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Chapter 1

Introduction

A Finsler metric on a manifold is a family of Minkowski norms on tangent
spaces. There are several geometric quantities in Finsler geometry. The flag
curvature K is an analogue of the sectional curvature in Riemannian geometry.
The Cartan torsion C is a primary quantity. There is another quantity which
is determined by the Busemann-Hausdorff volume form, that is the so-called
distortion 7. The vertical differential of 7 on each tangent space gives rise to the
mean Cartan torsion I := 7,k dz*. C,7 and I are the basic geometric quantities
which characterize Riemannian metrics among Finslers metrics. Differentiating
C along geodesics gives rise to the Landsberg curvature L. The horizontal
derivative of 7 along geodesics is the so-called S-curvature S := T‘kyk. The
horizontal derivative of I along geodesics is called the mean Landsberg curvature
J = I|kyk. Besides, from the geodesic coefficients G*(x, %), we can define the
Berwald curvature B := B;- wdr? @dr*@dr'®0; and the mean Berwald curvature
E := E;;dz’ ® da’, which are defined by

Z. PG 1
By = Byidy oy Eij = 5Bw'ij-

Furthermore, we can define the Douglas curvature D by B and E. Obviously,
7,1, S, J, C, L and B, E, D all vanish for Riemannian metrics. Thus they
are said to be non-Riemannian. The Riemann curvature measures the shape
of the space while the non-Riemannian quantities describe the change of the
“color” on the space. It is found that the flag curvature is closely related to
these non-Riemannian quantities [AIM][MoSh][Sh2].
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Finsler projective geometry is an important part of Finsler geometry. Given
two Finsler metrics F and F on an n-dimensional manifold M. We say F and F
to be pointwise projectively related (or the change F — F is a projective change)
if any geodesic of F is also a geodesic of F as a point set and the inverse is
also true. Two regular Finsler metric spaces are said to be projectively related
if there is a diffeomorphism between them such that the pull-back metric is
pointwise projectively related to another one. In general, given a Finsler metric
F on a manifold M, we would like to determine all Finsler metrics on M which
are pointwise projectively related to F. Particularly, it is interesting and mean-
ingful to determine all Finsler metrics on M which are pointwise projectively
related to a locally Minkowski metric on M. Such Finsler metrics are said to
be locally projectively flat. The problem of characterizing and studying locally
projectively flat Finsler metrics is known as Hilbert’s fourth problem.

The Ricci curvature plays an important role in the Finsler projective geom-
etry. It is proved [Shl] that for two pointwise projectively related Einstein
metrics ¢ and § on an n-dimension compact manifold M, their Einstein con-
stants have the same sign. In addition, if their Einstein constants are negative
and equal, then g = g. In section 3, we will continue to study pointwise pro-
jectively related Finsler metrics and give a comparison theorem on the Ricci
curvatures. At the same time, we will take a look at role that S-curvature plays
in Finsler projective geometry. Besides, we will also discuss the projectively
flat Finsler metrics with some special cuevature properties in sections 6 and 7.
One of the important problems in Finsler geometry is to study and characterize
locally projectively flat Finsler metrics.

Another important problem in Finsler geometry is to study and characterize
Finsler metrics of scalar curvature. This problem has not been solved yet, even
for Finsler metrics of constant flag curvature. In section 4, we discuss the Finsler
metrics of scalar curvature and partially determine the flag curvature when F
is of isotropic S-curvature or relatively isotropic mean Landsberg curvature. In
fact, all known Randers metrics F' = a + (8 of scalar curvature (in dimension
n > 2) satisfy S = (n + 1)c(z)F or J + ¢(z)FI = 0, where c¢(x) is a function
on M. Motivated by such phenomena, in section 5, we study Randers metrics
satisfying J + ¢(2)FI = 0 and classify Randers metrics with flag curvature
K = A(z) and J + ¢(z)FI = 0. Furthermore, we study Randers metrics with
isotropic S-curvature in section 6. It is known that every locally projectively
flat Finsler metric is of scalar curvature. Using the obtained formula for the flag
curvature in section 4, we classify locally projectively flat Randers metrics with
isotropic S-curvature in section 6. And then, we study and characterize locally
projectively flat Finsler with isotropic S-curvature in section 7.



The Douglas metrics form a rich class of Finsler metrics including locally
projectively flat Finsler metrics. The class of Douglas metrics is also much
larger than that of Berwald metrics. The study on Douglas metrics will enhance
our understanding on the geometric meaning of non-Riemannian quantities.
In section 8, we discuss Douglas metrics with relatively isotropic Landsberg
curvature or isotropic mean Berwald curvature. Then we introduce the Finsler
metrics of isotropic Berwald curvaure. We prove an equivalence among the
above metrics.
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Chapter 2

Preliminaries

A Finsler metric on a manifold M is a function F' : TM — [0, 00) which has the
following properties:

(a) Fis C* on TM \ {0};
(b) F(x,\y) = AF(x,y), VA>0;

(¢) For any tangent vector y € T, M \ {0}, the following bilinear symmetric
form g, : T, M x T, M — R is positive definite:

102

gy(u,v) = 2 9501 [FQ(:&er Su-l-tv)] ls=t=0-

Let )
gij(%y) = ) [FZ]yiyj ($7y)

By the homogeneity of F', we have

gy (u,v) = gij (@, y)u'v?,  F(z,y) = 1/gij(z, y)yiy’.

Let F be a Finsler metric on an n-dimensional manifold. The geodesics of
F' are characterized by the following equations:

E(t) +2G" (c(t), é(t)) = 0, (2.1)
where .
Gi = Zgil [Fz]rkylyk - [F2}rl}

9
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and (g9 (z,y)) := (gij(z,y))"*. Gi(z,y) are called the geodesic coefficients of
F.

The Riemann curvature R, := Ridz* ® %
linear maps on tangent spaces, defined by

z: ToM — T, M is a family of

i oG! - O*G" C0*GE 0GTOGY
Rk:27k)_yj - k+ jik_iik
ox oIy oyly oyl dy
The Ricci curvature Ric is defined to be the trace of Ry on each tangent space
T. M,

(2.2)

Ric(y) = Ri(x,y).

The Ricci curvature Ric is a positively homogeneous function of degree two on
TM, ie., Ric(\y) = A?Ric(y), A > 0. If F is a Riemannian metric, then

Ri(w,y) = R§kl($)yjyl,

where Rj- w1 (x) denote the coefficients of the Riemannian curvature tensor on M.
In this case, Ric(y) = Rl’;kl(x)yjyl is quadratic in y € T, M.
For a flag P = span{y,u} C T, M with flagpole y, the flag curvature K(P,y)

is defined by
9y (u, R, (u)) )
9y(Y, ¥)gy (u, w) — gy (y, u)?

When F is Riemannian, K(P,y) = K(P) is independent of y € P(flagpole). It
is just the sectional curvature of P in Riemannian geometry. We say that F' is
of scalar curvature if for any y € T, M, the flag curvature K(P,y) = K(z,y) is
independent of P containing y € T,, M, or equivalently,

K(P,y) (2.3)

R}, = K(x,y)F*hj, (2.4)

where hi := g¥hj, and hj == g — FyiFyr. F is said to be of constant flag
curvature if K(P,y) = constant. hj, define a tensor field on T'M called the
angular metric tensor of F.

To characterize Riemannian metrics among Finsler metrics, we introduce
the quantity

1y | Vetlii (2, y))
T(z,y) =1 [ pp ]
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where
Vol(B™)

ofz) = Vol {(yi) € R"|F(z,y) < 1}

7 is called the distortion. F is Riemannian if and only if 7 = constant [Sh2].
Let

1 .
Czjk(x7y) = 7[F‘2]yiy-7'y’C (‘T,y)7 Il(x’y) = gjk(’r7y)c7jk(xay)7

4

A direct computation yields
Li(z,y) = 7yi (2, y).
For y € T, M \ {0}, set
C,(u,v,w) := Cij(x, y)u'viw®,  1,(u) = Li(z,y)u’,

where © = u"%u,v = vj%u,w = wka‘%\x € T,M. The family C :=
{Cyly € TM \ {0}} is called the Cartan torsion and the family I := {I,|y €
TM\ {0}} is called the mean Cartan torsion. A trivial fact is that a Finsler
metric F' is Riemannian if and only if I = 0 (Deicke, 1953, cf. [Shl]).

To find the relationship between the Riemann curvature and non-Riemanni-
an quantities, we employ the Chern connection on the pull-back tangent bundle
7*TM where 7 : TM\{0} — M is the natural projection. Let w’ := 7*6%, where
{6 := da'} is the local coframe for TM dual to {52 }. The Chern connection
forms are the unique local 1-forms w; satisfying

dw' = w? AWy},

dgi; = gikwf + grjwl + 2C;{dy" + ijf},

Let ‘
R = dyP yJw;-“.

We obtain a local coframe {w?, w™ ™} for T*(TM \ {0}). Let
Q= dw™ Tt — WA w;
We can express ' in the following form

1 ,
Q= iRzlwk Awl — LLwk AWl (2.5)
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where R}, + R, =0. R} in (2.2) and R}, in (2.5) are related by
R, = Rilyl‘

With the Chern connection, we define the covariant derivatives of quantities
on T'M in the usual way. For example, for a scalar function f, we define f; and
f.i by ) )

df = fliw' + faw™ .

For the mean Cartan torsion I = I;w?, define I;; and I; ; by
dl; — Lyw! = Ljjw! + I ju" .

Without much difficulty, one can show that
i Loy i
kl — 3 {Rk.l - l.k}

and
Ii =74, Lijk = Cijemy™,  Ji = Limy™, (2.6)

where Liji, := gim L7t and J; := ¢’ L, ;1. [Sh2]. We obtain the Landsberg curva-
ture L := Lijkdazi ® dz? ® dx* and the mean Landsberg curvature Jy, = Jidx'.

Let
d

S(z,y) = %[T(U(t)vf}(t))]mo,

or equivalently
S = 7'|mym.

We call S the S-curvature [Sh3]. We say S-curvature is isotropic if there exists
a scalar function ¢(z) on M such that S(z,y) = (n + 1)c(z)F(z,y). If ¢(z) =
constant, we say that F' has constant S-curvature. S-curvature S(z,y) is the
rate of change of 7 along geodesics and measures the averages rate of change of
(T, M, F;) in the direction y € T, M. If (M, F') is modeled on a single Minkowski
space, then S = 0 ([Sh2][Sh3]). Many known Finsler metrics of constant (scalar)
flag curvature actually have constant (isotropic) S-curvature ([CMS][Sh6]).
Let

i

A e LS ) (2.7)

- Oyl Oy oy Cn+10oym 4

It is easy to verify that D := Dj»kldxj ® 0; ® dz* ® da' is a well-defined tensor
on TM\ {0}. We call D the Douglas tensor. By a direct computation, one can
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express D; i as follows.

it = Bl — m{Ejkéll + Ejdy, + Ed; + aayjlk yl}- (2.8)
A Finsler metric is called a Douglas metric if D = 0. By (2.8), one can easily see
that every Berwald metric is a Douglas metric. There are many non-Berwaldian
Douglas metrics. For example, a Randers metric F' = o+ (3 is a Douglas metric
if and only if 3 is closed but F = o+ § is a Berwald metric if and only if g is
parallel with respect to o [BaMal].

Consider two pointwise projectively related Finsler metrics F and F. We
have the following important lemma:

Lemma 2.1.([Ra]) Let F and F be two Finsler metrics on a manifold M. F
and F' are pointwise projectively related if and only if there is a scalar function
P on T'M such that

G'=G'+ Py (2.9)
with P = EFzy*/(2F), where lower “;” denotes the horizontal covariant deriv-
ative with respect to the Berwald connection of F' and this P is called the

projective factor.
Plugging (2.9) into (2.2), one obtains

Rl = Ry, + 20}, + T/ (2.10)

where
E:=P? - Pyy*, 7 =3(Py—PPu)+E

yk.

Furthermore, we have
Ric(y) = Ric(y) + (n — 1)Z(y). (2.11)

Now, let us consider a projectively flat Finsler metric F' = F(z,y). By (2.9), its
geodesic coefficients are in the form G* = Py’. Then, we have
where

E:=P? = Puy®, 7= 3(Pp — PPp) + .
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Using the following facts (cf. [Sh2][Sh3])
Ry(y) =0,  gy(Ry(u),v) = gy(u, Ry(v)),
we can show that 7, = —EF_lek and
R, =E{6,— F 'Fuy'}. (2.12)
Thus F is of scalar curvature with

= P2- Pyt

K=m= F?

(2.13)
Hence one immediately obtains the following
Proposition 2.2. Every locally projectively flat Finsler metric is of scalar

curvature.
This fact is due to L. Berwald.



Chapter 3

Curvature Properties in
Finsler Projective
Geometry

In this section, we will first discuss an interesting result given by Rapcsak on
pointwise projectively related Finsler metrics. Given two Finsler metrics F' and
Fon M. Let g := F? = g;j(z,y)y'y’ and § := F? = §;;(z,y)y'y’. One can
easily verify that the geodesic coefficients G = C:”(x, y) of g are related to that
of g by

1 (D
Gl:Gl—F*%l{ ; k_~.},
where §. := §ij.ky'y’ denote the covariant derivatives of § with respect to g,

- .95 9G' 95
ik 1= Gk Oyk oyt

We simply denote V§ := §.xdx"* which is a 1-form on TM \ {0}. We immediately
conclude that g is pointwise projective equivalent to g if and only if there is a
scalar function P on T'M such that

Gk ko~ g
’ — g, =2P—. 1
8yl Y 9l 6yl (3 )

15
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Lemma 3.1.([ChSh1]) g is pointwise projectively related to g if and only if
there is a scalar function P on T'M such that

8g opP

In this case _
9;kY
P== . .
i (33)

Suppose that the projective equivalence is trivial, P = 0, then § is horizontally
parallel with respect to g, Vg = 0.

Proof. First we assume that g is pointwise projective to g. Then (3.1) holds
for some scalar function P on TM. Contracting (3.1) with 3’ yields

Gyt = 4Pg. (3.4)
By (3.1) and (3.4), we obtain
89 0 & .
0
~ oy [4P 9}

This gives (3.2). Conversely, if (3.2) holds, then

0dr .+ - L9 (05 0P 05 _oP.
—gu = v P o gl _[p9 07
oy Y T y ay{ ayr T akg} { oyl 8ylg}
8P g g g OP _
- p99 L op99 p99 0P
A W WA W Rl W
dg
op 99
oyt
This gives (3.1). Q.E.D.

By Lemma 3.1, we obtain the following
Theorem 3.2.([ChShl]) Let (M,g) be a complete Finsler manifold and
g another Finsler metric on M, which is pointwise projectively related to g.
Suppose that -
Ric < Ric. (3.5)

Then the projective equivalence is trivial. Further, g is horizontally parallel
with respect to g, Vg = 0 and the Riemann curvatures are equal, R = R.
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Proof. By Lemma 2.1, there is a scalar function P on T'M, such that (2.9)
holds. Fix an arbitrary vector y € T, M \ {0} and let ¢(¢) denote the geodesic
of g with ¢(0) = y. By assumption, g is complete, hence ¢(t) is defined for
—00 <t < oo. Let

Observe that

By assumption and (2.11),

1 —
Puyt = P? = — (Ric — Ric) > 0.

Thus
P'(t)— P(t)*>0
Let P(y)
y
P == P(y)t

Py(t) satisfies
Pi(t) — Py(t)* = 0.

To compare P(t) with Py(t), define
h(t) = exp { /Ot[P(s) + Pofs)lds H{ Pt — Po(o) ).

Observe that
Wity =esp{ - /0 [P(s) + Po(s))ds }{ P/(t) — Pa(t) + Po(t)® — P(t)?} > 0.

Note that h(0) = 0. Thus h(t) > 0 for t > 0 and h(t) < 0 for ¢ < 0. This implies
that
(t)

t
(t)

Assume that P(y) #0. Let t, = 1/P(y). If P(y) > 0, then ¢, > 0 and

P(t)
P(t)

ZPO ) t>07
SPO )

t <O0.

P(&(t,)) > lim Py(t) = oo.

t—t,
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If P(y) <0, then ¢, < 0 and

P(é(ty)) < lim Py(t) = —c0.

t—tt

Both are impossible. Therefore, P(y) = 0 for any y € TM and G* = G*. By
(2.10), we conclude that the Riemann curvatures are equal, R = R.. Q.E.D.

Example 3.3. Theorem 3.2 is false if the completeness of g is weakened to
the positive completeness. Let |-| and ( ,) denote the standard Euclidean norm
and inner product in R™. Define

VIyP? = (xPlyP - &, y)%) + (%, y)

SD(Y) L= 1—|x[? )
oy): = o(-y),
o) = YECEDEZ ool o) 4 o),

where y € T,B"(1) = R™. ¢(y) > 0 is determined by the following identity,

A n
X+ ) € 0B™(1).

©,p and @ are Finsler metrics on the unit ball B*(1) € R™. ¢ and ¢ are the
Funk metric and the Klein metric on the unit ball B"(1), respectively. We have

1 N
5% < . (3.6)

¢ and ¢ have the following geodesic coefficients G* and G, respectively,

. 1 .
Gi=Z i
57"
5 L =\ i
G =5l -9y

Note that ¢ is only positively complete. By a direction computation, we obtain
the Ricci curvatures of ¢ and ¢,

— 1
Ric = —(n — 1), Ric:f(nfl)zgaz

By (3.6), we see that
Ric < Ric.
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Thus the Ricci curvature condition (3.5) holds. But G' # G, even ¢ is complete.
The above example also shows that if the inequality in (3.5) is reversed, then
the conclusion in Theorem 3.2 is false.

According to Theorem 3.2, if two Ricci-flat Finsler metrics are pointwise
projectively related and one of them is complete, then the projective equivalence
is trivial and the Riemann curvatures are equal. One can show if two negative
Ricci-constant Finsler metrics are pointwise projectively related and one of them
is complete, then they are isometric up to a scaling. These facts are proved in
[Sh1]. In the positive Ricci-constant case, we have the following

Corollary 3.4.([ChShl]) Let g and § be pointwise projectively related Ein-
stein metrics on a compact n-manifold with Ric = (n—1)g and Ric = (n—1)7.
Suppose that g < g, then g = g.

Now we take a look at the role that S-curvature plays in the projective
geometry of Finsler manifolds. From the definition, for a vector y € T,,M \ {0},
the S-curvature S(x,y) is given by

oG! ; 0
S(z,y) = a—yz(x,y) -y B (1na(m)), (3.7)
See [Sh3][Sh9] for detailed discussion on the S-curvature. We first have the

following

Lemma 3.5.([ChSh1]) Let g and § be Finsler metrics on an n-manifold M.
Suppose that g is pointwise projectively related to g. Then the projective factor
P is given by

P (s 8) v ] o5

where f = f(z) is a scalar function on M determined by dV; = (1/f"1) dVj,.
Proof. By assumption, the geodesic coefficients of g and g satisfy

G'=G'+ Py’
This implies that ~
oGt oG!
_ = —— 1)P. 3.9
5o = o+ ) (39)
Express dV; = 6(x)dx! - - - dz". The S-curvature of g is given by

- oGt 0 B
S =5,V axi(lna(x)). (3.10)
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Let () 2
o(x)\ w1
=== . 3.11
f@ = (35) (3.11)
f(x) is a well-defined function on M, although o(x) and &(z) depend on the
local coordinates. The volume forms of g and g are related by

1 1
. — 1 P n [ — 1 P n _ -
dVz =6 (x)dz” - - dx Fa) o(z)dz ---dx P avy.

It follows from (3.7), (3.9) and (3.10) that

1 T2 ; 0 . ; 0

P o= g[S S +vg(me) —viggs (n)]
1 /4 ; 0
— n+1(S—S) —y' 5= (7).

This proves Lemma 3.5. Q.E.D.

By Lemma 3.5, we obtain an additional conclusion to Theorem 3.2 for pro-
jectively related Finsler metrics with the same S-curvatures.

Theorem 3.6.([ChShl]) Let (M,g) be a complete Finsler manifold and
g another Finsler metric on M, which is pointwise projectively related to g.
Suppose that both g and § satisfy

Ric < Ric, S=S5.

Then the projective equivalence between g and g is trivial. Further, g is hori-
zontally parallel with respect to g, the Riemann curvatures are equal, R = R,
and dVj is proportional to dV.

Now suppose that g and g be pointwise projectively related Riemannian
metrics on an n-dimensional manifold M. We know that the S-curvature of any
Riemannian metric always vanishes. Thus by Lemma 3.5, the projective factor
P is given by

. 0
P=—y-L [1 } ,
vl L0
where f is a positive function on M which is defined in Lemma 3.5. In this case,
we can get
n—1

Ric(y) = Ric(y) + 7

D:f, (3.12)
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where Dgf denotes the Hessian of f with respect to g. From (3.12), we can
prove the following theorem.

Theorem 3.7.([ChShl]) Let g and g be pointwise projectively related Rie-
mannian metrics on a compact manifold M. Assume that one of the following
conditions is satisfied,

(a) trgf{\i/c <sg,
(b) trgf{\i/c > 84,

then the projective equivalence is trivial. Further, g is parallel with respect to

g, the Riemann curvatures are equal, R =R, and dVj; is proportional to dV.
Here trgf{ivc denotes the trace of the Ricci curvature Ric of g with respect to g
and s, := tryRic denotes the trace of the Ricci curvature Ric of g with respect
to g. The function s, is called the scalar curvature of g.

Proof. For Riemann metric, the Ricci curvature becomes a quadratic form
on each tangent space T, M. Thus at each point x € M, there is an orthonormal
basis {e;}?_, for (I;M, g) such that

n
Ric(y) => X ()%, y=v'e:
i=1
The trace of Ric with respect to g is given by

trRic=>_ \;, (3.13)

i=1

and the trace of Ric with respect to g is just the scalar curvature s, of g. Taking
the trace on both sides of (3.12) with respect to g, we obtain

n—1

tryRic — s, = A (3.14)
Let r := ﬁ(trgﬁ: —s4). Equation (3.14) becomes
Agf=rf. (3.15)

We assume that M is compact. Integrating (3.15) over M, we obtain

/rdegzo.
M
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Now we assume that
r <0, or r >0,

then r = 0. Thus the function f determined by dV; = ﬁdvg satisfies
Agf=rf=0

Since M is compact, we conclude that f = constant. Therefore, the projective
factor P = 0 by Lemma 3.5 and dVj is proportional to dV,;. By Lemma 3.1, §
is horizontally parallel with respect to g too. Q.E.D.

Because the S-curvature of any Berwald metric vanishes and its spray coef-
ficients can be induced by a Riemannian metric, the equation (3.12) still holds
for the projective equivalence from a Berwald space to a Riemann space. Hence,
Theorem 3.7 can be generalized as follows.

Theorem 3.8([Chl]) Let g be a Riemann metric on a compact manifold
M and g a Berwald metric on M which is pointwise projectively related to g.
Assume that one of the following conditions is satisfied,

(a) trgl:/{\i/c <sg,
(b) tr,Ric > s,,

then the conclusion in Theorem 3.7 holds.

If we modify the inequality (3.5) in Theorem 3.2 into equality, we have the
following theorem.

Theorem 3.9.([Chl]) Let F be a Finsler metric on a manifold M and F
a another Finsler metric on M which is pointwise projectively related to F.
Suppose that both F and F satisfy

Ric = Ric.

Then F'is complete if and only if F is complete. In this case, along any geodesic
c(t) of F or F,

= constant.

Proof. Let ¢(t) be an arbitrary unit speed geodesic in (M, F') and

F(t) == F(et), P(t):= P(c(t)).
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Observe that

F'(t) = Fp(e()é* (1), P'(t) = Py(e(t))ék(t).

3

From Lemma 2.1, we have

P(t) = F'(t)/[2F (1)) (3.16)
Let )
ft) = —=
F(t)
(3.16) becomes
P(t) = —'(1)/1(0) (3.17)

Now, we assume that Ric = Ric. From (2.11), we have Z := P2 — P37 = 0.
Thus for any unit speed geodesic ¢(t) of F', we have

P'(t) — P*(t) = 0. (3.18)
Let £(0):=a > 0, f (0) := b. Then, from (3.18), we get

B b
a+ bt

P(t) =

Thus, by (3.17), we obtain

1

f(t)=a+bt, ie, F(it) = e

(i) If b = 0, then f(t) = a. Thus f(¢) is defined on I = (—o0,+00) and
F(é(t)) = 1/a.

(ii) If b > 0, then f(t) is defined on I = (=4, +o00) and

0 _ +oo
/ F(é(t)) =400 and F(é(t))dt < +oc.
-5 0

The case when b < 0 is similar, so is omitted.
According to the discussion as above, we can conclude that, if F' is complete,
then any unit speed geodesic ¢(t) of F' is defined on (—oo, +00) and F(é(t)) =
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1/a%. In this case, F must be complete. The inverse is also obviously true.
Hence, F is complete if and only if F' is complete and

F(et))

— = constant.
F(c(t))

Q.E.D.
We note that, the condition that the projective change preserves the Ricci
curvature can not be cancelled.
Example 3.10. Suppose that (M, F) and (M, F) are pointwise projectively
related and the projective change is characterized by

G =G+ Fy'. (3.19)

That is, the projective factor P is just F. Thus we get P, = y;/F, where
yi = gij(z,y)y’. Since F; = 0, we get = = F? # 0. Thus the projective change
(3.19) does not preserve the Ricci curvature. In this case, P(t) = F(é(t)) = 1.
Then, by (3.17 ), we obtain

f(t) =ae".
Hence, if F' is complete, f(t) is defined on I = (—o0, +00), and
0o +oo
/ F(e(t))dt < 400 and F(é(t))dt = +o0. (3.20)
o 0

Furthermore, for any unit speed geodesic c(t) of F,
F(é(t)) = e*/a®. (3.21)
From (3.20) and (3.21), we see that F is just positively complete and

F(&(t))/F(é(t)) # constant.



Chapter 4

Finsler Metrics of Scalar
Curvature

It has been proved that the flag curvature in Finsler geometry is closely related
to some non-Riemannian geometric quantities, such as C,L,J,I and S. Firstly,
the Riemann curvature satisfies the following Bianchi identity [Sh2][AIM]

Rjy — Ry — Rigpny™ = Ly R — Li, RY (4.1)
Furthermore, we can prove the following important equations [MoSh]

1 1

m m

Lijk|mym + Ciym Ry = —ggim kg ggjm k.i (4.2)

S B
_égiij.k — g dimtti

Contracting (4.2) with g* gives

1
Teimy™ + L Ry = _§{2R?m + R i) (4.3)
Further, we obtain
1

It is a difficult task to classify Finsler metrics of scalar curvature. All known
Randers metrics of scalar curvature (in dimension n > 2) satisfy S = (n +

25
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1e(z)F or J + ¢(z)FI = 0, where c¢(x) is a scalar function on M. Thus it
is a natural idea to investigate firstly Finsler metrics of scalar curvature with
isotropic S-curvature.

Theorem 4.1.([CMS][ChSh3]) Let (M, F') be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(z,y). Suppose that the S-
curvature is isotropic,

S=(n+1)c(z)F(z,y), (4.5)

where ¢(x) is a scalar function on M. Then there is a scalar function o(z) on
M such that

” +o(z). (4.6)

In particular, ¢ = constant if and only if K = K(x) is a scalar function on M.
Proof. Plugging (2.4) into (4.4), we obtain

n+1
S,k”yl - S‘k = — K.kF2. (4.7)
Plugging (4.5) into (4.7) yields
1
(@)Y Fi — cpp(2)F = —gK.kFZ. (4.8)
It follows from (4.8) that
1 m m
RS am@y™y (4.9)
3 F(.’E, y) y*
Thus 3 m
CimY
=K —
7 F
is a scalar function on M. This proves the theorem. Q.E.D.

In Theorem 4.1, we partially determine the flag curvature when the S-
curvature is isotropic. This is a generalization of a theorem in [Mo] where
Mo shows that the flag curvature is isotropic, K = K(z) if S = (n + 1)cF for
¢ =constant. In this case, K = constant when n > 3 by the Schur theorem.

Theorem 4.2([CMS][ChSh3]) Let (M, F) be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(z,y). Suppose that F has rela-
tively isotropic mean Landsberg curvature,

J+ ¢(z)F1 =0, (4.10)
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where ¢ = ¢(z) is a C* scalar function on M. Then the flag curvature K and
the distortion 7 satisfy

n+1
3

Cl‘m’y'f”/
K« + (K + c(z)? — F(Ly)) Ty = 0. (4.11)

(a) If c(x) = constant, then there is a scalar function p(z) on M such that

37(z,y)

K= +p(z)e” 1, y € T, M \ {0}.
(b) Suppose that F' is non-Riemannian on any open subset of M. Then K =
K(x) if and only if K = —c? is a nonpositive constant. In this case,
p(x) =0.

Proof. By (4.3) and (2.4), we obtain
Tepmy™ = —%Fz{(n T 1K+ 3KIk}. (4.12)
By assumption, Jiy = —cFIj and Ji, = Iy, y™, we obtain
Jemy™ = —Cjmy" Fly — cF I y™ = —cjpny ™ FI), + ¢ F2 1.

It follows from (4.12) that

n+1

K+ (K T %)Ik —0. (4.13)

By (2.6), I = 7.,. We obtain (4.11).

(a) Suppose that c¢ym(x) = 0 at some point x € M. Then equation (4.11)

simplifies to
n+1

3

Kyk + (K+C2>Tyk =0.

This implies that

KK + 62)T67}yk = (K + 02) = eT{nTHKyk + (K + 02>Tyk} =0.

(n+1

Thus the function (K + CQ)T)eT is independent of y € T,, M. There is a
number p(z) such that

_ 37(x,y)

K = —c(x)? + p(z)e” n¥1 . (4.14)
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When ¢(z) = constant, from (4.14), we obtain

37(x,y)

K= —c 4 p(x)e” 1, y € T.M\ {0}.
Note that p(z) is not necessarily a constant.

(b) Suppose that K = K(x) is a scalar function on M. Then (4.11) simplifies
to

(K +2 - Cny )Tyk ~0. (4.15)

We claim that c(x) = constant. Suppose this is false. Then there is an
open subset U such that de(x) # 0 for any x € Y. Clearly, at any = € U,
K(z) # —c(x)? + cum (x)y™/F(x,y) for almost all y € T, M. By (4.15),
T.r = I, = 0. Thus F'is Riemannian on U by Deicke’s theorem (cf. [Sh2]).
This contradicts our assumption in the theorem. This proves the claim.
By (4.14) and (4.15), we obtain

p(x) Tn = 0. (4.16)

We claim that p(xz) = 0. If this is false, then there is an open subset U
such that p(x) # 0 for any 2 € U. By (4.16), we obtain that 7, = Iy =0
on Y. Thus F is Riemannian on /. This again contradicts the assumption
in the theorem. Therefore p(z) = 0. We conclude that K = —c? by (4.14).

Q.E.D.

Finsler metrics with J = 0 are said to be weakly Landsbergian. From Theo-
rem 4.2 (b), we have the following

Corollary 4.3([ChSh3]) For a non-Riemannian weak Landsberg metric,
K = K(z) if and only if K = 0.

According to [ChSh2], for any Randers metric F = « + (3, (4.10) holds if
and only if (4.5) holds and S is closed. For a general Finsler metric, (4.10) does
not imply (4.5). Now we combine two conditions (4.5) and (4.10) and give the
following

Theorem 4.4([CMS][ChSh3]) Let (M, F') be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(z,y). Suppose that

S=(n+1)c(z)F, J+c(x)FI=0, (4.17)
where ¢ = ¢(z) is a scalar function on M. Then there are scalar functions o(z)
and p(x) on M, such that the flag curvature is given by
B 3c(z)? + o(x)
2

Cgm ym

F(x,y)

_27(x,y)

+ p(z)e” . (4.18)

K=3 +o(z) =
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(a) Suppose that F is non-Riemannian on any open subset of M. Then ¢(z) =

constant if and only if K = —c? o(z) = —c? and p(z) = 0.

(b) If ¢(x) # constant, then the distortion is given by

n+1
2

7=1In

2u(z)F(x,y) }
6cemy™ + 3o () + c(x)?]F(x, y)

(4.19)

Proof. By the above argument, K is given by (4.6) and it satisfies (4.11).

By (4.6), we obtain

C‘?((;j)?%m = %(K — U(x)).

Plugging it into (4.11) yields

n+1
3

2 , 1
K« + (gK +c(x)* 4+ gO’(l‘))Tyk =0.

We obtain

n+1

[(2K + 3c(z)? + O’(CC)) ’ eT] =0.

yk

Thus there is a scalar function p(z) on M such that

3c(x)? + o(x)
2

_27(z,y)

K=- + p(x)e” T .

Comparing (4.20) with (4.6), we obtain

com(@)y™ _ c(x)® +o(2) N W) —ren
F(z,y) 2

(4.20)

(4.21)

(a) If ¢(x) = c is a constant, we claim that u(z) = 0. If this is false, then
U = {a: e M,u # 0} # (. From (4.21), one can see that 7 = 7(z) is a
scalar function on U, hence F' is Riemannian on & by Deicke’s theorem.

This contradicts our assumption. Now (4.21) is reduced to o(z) = —c(x)?
and (4.20) is reduced to K = —c2. The inverse is also true by (4.18).

(b) If ¢(x) # constant, then u(z) # 0 by (4.21). In this case, we can solve

(4.21) for 7 and obtain (4.19).
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Q.E.D.
It follows from Theorem 4.4 that if a Finsler metric of scalar curvature satis-
fies S = (n+ 1)cF and J + ¢FI = 0 for some constant ¢, then the flag curvature
is given by K = —c?. One would like to know whether or not there are non-
Riemannian, non-locally Minkowskian Finsler metrics with these properties. If
a Randers metric has these properties, then it is, up to a scaling, locally iso-
metric to the generalized Funk metric on the unit ball B" C R™ [ChSh2] (cf
section 5). In dimension two, any Finsler metric with S =0,J =0 and K =0
is locally Minkowskian.
Example 4.5. For an arbitrary number € with 0 < ¢ < 1, define

N T T (T CaTal)
1+e(z?+y?)
V1 —e2(axu+ yv)
1+e(a?+y?)

We have

22 + y?
18]la = V1 <L

e+’ ty?
Thus F := a + 3 is a Randers metric on R2. In [ChSh2], we have verified that
S=3cF, Jy,+cFI,=0

where

ier:

)
and obtained a formula for the Gauss curvature

—3v1 =2 (wu+yv)/(1 +£(2* + %))
VI =e2)(zu+yv)2 +e(u +0v2)(1+e(z? + y2)) + V1 — e2(au + yv)
7(1 — &%) + 8e(e + 22 + y?)
(e + 22 4+ y?2)?

Here we are going to compute o and p in Theorem 4.4. By a direct compu-
tation we can express the function o := K — w in (4.18) by
o T(1—-¢€?) N 2
dle+a?+y?)?  e+a?+y?




That is, the Gauss curvature is given by
CzU + Cyv
F
3V1 —e2(zu+ yv) N 7(1 —&?) N 2
(€+$2+y2)2F 4(5+$2+y2)2 €+x2+y2'

K = 3

For any Randers metric F' = « + 3, the distortion is given by
| [F 1 ]%
T=In|— ——

a 1—|BIIZ

A direct computation yields

e(1+e(x? +y?))
et+a2ty?

1-|8l2 =

Then the function p := (K + 302%)62?7 in (4.18) is given by

3

M v 22+ %)

That is, the Gauss curvature can also be given by

32 +o 2

K = -
5 +pue

5— 2+ de(a? + y?) 3(1 +e(2? + yz))a
T 2(e 22 +y2)2 (e + 22 + y2)2F
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Chapter 5

Randers Metrics with
L+ c(x)FC=0

Finsler metrics with L = 0 (i.e. Landsberg metrics) can be generalized as fol-
lows. Let F' be a Finsler metric on an n-dimensional manifold M. F' is said to
have relatively isotropic Landsberg curvature (resp. relatively isotropic mean
Landsberg curvature) if

L+cFC=0, (resp. J+cFI=0),

where ¢ = ¢(x) is a scalar funcrion on M. We note that L/C (resp. J/I)
characterizes the relative growth rate of the Cartan torsion ( resp. the mean
Cartan torsion) along geodesics.

Many interesting Finsler metrics have relatively isotropic L-curvature (J-
curvature) or isotropic S-curvature. For example, the shortest time problem
on a Riemannian manifold (or Zermelo’s problem of navigation on Riemannian
manifolds) gives rise to a Randers metric. By choosing appropriate Riemann
metric h and an external force field W, we can obtain many Randers metrics
with many special non-Rienannian curvature properties as above [Sh4][Sh5].
In particular, on the unit ball B™ in R™, taking W as the position vector
field, we obtain the well-known Funk metric on B™ with the following curvature
properties: (i) S = (1/2)(n+1)F; (ii) E = (1/4)(n+1)F~th; (iii) I+ (1/2)F1 =
0 and (iv) K = —1/4. Motivated by the properties of Funk metrics, we study
Randers metrics satisfying (i), (ii) or (iii). In this section, we mainly study
Randers metrics with relatively isotropic L-curvature.

33
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From definition, the mean Landsberg curvature is the mean value of the
Landsberg curvature. Thus if a Finsler metric has relatively isotropic Landsberg
curvature, then it must have relatively isotropic mean Landsberg curvature. We
don’t know whether or not the converse is true too. So far no counter-example
has been found yet. Nevertheless, for Randers metrics, we have the following

Lemma 5.1. For any Randers metric F' = « + 3, the following are equiva-
lent:

(a) I+ c(z)FI =0;
(b) L+ ¢(x)FC =0,

where c(x) is a scalar function on M.
Proof. By [Ma], Randers metric F = a + 3 is C-reducible, that is,

1
Cijk = m{lihjk + Lihir + Ikhij}- (5.1)

From (5.1) and using hj;j,, = 0, we obtain

Ly hjr + Ljjmy™ hige + Ik;|mymhij}a

1
dkimY n+1

that is,
1
Lijr = m{z]ihjk + Jih, + thij}~ (5.2)

From (5.1) and (5.2), we get

1
Lz’jk — CFCijk = m{(Jl — CFIl')hjk + (Jj - CFIj)hik + (Jk — CFIk)hU}
Hence, J + ¢FT = 0 implies that L + ¢cF'C = 0. Q.E.D.

Let F' = o+ 3 be a Randers metric on an n-dimensional manifold M. An
easy computation yields

gij = g(aij - %%) + (% + bi) (%ﬁ + bj), (5.3)

where y; := aijyj. By an elementary argument in linear algebra, we obtain

det(g;n) = (g)"“ det(as;). (5.4)
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Define b;;; by
bi.;07 = db; — b0,

where ¢/ denotes the Levi-Civita connection forms of a.
Let

1 , ih

1
rig =5 (big +bya) s sig = 5 (big = bjsa), 85 = asng,

S5 = biS

7 e
J o Cij =Ty + biSj + bjsl

Then the geodesic coefficients G* are given by

G=G+ %yi — 50y’ + ash, (5.5)
where G* denote the geodesic coefficients of «, egg = eijyiyj, 5o := s;9' and

50 = s4y’. See [AIM].
Lemma 5.2.([ChSh2]) For a Randers metric F' = « + 3, the mean Cartan
torsion I = I;dz’ and the mean Landsberg curvature J = J;dz’ are given by

I, = %(n n 1)F’1a’2{a2bi - ﬁyi} (5.6)
Ji = i(n + 1)F’2a’2{2a [(eioa2 — yieoo) — 26(sia® — yiso) + sio(a® + ﬁz)}
+a?(ei0f — bieao) + Blewna® — yieoo)
—2(s;0% — y;50)(a? + B%) + 4si0a25}. (5.7)

Proof. By (2.6), we have I; = 7.;. From (5.4) and the definition of 7, we get
(5.6). Now we are going to compute J;. From (2.6), we can get the following

jOL 967 0l

Ji=g 09 3
Vo T 1 gy Oy

Let
. e . . .
H':= —Zggyl —s50y" + as’y.

We can rewrite the expression above on J; as follows

Ji =yl — ;H , - 2H' I, ;, (5.8)
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where H’, :=

al; — I
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%iy:, Iy = g;; and I;;; are defined by
oGI

. - 0GY
) k1. dpd . J LAY
S gt = Tida? + Iy (ay’ + Sl )

By a direct computation, we obtain

n+1_ _, _ _
Ii-j = — 5 F2a Q(ijé 1 + b]) (O[Qbi — 5:1/1)
—(n+ 1)F_1a_4yj (a2bi — ﬁyi)
n+1__, _
+72 F la 2(2y3b1 — bjyz — Baij)
i G004 @j_eoo(__l _)j
i sp% Y Top e Fhi)y

. A L .
—500] — siy? +yia” )+ as’,.

where bi;O = bi;jyj and bo;o = bi;jyiyj. Observe that

We have

bi;j =Tij + Sij = €5 — biSj — bjSi + Sij-

bi;o = eio — biso — 5i8 + si0,  bo,0 = ego — 250.

By these identities, we obtain

i = *L—HFQOT%O;O (azbi - 5%‘) + 2 - 1F71072 <a2bi;o - bO;Oyi)
- o_nt 1F_2a_2 (600 — 2306) (agbi — 5%)
+2 —2% Lp-ig2 ((a26i0 — eooyi) — @ (biso + si3) + 2508yi + a23i0)~
Plugging them into (5.8) yields (5.7). Q.E.D.

As mentioned in Lemma 5.2, the mean Landsberg curvature J can be ex-
pressed in term of  and 5. But the formula is very complicated. We find a
simpler necessary and sufficient condition for J + cFI = 0.

Theorem 5.3.([ChSh2][ChSh3]) Let F' = o + 8 be a Randers metric on a

manifold M.

For a scalar function ¢ = ¢(x) on M, the following are equivalent

(a) J+c(z)FI =0

(b) ego = 2¢(a? — 3?) and 3 is closed.
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Proof. Let
fij = eij — 20(aij — blbj)
and fio == fi;97, foo := fijy'y’. We have
2a(eina® — yieno) + (€08 — bieoo) + Bleina® — yieoo) =
20( fioe® — yifoo) + & (fioB — bifoo) + B(fioe® — yifoo) — 2¢(bja® — y; B)F>.
Plugging it into (5.7), we see that J 4+ ¢F' I = 0 if and only if
(fioB—bifoo)a? +(fioa® —yi foo) B+4sina®B—2(s;a® —yiso) (o> +5%) = 0, (5.9)
(fioe® = yifoo) + sio(a® + B) — 2(s;0” — y;80)8 = 0. (5.10)

Differentiating (5.10) with respect to 37, %* and 3!, we obtain

0 = fijap + firaj + fuaje — aij fr — aa fi — aa fix
+sij(ar + biby) + sik(aj + bjby) + si(aj, + b;by)
—(2ap5; — aixs; — aqsk)b;

—(2a18; — aij8; — ai18;)by

7(2ajk8i — CLijSk — aiij)bl. (511)
Contracting (5.11) with a* yields
nfi]' — )\aij + sij(n + 2+ ||ﬁ||2) — 2(n + 1)Sibj + Q(biSj - bjSi) =0, (5.12)

where A := a* f;,;. Here we have made the use of the identity bya*'s; = —s;. It
follows from (5.12) that

A n-+1
fig = aig + — —(sibj + 55bi), (5.13)
sii(n+ 2+ |1B)1%) = (n — 1)(sibj — 5;b;). (5.14)

Contracting (5.14) with b% := b.a™ yields
S5 = 0.
Plugging it into (5.14) we obtain that

Sij:O
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and

Jij = %aij' (5.15)
Now equation (5.9) simplifies to
b —y;8) = 0. (5.16)
Taking y; = b; in (5.16) we obtain
AIBI* = 1)b; = 0. (5.17)

Assume that 5 # 0. It follows from (5.17) that A = 0. From (5.15), we conclude
that fij = 0.
Conversely, we suppose that eqg = 2c(a? — 32). Then

e = 2c(y; — bif), eoo = 2¢(a® — 3%).
We obtain
eina® —yiegy = —2¢(bia® -y, 8)1, (5.18)
einf —bieoo = —2c(bia® — yif3). (5.19)
Plugging (5.18) and (5.19) into (5.7) yields

Ji = %(n + 1)04‘2{ - c[(biaQ — i) + (sia® — yiso)} + Sioa}- (5.20)

Further, suppose that g is closed, hence s;; = 0. From (5.6) and (5.20), we
obtain

_ 1 -2 2 _
J; = —2(n+ 1)ca {b,oz — ylﬂ} = —cF I,.

This proves the theorem. Q.E.D.

In 2003, Z. Shen has classified all locally projectively flat Randers metrics
with constant flag curvature [Sh7]. He proves that a locally projectively flat
Randers metric with constant flag curvature K = A is either locally Minkowskian
or after a scaling, isometric to the a Finsler metric on the unit ball B™ in the
following form

_ VP - (xPyP - xy)?) | (xy) (ay)
B 1—|x|? il—\x|2il+<a,x>’

F, y € TxyR",

where a € R™ is a constant vector with |a| < 1. One can directly verify that Fj,,
a # 0, are locally projectively flat Finsler metrics with negative constant flag
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curvature. Moreover, they have the following properties of the Funk metrics:
(i) S = £(1/2)(n + 1)F, (i) E = £(1/4)(n + 1)F~'h and (iii)J = (1/2)FI = 0
and (iv) K = —i. In fact, there are lots of Randers metrics satisfying

1
E= §(n +1)cF~th,  J+cFI=0.
Besides, the Randers metrics stated as above with ¢ = :I:%, we have the following

example with ¢ = ¢(z) # constant.
Example 5.4. For an arbitrary number € with 0 < & < 1, define

V(I =) (zu+yv)? +(w? +v?)(1 +e(2? +y?))
1+ e(x? +y2)
V1 —e?(zu+yv)
1+e(z2+9y2)

We have

2 4+ 12
[8lla = V1 <1

et+a2+y?

Thus F := a+ 3 is a Randers metric on R?. By a direct computation, we obtain
J+cFI=0,

where
VI—¢?
Moreover, the Gauss curvature of F' is given by
3V1 — 2(zu + yv) N 7(1 —€?) N 2
(e + 22 + y2)2F Aet+22+42)2  etaty?

CcC =

K=-

Thus F' does not have constant Gauss curvature.

Based on Theorem 5.3, we can classify Randers metrics with scalar flag
curvature K = A(z) and J + ¢(z)FI = 0.

Theorem 5.5.([ChSh2][ChSh3]) Let F' = a + 8 ba Randers metric on an
n-dimensional manifold M satisfying

1. K = XA(z) is independent of y € T,,M;

2. J+ ¢(x)FI = 0 for some scalar function ¢(z) on M.
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Then K = constant = —c?> < 0. Further, F is either locally Minkowskian
(K = —c? =0) or in the form
<a,y>
F—o+ Y~
1+ <a,z>
(K = —c? = —1/4) after a scaling, where © denotes the Funk metric on the
unit ball B™ and a € R" is a constant vector with |a| < 1.
Proof. By assumption and Theorem 4.2, we know that A = —c? is a non-

positive constant. Further, by assumption that J 4+ ¢FI = 0 and Theorem 5.3,
we know that
eij = 2c(aij — bibj), Sij =0.

Plugging them into (5.5) yields
G' =G+ c(a— By (5.21)
Thus F = «a + 3 is pointwise projectively equivalent to . By assumption,

Ri, = AFQ{a,Q - F%y}

Thus « is of scalar curvature p := p(z) and p = p(z) must be a constant when
n =dim M > 2. Using (5.21), (2.10) and

bijy'y? = ego = 2c(a® — ?), (5.22)
we obtain _ N _ _
R’Lk = le + E 51]; + Tk;yl, (523)
where
= =3c%a? — 228 — B2
Then

Rik = Rik — E(S,iC — eyt =\ — 302)042(5,if + 7yt

This implies that
(A —3c?)a?
ez
It follows that
A—3¢% —pu=0, A+ =0.

Thus p = —4c? = constant, i.e.,

_ . . Ok
R = —462a2{5}C — %yl}.
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First, we suppose that ¢ = 0. It follows from (5.21) that G* = G'(x,y) are
quadratic in y € R™ for any x. Hence F is a Berwald metric. Moreover,

Rik = Rik.

On the other hand, ;1 = —4c? = 0 implies that « is flat, Rik =0. Thus F = a4+
is flat. We conclude that F' is locally Minkowskian.

Now suppose that ¢ # 0. After an appropriate scaling, we may assume that
¢ = +1/2. We can express « in the following Klein form

o= VP = (PP = x,¥)°)

1 |x]2

Since ( is closed, we can express it in the following form

(x,y)
1—|x[?

==+ +de(y), y=(")eTxB™

It follows from (5.22) that
bi;j = :i:(aij - bzbj) (524)
The Christoffel symbols of « are given by

i mk5; —l—xjc;li
jk 1— |x\2

The covariant derivatives of § with respect to a are given by

R e (TR A}

Oxtoxd 1 —|x/|? a5 " B

and

a,-j — bibj =

T A S
1—|x2\Y OxJ Ozt Ox' OxJ

Plugging them into (5.24) yields

e Oy dp _
00z | 0wl 0ad (5:25)
Let f = exp(p). Then (5.25) simplifies to
o0 f
Oxidxi (5:26)
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Thus f is a linear function
f=Ek1+ (a,x)), k> 0.

We obtain that
p=Ink+In(1+ (a,x)).

Finally, we find the most general solution for f3,

G-+ xy) _ (ay)

- T,B". 2
- " 1+(@x) Y€ (5-27)

Q.E.D.



Chapter 6

Randers Metrics with
Isotropic S-Curvature

In this section, we study Randers metrics with isotropic S-curvature. It is
shown that, if a Randers metric is of constant curvature, then it has constant
S-curvature [BaoRo].

Consider a Randers metric F = « + 8 on a manifold M. Let

pi=In/1—|BlZ

and dp = p;dx’. According to [Sh3], the S-curvature of F' = a + 3 is given by
_ oo _
S—(n+1){2F (so—i-po)}, (6.1)

where egg = eijyiyj,so = s;9° and py = p;y’ (cf. section 5). We have the
following

Lemma 6.1.([ChSh2][ChSh3]) Let F = a + 8 be a Randers metric on an
n-dimensional manifold M. For a scalar function ¢ = ¢(z) on M, the following
are equivalent

(a) S=(n+1)cF;
(b) eoo = 2¢(a® — 3?).
Proof. From (6.1), we see that S = (n + 1)cF if and only if
eij = (8i + pi)bj + (55 + pj)bi + 2¢(asj + bibj) (6.2)
s; + p; + 2cb; = 0. (6.3)

43
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On the other hand, egy = 2c(a?® — (3?) is equivalent to the following identity,
€ij = 2c(aij - bzbj) (64)

First suppose that S = (n+1)cF. Then (6.2) and (6.3) hold. Plugging (6.3)
into (6.2) gives (6.4).
Conversely, suppose that (6.4) holds. Contracting (6.4) with &’ yields

rigb! +11BI7si = 2¢(1 — [|B]*)bs, (6.5)
where we have used the fact sjbj = 0. Note that
Vb = (1— 180 (6.6)
Adding (6.6) to (6.5) gives
—(L = [I181%)si = 2¢(1 = |BII*)bs + (1 = 1BII*)pi- (6.7)
This is equivalent to (6.3) since 1 — ||3||*> # 0. From (6.4) and (6.3), one
immediately obtains (6.2). This proves the lemma. Q.E.D.

By the definitions and (3.7), E;; = (1/2)S,:,;. Hence, if a Finsler metric F
has isotropic S-curvature, S = (n + 1)c(z)F, then F must have isotropic mean
Berwald curvature, E = (1/2)(n + 1)c(z)F~1h. But the converse does not hold
in general. However, for Randers metrics, we have the following

Lemma 6.2.([ChSh2]) Let F = a +  be a Randers metric on an n-
dimensional manifold M. For a scalar function ¢ = ¢(z) on M, the following
are equivalent

(a) E=(1/2)(n+ 1)c(z)F~1h;
(b) ego = 2¢(a? — 32).
Proof. It follows from E;; = (1/2)S:,; and (6.1) that

1 €00
Suppose that egg = 2¢(a?® — 3%). Then
N = 2¢(ar— )

Plugging it into (6.8) we obtain

1 1
E;; = i(n +1)c ayiyi = i(n +1)c Fyiyi. (6.9)
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That is, E = 1(n+ 1)c F~'h.
Conversely, suppose that (6.9) holds. It follows from (6.8) and (6.9) that

€00

Thus at each point p € M, the following holds on T, M \ {0},

€00
=2 —9cF
ja e +n+T,

where n € TyM and 7 is a constant. By the homogeneity, we conclude that
7 =0. Then

eoo = 2¢F? 4+ nF. (6.10)

Equation (6.10) is equivalent to the following equations,
e = 2c(a®+3%) +np (6.11)
0 = 4cB+n. (6.12)

By (6.12), we obtain n = —4¢f. Plugging it into (6.11), we obtain
eoo = 2¢(a? — 7).

This completes the proof. Q.E.D.
From Lemma 6.1 and Lemma 6.2, we have the following
Theorem 6.3.([ChSh2]) Let F' = a + (8 be a Randers metric on an n-
dimensional manifold M. For a scalar function ¢ = ¢(z) on M, the following
are equivalent

(a) S=(n+1)cF;
(b) E=(1/2)(n+ 1)c(z)F~h;
(c) ego = 2¢(a? — (3%).

From Theorem 5.3 and Theorem 6.3, we have following

Theorem 6.4.([ChSh2]) Let F' = a + [ be a Randers metric on an n-
dimensional manifold M. For a scalar function ¢ = ¢(z) on M, the following
are equivalent,

(a) L+ ¢(x)FC =0 (or J+ cFI=0);
(b) S=(n+1)cF and g is closed.
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(c) E=(1/2)(n+ 1)e(z)F~th and S is closed.

In 1997, Bacsé and Matsumoto proved that a Randers metric is a Douglas
metric if and only if 3 is closed [BaMal]. From Theorem 6.4, we have the
following result.

Corollary 6.5. Let F' = a + (8 be a Randers metric of Douglas type on an
n-dimensional manifold M. For a scalar function ¢ = ¢(x) on M, the following
are equivalent,

(a) L+ ¢(z)FC = 0;
(b) S=(n+1)cF;
(¢c) E=(1/2)(n+ 1)c(z)F~h.

Now, we consider a projectively flat Randers metrics with isotropic S-curva-
ture S = (n + 1)e(x)F. First, we know that « is locally projectively flat and
0 is closed. According to the Beltrami theorem in Riemann geometry, a Rie-
mannian metric is locally projectively flat if and only if it is of constant sectional
curvature. Thus « is of constant curvature p. It is locally isometric to the fol-
lowing standard metric a;, on the unit ball B® C R" or the whole R" for
w=—-1,0,+1:

_ VP = (2PlyP- <,y >?)

Ot—l(xay) - 1_ |x|2 , yeTan%Rn7

ao(z,y) = lyl, yeT,R" ~R",
Y12 + (|Jz2ly]f— < x,y >2 N

a+1(x,y) = \/| | (| 1|_l_ ||1‘|2 : )7 Yy < TajRn ~ R".

Theorem 6.6.([CMS][ChSh3])) Let F' = a+ 8 be a locally projectively flat
Randers metric on an n-dimensional manifold M and p denote the constant
sectional curvature of «. Suppose that the S-curvature is isotropic, S = (n +
1)e(z)F. Then F can be classified as follows.

(A) If p+4c(x)? = 0, then c(z) = constant and the flag curvature K = —c? <
0.

(A1) If ¢ =0, then F is locally Minkowskian with K = 0;
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(A2) if ¢ # 0, then after a scaling, F' is locally isometric to the following Randers
metric on the unit ball B™ C R",

<a,y>

F =9+~ 9"
(z,y) T <azs

(6.13)

where a € R™ with |a| < 1, and F' has negative constant flag curvature
K=-

=

(B) If u+ 4c(x)? # 0, then F is given by
Qka(m)yk

[+ dc(z)? (6.14)

l?(xay):: Q(I,y)‘*
and the flag curvature of F' is given by

C, k(T k
K = 3{M+c(x)2}+u
}?(x7__y)

Fay) |

- %{MHC@)?} L

(B1) when p = —1, we can express @ = a—1. In this case,

M <a,x>

cle) = o/t <azS)PE(_|aP)

where A € R and a € R™ with |a|? < A2 £ 1.
(B2) when p =0, we can express o = ag. In this case,

B +1
2k +2<a,x > +[z2

c(x)

where £ > 0 and a € R" with |a]? < k.
(B3) when p =1, we can express o = ay1. In this case,

_ e+<a,x >
2/1+[z]2 = (e+ < a,x >)?

c(x)

where ¢ € R and a € R™ with |¢]? 4 |a|? < 1.
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Proof. Assume that « is of constant sectional curvature and 3 is closed
(hence s;; = 0 and s; = 0). Let
d = bi;jyiij v = bi;j;kyiyjyk‘
By (8.56) in [Sh3], we have
P 72 v
KF? = pa? —| - =. 1
po”+ S[QF} 2F (6.15)
Further we assume that S = (n + 1)c(z)F, which is equivalent to

eij = QC(CLij — blbj)

by Lemma 6.1. Since s;; =0, e;; = 7;; = b;;; and the above equation simplifies
to
bi;j = 20(aij — blbj)

We obtain

®
v

2c(a® — 3?)
2c,0y" (02 — 5%) = 82 (? — %) .

By Theorem 4.1, we know that the flag curvature is in the following form

o 3ka (gj)yk olx
K_iF(x,y) + o (x), (6.16)

where o(z) is a scalar function on M. It follows from (6.16) and (6.15) that

D 72
3ka-,ku—|—O'F2 :I{F’2 :‘ua2+3|:ﬁ:| —

v

o (6.17)

Using the above formulas for ® and ¥, we obtain
2{2cmkyk + (o + cQ)B}a + {2cxkyk + (o + 02)5}6 + {o —3c% — ,u}a2 =0.

This gives

2c,0yF + (0 + 3B =0, (6.18)
o—3c—pu=0. (6.19)
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Plugging (6.19) into (6.16) and (6.18) yields

k

Cyk (l‘)y 2
K = 3{m + c(x) } + . (6.20)
2e,1y" + (u+4c?)B = 0. (6.21)

Now we are ready to determine 3 and c.

Case 1: Suppose that u + 4c(x)? = 0. Then c(z) = constant. It follows from
(6.20) that

K=3+pu=—c
Then Theorem 6.6(A) follows from the classification theorem for projectively
flat Randers of constant curvature [Sh7].

Case 2: Suppose that u + 4c(z)? # 0 on an open subset U C M. It follows
from (6.21) that

=" 6.22
& o+ 4de(x)? (6:22)
Note that 3 is exact. Let ¢;da’ := dc and ci;jdmj = d¢; — ckf‘fjdmj denote

the covariant derivative of de¢ with respect to «, were ffj denote the Christoffel
symbols of ae. We have

€ =Cpi(T),  Ciyj = Cpigi(T) — Cyr (x)ffj (z).
Similarly, we can define b;,; and b;;.,. Since 3 is closed, b;;; = b;;;. In this case,
S = (n+ 1)c(z)F is equivalent to
bi;j = 2c(aij — bzb]) (623)
From (6.22), we have
ZCZ‘
b= ——— 6.24
o+ 4c? (6.24)
Plugging (6.24) into (6.23) yields
12cc;c;
p+4c?

cij = —c(u+4c®)a;; + (6.25)
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Next we are going solve (6.25) for ¢(z) in three cases when u = —1,0, 1.

(B1): = —1. We can express that a = a_;. We have

51']' $in
L—fz? (1= )

A5 =

The Christoffel symbols of « are given by

isk 1 ,dgk
. x'0F 4 2l

V1=
Equation (6.25) becomes

xiczj + I’iji
1= zf?

Coigi —

0ii xlad 12ccicy;
= (—1+ 4 { i } v Cal
(AN T, TGS t T

(6.26)

Let

e 2¢4/1 — |x|?
V(1 +4e2)’

where the sign depends on the value of ¢ such that +(—1 + 4¢?) > 0. Equation
(6.26) simplifies to
fw"'wj =0
We obtain that f = (a,z) + A\, where A € R and a € R™. Then we obtain
_ A+ (a,z)
2/ (A + {a,2))? £ (1 - [2]?)
Plugging (6.27) into (6.22) yields

(A + (@, 7))z, > (1*|va )@, y)
(1= l=z)v/(x )2 £ (1= [zf?)

(6.27)

ﬁ —
and

_ VP = (aPlyP = (2,9)?) | (A + (a,2))(z, > (1 — |2[*)(a,y)
F= 1—|x|? * (1 =22/ + (@, 2))2 £ (1 — [2]2)
(6.28)
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By a direct computation,

(- lz2){ £ 1-(la? - 43}

I = T e R e

Clearly, F' = a + 3 is a Randers metric on an open subset of B™ if and only if
la]? — A2 < £1. In this case, (A + (a,z))? £ (1 — |z|?) > 0 for any € B". Thus
F' can be extended to the whole B". By (6.20), (6.27) and (6.28), we obtain

3 £(1 - [zf?) Flz,—y) 1

T A0+ @) -[eP) Flay 4

(B2): 1= 0. We can express that @ = . Equation (6.25) becomes

Coigs = —Ac30;; + 22 2) (6.29)
Let U := {x € R™ | ¢(x) # 0} and let
1
==
Equation (6.29) simplifies to
Fois = 8035 (6.30)

We obtain
f=4(s+2(e,z) + |2]*),
where £ € R and a € R" such that f(z) > 0 for z € Y. Then ¢ = £1//f is

given by
+1

c= . 6.31
2v/k + 2(a,z) + |22 (6.31)
Plugging (6.31) into (6.22) yields
g i (@Y +ny)
Ve 2(a, x) + [z
and
F=lyl+ (@.9) & {z.y) (6.32)

\/KJ + 2{(a, ) + |:1c|2
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Note that
K — laf®
K+ 2a, z) + [z]*
Clearly, F' = a + 3 is a Randers metric on an open subset of R if and only if
la]? < k. In this case,

1- |82 =

K+ 2{(a,x) + x> >k — |a]* + (Ja| — |z[)* >0, VzeR"

Thus F can be extended to the whole R™. By (6.20), (6.31) and (6.32), we

obtain 5 F )
x, Y

K= . > 0.
4k +2(a,z) + [2|*)  F(z,y)

(B3): = +1. We can express that @« = ay;. We have

(52‘]‘ xtaxd

Ttz (Tt P

aij

The Christoffel symbols of « are given by

20k + 2l bF
S

nk

Equation (6.25) becomes

m’:cmj +.Tijz‘
1+ |z|?

0ii il 12cc icyj
— _ (144 2 { ij - } xtCp
A T o O ) T 1342

. 2¢/1 4+ |z|?
ToVIt4aE
Equation (6.33) simplifies to f,iz; = 0. We obtain that f = ¢+ (a,x). Then we
obtain

Let

. e+ {(a,x)
2¢/1+ [2? = (e + {a, 2))?

(6.34)

Thus
(e + {a, 2)) (. y) — (1 + |2[*){a, y)

U PV R —G T @a)f
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and

_ VP A QPP =~ (@y)?) |+ a2y - A+]eP)ay)

F 1+ |2 L+ [22) /(T +[2P) — (e + (@, 2)2

By a direct computation,

(1+ o) {1 - & — o}

2 __
1_||ﬁHa_ 1+|x|27(5+<a7x>)2 -

Thus F = a + (3 is a Randers metric on some open subset of R™ if and only if
e? 4+ |al? < 1. In this case, 1 + |z|> — (¢ + (a,z))? > 0 for all x € R". Thus F
can extended to the whole R™. By (6.20), we obtain

_ 3(1+ |=[%) F(z,-y)
AL+ |22 = (e + (0, 2))?}  F(2,y)

K

>1
1

1
1
Q.E.D.
From Theorem 6.6, we obtain some imteresting projectively flat Randers
metrics with isotropic S-curvature.
Example 6.7. Let

VA= [zP)yP+ <2,y >2 /1= [22) + X2+ A <2,y >
(1= lz[*) /(1 —[z[?) + A2

F_(z,y) =

)

y € TIBn7

where A € R is an arbitrary constant. The geodesic of F_ are straight lines in
B". Thus F_ is of scalar curvature. One can easily verify that F_ is complete in
the sense that every unit speed geodesic of F_ is defined on (—o0, 00). Moreover,
F_ has strictly negative flag curvature K < —i.

Example 6.8. Let

V31t |zP+ <zy >
Fo(z,y) :== ly il i y € T,R".

VItRE

The geodesics of Fy are straight lines in R™. Thus Fp is of scalar curvature.
One can easily vertify that Fj is positively complete in the sense that every unit
speed geodesic of Fy is defined on (a,c0) for some a € R. Moreover, Fy has
positive flag curvature K > 0.
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Theorem 6.6 is a local classification theorem. If we assume that the manifold
is closed (compact without boundary), the the scalar function ¢(z) takes much
more special values.

Theorem 6.9.([CMS][ChSh3])) Let FF = a + § be a locally projectively
flat Randers metric on an n-dimensional closed manifold M. Let p denote the
constant sectional curvature of . Suppose that S = (n + 1)c(z)F.

(a) If u = —1, then F' = « is Riemannian.
(b) If =0, then F is locally Minkowskian.
(c) If p =1, then ¢(z) = f(z)/24/1 — f(x)? so that

fac’C (x)yk
1— f(z)?
where f(z) is an eigenfunction of the standard Laplacian of (M, «) correspond-

ing to the eigenvalue A = n with maz,cn|f|(z) < 1. Moreover, the flag curva-
ture and the S-curvature of F' are given by

F(:Cay) = oz(;z:,y) -

3 F(z,— 1
(z y)+7’

K(z,y) =

= f@P) Floy) 4
S(e.y) = %F@,y).

Proof. By assumption, the manifold M is closed. Assume that p+4c?(x) #
0 on some open subset of M.

When p # 0, let
2¢(x)

f(@) = s,
VE( +4e(x)?)
where the sign is chosen so that +(u + 4¢2) > 0. By (6.25), we have
f;i;j = _Mfaij-

This gives
Af=—nu f. (6.35)

When g = 0, we take




%)

We have
fisi = 8aj.
This gives
Af =38n. (6.36)

Case 1: ;1 = —1. Suppose that 1 — 4¢(x)? # 0 on M. Integrating (6.35) yields

| s, = - /M FAfdVy = —n /M 12 av,

Thus f = 0. This implies that ¢ = 0 and F = « is Riemannian.

Suppose that 1 — 4¢(z,)? # 0 at some point z, € M. Let (M,,) be the
universal cover of (M,xz,). We may assume that M is isometric to (B", a_1)
with Z, corresponding to the origin. The Randers metric F' is lifted to a complete
Randers metric F' on M = B". F is given by (6.28). Let &) be the lift of ¢(z),
which is given by (6.27). Thus 1 — 4¢(%)? # 0 for all Z € B™. This implies that
1 —4c(x)? # 0 for all x € M. By the above argument, we see that ¢ = 0. Hence
F = « is Riemannian by (6.14).

Suppose that 1 — 4¢(z)? = 0. Then the lift F of F to the universal cover
M = B™ is given by (6.13), hence it is incomplete. This is impossible because of
the compactness of M. We also see that F' has negative constant flag curvature
and bounded Cartan torsion, hence it is Riemannian according to Akbar-Zadeh’s
theorem [Sh4][ShSh5]. Then ¢(z) = 0. This is a contradiction again.

Case 2: u = 0. Suppose that ¢(z,) # 0. Let M denote the universal cover of
M. We may assume that M = R™ with the origin corresponding to z,. The
Randers metric F lifted to M = R™ is given by (6.32). Thus c(z) # 0 for all
x € M. Integrating (6.36) over M yields

0= / AfdV, = 8nVol(M, ).
M

This is impossible. Therefore ¢(z) = 0. In this case, F' is a locally projectively
flat Randers metric with flag curvature K = 0, hence it is locally Minkowskian
by [Sh2].
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Case 3: ;= 1. Note that 1 +4c(x)? #0 on M. Let

- 2¢(x)
f(z) = 7@ (6.37)
It follows from (6.35) that
fig = —faij. (6.38)
This gives
Af = —nf.
Thus f is an eigenfunction of (M, «) with max.eas |f|(z) < 1. We can express
_ 2,0 (2)y* for(2)y"
F(z,y) = a(z,y) - m =a(z,y) - m (6.39)
_ o f Car(2)y” _ 3  Fla-y 1
Kuﬂy_{me)+d@ﬂ+1_4u_ﬂ@%Fww)+Z. (6.40)
Q.ED.

Assume that (M, «) = S™ is the standard unit sphere. Let F' = a+ 3 be a
Randers metric. From Theorem 6.9, we obtain

Theorem 6.10.([CMS][ChSh3])) Let S™ = (M, «) is the standard unit
sphere and F = «a + (8 be a locally projectively flat Randers metric on S™.
Suppose that S = (n 4+ 1)c(z)F. Then

ok (2)y"

F(xvy):a(‘rvy)_ 1*f($)27

where f(z) is an eigenfunction of S™ corresponding to the first eigenvalue. More-
over,

(a)
2_5 246
2010 =N =sa=5y

where 0 := /|Vf[2(z) + f(z)2 < 1 is a constant.

(b) The geodesics of F' are the great circles on S™ with F-length 2.
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Proof. Using (6.38), one can verify that

§:=IVfR2(2) + f(2)?

is a constant. Since F' is positive definite, § < 1.

Let P )
Z, =Y
Ax):= sup ———=.

(@) ver.m F(z,y)

Using |V f|2(x) = 6% — f(x)?, we obtain

_ VI TGP+ VP TP
VI @) — & = J@?

Let A := max,ep A(z). We have

Az)

1<Az)<A=-—1

and
_ (1= (M) +1)?

Note that A(z) = A if and only if f(x) = 0. It follows from (6.40) that

2-8 3+ 3A+1 246
- <K< = . A1
2146) 4x — T 4 2(1 - 6) (6.41)

Let
h(z) := arctan (20(:5))

The Randers metric F(z,y) in (6.39) can be expressed by

F(LL‘, y) = oz(amy) — hyr (‘r)yk

Clearly F' is pointwise projectively equivalent to «, namely the geodesics of F'
are geodesics of « as point sets. Let o(t) be a closed geodesic of a. Observe

that p
F(a(t),d(t)) - a(a(t),d(t)) - [h(a(t))]

By the above equation we obtain

Lengthp (o) = /F(U(t),d(t))dt = /a(a(t),d(t))dt = Length, (o). (6.42)
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Assume that M is simply connected. Then (M, «) = S™. Let o be an arbitrary
great circle on S™. By (6.42),

Lengthp (o) = 27.

Q.E.D.



Chapter 7

Projectively Flat Finsler
Metrics with Isotropic
S-Curvature

As we stated in section 6, we have classified locally projectively flat Randers
metrics with isotropic S-curvature. It is a natural problem to study and char-
acterize locally projectively flat Finsler with isotropic S-curvature.

Theorem 7.1.([ChSh4]) Let F = F(z,y) be a locally projectively flat
Finsler metric on an open subset 0 C R"™. Suppose that F' has almost isotropic
S-curvature satisfying

S =(n+1){c(x)F +n}, (7.1)

where ¢ = ¢(x) is a scalar function and n = n(z,y) is a closed 1-form on M.
Then the flag curvature is in the form

Camy™

K=3 + o, (7.2)

where 0 = o(z) is a scalar function on €.

(a) f K # —c® + # on ), then F' = « + 3 is a projectively flat Randers
metric with isotropic S-curvature S = (n + 1)cF;

(b) fK = - + cwaym on £, then ¢ = constant and F is either locally
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Minkowskian (¢ = 0) or, up to a scaling, locally isometric to the metric

<a,y> 1
C

0, = O(z, —_— = -
(z y)+1+,a’x> (c=3)
or its reverse
= <a,y> 1
Oui= O, —y) — ————  (c=—3),
(z,~y) [~ (c=-3)

where a € R™ is a constant vector and O(x,y) is Funk metric on .

Proof. By assumption, S is in the form (7.1). Since every closed 1-form on

an connected open subset in R" is exact, we may assume that
S=(n+ 1){cF + dh},

where h = h(z) is a scalar function on .

On the other hand, F' is projectively flat, hence the spray coefficients are in

the form G = Py, where

F, k:yk
p="2
2F
By (3.7), one obtains
O(lnop)
S = NP —ym———.
(n+1)P—y S
Thus
P =cF +dy,

where ¢ = ln[ap(x)]#l + h(z). It follows from (7.3) and (7.4) that
Fyiy' = 2FP = 2F{CF n Wyi}
Plugging (7.4) into (2.13) and using (7.5), one obtains

N2 _ . o
{cF + wy’} - {cxiylFﬂL clkpiy' + %ima‘ylyj}

F2
—CF? — comy™F + (04100 — Puigi[y'y’
F? '

(7.3)



61

Comparing (7.6) with (7.2) yields
[0+ JF? + deamy™ F + [prini — Poitpaily'y’ = 0. (7.7)

Assume that K # —c% + % By (7.2), this is equivalent to the following
inequality:
2¢,my™

—5 70 (7.8)

We claim that o + ¢ # 0 on €. If this is not true at some point z, € €, i.e.,
o(zo) + ¢(z,)? = 0. By (7.8), de,,, # 0. From (7.7), one obtains

0+02+

(i (To) Pei (To) = Paiai (xo)}yiyj '

F=
degm (z0)y™

Namely, F' is a so-called Kropina metric which is not a regular Finsler metric
under our consideration. Therefore the above claim holds on 2. Now, one can
solve the quadratic equation (7.7) for F,

V1o + Al[0ri0ni — Puini [y + Acomy™]? — 2c,my™

F:
o+ c?

That is, F' = a + ( is a Randers metric. We have classified projectively flat
Randers metrics with almost isotropic S-curvature (cf. Theorem 6.6).
We now assume that K = —c? + % It follows from (7.2) that

2¢,my™

=0.
F

o+ +

This implies that ¢ = constant, hence o = —c? is a constant too. In this case,

the flag curvature is given by K = —c?. The equation (7.7) is reduced to
Paici = PaiPai = 0.
It is easy to solve this equation,
p=—1In (1+ (a,m)) +C,

where a € R" is a constant vector and C' is a constant.
When ¢ = 0, K = —c? = 0. It follows from (7.4) that the projective factor
P = dy is a 1-form, hence the spray coefficients G* = Py" are quadratic in



62 CHAPTER 7. PROJECTIVELY FLAT FINSLER METRICS

y € T,Q). By definition, F' is a Berwald metric. It is known that every Berwald
metric with vanishing flag curvature is locally Minkowskian.
When ¢ # 0, we may assume that ¢ = :I:% after a suitable scaling. Let

¥ := P+ cF.

Since F' is projectively flat and P is the projective factor, by (7.3) and

ka = meykym7 (79)
one obtains
For = Pku + PFyk-. (7.10)
It follows from (2.13) that
1
Py — PPy = —S—F(:F)yk.

In particular, if K = X is a constant,
Py — PPy = —AFFyx. (7.11)

The above identities can be found in [Ber|[Sh8]. By (7.10) and (7.11), one can
easily verify that

Ui = VW,
Let .9) )
U(z,y ife=5
o= { "% fe=3
(e, —y) fe=—}

Then © = O(x, y) satisfies ©,1 = ©O,x. Thus by definition it is a Funk metric.
By (7.4), ¥ = 2¢F + dyp. Thus

F = QLC{\IJ(x,y) - dcpz}.

When ¢ = 3, ¥(z,y) = O(x,y). Thus

(a, )

F:@(:v,y)er

= @a(l',y).
When ¢ < 0, ¥(z,y) = —O(z, —y). Thus

F = @(m,—y) - ]m = C:)a<x7y)a
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where O, (z,y) := Q4 (z, —y). Q.E.D.
In Theorem 7.1(a), the local structure of F' has been completely determined

in Theorem 6.6. Namely, if a Randers metric F' = « + [ is locally projectively

flat with (7.1), then « is locally isometric to the standard projectively metric

1 D> —p < >2
VR TRIT pEnyEE ey =Ry,
1+ pfz|

the scalar function o = o(z) in (7.2) is given by 0 = u + 3¢? and 3 satisfies
2¢,1y* + (u+4c?)3 = 0. Suppose that de = 0 at a point = € ©, then at the point
x, either 3 =0 or 4+ 4c®> = 0. In the later case, K = p + 3c? = —¢? + %
This contradicts the assumption (a). We may assume that dec # 0 on Q. Then
p+4c® # 0 and 3 is given by

2¢,1y"
A+ 4c?

8=

In this case, we can completely determine the scalar function ¢ = ¢(x) as follows.

(A {a,x)) )
c= 2 \/i(1+ﬂ|x\2)’i()\+(a,w))2 if 1% # 0
N - = S if = 0.

24/ k+2(a,x)+|z|?

where a € R"™ is a constant vector and x € R is a constant number. See
Theorem 6.6 or [CMS] for more details.
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Chapter 8

Douglas Metrics with
Special Non-Riemannian
Curvature Properties

In [ChSh2], we prove that a Randers metric F' = « + 8 of Douglas type has

isotropic mean Berwald curvature if and only if it has relatively isotropic Lands-

berg curvature (Corollary 6.5). In this section, we will generalize this result.
We say that F has isotropic Berwald curvature [ChSh5] if

By = c{ Fjid; + Fjby + Fud; + Fiuy'} (8.1)

where Fij := Fyiyi, Fiji, := Fyiyi and ¢ = ¢(x) is a scalar function on M.
Since hij = FFyiy and b = "% hj = 61 — F~2g;.y°y", (8.1) can expressed
as

Bjikl = CF_l{hjkhf + hjlh;.c + hklh; + 2Cjk1yi}. (8.2)

It is easy to vertify the following
Lemma 8.1.([ChSh5]) F has isotropic Berwald curvature if and only if

. c . . .
szkrl = F {h]kéf + h‘jléz + hkl(S;}
c ,
T 73 {2F?Cjj — (hjigim + Pjigkm + Piagim)y™ } y'. (8.3)
From the definition, we obtain
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Lemma 8.2.([ChSh5]) If F' has isotropic Berwald curvature with scalar
function ¢ = ¢(z), then F is a Douglas metric and satisfies

n+1
Eij = B cFij, Lijk + cFCijr = 0. (8.4)

Proof. Assume that (8.2) holds. Then

1 1 - 1
Bj = 3B = 20+ DeF " hye = L n D)ok
Note that
1
Cijr =

2gij‘k = {Fiij + ijFl‘ + Fiij + FFijk}/Q.
From (8.1), we get

1 . c
Ljw = _iyilekl = —Q{ijFl + FjiFy + F Py + Fj FYF

== —CFCjkl.

Finally, plugging cFj, = %HEJ"C into (8.1), one obtains

i 2 i i i OEj i
= m{Ejkaz + Ejidy, + Erd; + 8;1 y } (8.5)

By (2.8), it means that D = 0. Q.E.D.
Furthermore, we have the following

Lemma 8.3.([ChSh5]) For a Douglas metric F, if
B n+1

-1
ij = B cF hij,

then F has isotropic Berwald curvature with scalar ¢ = ¢(x).

Proof. F is Douglas metric if and only if (8.5) holds. Plugging Ej;; =
1(n+1)cF,;,+ into (8.5), one obtains (8.1). Q.E.D.
By Lemma 8.2 and Lemma 8.3, we obtain the following theorem.

Theorem 8.4.([ChSh5]) F has isotropic Berwald curvature with scalar func-
tion ¢(z) if and only if F' is a Douglas metric satisfying

E:n+1

cF1h.
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Further, from Theorem 8.4 and Lemma 8.2, we obtain the following interesting
corollary.

Corollary 8.5.([ChSh5]) Let F' be a Douglas metric on an n-dimensional
manifold M. If E = “fLcF~1h, then L + ¢cFC = 0.

On the other hand, we have the following

Lemma 8.6.([BaMa2|[Sh3]) For a Douglas metric F', the following are equiv-
alent,

(a) L =0;
(b) B=0;
(¢) E=0.

In particular, when F is a Randers metric of Douglas type, the Corollary 6.5
and Theorem 8.4 say the following are equivalent,

(i) L+ ¢(x)FC = 0;
(ii) B,y = () {Fjkd] + Fjdy + Frudi + Fjuy'};

iii) E = 2 e(z)F1h.
2

From Corollary 8.5 and the results as above, we have the following natual
question: for a general Douglas metric F', is L + ¢cF'C = 0 equivalent to
E = %Hchlh? We will discuss this question in the following. As a basis,
we first give the following important Bianchi identity:

8ijl 8ijm 1 i 1 i
aym B ayl = §gile ki — igimB[ kj- (86)

See (10.12) in [Sh3] for a proof.

Lemma 8.7.([ChSh5]) Let (M, F) be a non-Riemannian Douglas manifold
of dimension n > 3. Suppose that F' has relatively isotropic Landsberg curva-
ture, L+ cFC =0, then E = %Hc(x)F_lh, where ¢ = ¢(x) is a scalar function
on M.

Proof By assumption, (8.5) holds and

ijl = —CFC]'M. (87)

Contracting Bjikl with A := 0™ — F~2g;,yy™ and using (8.7) and

1
Lijk = Cijrimy™ = _iymgmlel'jk (8.8)
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(see section 6.2 in [Sh3]), one obtains
hi* Byl = B + 2F 2 Ljny™ = By — 2¢F ' Ciuy™. (8.9)
Contracting (8.5) with A" and using (8.9), one obtains
2
Byl = g { Bhi? 4+ Buh + Buhiy'} 4+ 2cF 7 Cpuay™. (8.10)
Plugging (8.7) and (8.10) into (8.6), one obtains

Ekmhjl + Ejmhkl — Eklhjm — Ejlhkm =0. (811)

Contracting (8.11) with g/™ yields
1
Ep = 5(n + DAF "y, (8.12)

where
2

n?—1
Next we are going to show that A = A\(x,y) is independent of y € T, M at
any point © € M. Plugging (8.12) into (8.5) and (8.10) respectively, one obtains
_ A . . _ B .
By = F{hjkéz + bl + huadl )+ [AF 1hjk.]yly
A

= f{hjkhf + hjihy, + hklhé'} +2eF ' Ciay'.

Comparing the above two identities yields

A=

Fg'™Ejp.

)\ylhjk = 2(8 — A)Cjkl- (8.13)
Contracting (8.13) with ¢7* yields

2
n—1

1 =

. (c— N1 (8.14)

Plugging (8.14) into (8.13), one obtains
(c— A){(n = 1)Cju — Ilhjk} =0. (8.15)

Contracting the above identity with ¢7! yields
(n—2)(c— NI =0.
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Since n > 3, the above equation becomes
(C — )\)Ik =0.

Then it follows from (8.14) that Ax = 0.
Thus A = A\(«) is independent of y € T, M.
Now it follows from (8.13) that

(C - )\)Cjkl = 0.

At any point € M where F, = F|r,a is not Euclidean, Cjp(z,y) # 0 for
some y € T, M \ {0}. Then A\(x) = ¢(x). By (8.12), This completes the proof.
Q.E.D.
Combining Corollary 8.5 with Lemma 8.7, we have the following theorem.
Theorem 8.8.([ChSh5]) Let (M, F') be a non-Riemannian Douglas manifold
of dimension n > 3. Then the following are equivalent,

(a) F has relatively isotropic Landsberg curvature, L 4+ ¢FC = 0;

(b) F has isotropic mean Berwald curvature, E = ”THCF’lh,
where ¢ = ¢(x) is a scalar function on M.

Furthermore, by Theorem 8.4 and Theorem 8.8, we obtain the following
Theorem 8.9.[ChSh5]) Let F' be a non-Riemannian Finsler metric on a
manifold of dimension n > 3. The following are equivalent.

(a) F is of isotropic Berwald curvature;
(b) F' is a Douglas metric with isotropic mean Berwald curvature;
(¢) F is a Douglas metric with relatively isotropic Landsberg curvature.

From Theorem 8.9 and Theorem 8.4, one gets the following
Corollary 8.10. For a non-Riemannian Douglas metric F' on a manifold of
dimension n > 3. The following are equivalent.

(i) L+ ¢(x)FC = 0;
(i) B;'y = c(@) {Fjrd} + Fji6i + Frdi + Fjuy'}

(iii) E = 2le(2)Fh.
Here ¢ = ¢(x) is a scalar function on M.
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It is clear that Corollary 8.10 is the generalization of Corollary 6.5 and It
generalizes Bacs6 and Matsumoto’s result (cf. Lemma 8.6) which says that, for
a Douglas metric F', L = 0 if and only if B = 0 ([BaMa2]).
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Chapter 9

Summary

There are several important geometric quantities in Finsler geometry. The flag
curvature K is an analogue of the sectional curvature in Riemannian geometry.
The Ricci curvature Ric is another kind of Riemannian geometric quantity. Be-
sides, we have some so-called non-Riemannian geometric quantities. The Cartan
torsion C is a primary quantity. There is another quantity which is determined
by the Busemann-Hausdorff volume form, that is the so-called distortion 7. The
vertical differential of 7 on each tangent space gives rise to the mean Cartan
torsion I := 7, dz*. C,7 and I are the basic geometric quantities which charac-
terize the Riemannian metrics among Finslers metrics. Differentiating C along
geodesics gives rise to the Landsberg curvature L. The horizontal derivative of
7 along geodesics is the so-called S-curvature S := 7| »y". The horizontal deriv-
ative of I along geodesics is called the mean Landsberg curvature J := I|kyk .
From the geodesic coefficients G*(z,y), we can define the Berwald curvature B
and the mean Berwald curvature E which are defined by
3 (i
szk:l = %, E;: = %Bmmij.
Yy’ oyroy

Furthermore, we can define the Douglas curvature D by B and E. Obviously,
7, I,S,J, C, L and B, E, D all vanish for Riemannian metrics. The Riemann
curvature measures the shape of the space while the non-Riemannian quanti-
ties describe the change of the “color” on the space. It is found that the flag
curvature is closely related to these non-Riemannian quantities.

Finsler projective geometry is an important part of Finsler geometry and
the Ricci curvature plays an important role in the Finsler projective geometry.
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Z. Shen proved that for two pointwise projectively related Einstein metrics g
and g on an n-dimension compact manifold M, their Einstein constants have
the same sign. In addition, if their Einstein constants are negative and equal,
then g = g. In section 3, we continue to study pointwise projectively related
Finsler metrics and give a comparison theorem on the Ricci curvatures.

Theorem 3.2.([ChShl]) Let (M,g) be a complete Finsler manifold and
g another Finsler metric on M, which is pointwise projectively related to g.
Suppose that

Ric < Ric.

Then the projective equivalence is trivial. Further, g is horizontally parallel
with respect to g, V§ = 0 and the Riemann curvatures are equal, R = R.
Furthermore, we obtain an additional conclusion to Theorem 3.2 for projec-
tively related Finsler metrics with the same S-curvatures.
Theorem 3.6.([ChShl]) Let (M,g) be a complete Finsler manifold and
g another Finsler metric on M, which is pointwise projectively related to g.
Suppose that both g and g satisfy

Ric < Ric, S=8.

Then the projective equivalence between g and g is trivial. Further, g is hori-
zontally parallel with respect to g, the Riemann curvatures are equal, R =R,
and dVj is proportional to dV.

If we modify the inequality in Theorem 3.2 into equality, we obtain the
following theorem.

Theorem 3.9.([Chl]) Let F be a Finsler metric on a manifold M and F
a another Finsler metric on M which is pointwise projectively related to F'.
Suppose that both F and F satisfy

Ric = Ric.

Then F is complete if and only if Fis complete. In this case, along any geodesic
¢(t) of F or F,

= constant.

Besides, we study pointwise projectively related Riemannian metrics. We
also discuss the projectively flat Finsler metrics with some special curvature
properties in sections 6 and 7. One of the important problems in Finsler geom-
etry is to study and characterize locally projectively flat Finsler metrics.
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Another important problem in Finsler geometry is to study and character-
ize Finsler metrics of scalar curvature. This problem has not been solved yet,
even for Finsler metrics of constant flag curvature. In section 4, we disscuss
the Finsler metrics of scalar curvature and partially determine the flag curva-
ture when F' is of isotropic S-curvature or relatively isotropic mean Landsberg
curvature.

Theorem 4.1.([CMS][ChSh3]) Let (M, F') be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(x,y). Suppose that

S=(n+ec(z)F(z,y).

Then there is a scalar function o(x) on M such that

In particular, ¢ = constant if and only if K = K(z) is a scalar function on M.
Theorem 4.2.([CMS][ChSh3]) Let (M, F') be an n-dimensional Finsler man-
ifold of scalar curvature with flag curvature K(x,y). Suppose that

J+c(z)FI=0.
Then the flag curvature K and the distortion 7 satisfy

n+1
3

2 Cwmym
Kyk + K+C(l’) — F(l‘,y) Tyk = 0

(a) If ¢(x) = constant, then there is a scalar function p(z) on M such that

_ 37(x,y)

K =—c+p(z)e” 1, y € T,M \ {0}.
(b) Suppose that F' is non-Riemannian on any open subset of M. Then K =
K(z) if and only if K = —c? is a nonpositive constant. In this case,
p(x) =0.

In fact, all known Randers metrics F' = o+ 3 of scalar curvature (in dimen-
sion n > 2) satisfy S = (n+1)e(x)F or J+¢(z)FI = 0, where ¢(x) is a function
on M. Motivated by such phenomena, in section 5, we study Randers met-
rics satisfying J + ¢(2)FI = 0 and classify Randers metrics with flag curvature
K= M\z) and J+ ¢(z)FI = 0.

Theorem 5.3.([ChSh2][ChSh3]) Let F = « + 3 be a Randers metric on a
manifold M. For a scalar function ¢ = ¢(z) on M, the following are equivalent
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(a) J+c(z)FI=0;
(b) ego = 2¢(a? — 3?) and 3 is closed.

Theorem 5.5.([ChSh2]|[ChSh3]) Let F' = a + (# be Randers metric on an
n-dimensional manifold M satisfying

1. K = A(z) is independent of y € T,,M;

2. J+ c¢(z)FI = 0 for some scalar function c¢(z) on M.
Then K = constant = —c? < 0. Further, F is either locally Minkowskian
(K = —c?=0) or in the form

<a,y>

F=04+ ———
I+ <az>

(K = —c* = —1/4) after a scaling, where © denotes the Funk metric on
the unit ball B” and a € R" is a constant vector with |a| < 1.

Furthermore, we study Randers metrics with isotropic S-curvature in section
6. We first obtain the following theorems.

Theorem 6.3.([ChSh2]) Let F = a + 8 be a Randers metric on an n-
dimensional manifold M. For a scalar function ¢ = ¢(z) on M, the following
are equivalent

(a) S=(n+1)cF,;
(b) E = (1/2)(n + De(x) F—h;
(c) ego = 2¢c(a? — 3?).

Theorem 6.4.([ChSh2]) Let F = a + 8 be a Randers metric on an n-
dimensional manifold M. For a scalar function ¢ = ¢(x) on M, the following
are equivalent,

(a) L+ ¢(x)FC =0 (or J + cFI =0);
(b) S=(n+ 1)cF and § is closed.
(c) E=(1/2)(n+ 1)e(z)F~'h and § is closed.

It is known that every locally projectively flat Finsler metric is of scalar
curvature. Using the obtained formula for the flag curvature in Theorem 4.1,
we classify locally projectively flat Randers metrics with isotropic S-curvature.
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Theorem 6.6.([CMS][ChSh3]) Let F' = o + 3 be a locally projectively flat
Randers metric on an n-dimensional manifold M and p denote the constant
sectional curvature of «. Suppose that the S-curvature is isotropic, S = (n +
1)e(x)F. Then F can be classified as follows.

(A) If p + 4c(x)? = 0, then c¢(z) = constant and K = —c? < 0.

(A1) if ¢ =0, then F is locally Minkowskian with K = 0;
(A2) if ¢ # 0, then after a scaling, F' is locally isometric to the following Randers
metric on the unit ball B C R",

<ay>
Flr,y) =0+ —————,
(@,y) 1+ <a,z>
where a € R™ with |a] < 1, and F has negative constant flag curvature
K=-1
1

(B) If u+ 4c(x)? # 0, then F is given by

2¢,x (2)y"

F = -

(z,y) = a(z,y) PR

and the flag curvature of F' is given by
Cyh (x)yk 2}
K = 3{——— +c(z +
ey e

3 Flx,—y)  n
= = de(z)2y 25T 1
1 {1+ de(z)?} Foy) +7

(B1) when p = —1, we can express & = a_1. In this case,

M <a,xz>

c(z) = ,
(@) 2/ (0 < a,z >)2 £ (1 — [z]?)
where A € R and a € R™ with |a|? < A £ 1.
(B2) when p =0, we can express o = ag. In this case,

B +1
2k +2 < a,x > +|z]?’

c(x)

where k£ > 0 and a € R" with |a]? < k.
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(B3) when p =1, we can express @ = a11. In this case,

. et <a,x >
2/1+ 22 = (e4 < a,z >)?’

c(x)

where € € R and a € R™ with [g|? + |a]? < 1.

We also study projectively flat Randers metrics with isotropic S-curvature
in the case when the manifold M is closed. And then, in section 7, we study
and characterize locally projectively flat Finsler with isotropic S-curvature and
obtain the following

Theorem 7.1.([ChSh4]) Let FF = F(z,y) be a locally projectively flat
Finsler metric on an open subset 2 C R™. Suppose that F' has isotropic S-
curvature, S = (n + 1)c(x)F. Then the flag curvature is in the form

Cwmym

K=3
F

+ o,

where 0 = o(z) is a scalar function on €.

(a) FK # —c® + % on Q, then F = o+ ( is a projectively flat Randers
metric with isotropic S-curvature S = (n + 1)cF;

(b) f K = —c® + % on ), then ¢ = constant and F is either locally
Minkowskian (¢ = 0) or, up to a scaling, locally isometric to the metric

<a,y> 1
0, = 6(x, _— ==
(x y) + 1+,a,x > (C 2)
or its reverse
= <a,y> 1
Oui= O, —y) — ————  (c=—3),
(z,~y) [ (c=-3)

where a € R™ is a constant vector and ©(x,y) is Funk metric on €.

The Douglas metrics form a rich class of Finsler metrics including locally
projectively flat Finsler metrics. The class of Douglas metrics is also much
larger than that of Berwald metrics. The study on Douglas metrics will enhance
our understanding on the geometric meaning of non-Riemannian quantities.
In section 8, we discuss Douglas metrics with relatively isotropic Landsberg
curvature or isotropic mean Berwald curvature. Then we introduce the Finsler



7

metrics of isotropic Berwald curvature. We prove an equivalence among the
above metrics.

Theorem 8.8.([ChSh5]) Let (M, F') be a non-Riemannian Douglas manifold
of dimension n > 3. Then the following are equivalent,

(a) F has relatively isotropic Landsberg curvature, L + ¢F'C = 0;

(b) F has isotropic mean Berwald curvature, E = ”THCF —1h,
where ¢ = ¢(x) is a scalar function on M.

Furthermore, we have the following
Theorem 8.9.([ChSh5]) Let F be a non-Riemannian Finsler metric on a
manifold of dimension n > 3. The following are equivalent.

(a) F is of isotropic Berwald curvature;
(b) F is a Douglas metric with isotropic mean Berwald curvature;
(¢) F is a Douglas metric with relatively isotropic Landsberg curvature.

Corollary 8.10. For a non-Riemannian Douglas metric F' on a manifold of
dimension n > 3. The following are equivalent.

(i) L+ ¢(x)FC = 0;
(ii) B‘kl = c(z) {Fj0} + Fo} + Frd} + Fiy'};
(iii) E = 2He(x)Fh.

It is clear that Corollary 8.10 generalizes Bacs6 and Matsumoto’s result
which says that, for a Douglas metric F, L = 0 if and only if B = 0 ([BaMa2]).
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Chapter 10

ésszefoglalés

A Finsler geometridban tobb igen fontos geometriai objektum taldlhato. A
K zészl6gorbiilet a Riemann geometria szekciondlis gorbiiletének analégja. A
Ric Ricci gorbiilet egy masik fontos Riemann geometriai objektum. Ezen
kiviil t6bb, nem Riemann geometriai objektummal rendelkeziink. A C Car-
tan torzié az elsédleges geometriai objektum. Tobb objektum szarmaztathatd
a Busemann-Hausdorff térfogat formabol, mint példaul a 7 torzitds. A 7 ver-
tikalis deffierencidlja a tangens téren megadja az I := Tykdﬂfk Cartan torziot.
C,7 és az I alapvetd geometriai objektumok, amelyek meghatarozzék a Rie-
mann metrikdkat a Finsler metrikdk kozott. A C geodetikusok mentén vett dif-
ferencidlja meghatdrozza a L Landsberg gorbiiletet. A 7 geodetikusok mentén
vett horizontdlis derivaltja el6éllitja az Ugynevezett S := 7'|kyk S-gorbiiletet.
Az T geodetikusok mentén vett horizontalis derivéltjit a J := I wy* Landsberg
gorbiiletnek hiviuk. A G%(x,y) geodetikus egyiitthatékbdl definidlhatjuk a B
Berwald gorbiiletet és az E f6 Berwald gorbiiletet, amelyek a koévetkezd kép-
letekkel vannak megadva
- P3Gt 1
B = ooy Fo=gbn

Tovabba, definidlhatjuk a D Douglas gorbiiletet B-bél és E-bol. Lathato, hogy
7,1,S,J, C, Lés B, E, D mind eltinik Riemann metrikdk esetén. A zasz-
l6gorbiilet szoros kapcsolatban van a nem Riemann tulajdonsagokkal.

A projektiv Finsler geometria nagyon fontos része a Finsler geometridnak és
a Ricci gorbiilet egy fontos szerepet jatszik a projektiv Finsler geometridban.
Z. Shen bebizonyitotta, hogy két egymashoz projektiv vonatkozasban 1évé g
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és g Einstein metrika egy n-dimenziés kompakt M sokasdgon a kdvetkezo tu-
lajdonsdggal rendelkezik: az Einstein konstansok ugyanazzal az el6jellel ren-
delkeznek. Mindazonaltal, ha az Einstein konstansok negativak és egyenldk,
akkor a ¢ = §. A 3-as fejezetben folytatjuk a Finsler terek projektiv vonatko-
zasainak tanulmanyozasit és megadunk a Ricci gorbiiletekre vonatkozéan egy
osszehasonlito tételt.

3.2. Tétel([ChShl]) Legyen (M, g) egy teljes Finsler sokasig és § egy masik
Finsler metrika M-en, amelyik projektiv vonatkozasban van g-vel. Tegytik fel,
hogy

Ric < Ric.

Ekkor a projektiv megfeleltetés trivialis. Tovabbd, a g horizontalisan parhuza-
mos g-vel (V§ = 0), és a Riemann gorbiiletek egyenlék R = R..

Tovabba, a 3.2 Tételbdl Finsler metrikék prejektiv vonatkozdsaira az S-
gorbiiletek kapcsolatara tudunk ramutatni.

3.6. Tétel([ChShl]) Legyen (M, g) egy teljes Finsler sokasig és g egy mésik
Finsler metrika M-en, amely projektiv vonatkozasban van g-vel. Tegyiik fel,
hogy a g és g kielégitik a

Ric <Ric, S=8

feltételeket. Ekkor a projektiv vonatkozas g és g kozott trividlis. Tovabba, g
horizontalisan parhuzamos g-vel, és a Riemann gorbiiletek megegyeznek R = R,
és dVy skaldrszorosa a dV,-hez.

Ha a 3.2. Tételben az egyenlGtlenséget egyenléségre cseréljiik, akkor a
kovetkezo tételt kapjuk.

3.9. Tétel([Chl]) Legyen F egy olyan Finsler metrika az M sokasdgon és F
egy masik Finsler metrika M-en, amelyek projektivek egymashoz. Tegytiik fel,
hogy F és F kielégitik

Ric = Ric.

Ekkor F akkor és csak akkor teljes, ha F' is teljes. Ebben az esetben bdrmely
k6z6s c(t) geodetikus mentén

t
—— = konstans.

Tovabba, a projektiv vonatkozasban 1év6é Riemann metrikdkat is tanulmé-
nyozzuk, és vizsgaljuk a tObb specialis gorbiileti tulajdonsiagokkal rendelkez6
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sikprojektiv Finsler metrikdkat a 6-ik és 7-ik fejezetben. Az egyik fontos prob-
léma a Finsler geometriaban a lokalisan sikprojektiv Finsler metrikdk tanulméa-
nyozasa.

A miésik fontos probléma a Finsler geometridban a skalargorbiiletii Finsler
metrikak jellemzése. Ez a probléma eddig még nem megoldott, s6t nem meg-
oldott a konstans zdszlégorbiiletekre sem. A 4-ik fejezetben azokat a skalargor-
biiletli Finsler metrikdkat tanulmanyozzuk, amikoris a F' izotrép S-gorbiilettel
rendelkezik vagy relative izotrépikus Landsberg gorbiilettel.

4.1. Tétel([CMS][ChSh3]) Legyen (M, F) egy n-dimenziés skaldrgorbiiletii
Finsler sokasiag K(z,y) zdszlégorbiilettel. Tegyiik fel, hogy

S = (n+ Lc(z)F(x,y).
Ekkor létezik egy o(x) skaldrfiiggvény M-en gy, hogy

Cym ym

K=3
F(z,y)

+o(x).

Speciélis esetként, ¢ = konstans akkor és csak akkor ha K = K(xz) skaldrfiigg-
vény M-en.

4.2. Tétel(|[CMS][ChSh3]) Legyen (M, F) egy n-dimenzids skalargorbiiletii
Finsler sokasig K(z,y) zdszlégorbiilettel. Tegyiik fel, hogy

J+c¢(z)FI=0.

Ekkor a K zaszlogorbiilet és 7 torzi6 eleget tesz a kovetkezd egyenloségnek

n+1 9 Comy™
K« + <K + c(x)? — F’”(mjy)> T, = 0.
(a) Ha c(z) = konstans, akkor 1étezik egy olyan p(x) skalarfiiggvény M-en
gy, hogy
K=-c+ p(x)eiscb(i’ly), y € T, M\ {0}.

(b) Tegyiik fel, hogy F' nem Riemann az M egy nyilt részhalmazan. Ekkor
K = K(z) akkor és csak akkor ha K = —c? egy nempozitiv konstans.
Ebben az esetben p(x) = 0.

Tulajdonképpen, minden F' = « + (3 skaldrgorbiileti Randers metrika (di-
menzié n > 2) eleget tesz az S = (n + 1)c(x)F vagy a J + ¢(x)FI = 0
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egyenldségeknek, ahol a c(z) egy M-en 1év6 fiiggvény. Ezaltal érdekesnek gon-
doljuk az 5-ik fejezetben azon Randers metrikdk tanulmanyozdsat, amelyek
eleget tesznek a J+ ¢(x) FI = 0 egyenlségnek, tovabbd ismertetjitk a K = A\(x)
és a J + c(x)FI = 0 zdszl6gorbiileti Randers metrikdk osztélyozdsét.

5.3. Tétel([ChSh2][ChSh3]) Legyen F = a + (3 egy Randers metrika az M
sokasdgon. Egy ¢ = ¢(x) skaldrfiiggvényre M-en a kovetkez6k ekvivalensek

(a) I+ c(z)FI =0;
(b) ego = 2¢(a? — 3?) és B zéart forma.

5.5. Tétel([ChSh2][ChSh3]) Legyn F = a + [ egy Randers metrika az M
n-dimenzids sokasagon, amely eleget tesz

1. K= Aa), azaz y € T, M fliggetlen;

2. J+ ¢(z)FI = 0 valamilyen c¢(z) M-en 1év6 skalarfiiggvényre.
Ekkor K = constant = —c? < 0. Tovabbé, F vagy lokdlisan Minkowski
(K = —c? = 0) vagy F a kovetkezd formuldval rendelkezik

<a,y>

F=04+ ——
I+ <az>

(K = —c? = —1/4) ahol © egy Funk metrikat jelent a B" egységgémbbdn
és minden a € R™ esetén |a| < 1.

Tovabba, tanulmanyozni fogjuk az izotrép S-gorbiiletii Randers metrikdkat
a 6-ik fejezetben. El6szor a kovetkezo tételeket nyerjiik.

6.3. Tétel([ChSh2]) Legyen F' = a+ (3 egy Randers metrika az n-dimenzids
M sokasdgon. Egy M sokasdgon megadott ¢ = ¢(z) skaldrfliggvényre a kovet-
kezok ekvivalensek

(a) S=(n+1)cF;
(b) B = (1/2)(n + De(z) F~h;
(c) ego = 2¢(a? — 3?).

6.4. Tétel([ChSh2]) Legyen F = « + [ egy Randers metrika a M n-
dimenzids sokasdgon. M-en megadott ¢ = ¢(x) skaldrfiiggvényre a kovetkez6k
ekvivalensek,

(a) L+ c(z)FC =0 (vagy J + cFI1 =0);
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(b) S = (n+1)cF és (3 zart.
(c) E=(1/2)(n+ 1)c(z)F~'h és B zért.

Az jél ismert, hogy minden lokélisan sikprojektiv Finsler metrika skaldr-
gorbiiletii. Felhasznalva a zdszlégorbiiletre vonatkozo formulat osztalyozzuk a
lokalisan sikprojektiv izotrép S-gorbiilettel rendelkezé Randers metrikédkat.

6.6. Tétel(|[CMS][ChSh3]) Legyen F' = a+( lokélisan sikprojektiv Randers
metrika az n-dimenzids M sokasagon és p jelolje az o metrika szekciondlis kons-
tans gorbiiletét. Tegyiik fel, hogy az S-gorbiilet izotrép és S = (n + 1)c(x)F.
Ekkor F' a kovetkezdképpen osztalyozhato.

(A) Ha g+ 4e(z)? = 0, akkor c(x) = konstans és K = —c* <0

(A1) ha ¢ =0, akkor F lokdlisan Minkowski, ahol K = 0;

(A2) ha ¢ # 0, akkor az F lokalisan izometrikus a kovetkez§ Randers metriké-
hoz B™ C R" egységgdmbon, ahol

<a,y>
Flz,y) =0+ —~2Y7
(,y) 1+ <a,z>
mikozben a € R™ ahol |a| < 1, és az F' negatfv konstans K = —1 zdszlé-

gorbiilettel rendelkezik.
(B) Ha u+ 4c(x)? # 0, akkor az F a kivetkez8képpen adott

2,k (7)y*

F(z,y) = a(z,y) - m

és az F zaszlogorbiilete a kovetkezdképpen adhaté meg
cor (2)y* 2
K = S{erc(:z:) +
F(z,y)
4

3 2
= 1{#4—40(9&) }7F(x,y) +

(B1) ha p = —1, akkor az a-t az a = ar—; fejezhetjiik ki. Ebben az esetben a

M <a,x>

AW/ s warrra ey e

ahol A € R és a € R™ mikdzben |a]? < A2 £ 1.
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(B2) ha p =0, akkor az a-t az o = oy fejezhetjiik ki. Ebben az esetben a

B +1
2V/k+2<a,x > Fz?

c(x)

ahol k > 0 és a € R"™ mikézben |a|? < k.
(B3) ha pu =1, akkor az a-t az o = 41 fejezhetjiik ki. Ebben az esetben a

. et <a,x >
2/1+ 22— (e+ < a,z >)?’

c(x)

ahol ¢ € R és a € R™ mikézben |e]? + |a|? < 1.

A tovabbiakban tanulmanyozzuk az izotrép S-gorbiilettel rendelkezd sikpro-
jektiv Randers metrikdkat amikor az M sokasag zart. Ekkor a 7-ik fejezetben
tanulmanyozzuk és jellemezziik az izotrép S-gorbiilettel rendelkezd lokélisan
sikprojektiv Finsler tereket és a kovetkezoket kapjuk

7.1. Tétel([ChSh4]) Legyen F = F(z,y) egy lokélisan sikprojektiv Finsler
metrika az 0 C R nyilt részhalmazon. Tegyiik fel, hogy F izotrép S-gorbilettel
rendelkezik, ahol S = (n + 1)c(x)F. Ekkor a zdszlégorbiilet a kovetkezd for-
mulédval rendelkezik .

CamyY

K=3

+ o,
ahol o = o(z) az Q-n definidlt skaldrfiiggvény.

(a) Ha K # —c* + % az Q-n, akkor F' = o + 3 egy sikprojektiv Randers
metrika izotrép S-gorbiilettel, ahol S = (n + 1)cF;

(b) Ha K = —c? + % az Q-n, akkor ¢ = konstans és I' vagy lokdlisan
Minkowski (¢ = 0) vagy lokélisan izometrikus

<a,y> 1
O, = O(x, —_— ==
(z R R (c=3)
metrikdhoz vagy pedig a kévetkezé metrikdhoz
- <a,y> 1
@ = ('-':) — _——_— = ——
0= ) - T (e=—3),

ahol a € R"™ egy konstans vektor és O(z,y) egy Funk metrika Q-n.
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A Douglas metrikdk a Finsler metrikdk egy igen gazdag osztalya, amely
magaban foglalja a sikprojektiv Finsler metrikakat. A Douglas metrikdk oszta-
lya sokkal gazdagabb, mint a Berwald metrikdké. A Douglas metrikdk tanulma-
nyozasa lehet6séget ad a nem Riemannian geometriai objektumok jellemzésére.
A 8-ik fejezetben tanulményozzuk azokat a Douglas metrikakat, amelyek relativ
izotrép Landsberg gorbiilettel vagy izotrép Berwald gorbiilettel rendelkeznek.
Vizsgalatainkban a kovetkezd tételeket kapjuk.

8.8. Tétel([ChSh5]) Legyen (M, F') egy nem Riemann Douglas sokasig,
amelynek dimenzidja n > 3. Ekkor a kovetkezok ekvivalensek,

(a) F relativ izotrép Landsberg gorbiilettel rendelkezik, ahol L 4+ ¢F'C = 0;

(b) F izotrép Berwald gérbiilettel rendelkezik, ahol E = “ELcF~1h,
mikdzben ¢ = ¢(x) egy skalar fliggvény M-en.

Tovabba a kovetkezdket kapjuk
8.9. Tétel([ChSh5]) Legyen F' egy nem Riemann Finsler metrika az M
sokasagon, ahol a dimenzié n > 3. Ekkor a kovetkezok ekvivalensek.

(a) F egy izotrép Berwald gorbiilettel rendelkezik;
(b) F egy izotrép Berwald gorbiilettel rendelkez6 Douglas metrika;
(c) F egy relativ izotrép Landsberg gorbiilettel rendelkezé Douglas metrika.

8.10. Kovetkezmény Egy nem Riemann F' Douglas metrikdra n > 3
dimenzié esetén a kovetkezok ekvivalensek.

(i) L+ ¢(x)FC = 0;
(ii) Bl = c(@) {Fjd] + Fudj, + Frud} + Fjuy'} ;
(iii) E = 2c(z)Fh.

Vildgos, hogy a 8.10 kovetkezmény Bacsé és Matsumoto eredményének alta-
ldnositasa, amely azt mondja, hogy egy F Douglas metrika esetén L = 0 akkor
és csak akkor, ha B =0 ([BaMa2]).
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