that c = 0. Hence
F = α is Riemannian by (6.14).

Suppose that 1 − 4c(x)2 ≡ 0. Then the lift F̃ of F to the universal cover
M̃ = Bn is given by (6.13), hence it is incomplete. This is impossible because of
the compactness of M . We also see that F has negative constant flag curvature
and bounded Cartan torsion, hence it is Riemannian according to Akbar-Zadeh’s
theorem [Sh4][ShSh5]. Then c(x) = 0. This is a contradiction again.

Case 2: µ = 0. Suppose that c(xo) �= 0. Let M̃ denote the universal cover of
M . We may assume that M̃ = Rn with the origin corresponding to xo. The
Randers metric F lifted to M̃ = Rn is given by (6.32). Thus c(x) �= 0 for all
x ∈ M . Integrating (6.36) over M yields

0 =
∫

M

∆fdVα = 8nVol(M,α).

This is impossible. Therefore c(x) ≡ 0. In this case, F is a locally projectively
flat Randers metric with flag curvature K = 0, hence it is locally Minkowskian
by [Sh2].
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Case 3: µ = 1. Note that 1 + 4c(x)2 �= 0 on M . Let

f(x) :=
2c(x)√

1 + 4c(x)2
. (6.37)

It follows from (6.35) that
f;i;j = −faij . (6.38)

This gives
∆f = −nf.

Thus f is an eigenfunction of (M,α) with maxx∈M |f |(x) < 1. We can express

F (x, y) = α(x, y) − 2cxk(x)yk

1 + 4c(x)2
= α(x, y) − fxk(x)yk√

1 − f(x)2
. (6.39)

K(x, y) = 3
{cxk(x)yk

F (x, y)
+ c(x)2

}
+ 1 =

3
4(1 − f(x)2)

F (x,−y)
F (x, y)

+
1
4
. (6.40)

Q.E.D.
Assume that (M,α) = Sn is the standard unit sphere. Let F = α + β be a

Randers metric. From Theorem 6.9, we obtain
Theorem 6.10.([CMS][ChSh3])) Let Sn = (M,α) is the standard unit

sphere and F = α + β be a locally projectively flat Randers metric on Sn.
Suppose that S = (n + 1)c(x)F . Then

F (x, y) = α(x, y) − fxk(x)yk√
1 − f(x)2

,

where f(x) is an eigenfunction of Sn corresponding to the first eigenvalue. More-
over,

(a)
2 − δ

2(1 + δ)
≤ K ≤ 2 + δ

2(1 − δ)
,

where δ :=
√|∇f |2α(x) + f(x)2 < 1 is a constant.

(b) The geodesics of F are the great circles on Sn with F -length 2π.
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Proof. Using (6.38), one can verify that

δ :=
√
|∇f |2α(x) + f(x)2

is a constant. Since F is positive definite, δ < 1.
Let

λ(x) := sup
y∈TxM

F (x,−y)
F (x, y)

.

Using |∇f |2α(x) = δ2 − f(x)2, we obtain

λ(x) =

√
1 − f(x)2 +

√
δ2 − f(x)2√

1 − f(x)2 − √
δ2 − f(x)2

.

Let λ := maxx∈M λ(x). We have

1 ≤ λ(x) ≤ λ =
1 + δ

1 − δ

and

1 − f(x)2 =
(1 − δ2)(λ(x) + 1)2

4λ(x)
.

Note that λ(x) = λ if and only if f(x) = 0. It follows from (6.40) that

2 − δ

2(1 + δ)
=

3 + λ

4λ
≤ K ≤ 3λ + 1

4
=

2 + δ

2(1 − δ)
. (6.41)

Let
h(x) := arctan

(
2c(x)

)
.

The Randers metric F (x, y) in (6.39) can be expressed by

F (x, y) = α(x, y) − hxk(x)yk.

Clearly F is pointwise projectively equivalent to α, namely the geodesics of F
are geodesics of α as point sets. Let σ(t) be a closed geodesic of α. Observe
that

F
(
σ(t), σ̇(t)

)
= α

(
σ(t), σ̇(t)

)
− d

dt

[
h(σ(t))

]
.

By the above equation we obtain

LengthF (σ) =
∫

F
(
σ(t), σ̇(t)

)
dt =

∫
α
(
σ(t), σ̇(t)

)
dt = Lengthα(σ). (6.42)
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Assume that M is simply connected. Then (M,α) = Sn. Let σ be an arbitrary
great circle on Sn. By (6.42),

LengthF (σ) = 2π.

Q.E.D.



Chapter 7

Projectively Flat Finsler
Metrics with Isotropic
S-Curvature

As we stated in section 6, we have classified locally projectively flat Randers
metrics with isotropic S-curvature. It is a natural problem to study and char-
acterize locally projectively flat Finsler with isotropic S-curvature.

Theorem 7.1.([ChSh4]) Let F = F (x, y) be a locally projectively flat
Finsler metric on an open subset Ω ⊂ Rn. Suppose that F has almost isotropic
S-curvature satisfying

S = (n + 1){c(x)F + η}, (7.1)

where c = c(x) is a scalar function and η = η(x, y) is a closed 1-form on M .
Then the flag curvature is in the form

K = 3
cxmym

F
+ σ, (7.2)

where σ = σ(x) is a scalar function on Ω.

(a) If K �= −c2 + cxm ym

F on Ω, then F = α + β is a projectively flat Randers
metric with isotropic S-curvature S = (n + 1)cF ;

(b) If K ≡ −c2 + cxm ym

F on Ω, then c = constant and F is either locally

59
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Minkowskian (c = 0) or, up to a scaling, locally isometric to the metric

Θa := Θ(x, y) +
< a, y >

1+, a, x >
(c =

1
2
)

or its reverse

Θ̄a := Θ(x,−y) − < a, y >

1+ < a, x >
(c = −1

2
),

where a ∈ Rn is a constant vector and Θ(x, y) is Funk metric on Ω.

Proof. By assumption, S is in the form (7.1). Since every closed 1-form on
an connected open subset in Rn is exact, we may assume that

S = (n + 1)
{

cF + dh
}

,

where h = h(x) is a scalar function on Ω.
On the other hand, F is projectively flat, hence the spray coefficients are in

the form Gi = Pyi, where

P =
Fxkyk

2F
. (7.3)

By (3.7), one obtains

S = (n + 1)P − ym ∂(lnσF )
∂xm

.

Thus
P = cF + dϕ, (7.4)

where ϕ = ln[σF (x)]
1

n+1 + h(x). It follows from (7.3) and (7.4) that

Fxiyi = 2FP = 2F
{

cF + ϕxiyi
}

(7.5)

Plugging (7.4) into (2.13) and using (7.5), one obtains

K =

{
cF + ϕxiyi

}2

−
{

cxiyiF + cFxiyi + ϕxixj yiyj
}

F 2

=
−c2F 2 − cxmymF + [ϕxiϕxj − ϕxixj ]yiyj

F 2
. (7.6)
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Comparing (7.6) with (7.2) yields

[σ + c2]F 2 + 4cxmymF + [ϕxixj − ϕxiϕxj ]yiyj = 0. (7.7)

Assume that K �= −c2 + cxm ym

F . By (7.2), this is equivalent to the following
inequality:

σ + c2 +
2cxmym

F
�= 0. (7.8)

We claim that σ + c2 �= 0 on Ω. If this is not true at some point xo ∈ Ω, i.e.,
σ(xo) + c(xo)2 = 0. By (7.8), dcxo

�= 0. From (7.7), one obtains

F =
[ϕxi(xo)ϕxj (xo) − ϕxixj (xo)]yiyj

4cxm(xo)ym
.

Namely, F is a so-called Kropina metric which is not a regular Finsler metric
under our consideration. Therefore the above claim holds on Ω. Now, one can
solve the quadratic equation (7.7) for F ,

F =

√
[σ + c2][ϕxiϕxj − ϕxixj ]yiyj + 4[cxmym]2 − 2cxmym

σ + c2
.

That is, F = α + β is a Randers metric. We have classified projectively flat
Randers metrics with almost isotropic S-curvature (cf. Theorem 6.6).

We now assume that K ≡ −c2 + cxm ym

F . It follows from (7.2) that

σ + c2 +
2cxmym

F
≡ 0.

This implies that c = constant, hence σ = −c2 is a constant too. In this case,
the flag curvature is given by K = −c2. The equation (7.7) is reduced to

ϕxixj − ϕxiϕxj = 0.

It is easy to solve this equation,

ϕ = − ln
(
1 + 〈a, x〉

)
+ C,

where a ∈ Rn is a constant vector and C is a constant.
When c = 0, K = −c2 = 0. It follows from (7.4) that the projective factor

P = dϕ is a 1-form, hence the spray coefficients Gi = Pyi are quadratic in
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y ∈ TxΩ. By definition, F is a Berwald metric. It is known that every Berwald
metric with vanishing flag curvature is locally Minkowskian.

When c �= 0, we may assume that c = ± 1
2 after a suitable scaling. Let

Ψ := P + cF.

Since F is projectively flat and P is the projective factor, by (7.3) and

Fxk = Fxmykym, (7.9)

one obtains
Fxk = PykF + PFyk . (7.10)

It follows from (2.13) that

Pxk − PPyk = − 1
3F

(ΞF )yk .

In particular, if K = λ is a constant,

Pxk − PPyk = −λFFyk . (7.11)

The above identities can be found in [Ber][Sh8]. By (7.10) and (7.11), one can
easily verify that

Ψxi = ΨΨyi .

Let

Θ :=
{

Ψ(x, y) if c = 1
2− Ψ(x,−y) if c = − 1

2

.

Then Θ = Θ(x, y) satisfies Θxk = ΘΘyk . Thus by definition it is a Funk metric.
By (7.4), Ψ = 2cF + dϕ. Thus

F =
1
2c

{
Ψ(x, y) − dϕx

}
.

When c = 1
2 , Ψ(x, y) = Θ(x, y). Thus

F = Θ(x, y) +
〈a, y〉

1 + 〈a, x〉 =: Θa(x, y).

When c < 0, Ψ(x, y) = −Θ(x,−y). Thus

F = Θ(x,−y) − 〈a, y〉
1 + 〈a, x〉 =: Θ̄a(x, y),
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where Θ̄a(x, y) := Θa(x,−y). Q.E.D.
In Theorem 7.1(a), the local structure of F has been completely determined

in Theorem 6.6. Namely, if a Randers metric F = α + β is locally projectively
flat with (7.1), then α is locally isometric to the standard projectively metric

αµ :=

√
(1 + µ|x|2)|y|2 − µ < x, y >2

1 + µ|x|2 , y ∈ TxBn(r) ∼= Rn,

the scalar function σ = σ(x) in (7.2) is given by σ = µ + 3c2 and β satisfies
2cxkyk +(µ+4c2)β = 0. Suppose that dc = 0 at a point x ∈ Ω, then at the point
x, either β = 0 or µ + 4c2 = 0. In the later case, K = µ + 3c2 = −c2 + cxm ym

F .
This contradicts the assumption (a). We may assume that dc �= 0 on Ω. Then
µ + 4c2 �= 0 and β is given by

β = − 2cxkyk

µ + 4c2
.

In this case, we can completely determine the scalar function c = c(x) as follows.

c =

⎧⎨⎩
(λ+〈a,x〉)

2

√
µ

±(1+µ|x|2)−(λ+〈a,x〉)2 if µ �= 0
±1

2
√

κ+2〈a,x〉+|x|2 if µ = 0.

where a ∈ Rn is a constant vector and κ ∈ R is a constant number. See
Theorem 6.6 or [CMS] for more details.
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Chapter 8

Douglas Metrics with
Special Non-Riemannian
Curvature Properties

In [ChSh2], we prove that a Randers metric F = α + β of Douglas type has
isotropic mean Berwald curvature if and only if it has relatively isotropic Lands-
berg curvature (Corollary 6.5). In this section, we will generalize this result.

We say that F has isotropic Berwald curvature [ChSh5] if

B i
j kl = c

{
Fjkδi

l + Fjlδ
i
k + Fklδ

i
j + Fjkly

i
}

, (8.1)

where Fij := Fyiyj , Fijk := Fyiyjyk and c = c(x) is a scalar function on M .
Since hij = FFyiyj and hi

j := gikhjk = δi
j −F−2gjsy

syi, (8.1) can expressed
as

B i
j kl = cF−1

{
hjkhi

l + hjlh
i
k + hklh

i
j + 2Cjkly

i
}

. (8.2)

It is easy to vertify the following
Lemma 8.1.([ChSh5]) F has isotropic Berwald curvature if and only if

B i
j kl =

c

F

{
hjkδi

l + hjlδ
i
k + hklδ

i
j

}
+

c

F 3

{
2F 2Cjkl − (hjkglm + hjlgkm + hklgjm)ym

}
yi. (8.3)

From the definition, we obtain
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Lemma 8.2.([ChSh5]) If F has isotropic Berwald curvature with scalar
function c = c(x), then F is a Douglas metric and satisfies

Eij =
n + 1

2
cFij , Lijk + cFCijk = 0. (8.4)

Proof. Assume that (8.2) holds. Then

Ejk =
1
2
B m

j km =
1
2
(n + 1)cF−1hjk =

1
2
(n + 1)cFyjyk .

Note that

Cijk =
1
2
gij·k = {FikFj + FjkFi + FijFk + FFijk}/2.

From (8.1), we get

Ljkl = −1
2
yiB

i
j kl = − c

2
{FjkFl + FjlFk + FklFj + FjklF}F

= −cFCjkl.

Finally, plugging cFjk = 2
n+1Ejk into (8.1), one obtains

B i
j kl =

2
n + 1

{
Ejkδi

l + Ejlδ
i
k + Eklδ

i
j +

∂Ejk

∂yl
yi

}
. (8.5)

By (2.8), it means that D = 0. Q.E.D.
Furthermore, we have the following
Lemma 8.3.([ChSh5]) For a Douglas metric F , if

Eij =
n + 1

2
cF−1hij ,

then F has isotropic Berwald curvature with scalar c = c(x).
Proof. F is Douglas metric if and only if (8.5) holds. Plugging Ejk =

1
2 (n + 1)cFyjyk into (8.5), one obtains (8.1). Q.E.D.

By Lemma 8.2 and Lemma 8.3, we obtain the following theorem.
Theorem 8.4.([ChSh5]) F has isotropic Berwald curvature with scalar func-

tion c(x) if and only if F is a Douglas metric satisfying

E =
n + 1

2
cF−1h.
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Further, from Theorem 8.4 and Lemma 8.2, we obtain the following interesting
corollary.

Corollary 8.5.([ChSh5]) Let F be a Douglas metric on an n-dimensional
manifold M . If E = n+1

2 cF−1h, then L + cFC = 0.
On the other hand, we have the following
Lemma 8.6.([BaMa2][Sh3]) For a Douglas metric F , the following are equiv-

alent,

(a) L = 0;

(b) B = 0;

(c) E = 0.

In particular, when F is a Randers metric of Douglas type, the Corollary 6.5
and Theorem 8.4 say the following are equivalent,

(i) L + c(x)FC = 0;

(ii) B i
j kl = c(x)

{
Fjkδi

l + Fjlδ
i
k + Fklδ

i
j + Fjkly

i
}

;

(iii) E = n+1
2 c(x)F−1h.

From Corollary 8.5 and the results as above, we have the following natual
question: for a general Douglas metric F , is L + cFC = 0 equivalent to
E = n+1

2 cF−1h? We will discuss this question in the following. As a basis,
we first give the following important Bianchi identity:

∂Ljkl

∂ym
− ∂Ljkm

∂yl
=

1
2
gilB

i
m kj −

1
2
gimB i

l kj . (8.6)

See (10.12) in [Sh3] for a proof.
Lemma 8.7.([ChSh5]) Let (M,F ) be a non-Riemannian Douglas manifold

of dimension n ≥ 3. Suppose that F has relatively isotropic Landsberg curva-
ture, L + cFC = 0, then E = n+1

2 c(x)F−1h, where c = c(x) is a scalar function
on M .

Proof By assumption, (8.5) holds and

Ljkl = −cFCjkl. (8.7)

Contracting B i
j kl with hm

i := δm
i − F−2gisy

sym and using (8.7) and

Lijk = Cijk|mym = −1
2
ymgmlB

l
ijk (8.8)



68 CHAPTER 8. DOUGLAS METRICS

(see section 6.2 in [Sh3]), one obtains

hm
i B i

j kl = B m
j kl + 2F−2Ljkly

m = B m
j kl − 2cF−1Cjkly

m. (8.9)

Contracting (8.5) with hm
i and using (8.9), one obtains

B m
j kl =

2
n + 1

{
Ejkhm

l + Ejlh
m
k + Eklh

m
j

}
+ 2cF−1Cjkly

m. (8.10)

Plugging (8.7) and (8.10) into (8.6), one obtains

Ekmhjl + Ejmhkl − Eklhjm − Ejlhkm = 0. (8.11)

Contracting (8.11) with gjm yields

Ekl =
1
2
(n + 1)λF−1hkl, (8.12)

where
λ :=

2
n2 − 1

FgjmEjm.

Next we are going to show that λ = λ(x, y) is independent of y ∈ TxM at
any point x ∈ M . Plugging (8.12) into (8.5) and (8.10) respectively, one obtains

B i
j kl =

λ

F

{
hjkδi

l + hjlδ
i
k + hklδ

i
j

}
+

[
λF−1hjk

]
yl

yi

=
λ

F

{
hjkhi

l + hjlh
i
k + hklh

i
j

}
+ 2cF−1Cjkly

i.

Comparing the above two identities yields

λylhjk = 2(c − λ)Cjkl. (8.13)

Contracting (8.13) with gjk yields

λyl =
2

n − 1
(c − λ)Il. (8.14)

Plugging (8.14) into (8.13), one obtains

(c − λ)
{

(n − 1)Cjkl − Ilhjk

}
= 0. (8.15)

Contracting the above identity with gjl yields

(n − 2)(c − λ)Ik = 0.
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Since n ≥ 3, the above equation becomes

(c − λ)Ik = 0.

Then it follows from (8.14) that λyk = 0.
Thus λ = λ(x) is independent of y ∈ TxM .
Now it follows from (8.13) that

(c − λ)Cjkl = 0.

At any point x ∈ M where Fx = F |TxM is not Euclidean, Cjkl(x, y) �= 0 for
some y ∈ TxM \ {0}. Then λ(x) = c(x). By (8.12), This completes the proof.

Q.E.D.
Combining Corollary 8.5 with Lemma 8.7, we have the following theorem.
Theorem 8.8.([ChSh5]) Let (M,F ) be a non-Riemannian Douglas manifold

of dimension n ≥ 3. Then the following are equivalent,

(a) F has relatively isotropic Landsberg curvature, L + cFC = 0;

(b) F has isotropic mean Berwald curvature, E = n+1
2 cF−1h,

where c = c(x) is a scalar function on M .

Furthermore, by Theorem 8.4 and Theorem 8.8, we obtain the following
Theorem 8.9.[ChSh5]) Let F be a non-Riemannian Finsler metric on a

manifold of dimension n ≥ 3. The following are equivalent.

(a) F is of isotropic Berwald curvature;

(b) F is a Douglas metric with isotropic mean Berwald curvature;

(c) F is a Douglas metric with relatively isotropic Landsberg curvature.

From Theorem 8.9 and Theorem 8.4, one gets the following
Corollary 8.10. For a non-Riemannian Douglas metric F on a manifold of

dimension n ≥ 3. The following are equivalent.

(i) L + c(x)FC = 0;

(ii) B i
j kl = c(x)

{
Fjkδi

l + Fjlδ
i
k + Fklδ

i
j + Fjkly

i
}

;

(iii) E = n+1
2 c(x)F−1h.

Here c = c(x) is a scalar function on M .
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It is clear that Corollary 8.10 is the generalization of Corollary 6.5 and It
generalizes Bácsó and Matsumoto’s result (cf. Lemma 8.6) which says that, for
a Douglas metric F , L = 0 if and only if B = 0 ([BaMa2]).
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Chapter 9

Summary

There are several important geometric quantities in Finsler geometry. The flag
curvature K is an analogue of the sectional curvature in Riemannian geometry.
The Ricci curvature Ric is another kind of Riemannian geometric quantity. Be-
sides, we have some so-called non-Riemannian geometric quantities. The Cartan
torsion C is a primary quantity. There is another quantity which is determined
by the Busemann-Hausdorff volume form, that is the so-called distortion τ . The
vertical differential of τ on each tangent space gives rise to the mean Cartan
torsion I := τykdxk. C, τ and I are the basic geometric quantities which charac-
terize the Riemannian metrics among Finslers metrics. Differentiating C along
geodesics gives rise to the Landsberg curvature L. The horizontal derivative of
τ along geodesics is the so-called S-curvature S := τ|kyk. The horizontal deriv-
ative of I along geodesics is called the mean Landsberg curvature J := I|kyk.
From the geodesic coefficients Gi(x, y), we can define the Berwald curvature B
and the mean Berwald curvature E which are defined by

B i
j kl :=

∂3Gi

∂yj∂yk∂yl
, Eij :=

1
2
B m

m ij .

Furthermore, we can define the Douglas curvature D by B and E. Obviously,
τ , I, S , J, C, L and B, E, D all vanish for Riemannian metrics. The Riemann
curvature measures the shape of the space while the non-Riemannian quanti-
ties describe the change of the “color” on the space. It is found that the flag
curvature is closely related to these non-Riemannian quantities.

Finsler projective geometry is an important part of Finsler geometry and
the Ricci curvature plays an important role in the Finsler projective geometry.
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Z. Shen proved that for two pointwise projectively related Einstein metrics g
and g̃ on an n-dimension compact manifold M , their Einstein constants have
the same sign. In addition, if their Einstein constants are negative and equal,
then g = g̃. In section 3, we continue to study pointwise projectively related
Finsler metrics and give a comparison theorem on the Ricci curvatures.

Theorem 3.2.([ChSh1]) Let (M, g) be a complete Finsler manifold and
g̃ another Finsler metric on M , which is pointwise projectively related to g.
Suppose that

R̃ic ≤ Ric.

Then the projective equivalence is trivial. Further, g̃ is horizontally parallel
with respect to g, ∇g̃ = 0 and the Riemann curvatures are equal, R̃ = R.

Furthermore, we obtain an additional conclusion to Theorem 3.2 for projec-
tively related Finsler metrics with the same S-curvatures.

Theorem 3.6.([ChSh1]) Let (M, g) be a complete Finsler manifold and
g̃ another Finsler metric on M , which is pointwise projectively related to g.
Suppose that both g and g̃ satisfy

R̃ic ≤ Ric, S̃ = S.

Then the projective equivalence between g and g̃ is trivial. Further, g̃ is hori-
zontally parallel with respect to g, the Riemann curvatures are equal, R̃ = R,
and dVg̃ is proportional to dVg.

If we modify the inequality in Theorem 3.2 into equality, we obtain the
following theorem.

Theorem 3.9.([Ch1]) Let F be a Finsler metric on a manifold M and F̃
a another Finsler metric on M which is pointwise projectively related to F .
Suppose that both F and F̃ satisfy

R̃ic = Ric.

Then F is complete if and only if F̃ is complete. In this case, along any geodesic
c(t) of F or F̃ ,

F (ċ(t))
F̃ (ċ(t))

= constant.

Besides, we study pointwise projectively related Riemannian metrics. We
also discuss the projectively flat Finsler metrics with some special curvature
properties in sections 6 and 7. One of the important problems in Finsler geom-
etry is to study and characterize locally projectively flat Finsler metrics.
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Another important problem in Finsler geometry is to study and character-
ize Finsler metrics of scalar curvature. This problem has not been solved yet,
even for Finsler metrics of constant flag curvature. In section 4, we disscuss
the Finsler metrics of scalar curvature and partially determine the flag curva-
ture when F is of isotropic S-curvature or relatively isotropic mean Landsberg
curvature.

Theorem 4.1.([CMS][ChSh3]) Let (M,F ) be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(x, y). Suppose that

S = (n + 1)c(x)F (x, y).

Then there is a scalar function σ(x) on M such that

K = 3
cxmym

F (x, y)
+ σ(x).

In particular, c = constant if and only if K = K(x) is a scalar function on M .
Theorem 4.2.([CMS][ChSh3]) Let (M,F ) be an n-dimensional Finsler man-

ifold of scalar curvature with flag curvature K(x, y). Suppose that

J + c(x)F I = 0.

Then the flag curvature K and the distortion τ satisfy

n + 1
3

Kyk +
(
K + c(x)2 − cxmym

F (x, y)

)
τyk = 0.

(a) If c(x) = constant, then there is a scalar function ρ(x) on M such that

K = −c2 + ρ(x)e−
3τ(x,y)

n+1 , y ∈ TxM \ {0}.

(b) Suppose that F is non-Riemannian on any open subset of M . Then K =
K(x) if and only if K = −c2 is a nonpositive constant. In this case,
ρ(x) = 0.

In fact, all known Randers metrics F = α +β of scalar curvature (in dimen-
sion n > 2) satisfy S = (n+1)c(x)F or J+ c(x)F I = 0, where c(x) is a function
on M . Motivated by such phenomena, in section 5, we study Randers met-
rics satisfying J + c(x)F I = 0 and classify Randers metrics with flag curvature
K = λ(x) and J + c(x)F I = 0.

Theorem 5.3.([ChSh2][ChSh3]) Let F = α + β be a Randers metric on a
manifold M . For a scalar function c = c(x) on M , the following are equivalent
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(a) J + c(x)F I = 0;

(b) e00 = 2c(α2 − β2) and β is closed.

Theorem 5.5.([ChSh2][ChSh3]) Let F = α + β be Randers metric on an
n-dimensional manifold M satisfying

1. K = λ(x) is independent of y ∈ TxM ;

2. J + c(x)F I = 0 for some scalar function c(x) on M .
Then K = constant = −c2 ≤ 0. Further, F is either locally Minkowskian
(K = −c2 = 0) or in the form

F = Θ ± < a, y >

1+ < a, x >

(K = −c2 = −1/4) after a scaling, where Θ denotes the Funk metric on
the unit ball Bn and a ∈ Rn is a constant vector with |a| < 1.

Furthermore, we study Randers metrics with isotropic S-curvature in section
6. We first obtain the following theorems.

Theorem 6.3.([ChSh2]) Let F = α + β be a Randers metric on an n-
dimensional manifold M . For a scalar function c = c(x) on M , the following
are equivalent

(a) S = (n + 1)cF ;

(b) E = (1/2)(n + 1)c(x)F−1h;

(c) e00 = 2c(α2 − β2).

Theorem 6.4.([ChSh2]) Let F = α + β be a Randers metric on an n-
dimensional manifold M . For a scalar function c = c(x) on M , the following
are equivalent,

(a) L + c(x)FC = 0 (or J + cF I = 0);

(b) S = (n + 1)cF and β is closed.

(c) E = (1/2)(n + 1)c(x)F−1h and β is closed.

It is known that every locally projectively flat Finsler metric is of scalar
curvature. Using the obtained formula for the flag curvature in Theorem 4.1,
we classify locally projectively flat Randers metrics with isotropic S-curvature.
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Theorem 6.6.([CMS][ChSh3]) Let F = α + β be a locally projectively flat
Randers metric on an n-dimensional manifold M and µ denote the constant
sectional curvature of α. Suppose that the S-curvature is isotropic, S = (n +
1)c(x)F . Then F can be classified as follows.

(A) If µ + 4c(x)2 ≡ 0, then c(x) = constant and K = −c2 ≤ 0.

(A1) if c = 0, then F is locally Minkowskian with K = 0;

(A2) if c �= 0, then after a scaling, F is locally isometric to the following Randers
metric on the unit ball Bn ⊂ Rn,

F (x, y) = Θ ± < a, y >

1+ < a, x >
,

where a ∈ Rn with |a| < 1, and F has negative constant flag curvature
K = − 1

4 .

(B) If µ + 4c(x)2 �= 0, then F is given by

F (x, y) = α(x, y) − 2cxk(x)yk

µ + 4c(x)2

and the flag curvature of F is given by

K = 3
{

cxk(x)yk

F (x, y)
+ c(x)2

}
+ µ

=
3
4

{
µ + 4c(x)2

} F (x,−y)
F (x, y)

+
µ

4
.

(B1) when µ = −1, we can express α = α−1. In this case,

c(x) =
λ+ < a, x >

2
√

(λ+ < a, x >)2 ± (1 − |x|2) ,

where λ ∈ R and a ∈ Rn with |a|2 < λ2 ± 1.

(B2) when µ = 0, we can express α = α0. In this case,

c(x) =
±1

2
√

κ + 2 < a, x > +|x|2 ,

where κ > 0 and a ∈ Rn with |a|2 < κ.
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(B3) when µ = 1, we can express α = α+1. In this case,

c(x) =
ε+ < a, x >

2
√

1 + |x|2 − (ε+ < a, x >)2
,

where ε ∈ R and a ∈ Rn with |ε|2 + |a|2 < 1.

We also study projectively flat Randers metrics with isotropic S-curvature
in the case when the manifold M is closed. And then, in section 7, we study
and characterize locally projectively flat Finsler with isotropic S-curvature and
obtain the following

Theorem 7.1.([ChSh4]) Let F = F (x, y) be a locally projectively flat
Finsler metric on an open subset Ω ⊂ Rn. Suppose that F has isotropic S-
curvature, S = (n + 1)c(x)F . Then the flag curvature is in the form

K = 3
cxmym

F
+ σ,

where σ = σ(x) is a scalar function on Ω.

(a) If K �= −c2 + cxm ym

F on Ω, then F = α + β is a projectively flat Randers
metric with isotropic S-curvature S = (n + 1)cF ;

(b) If K ≡ −c2 + cxm ym

F on Ω, then c = constant and F is either locally
Minkowskian (c = 0) or, up to a scaling, locally isometric to the metric

Θa := Θ(x, y) +
< a, y >

1+, a, x >
(c =

1
2
)

or its reverse

Θ̄a := Θ(x,−y) − < a, y >

1+ < a, x >
(c = −1

2
),

where a ∈ Rn is a constant vector and Θ(x, y) is Funk metric on Ω.

The Douglas metrics form a rich class of Finsler metrics including locally
projectively flat Finsler metrics. The class of Douglas metrics is also much
larger than that of Berwald metrics. The study on Douglas metrics will enhance
our understanding on the geometric meaning of non-Riemannian quantities.
In section 8, we discuss Douglas metrics with relatively isotropic Landsberg
curvature or isotropic mean Berwald curvature. Then we introduce the Finsler
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metrics of isotropic Berwald curvature. We prove an equivalence among the
above metrics.

Theorem 8.8.([ChSh5]) Let (M,F ) be a non-Riemannian Douglas manifold
of dimension n ≥ 3. Then the following are equivalent,

(a) F has relatively isotropic Landsberg curvature, L + cFC = 0;

(b) F has isotropic mean Berwald curvature, E = n+1
2 cF−1h,

where c = c(x) is a scalar function on M .

Furthermore, we have the following
Theorem 8.9.([ChSh5]) Let F be a non-Riemannian Finsler metric on a

manifold of dimension n ≥ 3. The following are equivalent.

(a) F is of isotropic Berwald curvature;

(b) F is a Douglas metric with isotropic mean Berwald curvature;

(c) F is a Douglas metric with relatively isotropic Landsberg curvature.

Corollary 8.10. For a non-Riemannian Douglas metric F on a manifold of
dimension n ≥ 3. The following are equivalent.

(i) L + c(x)FC = 0;

(ii) Bi
jkl = c(x)

{
Fjkδi

l + Fjlδ
i
k + Fklδ

i
j + Fjkly

i
}

;

(iii) E = n+1
2 c(x)F−1h.

It is clear that Corollary 8.10 generalizes Bácsó and Matsumoto’s result
which says that, for a Douglas metric F , L = 0 if and only if B = 0 ([BaMa2]).
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Chapter 10

Összefoglalás

A Finsler geometriában több igen fontos geometriai objektum található. A
K zászlógörbület a Riemann geometria szekcionális görbületének analógja. A
Ric Ricci görbület egy másik fontos Riemann geometriai objektum. Ezen
ḱıvül több, nem Riemann geometriai objektummal rendelkezünk. A C Car-
tan torzió az elsődleges geometriai objektum. Több objektum származtatható
a Busemann-Hausdorff térfogat formából, mint például a τ torźıtás. A τ ver-
tikális deffierenciálja a tangens téren megadja az I := τykdxk Cartan torziót.
C, τ és az I alapvető geometriai objektumok, amelyek meghatározzák a Rie-
mann metrikákat a Finsler metrikák között. A C geodetikusok mentén vett dif-
ferenciálja meghatározza a L Landsberg görbületet. A τ geodetikusok mentén
vett horizontális deriváltja előálĺıtja az úgynevezett S := τ|kyk S-görbületet.
Az I geodetikusok mentén vett horizontális deriváltját a J := I|kyk Landsberg
görbületnek h́ıvjuk. A Gi(x, y) geodetikus együtthatókból definiálhatjuk a B
Berwald görbületet és az E fő Berwald görbületet, amelyek a következő kép-
letekkel vannak megadva

B i
j kl :=

∂3Gi

∂yj∂yk∂yl
, Eij :=

1
2
B m

m ij .

Továbbá, definiálhatjuk a D Douglas görbületet B-ből és E-ből. Látható, hogy
τ , I, S , J, C, L és B, E, D mind eltűnik Riemann metrikák esetén. A zász-
lógörbület szoros kapcsolatban van a nem Riemann tulajdonságokkal.

A projekt́ıv Finsler geometria nagyon fontos része a Finsler geometriának és
a Ricci görbület egy fontos szerepet játszik a projekt́ıv Finsler geometriában.
Z. Shen bebizonýıtotta, hogy két egymáshoz projekt́ıv vonatkozásban lévő g
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és g̃ Einstein metrika egy n-dimenziós kompakt M sokaságon a következő tu-
lajdonsággal rendelkezik: az Einstein konstansok ugyanazzal az előjellel ren-
delkeznek. Mindazonáltal, ha az Einstein konstansok negat́ıvak és egyenlők,
akkor a g = g̃. A 3-as fejezetben folytatjuk a Finsler terek projekt́ıv vonatko-
zásainak tanulmányozását és megadunk a Ricci görbületekre vonatkozóan egy
összehasonĺıtó tételt.

3.2. Tétel([ChSh1]) Legyen (M, g) egy teljes Finsler sokaság és g̃ egy másik
Finsler metrika M -en, amelyik projekt́ıv vonatkozásban van g-vel. Tegyük fel,
hogy

R̃ic ≤ Ric.

Ekkor a projekt́ıv megfeleltetés triviális. Továbbá, a g̃ horizontálisan párhuza-
mos g-vel (∇g̃ = 0), és a Riemann görbületek egyenlők R̃ = R.

Továbbá, a 3.2 Tételből Finsler metrikák prejekt́ıv vonatkozásaira az S-
görbületek kapcsolatára tudunk rámutatni.

3.6. Tétel([ChSh1]) Legyen (M, g) egy teljes Finsler sokaság és g̃ egy másik
Finsler metrika M -en, amely projekt́ıv vonatkozásban van g-vel. Tegyük fel,
hogy a g és g̃ kieléǵıtik a

R̃ic ≤ Ric, S̃ = S

feltételeket. Ekkor a projekt́ıv vonatkozás g és g̃ között triviális. Továbbá, g̃
horizontálisan párhuzamos g-vel, és a Riemann görbületek megegyeznek R̃ = R,
és dVg̃ skalárszorosa a dVg-hez.

Ha a 3.2. Tételben az egyenlőtlenséget egyenlőségre cseréljük, akkor a
következő tételt kapjuk.

3.9. Tétel([Ch1]) Legyen F egy olyan Finsler metrika az M sokaságon és F̃
egy másik Finsler metrika M -en, amelyek projekt́ıvek egymáshoz. Tegyük fel,
hogy F és F̃ kieléǵıtik

R̃ic = Ric.

Ekkor F akkor és csak akkor teljes, ha F̃ is teljes. Ebben az esetben bármely
közös c(t) geodetikus mentén

F (ċ(t))
F̃ (ċ(t))

= konstans.

Továbbá, a projekt́ıv vonatkozásban lévő Riemann metrikákat is tanulmá-
nyozzuk, és vizsgáljuk a több speciális görbületi tulajdonságokkal rendelkező



81

śıkprojekt́ıv Finsler metrikákat a 6-ik és 7-ik fejezetben. Az egyik fontos prob-
léma a Finsler geometriában a lokálisan śıkprojekt́ıv Finsler metrikák tanulmá-
nyozása.

A másik fontos probléma a Finsler geometriában a skalárgörbületű Finsler
metrikák jellemzése. Ez a probléma eddig még nem megoldott, sőt nem meg-
oldott a konstans zászlógörbületekre sem. A 4-ik fejezetben azokat a skalárgör-
bületű Finsler metrikákat tanulmányozzuk, amikoris a F izotróp S-görbülettel
rendelkezik vagy relat́ıve izotrópikus Landsberg görbülettel.

4.1. Tétel([CMS][ChSh3]) Legyen (M,F ) egy n-dimenziós skalárgörbületű
Finsler sokaság K(x, y) zászlógörbülettel. Tegyük fel, hogy

S = (n + 1)c(x)F (x, y).

Ekkor létezik egy σ(x) skalárfüggvény M -en úgy, hogy

K = 3
cxmym

F (x, y)
+ σ(x).

Speciális esetként, c = konstans akkor és csak akkor ha K = K(x) skalárfügg-
vény M -en.

4.2. Tétel([CMS][ChSh3]) Legyen (M,F ) egy n-dimenziós skalárgörbületű
Finsler sokaság K(x, y) zászlógörbülettel. Tegyük fel, hogy

J + c(x)F I = 0.

Ekkor a K zászlógörbület és τ torzió eleget tesz a következő egyenlőségnek

n + 1
3

Kyk +
(
K + c(x)2 − cxmym

F (x, y)

)
τyk = 0.

(a) Ha c(x) = konstans, akkor létezik egy olyan ρ(x) skalárfüggvény M -en
úgy, hogy

K = −c2 + ρ(x)e−
3τ(x,y)

n+1 , y ∈ TxM \ {0}.

(b) Tegyük fel, hogy F nem Riemann az M egy nýılt részhalmazán. Ekkor
K = K(x) akkor és csak akkor ha K = −c2 egy nempozit́ıv konstans.
Ebben az esetben ρ(x) = 0.

Tulajdonképpen, minden F = α + β skalárgörbületű Randers metrika (di-
menzió n > 2) eleget tesz az S = (n + 1)c(x)F vagy a J + c(x)F I = 0
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egyenlőségeknek, ahol a c(x) egy M -en lévő függvény. Ezáltal érdekesnek gon-
doljuk az 5-ik fejezetben azon Randers metrikák tanulmányozását, amelyek
eleget tesznek a J+ c(x)F I = 0 egyenlőségnek, továbbá ismertetjük a K = λ(x)
és a J + c(x)F I = 0 zászlógörbületű Randers metrikák osztályozását.

5.3. Tétel([ChSh2][ChSh3]) Legyen F = α + β egy Randers metrika az M
sokaságon. Egy c = c(x) skalárfüggvényre M -en a következők ekvivalensek

(a) J + c(x)F I = 0;

(b) e00 = 2c(α2 − β2) és β zárt forma.

5.5. Tétel([ChSh2][ChSh3]) Legyn F = α + β egy Randers metrika az M
n-dimenziós sokaságon, amely eleget tesz

1. K = λ(x), azaz y ∈ TxM független;

2. J + c(x)F I = 0 valamilyen c(x) M -en lévő skalárfüggvényre.
Ekkor K = constant = −c2 ≤ 0. Továbbá, F vagy lokálisan Minkowski
(K = −c2 = 0) vagy F a következő formulával rendelkezik

F = Θ ± < a, y >

1+ < a, x >

(K = −c2 = −1/4) ahol Θ egy Funk metrikát jelent a Bn egységgömbbön
és minden a ∈ Rn esetén |a| < 1.

Továbbá, tanulmányozni fogjuk az izotróp S-görbületű Randers metrikákat
a 6-ik fejezetben. Először a következő tételeket nyerjük.

6.3. Tétel([ChSh2]) Legyen F = α+β egy Randers metrika az n-dimenziós
M sokaságon. Egy M sokaságon megadott c = c(x) skalárfüggvényre a követ-
kezők ekvivalensek

(a) S = (n + 1)cF ;

(b) E = (1/2)(n + 1)c(x)F−1h;

(c) e00 = 2c(α2 − β2).

6.4. Tétel([ChSh2]) Legyen F = α + β egy Randers metrika a M n-
dimenziós sokaságon. M -en megadott c = c(x) skalárfüggvényre a következők
ekvivalensek,

(a) L + c(x)FC = 0 (vagy J + cF I = 0);
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(b) S = (n + 1)cF és β zárt.

(c) E = (1/2)(n + 1)c(x)F−1h és β zárt.

Az jól ismert, hogy minden lokálisan śıkprojekt́ıv Finsler metrika skalár-
görbületű. Felhasználva a zászlógörbületre vonatkozó formulát osztályozzuk a
lokálisan śıkprojekt́ıv izotróp S-görbülettel rendelkező Randers metrikákat.

6.6. Tétel([CMS][ChSh3]) Legyen F = α+β lokálisan śıkprojekt́ıv Randers
metrika az n-dimenziós M sokaságon és µ jelölje az α metrika szekcionális kons-
tans görbületét. Tegyük fel, hogy az S-görbület izotróp és S = (n + 1)c(x)F .
Ekkor F a következőképpen osztályozható.

(A) Ha µ + 4c(x)2 ≡ 0, akkor c(x) = konstans és K = −c2 ≤ 0.

(A1) ha c = 0, akkor F lokálisan Minkowski, ahol K = 0;

(A2) ha c �= 0, akkor az F lokálisan izometrikus a következő Randers metriká-
hoz Bn ⊂ Rn egységgömbön, ahol

F (x, y) = Θ ± < a, y >

1+ < a, x >
,

miközben a ∈ Rn ahol |a| < 1, és az F negat́ıv konstans K = − 1
4 zászló-

görbülettel rendelkezik.

(B) Ha µ + 4c(x)2 �= 0, akkor az F a következőképpen adott

F (x, y) = α(x, y) − 2cxk(x)yk

µ + 4c(x)2

és az F zászlógörbülete a következőképpen adható meg

K = 3
{

cxk(x)yk

F (x, y)
+ c(x)2

}
+ µ

=
3
4

{
µ + 4c(x)2

} F (x,−y)
F (x, y)

+
µ

4
.

(B1) ha µ = −1, akkor az α-t az α = α−1 fejezhetjük ki. Ebben az esetben a

c(x) =
λ+ < a, x >

2
√

(λ+ < a, x >)2 ± (1 − |x|2) ,

ahol λ ∈ R és a ∈ Rn miközben |a|2 < λ2 ± 1.
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(B2) ha µ = 0, akkor az α-t az α = α0 fejezhetjük ki. Ebben az esetben a

c(x) =
±1

2
√

κ + 2 < a, x > +|x|2 ,

ahol κ > 0 és a ∈ Rn miközben |a|2 < κ.

(B3) ha µ = 1, akkor az α-t az α = α+1 fejezhetjük ki. Ebben az esetben a

c(x) =
ε+ < a, x >

2
√

1 + |x|2 − (ε+ < a, x >)2
,

ahol ε ∈ R és a ∈ Rn miközben |ε|2 + |a|2 < 1.

A továbbiakban tanulmányozzuk az izotróp S-görbülettel rendelkező śıkpro-
jekt́ıv Randers metrikákat amikor az M sokaság zárt. Ekkor a 7-ik fejezetben
tanulmányozzuk és jellemezzük az izotróp S-görbülettel rendelkező lokálisan
śıkprojekt́ıv Finsler tereket és a következőket kapjuk

7.1. Tétel([ChSh4]) Legyen F = F (x, y) egy lokálisan śıkprojekt́ıv Finsler
metrika az Ω ⊂ Rn nýılt részhalmazon. Tegyük fel, hogy F izotróp S-görbülettel
rendelkezik, ahol S = (n + 1)c(x)F . Ekkor a zászlógörbület a következő for-
mulával rendelkezik

K = 3
cxmym

F
+ σ,

ahol σ = σ(x) az Ω-n definiált skalárfüggvény.

(a) Ha K �= −c2 + cxm ym

F az Ω-n, akkor F = α + β egy śıkprojekt́ıv Randers
metrika izotróp S-görbülettel, ahol S = (n + 1)cF ;

(b) Ha K ≡ −c2 + cxm ym

F az Ω-n, akkor c = konstans és F vagy lokálisan
Minkowski (c = 0) vagy lokálisan izometrikus

Θa := Θ(x, y) +
< a, y >

1+, a, x >
(c =

1
2
)

metrikához vagy pedig a következő metrikához

Θ̄a := Θ(x,−y) − < a, y >

1+ < a, x >
(c = −1

2
),

ahol a ∈ Rn egy konstans vektor és Θ(x, y) egy Funk metrika Ω-n.
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A Douglas metrikák a Finsler metrikák egy igen gazdag osztálya, amely
magában foglalja a śıkprojekt́ıv Finsler metrikákat. A Douglas metrikák osztá-
lya sokkal gazdagabb, mint a Berwald metrikáké. A Douglas metrikák tanulmá-
nyozása lehetőséget ad a nem Riemannian geometriai objektumok jellemzésére.
A 8-ik fejezetben tanulmányozzuk azokat a Douglas metrikákat, amelyek relat́ıv
izotróp Landsberg görbülettel vagy izotróp Berwald görbülettel rendelkeznek.
Vizsgálatainkban a következő tételeket kapjuk.

8.8. Tétel([ChSh5]) Legyen (M,F ) egy nem Riemann Douglas sokaság,
amelynek dimenziója n ≥ 3. Ekkor a következők ekvivalensek,

(a) F relat́ıv izotróp Landsberg görbülettel rendelkezik, ahol L + cFC = 0;

(b) F izotróp Berwald görbülettel rendelkezik, ahol E = n+1
2 cF−1h,

miközben c = c(x) egy skalár függvény M -en.

Továbbá a következőket kapjuk
8.9. Tétel([ChSh5]) Legyen F egy nem Riemann Finsler metrika az M

sokaságon, ahol a dimenzió n ≥ 3. Ekkor a következők ekvivalensek.

(a) F egy izotróp Berwald görbülettel rendelkezik;

(b) F egy izotróp Berwald görbülettel rendelkező Douglas metrika;

(c) F egy relat́ıv izotróp Landsberg görbülettel rendelkező Douglas metrika.

8.10. Következmény Egy nem Riemann F Douglas metrikára n ≥ 3
dimenzió esetén a következők ekvivalensek.

(i) L + c(x)FC = 0;

(ii) Bi
jkl = c(x)

{
Fjkδi

l + Fjlδ
i
k + Fklδ

i
j + Fjkly

i
}

;

(iii) E = n+1
2 c(x)F−1h.

Világos, hogy a 8.10 következmény Bácsó és Matsumoto eredményének álta-
lánośıtása, amely azt mondja, hogy egy F Douglas metrika esetén L = 0 akkor
és csak akkor, ha B = 0 ([BaMa2]).
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Írta: Xinyue Cheng
matematikus (differenciál geometria)
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tartalék tagok: Dr. Vincze Csaba . . . . . . . . . . . . . . . . . . . . .
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