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ABSTRACT

This PhD dissertation contains new results in the theory of functional equa-
tions. This field of mathematics is so extended that we make an attempt to
investigate only small but interesting parts of this ramifying theory. The
following two parts quite differ from each other, showing that functional
equations turn up almost everywhere.

In the first half of the dissertation we start out from an identity of the
brilliant mathematician Ramanujan. Among the many, sometimes amazing
results in number theory, Z. Daréczy found one he thought interesting
and set up a functional equation generalising the original identity. He
asked what were the general solutions of this equation on the set Z of
the integers. Giving the solutions of the equation on Z (Section 2), we
examined another abstract algebraic structure and also found the answer
to his question (Section 3).

Part I belongs rather to number theory and algebra than to analysis. As
it happens so often in number theory, the problem presented in Section 2
is formulated in a way that the reader can understand it without having
deep knowledge of mathematics.

The problem examined in Section 3 is connected to abstract algebra and
the theory of polynomials on groups. Since the reader might not be familiar
with this topic, a brief summary of the theory is also given.

Part II is more “real” analysis, in both senses of meaning. Firstly, it
deals with problems on the set R of the real numbers. Secondly, it is really
analysis, with functions, monotonity, continuity, etc. But similarly to the
first half, the basic problem of the second part can be easily understood.

These sections mainly deal with extension theorems for Matkowski—-Suto
type problems and material connected with them. This problem has a
history of almost a century long. Suto started the investigations in 1914,
then it was re-discovered by Matkowski in 1999. The original problem for
quasi—arithmetic means was solved completely by Daréczy and Péles in
2001. In the proof they employ an extension theorem of Dardczy, Maksa,
and Pales.



2 ABSTRACT

Since Matkowski—Suto type problems can be formulated for other classes
of means as well, extension theorems in these cases are also important and
interesting. Moreover, they immediately generalise the existing results.

In Section 4 we give the basic definitions and preliminaries of the problem
and also the original extension theorem. We also show another aspect, the
Gauss—composition.

The extension theorems for weighted quasi—arithmetic means and quasi—
arithmetic means of order v with their proofs are presented in Section 5.

Section 6 provides a tool to prove the extension theorems, the comple-
mentary means. We think that these theorems and proofs are interesting
not only because of their use in the proofs of the previous section but also
in their own right.

The material is arranged in the conventional mathematical form (defini-
tions, theorems, lemmas, proofs, remarks, etc.). The first section of each
part (Section 1 and 4) contains an introduction to the topic. Here we give
further references as well.

Throughout the dissertation with every result we give (usually in the
text) the source it is taken from, unless it is the first appearance.



Part 1

On an Identity of Ramanujan






1. INTRODUCTION

If you have built castles in the air,
your work need not be lost;

that is where they should be.

Now put the foundations under them.
H. D. Thoreau

There are such castles in the history of mathematics. Some of them are
smaller and humbler, some bigger and fairer. But there are only few (if
any) that can be compared to the vastness and beauty of the one that was
built by a poor young Indian. Since his death many mathematicians have
been constructing the foundations for this magnificent structure.

Srinivasa Ramanujan was born on December 22, 1887 in southern India.
At the age of 12 he borrowed Loney’s Trigonometry and completely mas-
tered its contents. Three years later he read Carr’s Synopsis of Elementary
Results in Pure Mathematics and it had the greatest influence on him. This
book contained about 6000 results mainly on calculus and geometry but
nothing on functions of a complex variable or elliptic functions. For the
most part Carr ignored the proofs, and if a proof is given it is usually very
brief and sketchy.

In 1903 Ramanujan took the matriculation examination of the University
of Madras. However, by this time he was completely absorbed in math-
ematics and would not study any other subject. No wonder he failed his
examinations at the end of the first year. Four years later he tried again
and failed again his exams.

He got married and feeling it necessary to have a job, Ramanujan ac-
cepted a clerical position, which turned out to be fortunate in his career.
There he met an English engineer and a mathematician and they encour-
aged Ramanujan to communicate his mathematical discoveries to England.
He had tried thrice before at last in 1913 he wrote the famed English math-
ematician G. H. Hardy.

When Hardy received Ramanujan’s letter, he and J. E. Littlewood spent
two and a half hours studying its contents. Beforehand Hardy exclaimed

that this Hindu was either a crank or a genius. In the end they decided
5



6 1. INTRODUCTION

that Ramanujan was indeed a genius. Some results contained in the letter
were false, others well known, but many were undoubtedly new and true.
Hardy replied without delay and invited Ramanujan to go to Cambridge.

In 1914 Ramanujan arrived in England. The next three years were happy
and fruitful, though he had difficulties with the English climate and getting
proper vegetarian food. Both Hardy and Ramanujan profited from each
other’s ideas and knowledge, but after three years Ramanujan fell seriously
ill. The war prevented him from returning to India, so he stayed in England
and continued his work. Finally, in 1919 he departed for home. However,
the friendlier climate and diet did not improve his condition. He died
young, on 26 April, 1920, at the age of 32.

Ramanujan collected his results in three notebooks and other manu-
scripts. The variety of these results is amazing. Ramanujan seems to have
dealt with most branches of mathematics. In the Notebooks the reader can
find theorems, examples concerning magic squares, harmonic series, com-
binatorial analysis, Eulerian polynomials and numbers, Bernoulli numbers,
the Riemann zeta-function, divergent series, the gamma function, trans-
formations and evaluations of infinite series, hypergeometric series, contin-
ued fractions, asymptotic expansions, elementary algebra, number theory,
prime numbers, theta-functions, ¢-series, integrals, partial fractions, ele-
mentary analysis.

It is generally believed that Ramanujan made many errors, gave no proofs
and his proofs are sometimes incorrect. However, one must be careful
with this opinion. Ramanujan intended the notebooks for his personal
use and not for publication. Thus, notation is sometimes not explained
and hypotheses are rarely given with theorems and formulae. In fact the
notebooks contain some minor errors and misprints but very few serious
errors. As for the proofs, indeed, they are usually ignored and those proofs
that are given are only sketches. It is not surprising if we take into account
that first, the notebooks were a collection of results for Ramanujan himself
and he no doubt could reproduce any of his proofs. Secondly, a poor
uneducated Hindu could not afford much paper, which was expensive. And
thirdly, Carr’s Synopsis served as a model for Ramanujan how to write
mathematics.

Ramanujan’s results are often rediscoveries and are sometimes rediscov-
ered. Several of his theorems and formulae are so surprising and peculiar
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that the reader does not understand how someone could think of them
at all. As Hardy wrote about a few continued fraction formulae in Ra-
manujan’s first letter, “if they were not true, no one would have had the
imagination to invent them.” The same applies to some of his identities in
number theory.

(The above brief account on Ramanujan’s life and work was mainly taken
from Berndt’s book [Ber94].)

In Ramanujan’s third notebook [Ram57], on page 385, the following entry
can be found (Entry 44).

If ad = be then

(a+b+c)"+b+c+d)"+ (a—d)" =
(a+b+d)"+(a+c+d)"+(b—0),

(1.1)

where n = 2 or 4.

Expanding both sides in each case one can easily verify the equality.

It seems probable from the context and the examples following the entry
that Ramanujan thought identities (1.1) important in the (commutative)
ring Z of the integers. We note that Ramanujan’s statement is true in any
commutative ring.

It would be interesting to know if Ramanujan found all the identities
of type (1.1). This means the following. Let f : Z — R be an unknown
function, and according to the Ramanujan identities, suppose that for all
a,b,c,d € Z such that ad = be (in the following we shall denote it by
[a,b,c,d] € T) the functional equation

fla+b+c)+f(b+c+d)+ fla—d) =

(1.2) flatb+d)+flatc+d)+f(b—o)

holds. Let S(Z,R) denote the set of the solutions of the functional equation
(1.2), i.e., the class of all the functions f : Z — R for which (1.2) holds for
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all [a,b,c,d] € T'. Tt is clear from the remarks above that the functions

fi(z) = 1,
(1.3) folz) = 2 (x €Z)
fs(z) = 2

are elements of S(Z, R), which trivially implies that the linear combinations
of the functions fi, fa, f3 (over R) are also solutions, that is, they belong to
S(Z,R). The question is whether we have all the solutions of the functional
equation (1.2). The answer is negative, since the function

(1.4) fulz) == {1 if 2|2 (x € 2)

0 otherwise

given by T. Farkas belongs to S(Z,R) and f, is linearly independent of the

system {fla f27 f3}

In order to check that fy is a solution of (1.2) we have to examine every
possible case.

(i) If2]a, 2|b, 2|c,and2|dthen2|(a+b+c), 2| (b+c+d),
2l (a—d), 2| (a+b+d), 2|(a+c+d), 2|(b—c¢), andso (1.2)
holds.

(1)) If2 |a, 2|b, 2tc,and2fdthen2t(a+b+c), 2| (b+c+d),
2{(a—d), 2{(a+b+d), 2|(a+c+d), 21(b—¢), andso (1.2)
holds again.

(1) If 24 a, 24b, 24¢,and 24d then 21 (a+b+c¢), 21 (b+c+d),
2| (a—d), 21(a+b+d), 21 (a+c+d), 2| (b—c), which implies
(1.2).

It is easy to verify that the remaining cases are either not possible (ad #
be) or, by the symmetry of the equation, are not essentially different from
the above ones.

After this it is a natural problem to characterise the set S(Z,R). Sec-
tion 2 contains the solution given by Dardczy and Hajdu ([DH99]). A
question of this kind was earlier formulated by Daréczy ([Dar94]) for com-
mutative rings. According to this paper, in the following we shall denote by
S(R,G) the set of all the solutions of the functional equation (1.2), where
(R, +,-) is an arbitrary commutative ring and (G, +) is an Abelian group.



2. THE SOLUTIONS OF THE RAMANUJAN EQUATION ON Z

As it was mentioned in the introduction, the results of this section can be
found in [DH99].

2.1. A recursive formula.

If f € S(Z,R) then from equation (1.2) by interchanging b and ¢ we have
flb—c) = fle—1),

that is, with the notation z :=b — ¢

(2.1) f@) = f(=2) (z € 7).

(Equation (2.1) is true not only on Z but on any commutative ring.) This
means that it is sufficient to determine the unknown function f on the set
NU =NU {0}

Let I := {0,1,2,3,4,5,6,7,9,10,12} C Z. Then card I = 11. The
following theorem gives a formula for the elements of S(Z, R).

Theorem 2.1. Let f € S(Z,R). Then for any x € Ny \ I there exist
integers k;(x) (i € I) such that

(2.2) Fla) = ki) f(i).
iel

Proof. Let us define the following sets:

Ay ={x=3k+2| k>2 keN} ={811,14,...}

Ay ={x=3k+1| k>4, ke N} ={13,16,19,...}

A :={x =3k | k>6, ke N} ={18,21,24,...}.
Then

No =TUAyU A; U Ay U {15},

where the sets in the union are pairwise disjoint. Now let f € S(Z,R)
be arbitrary, which, as a consequence of our previous remarks, satisfies

flx)=f(=z) (z€Z)

9
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If € Ny \ I we shall show that f(z) can be represented as a linear com-
bination of the values f(k) (k€ {0,1,...,x—1}) with integer coefficients.
There are four possible cases:

(i) x € Ay. Then x = 3k +2 (k > 2) and from (1.2) by substituting

2k, k,2,1] € T we get

flx) =f(3k+2) =
FBk+1)+ f(2k+3) + f(k —2) — f(k+3) — f(2k — 1),

where the arguments of the function f on the right hand side are less
than x, and nonnegative.

(ii)) x € A;. Then x =3k +1 (k > 4) and from (1.2) by substituting
2(k—1),k—1,4,2] € T we get,

flx) =fBk+1) =
F(3k— 1)+ f(2k+4) + f(k—5) — fk+5) — f(2k — 4),

where the arguments of the function f on the right hand side are less

than x. If £ = 4 then £k — 5 = —1, and since f(—1) = f(1), the

arguments on the right hand side can be regarded as nonnegative.
(iii)) v € Ayg. Then x = 3k (k > 6) and from (1.2) by substituting

2(k —2),k—2,6,3] € T we get,

fl@) =f(3k) =

fBk—=3)+ f(2k+5)+ f(k—8)— f(k+7)— f(2k—T7),
where the arguments of f on the right hand side are less than z. If
k = 6 then k —8 = —2, and since f(—2) = f(2), the arguments on

the right hand side can be regarded as nonnegative again.
(iv) x € {15}. Then from (2) by substituting [9,3,3,1] € I we get

flz) = f(15) = f(13) + f(13) + f(0) = f(8) = f(7),

that is, the arguments on the right hand side are less than 15, and
nonnegative.

Since we have proved for any z € Ny \ I that f(z) can be written as
a linear combination of the values f(k) (0 < k < z — 1) with integer

coefficients, the continuation of the procedure while it is possible gives
(2.2). O
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Theorem 2.2. Let f € S(Z,R). Then for any x € 7 there exist integers
ki(z) (i € I) such that
(2.3) fl@) =) ki(2)f ().

icl

Proof. 1If © € Ny \ I then the assertion follows from Theorem 2.1. If z €

then let
1 if =
ki) = LT
0 if ielandi#uz.

Obviously, x satisfies (2.3). If x € Z \ Ny then, since —z € Ny,

f(2) = f(=2) = 3 k(=) £ (),

icl
so (2.3) holds. O

Remark 2.1. As an example, we note that some calculations show that
according to the order of the elements of I

{k:(15) | i € I} = {0,4,0,1,-2, -1, -2, 3,0, 2, 2}.

2.2. Further solutions.

According to the above results any solution f € S(Z,R) can be obtained
using solely the elements of {f () | i € I'}. The cardinality of I implies 11
degrees of freedom, therefore it is natural to ask if there exist seven more
solutions, which together with the already known four linearly indepen-
dent ones, form an 11 element set of linearly independent solutions. The
theorems below answer this question.
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Theorem 2.3. The following functions, defined on 7Z, are elements of

S(Z,R):
)1 df 3
fslz) = {0 otherwise,
1 if 5|
folz) = {0 otherwise,
1 if 5] (x+1)(xz—1)
falx) = {0 otherwise,
(1 if 7|a(z+3)(z—3)
(2.4) fila) = {2 i 7@+ D@-1)
\ otherwise,
(1 if 7T|z(x+2)(z—2)
fo(x) == <0 if T|(z+1)(z—1)
(2 otherwise,
1 if 4
fol@) = {0 otherwise,
1 if 8z
G {0 otherwise.
Proof. Functions f;, ¢ = 5,...,9 are periodic with respect to some m and

so can naturally be obtained from functions ¢; defined on the ring 7, :=

{0,1,...,m — 1} of the integers modulo m. Define ¢; : Z,, — Zp, i =

5,...,9 by

222 + 1 (m=3

4zt 4+ 1 (m=5

3zt + 322 (m=5
(m=17
(m=17

62t + 222 + 1
= bt 4+ a2 +1

-3
LE2EEE
I
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One can readily check that f;(x) = ¢;(Z), where underlining is understood
as the map from Z,, into Z defined by the following rule: if Z € Z,, then
z:=xz € {0,1,...,m —1} C Z. Functions ¢; are linear combinations of
polynomials 1,22 z* over the field Z,,, hence it is guaranteed that they
belong to S(Zy,, Zm). For ¢;, if i =6,7,8,9, we have
0i(Z) + i(§) + ¢i(2) = ¢i(@) + pi(7) + ¢i(Z)

for any %,9,z € Z,,, which shows that the functions f;, = = 5,...,9 are
elements of S(Z,R).

For i = 5 the above identity may not hold only if ¢;(z) = ¢;(y) =
©;(Z) = 1. This, however, causes no significant difficulty since it can be
directly checked that (1.2) holds and f5 also belongs to S(Z, R).

Unfortunately, the above method breaks down for fiy and fq;, since they
cannot be obtained from polynomials of the right form. For them one has
to examine every possible case and check directly that they are indeed

solutions of (1.2). (The computations can be carried out similarly to the
case of fy in (1.4).) O

Theorem 2.4. The 11 element subset {fy, : Z — R | 1 < k < 11} of
S(Z,R), consisting of the functions defined in (1.3), (1.4), and (2.4) is
linearly independent over R.

Proof. Suppose that there exist real numbers ay, as, ..., aq; for which

11
> afi(z) =0 forallz€Z.
=1

Substitutions x = i, where ¢ runs through the elements of I, result in the
system

> filiyor =0 (i € I)

of linear equations for the «;. Since functions f; are all known, one can
compute the entries of the matrix

A= (fl(i))lgzgu, el

of the system. The result of the computations is given in the following
table:
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i€l g 1 2 3 4 5 6 7 9 10 12
1<1<11

1 T 1 1 1 1 1 1 1 1 1 1
2 0 1 4 9 16 2 36 49 81 100 144
3 0 1 16 81 256 625 1296 2401 6561 10000 20736
4 1 0 1 0 1 0 1 0 0 1 0
5 1 0 0 1 0 0 1 0 1 0 1

6 1 0 0 0 0 1 0 0 0 1 0
7 0 1 0 0 1 0 1 0 1 0 0
8 1 2 0 1 1 0 2 1 0 1 0
9 1 0 1 2 2 1 0 1 1 2 1
10 1 0 0 0 1 0 0 0 0 0 1
11 1 0 0 0 0 0 0 0 0 0 0

The determinant' of A is not zero, hence the system has only a trivial
solution, i.e., solutions f; (1 <1 < 11) are linearly independent. 0]

2.3. The solutions of the equation.

Employing the above statements an exact and complete characterization of
the solution set S(Z,R) can be given.

Theorem 2.5. For any f € S(Z,R) there exist constants a; € R (1 <
[ <11) such that

(2.5) flz) = Zazfz(x) (zeZ),

where f; : Z — R (1 <1 < 11) were defined in (1.3), (1.4), and (2.4).
Conversely for any a; € R (1 < [ < 11), the function defined by (2.5)
belongs to S(Z,R).

Proof. Since linear combinations of functions belonging to S(Z,R) are also
in S(Z,R), the second assertion of the theorem is trivial.

'"The computation of the determinant was done by Maple.
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Now let f € S(Z,R) be arbitrary. Then the system of linear equations
(for the unknowns ¢; (1 <1 < 11))

S flia = (i) (iel)

has a unique solution, because, as we saw it in the proof of Theorem 2.4,
its matrix is regular.
On the other hand, it is clear (from Theorem 2.2) that for any = € Z

Fo) = K@) =Y ko) (z mm) _

iel icl
11 11
Z ap (Z kz(x)fl(l)> = Z a fi(z),
=1 iel I=1
which proves the first assertion. O

Remark 2.2. The above results imply the uniqueness of the integers x +—
ki(z) (i € I) in Theorem 2.2. Indeed, if we assume that there exists another
x> kX (x) (i € I, x € Z) with the same properties then for any f € S(Z,R)

> (ki(x) = k() f(i) = 0 (z € Z)

il
would hold. Replacing f by the solutions f; (1 <1 < 11), and using the
fact that det(f;(i)) # 0, equations

> (ki(z) = K ()) fuli) = 0 (1<i<11)
iel
imply that
ki(r) = ki (x)
holds for all x € Z, which proves the uniqueness.



3. THE RAMANUJAN DIFFERENCES

3.1. General investigations.

In the previous section we solved the Ramanujan equation on the com-
mutative ring of the integers. In the following we replace the integers
with another structure and give the general solutions. These results were

achieved by Dar6czy and Hajdu [DH9S].
Let R(+,+) be a commutative ring with identity. If

a b
A= (c d) € Mat(2, R)

then let

det A := ad — be, A° = (b a).
d c

Denote by Mat*(2, R) the set of the matrices A € Mat(2, R) for which
det A = 0. Let G(+) be an Abelian group. If f : R — G is a function then
let

(3.1) Ci(A):=fla+b+c)+ f(b+c+d)+ fla—d)

)i=
for any A = Z

) € Mat(2, R) (see Dar6czy’s paper [Dar94]). Obvi-

ously, C; : Mat(2, R) — G. In this case the Ramanujan difference of the
generating function f : R — G is defined by the equation
Dy(A) = Cp(A) — Cp(A%)

for any A € Mat(2, R). Now, the Ramanujan equation (1.2) can be written
in the following form

(3.2) Di(A) =0 if A€ Mat*(2, R).
If
a;:R—G (i=1,2)
are additive functions (i.e., a;(x +y) = a;(x) + a;(y) for any z,y € R), and
ap € G then the function given by

f(x) == ay(z") + a1 (z®) + ag (r € R)
16
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(f : R — @) solves equation (3.2), that is, an element of S(R, G).

Theorem 3.1. Let R(+,-) be a commutative ring with identity
(e:=1). If f belongs to S(R,G) then

fE2)+ f(tz(y+ D)+t +y+1)) + f (tzy +t(y> +y+ 1))
(3.3) — ftz(y+ 1) +t(y> +2y)) — f (tz +t(2y + 1))
—f (tzy + t(y* — 1)) =0
forany t,z,y € R.
Proof. For any t,x,y € R let

A= <tfyy tf) € Mat*(2, R).
Then from (1.2)
fltry +tx+ty) + fte +ty +1) + ftey — t) =
ftey +tx +t) + f(tey + ty +t) + f(tz — ty)

follows, which implies, with the notation z := x — y (i.e., x = 2z 4+ y),
functional equation (3.3). O

Theorem 3.2. If R is a field and f €S(R,G) then for any x,y,t € R
f@)+f (z(y+1) +ty* +y+1))

(3.4) +fay+ty>+y+1) = f(2(y+1) +ty> +2y))

—fle+ty+1) = f(ey +t(y* - 1) =0.

Proof. If t # 0 then let z := ¢t~'z in (3.3), where x € R is arbitrary. This
implies the validity of (3.4) for any z,y € R and t # 0 (¢t € R). It is easy
to verify that (3.4) also holds for ¢ = 0, and this completes the proof of the
theorem. O

The above theorem shows that another type of functional equations can
be used to solve our problem. Functional equation (3.4) can also be written
in the following form. Let f; = fo = f, f3 = fi1 = fs = —f and for any
y € R fixed

Pry(2) = osy(z) = (y+1)z
(3.5) Pou(T) = p5y(z) = yx (x € R)

pag(r) = =
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and
Ury(t) = oy (1) == (v +y + 1)t
U3y (t) == (y° + 2y)t
(3.6) Guy () = (29 + 1)t (t € R).
Psy(t) == (y> — 1)t
With the above notation (3.4) implies
5
(3.7) F(@)+ 3 fi (@i (@) + iy (1)) = 0
i=1

for any z,¢t € R and y € R, where f,f; : R — G (i = 1,2,3,4,5) are
unknown functions and for a fix y € R the functions

GigsViy: B — R (1=1,2,3,4,5)

are additive. The type of functional equations of form (3.7) is known for a
fix y € R, this is the so—called “linear” functional equation, which can be
solved generally under certain conditions as we shall see later. Since this
equation is strictly connected with the Fréchet equation and the theory of
polynomials on groups, in the next subsection we give a short summary of
the general theory.

3.2. Polynomials, the Fréchet and the linear functional equation.

The notion of polynomials on groups was introduced by S. Mazur and
W. Orlicz [MO34], M. Fréchet [Fré29], and G. Van der Lijn [VdL45]. A
thorough description of the theory of polynomials on groups and their ap-
plications can be found in Székelyhidi’s book [Szé91].

Definition 3.1. Let S, G be commutative semigroups, n a positive integer.
A function A : S™ — G is called n—additive if it is a homomorphism of S
into G in each variable. If n = 0 then let S° = S and we call any constant
function from S to G 0-additive. A is said to be multi-additive if there
exists n € N such that A is n—additive. The diagonalisation of an n—
additive function A : S — G is denoted by A* and means the following.
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For any z € S let
A*(x) == Az, x, ..., x).

Definition 3.2. Let S, G be commutative topological semigroups. A con-
tinuous function p : S — G is called a polynomial if it has a representation
as the sum of diagonalisations of multi—additive functions, that is,

n
p=2_ A
k=0

where n € N and Ay, : S¥ — G are k—additive functions (k =0,1,...n). In
this case we call p a polynomial of degree at most n.

Remark 3.1. In our case the topology on S is the discrete topology. Con-
sequently, every function is continuous, and we need not examine the con-
tinuity of the polynomials.

The following theorem shows that the Fréchet equation characterises the
polynomials.

Theorem 3.3. Let S be a commutative semigroup, G' a commutative group
and n € N, and let the multiplication by n! be injective in G. A function
f S — G solves the Fréchet equation

(3'8) Ayl,yz,...,ynﬂf(x) =0

for all x,y1,ya,...,yns1 € S if and only if f is a polynomial of degree at
most n. Here A, is the difference operator, i.e., for f : S — G andy € S

Ayf(z) = flz+y)— flz)
for any x € S.

Remark 3.2. Theorem 3.3 shows that we should suppose that G is an
Abelian group in which multiplication by any positive integer is bijective,
that is, G is a divisible, torsion—free Abelian group. Since these groups are
linear spaces over the field Q of the rationals, in the following we assume
that G is linear space over a field of characteristic zero.

Now consider the following ”linear” functional equation, which is a com-
mon generalisation of classical functional equations like the Pexider equa-
tion, the Jensen equation and the square—norm equation:
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n+1

(3.9) +Zfz pi(T) + Yiy)) =0
for all x,y € S, where ¢;,1; are homomorphisms of S and f,f; : S —
G (i=1,2,...,n+ 1) are the unknown functions (cf. [Szé82], [Szé91]).

Theorem 3.4. Let S, G be Abelian groups, n € N, @;,1; : S — S additive
functions, and let rg(y;) Crg(y;) (i = 1,2,...,n + 1). If the functions
[ fi:S—=G (i=1,2,...,n+1) satisfy (3.9) then f satisfies (3.8).

3.3. The polynomial solutions.

Theorem 3.5. If R is a field of characteristic zero, G is a linear space over
a field of characteristic zero, and f €S(R,G) then there exist k—additive,
symmetric functions Ay, : R¥ — G (k= 4,2,0, G° := G) such that

(3.10) f(z) = Aj(z) + As(z) + A
holds for any © € R.

Proof. In this case f satisfies the functional equation (3.4) for all z, ¢,y € R.
Let y =2 in (3.4). Then

flx)+ fBx+7Tt)+ f(2x + Tt) — f(3x + 8t) — f(x +5t) — f(2x 4+ 3t) =0

for any x,t € R, and with the notation of (3.5) and (3.6) the functional
equation

(3.11) +Zfz i () + Pia(t) = 0

holds for all z,¢ € R. Since R is a field of characteristic zero,
(3.12) rg(viz) = R (1=1,2,3,4,5)

holds, therefore rg(y;2) Crg(via) (i = 1,2,3,4,5), and thus, by Theo-
rem 3.4 and Theorem 3.3, f is a polynomial of degree at most 4. That
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(3.13) fla) =" Ap(x) (z € R),

where A, : R¥ — G are k-additive, symmetric functions. On the other
hand, from (3.13) we get

(3.14) f(=x) = Aj(x) — A3(2) + A3 (2) — Al(z) + A5

for all z € R, which implies, as a consequence of equations (2.1), (3.13),
and (3.14),

fa) = TEHIED sy 1y +

for any x € R. O

Remark 3.3. The assumption that R should be a field of characteristic
zero guarantees (3.12). However, a weaker condition is sufficient. If we
suppose that R is a commutative ring with identity in which the elements

2, 3, 5, 7 are invertible then in each case the range of 1; 5 is the whole R,
and (3.12) holds.

Theorem 3.5 does not state that the final form of f is (3.10), only that
[ has the representation (3.10). This however does not imply that the
functions of the form (3.10) satisfy the functional equation (1.2). Therefore
in the following we shall examine under which (other) conditions a function
of the form (3.10) belongs to S(R, G).

Let Ay : R¥ — G (k = 4,2,0) be k—additive and symmetric functions
given and, according to (3.10), let

[f=A+ A5+ A (f: R— Q).
We shall examine what conditions are necessary and sufficient for the above
defined function f to belong to S(R,G).
Theorem 3.6. If the function f given in (3.10) is in S(R,G) then
Ay €S(R,G) if k =4,2,0.

Proof. The assertion is trivial for Aj. So if f €S(R,G) then g := (f —
A}) €S(R,d). On the other hand, note that if ¢ €S(R,G) then the func-
tion

92() = g(20) (v € R
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is an element of S(R,G), too. This implies that the function

= (g(20) — 4g(@)) = = (A}(20) + A3(22) — 44](x) — 443(x)) =

1
12 12
L (643(x) + 443(x) — 443(r) — 443 (0) (= Ai(r) (e R)
also belongs to S(R, ), from which A; €S(R,G) follows, as well. O
Theorem 3.7. A5 €S(R,G) if and only if
(3.15) Ab(z) = Ay(a®)1) (z € R).

Proof. Let x € R be arbitrary, and let

2
a= ()
Then D4;(A) = 0 holds if and only if
As(2? +22) + A5(20 + 1) + Aj(2® — 1) = 245(2” + 2 + 1).
By the binomial theorem for multiadditive functions from this
Ab(2%) + 245(2%, 22) + Ab(22) + A5(27) + 245(22,1) + A5(1)
+ A5 (2?) + 245(2?, —1) + A5(—1) =
2A5(2?) + 4As (2%, 1) + 4A5(2?, 1) + 245 () + 4A5(x, 1) + 245(1)

follows, whence
A (x) = Ay (2% 1),
so (3.15) holds. On the other hand, the Ramanujan identity implies that

the function x — Ay(2% 1) (z € R) belongs to S(R, G). O
Theorem 3.8. A} €S(R,G) if and only if
(3.16) As(z) = Ay(2*)1,1,1) (z € R).

Proof. Let x € R be arbitrary, and let

x? , x? -z
A'_<x 1), and A'_<—x 1).

Then D4:(A) =0 and D4:(A') = 0 hold if and only if
(3.17)  Aj(2® +2z) + A;(2z + 1) + A (2® — 1) = 245(2* + v + 1),
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and
(3.18)  Aj(2® —2x) + Af (=22 + 1) + Aj(2° — 1) = 245(2® —x + 1).

Adding the two equations then using the binomial theorem, and the fact
that

Aj(a+0b)+ Aj(a—b) =2A4(a,a,a,a) + 12A4(a, a, b, b) + 2A4(b, b, b,b),
we have
5A4(z, m, 2, 1) =24, (2% 22, 2%, 1) + 244(2,1,1,1)
(3.19) —2A4(2%, 2%, 2, ) + Ay(2?, 2%, 1,1)
—2A4(z,2,1,1) + 4A,(2* 2,2, 1).

If in (3.19) we put 2z for x, then subtract the equation from (3.19) multi-
plied by 2% we obtain

10A(z, 2, z, ) =5A4(2*,1,1,1) — 5A4(z, 2,1, 1)
4+ 2A4 (2%, 22, 1,1) + 8A4 (2%, 1, 2, 1).

Now replacing = by 2z in (3.20) again, then subtracting the equation from
(3.20) multiplied by 22, we get

(3.21) 5A4(z, 2,2, 1) = Ag(2?, 2%, 1,1) + 4A4(2%, 1, 2, 1),

and similarly we get that expressions of the same degree must be equal.
The equalities involving odd degrees follow from (3.17) and (3.18) similarly:

(3.22) A2 1,1,1) = Ay(w,2,1,1),
Ay(2®,2,1,1) = Ay(z, 7,2, 1),

(3.20)

(3.23) Ay(2? 2?, 2,1) = Ay(2?, 2,2, 1),
Ay(a? 2?, 2%, 1) = Ay(2?, 2%, 2, 2).
Putting = + 1 instead of x in (3.23), we have
Agr* +2r+ 1,202 422+ Lo+ 1,1) = Ay(2* + 22+ Lo+ L,o+ 1,2+ 1).
Using the binomial theorem and the above equations, we obtain
2A4(z, w, 2, 0) = Ay(2?, 2%, 1,1) + Ay(2?, 7, 2, 1),

which together with (3.21) gives

Ay(w,z,m,2) = Ay(2?, 2%, 1,1).
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Now, using equation (3.22), we have
Ay(z, 2, 2,2) = Ay(z*,1,1,1),
which was to be proved. Again, the Ramanujan identity implies that the
function =z — Aj(z,1,1,1) (z € R) is in S(R, G). O
Now we can give the complete characterisation of the solution set S(R, G).

Theorem 3.9. Let R be a field of characteristic zero, and G a linear space
over a field of characteristic zero. Then f €S(R,G) if and only if there
exist additive functions a; : R — G (i = 1,2), and ay € G such that

(3.24) f(x) = as(z*) + a1 (2?) + ag

for all x € R.

Proof. Theorem 3.5, Theorem 3.6, Theorem 3.7, and Theorem 3.8 imply
that if f €S(R,G) then there exist k—additive and symmetric functions
Ay RF — G (k = 4,2,0) for which

flz) = A (z) + A5 (x) + Ay = Ay(2*,1,1,1) + As(2%,1) + A
for all z € R. With the notations as(z) := A4(z,1,1,1), ai(x) := Ay(x,1)
and ap := Ap (x € R) we have (3.24). On the other hand, earlier we proved
that functions of the form (3.24) are elements of S(R, G) indeed. O
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4. QUASI*ARITHMETIC MEANS AND THE ORIGINS OF THE
MATKOWSKI-SUTO PROBLEM

4.1. Means and quasi—arithmetic means.

The history of the quasi—arithmetic means dates back to the turn of the
19th and 20th centuries. Most probably it was Jensen who first mentioned
this class of means, but not under this name. Even the notion of means
was not well defined. In 1929 Chisni [Chi29] gave an exact definition of
mean values, later Kolmogorov [Kol30], Nagumo [Nag30] and mainly de
Finetti [dF31] started the investigation of the theory of mean values. The
following definitions are the result of their work.

Definition 4.1. Let I C R be an open interval. We say that a function
M : I? — I is a mean on I if it satisfies the following conditions.

(i) If x # y and z,y € I then min{z,y} < M(z,y) < max{z,y};
(ii) M is continuous on I2.

A mean is called strict if the inequalities in (i) are strict.
If M(z,y) = M(y,x) for all z,y € I then we say that M is symmetric.

The best known mean is the arithmetic mean

T+
Alwy) =52 (nyel),

which is defined on any interval I.
The other two most widely known means are the geometric mean

G(r,y) :== /1y
and the harmonic mean

2
+

H(z,y) =

b

8|~
& =

which are defined on any I C R,.
27
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A common generalisation of the above means are the power means or the
Holder-means

1
Hy(2,y) := < 2 ) fp70 yer,, pem).
Ty if p=20
An important property of the power means is that they are homogenous,
that is, for all p e R, z,y,t € R,

H,(tx,ty) = tH,(x,y).

Also they are the only homogenous quasi-arithmetic means (see below).

A possible generalisation of the power means are the quasi—arithmetic
means, where the power function is replaced by a strictly monotone con-
tinuous function.

Definition 4.2. Let CM(I) denote the set of all continuous and strictly
monotone real functions on I. A mean M is called a quasi—arithmetic mean
if there exists ¢ € CM(I) such that

1 (e@) + oy
M(ZL‘,y):(p ! (%) = Aﬂﬂ(xay) (l‘,yEI)-
In this case, ¢ € CM(I) is called the generating function of the quasi-
arithmetic mean M.

Quasi—arithmetic means have been investigated by many authors and the

reader can find extensive literature concerning this class of means ([Acz66],
[HLP34], [Kuc85], [Dar99)]).

Definition 4.3. Let ¢,¢p € CM(I). If there exist real constants o # 0
and 3 such that

o(x) = ap(x) + (x € 1)
then we say that ¢ is equivalent to v on I; and, in this case, we write:
p~vonloropx) ~ipx) (rel) Iifep,®¥eCMI)and p ~ P
and ¢ ~ U then we say that the pair (¢, ) is equivalent to the pair (P, U);
in notation (¢, ) ~ (@, V).

The following well-known result deals with the equality of two quasi—
arithmetic means (see [Dar99], [HLP34]).
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Theorem 4.1. If ¢,¢p € CM(I) then the equation A, = Ay holds on I* if
and only if @ is equivalent to v on I.

4.2. The history of the Matkowski—Sut6 problem and the original
extension theorem.

The Matkowski—Sut6 problem originates in a paper by Suto from 1914. He
examined when the sum of two quasi—arithmetic means equals the double
of the arithmetic mean, that is, which quasi—arithmetic means A, and A,
satisfy equation

(4.1) Ay(z,y) + Ay(z,y) =z +y (x,y €1).

Using the generating functions of A, and A, (4.1) can be written as

(4.2) ol (w(x) ;r w(y)> Ly <w($) ;r w(y)> ety

for all z,y € I, where p, ¢ € CM(I).
Suto6 [Sutl4] proved the following

Theorem 4.2. If p,¢» € CM(I) satisfy (4.2) and p, ¢ are analytic func-
tions then there exists p € R for which

(43) (@) ~ xp(2), P(x) ~ X—p(T) (x€l),
where

K if p=20
(4.4) Xp(2) == {e”x if p£0 (x el).

The problem was independently re-discovered by Matkowski in 1999
([Mat99]). He proved the following more general result.

Theorem 4.3. If ¢,v» € CM(I) satisfy (4.2) and ¢, are twice continu-
ously differentiable on I then there exists p € R such that (4.3) holds.

The next improvement was gained by Daréczy and Pales [DP01].

Theorem 4.4. If o, € CM(I) satisfy (4.2) and either ¢ or 1) is contin-
uously differentiable on I then there exists p € R such that (4.3) holds.
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The latest and complete answer was given by Dar6czy and Pales. They
proved the following general theorem in 2001 ([DP02a)).

Theorem 4.5. If p,¢ € CM(I) satisfy (4.2) then there exists p € R such
that (4.3) holds.

In the proof they show that there exists a nonvoid open subinterval K C I
on which (4.3) holds. Then they apply the following extension theorem of
Daréczy, Maksa, and Péles [DMP00].

Theorem 4.6. If p,1p € CM(I) satisfy (4.2) and there exists a nonvoid
open interval K C I such that o(x) ~ x,(z), ¥(x) ~ x_p(x) (x € K)
for some p € R then ¢(z) ~ x,(x), ¥(x) ~ x_p(x) (z € 1), that is, (4.3)
holds.

Theorem 4.6 is vital in the proof of the general theorem and also it is
interesting itself. Therefore it seems worthwhile to try and prove extension
theorems for other classes of means, this can be find in Section 5.

4.3. Another aspect: the Gauss—composition.

The very young Gauss, taking the arithmetic and the geometric mean as a
starting point, defined the following iteration.

Definition 4.4. Let z,y € R, be arbitrary and let

Ty =X, =Y,
(4.5) T + Un

Tnp1 1= 5 Ynt1 = /Tnln (n € N).

These iterations converge to a common limit

lim z, = lim y, = A® G(z,y),
n—oo n—oo
which is a mean, called the arithmetic-geometric mean on R, .

Later it turned out that the arithmetic-geometric mean plays an im-
portant role in mathematics, in the theory of elliptic integrals and func-
tions and also in numerical analysis. The topic has a wide literature (e.g.,
[Gau27], [AB88], [BB87], [Sch82], [Tod79]).
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Gauss noticed that the arithmetic-geometric mean satisfies an invariance
equation

T +y

(4.6) A®G<

for all z,y € R,.

VT = A9 Gla)

In Gauss’ original iteration the arithmetic and geometric mean can be
naturally replaced by any two means. This generalisation was examined
for instance in [BB87] and [DP02a).

Definition 4.5. Let M; : I — I (i = 1,2) be given means on I and let
(z,y) € I? be arbitrary. Then the iteration sequence

Ty =X, Y1 =Y,
Tpi1 = Myi(z,yn), Yni1 := Ma(Tn, yn) (n € N)

is called the Gauss—iteration determined by the pair (M, My) with the
initial values (z,y) € I

(4.7)

Let I,, be the closed interval determined by x,, and y,. Then, because of
property (i) of means, we have

o0
The Gauss—iteration (4.7) is said to be convergent if the set () I, is a
n=1
singleton for any initial value (z,y) € I?. By Cantor’s theorem, this is true
if and only if
(4.8) lim z, = lim y, = M; @ My(z,y),
n—o0

n—o0

where M, ® M, : I? — I is a function.

Theorem 4.7. If My and M, are given means on I and the Gauss—iteration
determined by the pair (M, Ms) is convergent, then the function My ® My :
I — I is a mean on I.

Definition 4.6. If M; and M, are given means on [ and the Gauss—
iteration determined by the pair (M, M) is convergent, then the uniquely
defined mean M; ® M, : I? — I is called the Gauss—composition of M; and
Ms; on 1.
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Theorem 4.8. Let My and M, be means on I and suppose that either of
them is strict. Then the Gauss—iteration determined by the pair (M, My)
18 convergent.

The following theorem shows why the Gauss—composition is strongly
connected with the Matkowski—Suto problem.

Theorem 4.9. If M, and My are means on I and the Gauss—iteration
determined by the pair (M, Ms) is convergent then the Gauss—composition
M, ® M, satisfies the invariance equation

(4.9) My @ My(My(z,y), Ma(x,y)) = My @ My(x,y)

for all z,y € I. Furthermore, if F : I? — R is a continuous function
satisfying F(x,z) =z (z € I) and

F(Ml(mvy)vMQ(l‘ay)) :F($,y) (l‘ayEI)

then
F(z,y) = M; ® My(z,y) (x,y €1).

In the light of Theorem 4.9, the Matkowski-Sut6 problem (4.1) can be
formulated as:

Find all those quasi—arithmetic means whose Gauss—composition is the
arithmetic mean.

The problem in this generality was answered by Dar6czy and Péles
[DP02a].
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5.1. Weighted quasi—arithmetic means.

Definition 5.1. Let I C R be an open interval and 0 < A < 1. A mean M
on I is called a weighted quasi—arithmetic mean if there exists ¢ € CM(I)
such that

M(z,y) = ¢~ (Ap(z) + (1= Ne(y) = Ap(z,y; 7)) (z,y € 1).

In this case ¢ is called the generating function of the weighted quasi—
arithmetic mean with weight \.

The equivalence of generating functions can be defined just as in Defini-
tion 4.3, and Theorem 4.1 applies to weighted quasi—arithmetic means as
well. Weighted quasi-arithmetic means are strict.

If ¢ is equivalent to the identity map id on I, A, (2, y; A) is simply denoted
by A(x,y; ) and is the well-known weighted arithmetic mean

Az, y; A) == Ax + (1 = Ny (z,y € I).

A generalised Matkowski-Sut6 problem can be formulated for
weighted quasi—arithmetic means in the following way.
Let 0 <A <1, p#0,1. Find all p,¢ € CM(I) satisfying
(5.1) pAo(z,y3 A) + (1= p) Ay (z, 43 A) = Az, 53 0),
that is,
52) peH(Ap(z) + (1= Ne(y))+
(1= e (Ap(x) + (1 = Nb(y)) = Az + (1 = Ny

forall z,y € I.

The case A\ = u = % is the original Matkowski-Sut6 problem.

The complete description of the solution has not been given yet. The
best result was obtained by Dardczy and Pales [DP].

Theorem 5.1. Let 0 < A <1 and p >0 (n# 1). If p,op € CM(I) solve

the generalised Matkowski-Suté problem (5.2) and @, are continuously
33
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differentiable with nonvanishing derivatives on I then the following cases
are possible:

(i) If X # % then (p,v) ~ (X0, X0) on I;
(ii) PN = and ju & (1,2} then (0,1) ~ (x0, x0) on I;
(iti) If X\ = 5 and p = 5 then there exists (s, s2) € S(I) such that (¢, ) ~
(s1,82) on I;
() If X =% and p = 2 then there exists (t1,t5) € T(I) such that (¢, ) ~
(tl, t2) on I.

[IEINITE

The above notation means:

x ifp=20
= el),
() {e”‘” itpro €T

P.(I) == {peR|I+pCR}
P(I) == {peR|-IT+pCR},

W) = VATP i pePl) (el
op(x) = =z +p if pe P_(I) (x € 1),

and
S(I) :=
T(I):=

(Xp» X—p) [ P € R},

(X0, x0)} U {(7p,log ) | p € Pi(I)}U
{(6p,logdp) | p € P_(I)}.

The functions given in (i)—(iv) are solutions of (5.2).

To prove the extension theorem for weighted quasi—arithmetic means we

need the following lemma, which is a generalisation of a result of Dardczy
and Pales [DP02a].

—_—

Lemma 5.1. Let ,1p € CM(I) satisfy (5.2) on I and let J C I be a proper
subinterval on which ¢ ~ fi and ) ~ fo, where (fi, f2) € S(I)UT'(I). Then
there exist o, € CM(I) satisfying (5.2) such that ¢ ~ @ and 1 ~ ¢ on I
and

p(x) = fi(x), () = fa() (z € J).
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Proof. There exist constants a; # 0 and 3; (i = 1,2) such that
arp(z) + b = fi(w), axth(r) + B2 = fo(2)

for all x € K. Then ¢ := ay¢ + 31 and {Z(:c) := 1) + 5 have the asserted
properties. [

The extension theorem we prove for weighted quasi-arithmetic means is
the following.

Theorem 5.2. Let ¢,¢p € CM(I) satisfy (5.2) for all x,y € I and let
(f1, f2) € S(I)UT(I). Suppose that J is a proper subinterval of I on which

o~ frand iy~ fy. Then o ~ f1 and ) ~ fy on I.

Proof. The proof is long and consists of several steps. Therefore we inter-
rupt its course and insert some remarks and prove some claims within the
proof. Hopefully, this makes the proof easier to follow.

According to Lemma 5.1, without loss of generality we can suppose that

p(x) = fi(z), U(z) = fol) (z € J).
We need to show that ¢ = f; and ¢ = f5 on the full interval I. For this
purpose let K C I be the maximal interval containing .J such that

() = fi(z), U(z) = fo(z) (z € K).
We are going to argue that K = I. By the continuity of ¢ and v, K is
closed in I. Suppose to the contrary that K # I, then either inf K or
sup K is an interior point of I. Say, that a := inf K is an interior point of
I.

Choose another element b € K which is above a, i.e. a < b. Then ]a, b[ is
an open neighbourhood of A,(a, b; \) and Ay (a, b; A) because the two means
are strict. Since ¢, are continuous and strictly monotone functions, there
exists 0 > 0 such that for all x € [a — d,a] C I and y €]b — §,b[C K

Ap(x) + (1= Nply) € »(K),
Mp(x) + (1= Mply) € Y(K)

hold.
Now according to Theorem 5.1, there are the following possible cases.

If (()A#% or (ii)A=1andpd{3,2} then p(z)=1(z) =z for
all = € [a, b].
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Now let z € [a — d,a], y € [b —6,b]. Then
o) =v, ) =t (t€ p(K)),
b(y) =y, Vi) =t (tev(K)).
Then (5.2) implies

pe(r) + (L= pp(r) == (z €a—d,d]),

(5.3)

that is,

(5.4) $(x) = %ﬁf@ (v € [o—6,a]).

Let z,y € [a — §, a] and substitute (5.4) into (5.2). Then we have

v (Aw +(1- A)uﬂy)) =

1—p 1—pn
AT+ (1= Ny — pdy(z, y;0)
1—pu '

Applying (5.4) again and arranging the equation in a more suitable form
we get

)\80(1‘) . (1 B )\)(p(y) N T+ (1 - )\l)gi;ALp(l', Y, )\) —
(55) (}\1‘ + (1 — )\)y — ;I,A@(l‘, Y; )‘)>
¥

I—p
With the notation f(t) := ¢(t) — t, equation (5.5) can also be written as

fAp(z,y30)) = f (Ax nl G Aiy_—uﬂAw(w, y; N

(x,y € [a—9,a]).

) @yel-aa),

and using (5.1) we have

(5.6) f(Ap(z,y;N) = f(Ap(@,y5A)) (3,9 € [a—6,q]).
In (5.5) put
o fl=gla—bal, ol =g: a8 la—ba
T = (10_1(“)7 Y= (10_1(”) (’LL,U < [a,ﬁ])



5. EXTENSION THEOREMS 37

Then (5.5) takes the form

g<)\u+(1—)\)v+

1
5.7
o7 _ glu) + (1~ Nglw) — g+ (1= A)o)
= =
for all u,v € [, 3].
Now define the following function b:
_ 54—
b =t I ) (e o)
where
0
T = o
Then
(5.8) b(a) = b(B) =0,

and substituting function b into (5.7) we obtain

b(Au + (1 — A)v) b(u) b(v) \
- —)\1_“—(1—)\) )-

b()\u+(1—)\)v+

(1 — p)b(Au+ (1 — A)v) N A1 — T)b(u)+

(5.9) = =
(1 =X)(1—1)b(v)
1_/1/ (U/,'UE[CY,/B])
Let B := b and p:= T_M. Then
1— 1—

B(Au+ (1=XNv+ BAu+ (1 —=Xv) —AB(u) — (1= \)B(v)) =
(5.10) pB(Au+ (1 — A)v)+
(1 =p)(AB(u) + (1 = A)B(v)) (u,v € [a, B]).

By (5.8), also
(5.11) B(a) = B(B) =0.
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Remark 5.1. If function B is defined as above then the left hand side
of (5.10) makes sense, that is, the argument belongs to the domain of B.
More precisely, the argument is a strict mean; if u < v then

u <A+ (1—=XNv+BAu+ (1 —Nv) —AB(u) — (1 —N)B(v) < v.

Indeed, tracing back the definition of B, b, g, u, v we obtain

A+ (L= Ny — Ay(z,y; A
oa) < Apla) + (1= ply) + AL RADID oy
if ¢(z) < ¢(y), and this contains the expression on the left hand side of
(5.5). Since the right hand side of (5.5) equals ¢(Ay(z,y; A)), this inequal-
ity holds.

Now we show that B(x) = 0 for all = € [«, 5]. It shall be proved in a
separate theorem and claims.

Theorem 5.3. If B : [, 5] — R is a continuous function satisfying (5.10)
and (5.11) then B(x) =0 for all x €]a, 5.

Proof. Suppose to the contrary that there exists « €|a, B[ for which B(z) #
0, let B(z) > 0, say. Then B has a maximum M on [a,3]. Let £ :=
max{z € [a, ] | B(x) = M}. Then a < £ < 3.

Claim 5.1. Let n €]a, B]. Then either

(i) B is linear in a (one-sided) neighbourhood of n with slope p — 1, or
(1) for all u,v €]a, B[ with n = Au + (1 — A)v

(5.12) B(n) = AB(u) + (1 — \)B(v).

Proof. Let n €]a, B] and u, v €]a, B such that n = Au+ (1 — A)v. Then by
(5.10),

(5.13) B(n+ B(n)=AB(u) = (1 = A)B(v)) =

' pB(n) + (1 =p)(AB(u) + (1 = A)B(v)).
Put x :=n+ B(n) — AB(u) — (1 — A\)B(v). Then (5.13) can be written as
(5.14) B(z) = (p—1)(z —n) + B(n).

Let I := {z € [o, (] | Fu,v € [a, ] such that n = Au+ (1 — N)v and
x =n+ B(n) — AB(u) — (1 — \)B(v)}. If there exist u,v € [a, f] with
n = Au+ (1 — A)v such that (45) does not hold, then I is not a singleton.
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Since B is continuous, I contains an interval and, by (5.14), B is linear on
a (one-sided) neighbourhood of 7, i.e., (i) holds. O

Remark 5.2. If there exist u,v € [a, 3] such that n = Au+ (1 — A)v and
B(n) > AB(u) + (1 — A\)B(v) then there exists z € I for which x > 7 and
B is linear in a right-sided neighbourhood of 7.

Claim 5.2. There exists d¢ > 0 such that B is linear on [£,£ + &) with
slope p — 1.

Proof. Since B(§) = M and for all 8 > v > ¢ B(v) < B(£), taking
any @ < u < £ < v < f with & = Au+ (1 — N)v, we have B(§) >
AB(u) + (1 = A)B(v). Therefore, by Claim 5.1, and Remark 5.2, B is linear
in a right-sided neighbourhood of ¢ with slope p — 1. 0]

Corollary. We have p < 1, for the slope has to be negative, the linear
function B must decrease on [, £ + d¢].

- A
Claim 5.3. Let vy with £ < vy < min {5 + d¢, 617; be fixed and let

0 <dy <&—(Aa+ (1 —=Awg). Then for all n € [£ — dy, &] there exists
a < u < n for which Au+ (1 — A)vy = .

—(1=A
Proof. Let u := M. We only need to show that a < u < 7.
Since n < vg, u < n immediately follows. On the other hand, by the choice
of dg, A+ (1 — N)vg < £ — dp < 1, which implies o < w. O

Now we return to the proof of Theorem 5.3.

B is continuous at £, therefore to (M — B(vp))(1 — A) > 0 there exists
d €]0, o[ such that for all n € [£ — §,¢]

0< M —B(n) < (M- B(v))(1 = A).
This implies
(5.15) AM + (1 — \)B(vg) < B(n).

Let n € [ — §,£] be arbitrary. Then, by Claim 5.3, there exists u €|a, v]
such that Au + (1 — A)vy = 1. Then (5.15) yields

AB(u) + (1 = N)B(vg) < AM + (1 — X\)B(vp) < B(n).
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By Claim 5.1 and Remark 5.2, there exists ¢, > 0 such that B is linear on
the closed interval [n, n + 0,] with slope p — 1 < 0.

Now let m := r[rglir; 6]B(u). Then for all n € [ —6,&[, B(n) > m because
uc|§—o,
B is monotone decreasing in a right-sided neighbourhood of 7. Necessarily

then m = B(§) = M, consequently B(n) = M for all n € [£ — 4, ], which
contradicts the fact that B is linearly decreasing on the interval [n, n + 0,)]
for all n € [£ = §,&].

Thus B(z) =0 for all = € [«, 3].

The proof in the case when B(z) < 0 for some z € [« 3] is analogous. We
only take the minimum m of B on [«, ] and & := min{z € [«, 5] | B(z) =

This completes the proof of Theorem 5.3. 0

Now we can continue the proof of Theorem 5.2. By Theorem 5.3, B (and
consequently b) equals 0 on [a, (], i.e.,
1

pla) =z +o (z € [a—0,a]),

where 0 = f — 2 From (5.4) we have
T

P(z) = Tz—l__l;)x ~3 ﬁua (x € la—46,al).

Now let € [a — d,a] and y € [a,b] satisfying Ap(x) + (1 — N)p(y) €
¢([a —0,a]) and Ap(z) + (1 = A)v(y) € ¢([a — 4, a]). Since

o lt)=r(t—0) and P Mt) = T(Tl =) <t+ : fua> :

(5.2) implies
pl =N -1 pr1-N1 -1
Y+
T — I T — I
In this equation y can take values from an interval, therefore 7 = 1. Since
¢(a) = a and ¢ is continuous, necessarily o = 0. Thus

p(z) =1(z) =z (z € [a—0,a]),

c=0.
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and cases (i) and (ii) of Theorem 5.1 are proved.
Now we examine the next possibilities from Theorem 5.1.

(iti) If X = 3 and p = 3 then there exists (s1,s5) € S(I) such that
(p, 1) ~ (s1,59) on I. This case was solved by Dardczy, Maksa and Péles
[DMP00).

(iv) If X = § and p = 2 then we have three possibilities.
(a) p(z) =¢(x) =z for all x € [a,b], which was studied in (3).
(b) v(z) =z +p, Y(z)=logy/x+p (z € [a,b]) for some p € P (I).

Let z € [a — d,a], y €]b—0,b]. Then
e(y) =y +p, ') =t"—p (t€p(K)),
¥(y) =log y +p, ) =€ —p  (t € P(K)).

Now (5.2) implies

5 (90(36) +2\/y+p>2 gyt Tty

p= 5

From this equation we have

0’ (z) + 20(2)Vy +p— 2"yt p—p=r,

that is,
(5.16) 2y +p (p(x) — D) =z +p — ¢*().
Since y can take values from an interval, (5.16) implies
p’(x) =z +p,
ie.,
p(x) = v +p.
Again, from (5.16) we have
e’ = p(x),
S0
(x) = log/z + p,

which proves (b).
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(c) p(z) = /—r+p, Y(z) =logy/—2x+p (x € [a,b]) for some p €

P_(I). This case is similar to (b), so we ignore the proof. O

5.2. Quasi—arithmetic means of order a.

Definition 5.2. ([DP02b]) Let o > —1. A function M : I? — [ is called a
quasi—arithmetic mean of order o on I if there exists ¢ € C'M(I) such that

(¢) + oly) + ap (’”—?ﬂ) A (2, y)

24+«
for all ,y € I. Then the function ¢ € CM(I) is called the generating
function of the quasi—arithmetic mean of order « on 1.

(5.17) M(z,y) =¢ " (90

Remark 5.3. (1) It is easy to see that A% : 12 — I is a mean on I if
a>—1and p € CM(I).

(2) If @ = 0 then Ag)) (z,y) = ¢ (M

arithmetic mean on I with generating function ¢ € C'M(I).

(3) If a = —1 then AL V(z,y) = ! <g0(x) +o(y) — ¢ <u>> is the

is the well-known quasi—

2
known conjugate arithmetic mean on I with generating function ¢ €
CM(I) (cf. [Dar99], [Dar00], [DPO1]).

The equivalence of generating functions can be defined just as in Defini-
tion 4.3, and Theorem 4.1 applies to quasi—arithmetic means of order « as
well.

The Matkowski-Suto type problem for quasi—arithmetic means of order
« is the following: Find all ¢,¢ € C'M(I) for which

(5.18) Afp‘)‘) (x,y) + Agpa) (x,y)=x+y (x,y € I).
Daréezy and Péles ([DP02b)) proved the following

Theorem 5.4. If p, ¢ € CM(I) satisfy (5.18) and either ¢ or 1 is con-
tinuously differentiable on I then there exists p € R for which (4.3) holds.

Knowing the solutions of the Matkowski-Sut6 type problem (5.18), we
state and prove the extension theorem. The special case when o = —1 was
studied by Hajdu [Haj02|, here we examine the general case.
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Theorem 5.5. Let ¢,1p € CM(I) satisfy (5.18) on I and let J be a proper
subinterval of I on which ¢ ~ x, and ¢ ~ x_, for some p € R. Then

@~ xpand iy~ x_, onl.

Proof. The beginning proof is similar to that of Theorem 5.2. Again, ac-
cording to Lemma 5.1, without loss of generality we can suppose that

() = Xp(@), () = x—p(7) (z € J).

We need to show that ¢ = x, and ) = x_, on the full interval I. Let K C I
be the maximal interval containing .J such that

p(z) = xp(2), () = x-p(x) (z € K).

We are going to prove that K = I. Since ¢ and v are continuous, K is
closed in I. Suppose to the contrary that K # I, then either inf K or sup K
is an interior point of I. Say, that a := inf K is an interior point of I.
Choose another element b € K with a < b. Then ]a,b[ is an open
neighbourhood of Afpa) (a,b) and Agpa) (a, b) because the two means are strict.
Since ¢, are continuous and strictly monotone functions, there exists

d > 0 such that for all z € [a — 0,a] C [ and y €]b — 0, b[C K

Tr+vy K
9
0(z) + o(y) + ap(L)
5 o € p(K),
(@) + Y (y) + ap (L)
24+« < dJ(K)

hold.

Now there are two possible cases. Either (i) p # 0 or (ii) p = 0.
(i) In this case p(z) = e and ¢(z) = e P* for all x €|a,b[. Let z €
[a —6,al,y €]b—6,b[. Then

T x+ _ 1
ply) =€,  o(E) =%, oT(1) Zglogt (t € p(K)),

Yy)=e ™, P(E) =e?, pl() = —% logt (t € ¥(K)).
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Now (5.18) can be written as

z+y T+
1 Py P 1 —py -p
_loggp(:z:)+e + el __10g¢(x)+e + e P N
P 24+« P 24+«

from which

o(z) + € + aer™s"
(z) + e 4 ae P
follows, and we have
p(z) — e =" (P(z)e™ —1).
Since y takes values from an interval, this yields

P(x)eP” —1 =0,

whence
(x) =€, px) =€ (z€la—da]).

Thus ¢(x) = e P* p(x) = e’ on the whole of Ja — 4, b[, and (i).
(ii) In this case p(z) = ¢(x) = x for all x €]a,b]. Again, let z € [a —
d,al,y €]b — 9, b[ then

oly) =y, v () =15 ¥ t

P(y) =y, P () = 2 W) =t (t € Y(K)).
Now (5.18) can be written as

p(@) +y+a™¥  Pl) +y+a?

2+a 2+ =Tty
from which
p(z) + ¢ (r) = 2z,
that is,
(5.19) Y(z) =22 —p(x)  (z€la—d,a).

Now let z,y € [a — d,a]. Then, by (5.19), (5.18) yields
z) + o(y) + ap (2
o (s@( ) + o) +ap ( )) N

24+«

o

=T +y.

1<2x—90()+2y ey) +a(z+y— w(’”“’)))
2+«
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This implies

o (2x—<,0(:5)+2y—g0(y)+a(x+y—<,0(17+y))>
24+«

z+y— AN (z,y),
from which, applying ¢ to both sides, then (5.19) again,
pla+y— AL (2,y) — (x +y — AL (2, y) = p(AL (2,)) — AL (2, )

follows for all z,y € [a — J,a]. Introducing the notation f(t) := ¢(t) — t,
we have

f(l‘ +y-— Agl)(l‘a y)) = f(ASoa)(xa y)) (IL’, ye [a’ - 67 a])a

that is, using (5.18)

(5200 FAP@Y) = A7 @y) (@ €la—da).

By a result of Daréczy and Ng [DNO0O] (see Section 6, Corollary 6.1), there
exists 0 # 0 and 7 such that ¢(z) = ox + 7 for all x € [a — 4, a]. We shall
show that 0 =1 and 7 = 0. By (5.19), then also ¢(z) =z (z € [a — 9, a]).

From (5.19) we have
P(r)=2z—px)=2—-0)x —7T (z € [a—0,a]).

Now let z € [a — ¢, a] and let y € [a, b] such that

x-2HJ € [a—94,a,
o) + o(y) + ap ()
o € ¢l(la—0d,a)
Y@ TP +av () )

24+«
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Then
p(r) =0z + T, o(y) = v,
(BN oty gt
Y(r) =(2—0)x —T, Y(y) =y,
t
o(Y)=e-a-n wt-

Now (5.18) implies
1 <ax+r+y+aa‘”7+y+m )
— -7+
2+«
1 2-o)r—T+y+al2-—0)FE -
2+«

1+ 1 5 T T
o 2—-—0 y_a 2—0

follows. Since this equation for y holds on an interval, this yields

o

aT
+7) =24y,
2—0

from which

1 1 T T
- 9= _ =0
O'+2—O' o 2—0 ’

and necessarily o = 1. Since p(a) = a and ¢ is continuous, 7 = 0.
This completes the proof of the Theorem 5.5. 0

Remark 5.4. Equations (5.6) and (5.20) are interesting themselves, Sec-
tion 6 concerns this topic.
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When we proved the extension theorem for quasi—arithmetic means of order

« (Theorem 5.5, equation (5.20)) we used a general result of Daréczy and
Ng [DN0O].

Definition 6.1. Let I := [a,b] C R be a nonvoid interval and let M be a
mean on /. Then

M(x,y) =2 +y— M(z,y) (z,y €1)
is also a mean on I, and M is called complementary to M.
The pair (M, M) satisfies A(M, M) = A, where A is the arithmetic mean.

Definition 6.2. Let M be a mean on [a,b]. A function f : [a,b] - R is
said to be M —associate if it possesses the following property.

If z,y € [a,b] satisfy M (z,y) = x;ty and f(z) = f <$ +y> then f(y) =
f(@).

The main result of Dar6czy and Ng is the following

Theorem 6.1. Let M be a mean on [a,b] and let f : [a,b] — R be a
function satisfying the functional equation

(6.1) f(M(z,y)) = f(x+y— M(z,y))
for all x,y € [a,b]. Then

(a) For each z,y € [a,b] with M(x,y) # A(x,y), f is locally constant at
Az, y).
(b) If f is continuous and M—associate then either
(i) [ is constant on [a,b], or
(i1) [ is injective on [a,b] and M = A.

The following corollary of Theorem 6.1 gives the solutions of equation
(5.20).
Corollary 6.1. If ¢ € CM(I), and function f defined by

f@):=p(r) —= (z € 1)
47



48 6. COMPLEMENTARY MEANS

satisfies (5.20) (i.e., f satisfies (6.1) with M = A{”) then there exist con-
stants e # 0, [ such that

plx)=ax+ 0 (x €1).

Proof. First we show that f is A((pa)fassociate. For this purpose let z,y € I

with A((pa)(:z:,y) = x_—;—y and f(z) = f (x;y) Then

w(fﬂ)ﬂo(y)—w(:ﬂ;y) =¢<x;y>

() — 2 = Tty Tty
¥ 4 5 5

Using these equations we easily obtain f(y) = ¢(y) —y = p(z) —x = f(z).

There are two possible cases:

(i) If f is constant on I, then with the notation f(z) := 8 (x € I) and
« := 1 we have the assertion.

(17) If f is not constant, then by Theorem 6.1, Afpa) = A, thus ¢(z) =
ax + [ (x € I) for some a # 0, 5. O

and

Theorem 6.1 was generalised by Daréczy, Hajdu, and Ng [DHN]. Now
we give an even more general theorem, which contains the mentioned result
when p = \.

Definition 6.3. Let M, N be strict meanson I andlet 0 < A < 1, u # 0, 1.
N is called (i, \)—complementary to M if

(6.2) pM(z,y) + (L= p)N(z,y) =da+ (1 =Ny (z,y ).

Remark 6.1. (1) Without loss of generality we may assume g > 0, other-
wise we interchange the terms on the left hand side of (6.2).
(2) If M is a strict mean on I, and N is defined according to (6.2), that is,

_ A+ (11— Ny — pM(z,y)
— T
then N is a strict mean if 0 < p < min{\,1 — A} or p < 0.

N(z,y) :

(z,y € 1)

Definition 6.4. A function f : I — R is called (M, p, \)-associate if it
possesses the following property:
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;f(x;y € I satisfy M(z,y) = N(z,y) and f(z) = f(M(z,y)) then f(y) =

Theorem 6.2. Let 0 < A < 1, u >0, u # 1, let M, N be strict means
on I such that N is (u, \)-complementary to M, and let f : I — R be a
continuous function satisfying the functional equation

(6.3) f(M(z,y)) = f(N(z,y))
for all x,y € I. Then

(a) For each xz,y € I where M(x,y) # N(x,y), f is locally constant at
A(z,y; \) on one side.
(b) If f is (M, p, \)—associate then either
(i) [ is constant on I, or
(ii)) M(x,y) = N(x,y) = A(z,y; \) for all x,y € 1.

Proof. Since the proof is long and consists of several steps, we interrupt its
course to insert and prove separate claims.

Let us denote by I, the closed interval joining M (z,y) and N(z,y) and
recall that A(x,y; \) := Az + (1 — )y is the weighted arithmetic mean on
I. We also recall that uM (z,y) + (1 — p)N(x,y) = A(z,y; A).

First we examine the case when p > 1.

Claim 6.1. For each xq,yq € I there are two possible cases:
(I) If M(ZL’U, yo) S N(l‘o, yg) then

f(A(o, 30 A) +5) = f <A(wo,yo;>\)+ u/i13>

for all 0 < s < M (o, yo) — A0, Yo; A)-
(IT) If N(xo,y0) < M(zg,yo) then

Ao ) = 5) = 1 (Al 4 = L)
for all 0 < s < A(xq, yo; A) — M (0, yo)-

Proof. The assertion is trivial when I, ,, is a singleton. Suppose I, is

proper. There are two cases: either xy < yg or yg < . First let xq < yo.
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Consider z; 1= zo + t,y; := yo — 25t for 0 < ¢ < A(zg, yo; ) — zo. We
note that for all ¢t € [0, A(zo, yo; A\) — xo] we have
)\xt + (1 - )\)yt = A(‘/EUJ Yo, )‘)7
and consequently

M (x4, ye) + (1 — p)N (e, ) = Ao, yo; A).

Now suppose M (zo,v) < N(zo,y0). This immediately implies
M (zo,y0) > A(zo,yo; A). The function ¢ — M (x,y;) is a continuous
function taking the values M(xg,yo) and A(zg,yo; A). By the Interme-
diate Value Theorem, to each 0 < s < M (xq,yo) — A(Z0, yo; A), there exists
t € 10, A(zo, yo; A) — xo] such that

M (zy,y:) = A(xo,y0; A) +5  and  N(zy,y) = Ao, Yo; A) —

IL—p
Thus by equation (6.3),

(Ao, yo; A) +5) = f (A(xoayo; A) + M /i 15) :

A similar argument proves that if N(xg,y9) < M(zg,yo) then to each
0 < s < A(wg,yo; A) — M (g, yp), there exists ¢ € [0, A(zg, yo; \) — xo] such
that M(zy,y) = A(zo, Y03 A) — 5, N(we,y) = Ao, yo; A) + 4;5. Then
again, by equation (6.3),

f(A(zo,y0; A) —5) = f (A(wo,yo; A) — uﬁ 18) :

If yo < xg then let z; := xo—%t, Y = yo+t for 0 <t < A(zo, yo; A) — Yo-
The rest of the proof goes in the same way as above. 0]

Claim 6.2. Suppose f is continuous and I, is proper. Then f is constant
on the closed interval joining A(xg, y0; A) and N(x, yo).

Proof. Since the other case is analogous, we only examine M (zy,yy) <
N (o, Yo)-

Let ¢ := f(A(zo,y0;A)). Suppose that there exists uy € [A(zo,yo; N),
N(z0,y0)] such that f(ug) # c. Now let

Uy 1= A(l‘o, Yo, )\) + H (UO - A(‘/EUJ Yo, )‘))
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By Claim 6.1 (I), f(u1) = f(uo). Create a sequence

-1
(U,n,1 - A(xﬂa Yo, )‘)) =

Up = A(‘T07 Yo, )‘)+M

A(xo, yo; A) + (MT_1>n (uo — A(xo, yo; A)) (n € N).

Since 0 < ”T_l < 1, u, = A(zo,%0; A) (n — 00). On the other hand, f(u,) =
f(un_1) = -+ = f(up) # ¢ (n € N), which contradicts the continuity of
3 0

The above proves (a) for y > 1. To prove (b), in what follows we assume
that f is continuous and (M, p, A)—associate.

Claim 6.3. Suppose there exist * < y* such that I,-,- is proper. Then f
is constant on I.

Proof. Let J C I be the maximal interval containing A(x*, y*; \) on which
f is constant, i.e.,

J:={zel|f(y)=cforally
in the closed interval joining = and A(z*,y*; \)},

where ¢ := f(A(z*,y*; \)). By the continuity of f, J is closed relative to I;
and by Claim 6.2, it is a proper interval. We shall argue that J = I; thus
f is constant on 1.

Suppose to the contrary that g := sup.J is an interior point of /. Then
there exists € > 0 such that f—¢ € .J and 6+ﬁ5 €l. Letyy € ]6,B+ﬁ5]
for which f(yo) # ¢. Then there exists a unique xy € [ — ¢, 3] such that
A(zo,y0; A) = . Now there are three possible cases:

(a) If M(zo,v0) < N(z0,yo) then by Claim 6.1 (I), f would be constant
in a (right-sided) neighbourhood of  and so J would not be maximal.

(b) If M(xo,yo) = N(z0,%0) = [, i.e., Iy, is a singleton then since zg
and [ belong to .J,

f(@o) = f(B) =c.
As fis (M, A, p)—associate, we get f(yo) = ¢, a contradiction.

(c) If N(xo,y0) < M(z0,y0) < [ then there exists © < 2’ < § for which
N(z',y0) < M(x',y0) < B. Let ' := Xz’ + (1 — A)yp > (. By Claim 6.1
(IT), f is constant on [N(x',yo), /'] and this interval contains §. Again, in
this case J would not be maximal.
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Thus sup J = sup I. One can similarly prove that inf .J = inf I. J being
closed in I, we have J = I and this completes the proof of Claim 6.3. [

Now let 0 < pu < 1.

The following claims and their proofs are the equivalent of the previous
ones.
Claim 6.4. For each xq,yq € I there are two possible cases:

(I) If M(zo,y0) < N(xo,yo) then

f(A(xOJyU; )‘) - S) = f (A(%ayoi )‘) + 1 /_I/H/S>

for all 0 < s < A(zg, yo; A) — M (o, yo)-
(IT) If N(xo,y0) < M(zg,yo) then

1 —
f(A(zo, yo; A) — 8) = f (A(Jﬁo,yo; A) + - “S>
for all 0 S s S A(l‘07y0; )\) - N(l‘o,yo).

Proof. The proof of Claim 6.1 can be applied here. 0

Claim 6.5.  Suppose I, is proper. Then f is locally constant at
A(xg,yo; N); i.e., there exists a neighbourhood of A(zg, yo; A\) on which f is
constant.

Proof. The other case is similar, so we only examine the case when
M (2o, y0) < N(zo,0)-

Let o < yo, say. For some sufficiently small 6 > 0, we have [A(z, yo; A) —
A0, A(o, Yo; A) + $5,A0] C Ly, for all z € [z, z + 6]

Now for all x € [xg, xy + 0], I, is proper, and by Claim 6.4,

L
—°)

whenever both arguments are in [A(zg, yo; A) — AJ, A(zo, yo; A) + ﬁ)\é].
The point A(z,yo; A) being arbitrary in [A(xg, yo; A), A(xo, yo; A) + Ad], this
gives the constancy of f on [A(zg, yo; A) — AJ, A(zo, yo; A) + £=AJ].

1—p
The other cases, when yy < zy and (II) can be proved similarly. O

Yo

f(A(z, yo; A) — 5) = f(A(z, 905 M) + 1
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The above proves (a) for 0 < p < 1. To prove (b), in what follows we
assume that f is continuous and (M, i, A)—associate.

Claim 6.6. Suppose there exist x¢ < yo such that I,,, is proper. Then f
is constant on I.

Proof. Like in the proof of Claim 6.3, let J C I be the maximal interval
containing A(xg, yo; A) on which f is constant, i.e.,

J:={xel|f(y)=ctorally
in the closed interval joining z and A(zg, yo; A)},

where ¢ := f(A(zo,y0;\)). By the continuity of f, .J is closed relative to
I; and by Claim 6.5, it is a proper interval neighbourhood of A(xg, yo; A).
We shall show that J = I; thus f is constant on I.

Suppose to the contrary that g := sup.J is an interior point of . Then
there exists € > 0 such that f—¢ € J and B+ﬁ6 €l. Lety e ]B,B+ﬁ8]
for which f(y) # ¢. Then there exists a unique = € [ — ¢, 5] such that
A(z,y; A) = B. If the interval I,, were proper then f would be constant
in a neighbourhood of by Claim 6.5, and so J would not be maximal.
Therefore I, is a singleton, that is, M (x,y) = N(z,y). So

M(z,y) = Az, y;A) = .
Because = and [ belong to .J,

flz)=f(B)=¢,
and since f is (M, u, A)-associate, we get f(y) = ¢, a contradiction. Thus
supJ = supI. One can similarly prove that inf J = infI. .J being closed
in I, we have .J = I and this completes the proof of Claim 6.6. O

Now we return to the general case when p > 0, p # 1.

Suppose that f is nonconstant on I. Then by Claim 6.3 and Claim 6.6,
I, is a singleton for all z,y € I, that is, M (z,y) = N(z,y). As A(z,y; \) =
pM (z,y) + (1 — p)N(z,y), we get A(z,y;A) = M(z,y) = N(z,y), proving
(b) of Theorem 6.2. O






SUMMARY

This PhD dissertation contains new results in the theory of functional equa-
tions. It consists of two parts, which are quite different from each other.

In the first half of the dissertation we start out from an identity of the
brilliant Hindu mathematician Ramanujan. Among the many, sometimes
amazing results in number theory, Z. Daréczy found one he thought inter-
esting and set up a functional equation generalising the original identity.
He asked whether Ramanujan found all the identities of that kind or not.
In other words, what are the general solutions of the equation on the set Z
of the integers.

We found that every solution on Z can be written as a linear combination
of eleven linearly independent functions (Section 2, Theorem 2.5).

Next we replaced the set of integers by another abstract algebraic struc-
ture and also determined the solutions (Section 3, Theorem 3.9).

Part IT is more “real” analysis, in both senses of meaning. Firstly, it
deals with problems on the set R of the real numbers. Secondly, it is really
analysis, with functions, monotonity, continuity, etc.

These sections mainly deal with extension theorems for Matkowski-Suto
type problems and material connected with them. In Section 4 we give the
basic definitions (means, quasi—arithmetic means) and preliminaries of the
problem and also the original extension theorem (Theorem 4.6). We also
show another aspect, the Gauss—composition.

Briefly speaking, the original Matkowski—Suto problem is when the sum
of two quasi—arithmetic means equals the double of the arithmetic mean.
When proving the theorem that gives the solution, it is necessary to extend
the solutions from a subinterval to the whole. That is why the original
extension theorem was proved. Since this theorem is crucial in the proof,
and since Matkowski—Sut6 type problems are formulated for other classes
of means, it is important to state and prove the extension theorem in other
cases as well.
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56 SUMMARY

The extension theorems for weighted quasi—arithmetic means and quasi—
arithmetic means of order v and their proofs are presented in Section 5
(Theorem 5.2, Theorem 5.5).

Section 6 provides another tool to prove the extension theorems, the com-
plementary means. We think that these results and proofs are interesting
not only because of their use in the proofs of the previous section but also
in their own right.
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Ezen doktori értekezés a fiiggvényegyenletek témakorében tartalmaz 1j
eredményeket. Mivel a matematikanak ez a teriilete oly gazdag és szer-
tedgazd, egy ilyen dolgozatban csak egy—egy kisebb, de érdekes teriilet
vizsgdlatat tiizhetjiik ki célul. Az értekezés két fejezete meglehetdsen kii-
16nbozik egymastél, jelezve, hogy fliggvényegyenletek 1épten—nyomon fel-
bukkannak a matematika majd minden dgaban.

Az elsO fejezetben a fiatalon elhunyt zsenidlis indiai matematikus, Ra-
manudzsan egy szamelméleti azonossdgabdl indulunk ki. Ramanudzsan
(1887-1920) a matematika szinte minden teriiletén alkotott maradandot;
jegyzetfiizeteiben (a hires Notebooks-ban) példaul a kovetkezd témakorokkel
kapcsolatos tételek és példak maradtak fenn: magikus négyzetek, har-
monikus sorok, kombinatorika, Fuler—-polinomok és —szamok, Bernoulli—
szamok, divergens sorok, végtelen sorok transzformécioi és kiértékelése,
hipergeometrikus sorok, lanctortek, elemi algebra, szdmelmélet, primszam-
elmélet, integralok, parcialis tortek, elemi analizis. Es a felsoroldst lehetne
még folytatni.

Ramanudzsan néhany lanctortekkel kapcsolatos tétele és formuldja olyan
meglepd és kiilonos, hogy mint Hardy fogalmazott: “Ha nem lennének
igazak, nincs ember, aki kitaldlta volna dket “. Ugyanez vonatkozik néhany
szamelméleti osszefiiggésére is.

A szamos szamelméleti azonossag kozott fedezte fel Dardczy Zoltan a
kovetkezot, melyet érdekesnek talalt.

Ha ad = bc, akkor

(a+b+e)"+b+c+d)"+ (a—d)" =
(a+b+d)"+ (a+c+d)"+ (b— )",

ahol n = 2 vagy 4.

Mindkét oldalon elvégezve a hatvanyozast, az dllitas konnyen ellendriz-
hetd.
A szovegkornyezetbdl valészintinek tiinik, hogy Ramanudzsan a fenti

azonossagot az egész szamok 7Z halmazan gondolta érdekesnek. Ezt az
57
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egyenletet kezdte vizsgalni Dardczy, és feltette a kérdést, hogy vajon Ra-
manudzsan megtalalta-e az Gsszes ilyen tipusu azonossdgot. Pontosan fo-
galmazva, keressiik meg az Gsszes olyan f : Z — R fliggvényt, melyre

fla+b+c)+f(b+c+d)+ fla—d) =
fla+b+d)+ fla+c+d)+ f(b—c)

teljesiil minden a, b, ¢, d € Z esetén, melyek kielégitik az ad = bc feltételt.
Az alabbi fliggvények nyilvan megoldédsai az egyenletnek:

fi(z) = 1,
folz) = 2 (x € 7).
fa(z) = 2*

A kérdés az, hogy vannak-e a fentiektdl kiillonb6z6 megoldasok.
Az elsé példat Farkas Tibor adta: az

1 ha 2|z
= Z
ful2) {0 kiilsnben (v€2)

fliggvény megolddsa az egyenletiinknek. Ez esetszétvalasztassal konnyen
ellendrizhetd.

Célunk ezutan az volt, hogy meghatarozzuk az egyenlet 6sszes megolda-
sat az egész szamok halmaza felett.

Ehhez el6szor azt kell észrevenni, hogy minden megoldasfiiggvény egy-
értelmiien meg van hatirozva az I := {0,1,2,3,4,5,6,7,9,10,12} hal-
mazon felvett értékeivel (Theorem 2.2). Mivel az I halmaz 11 elemd,
a mar meglévo linedrisan fiiggetlen f1, fo, f3, f1 fliggvényhez még tovabbi
hét linearisan fiiggetlen megoldast keresve megkapjuk a megoldasok egy
bézisat. Valéban, a (2.4)-gyel jelolt fiiggvények megoldasai az egyenletnek
(Theorem 2.3).

Mér csak azt kellett megmutatni, hogy az fi, fo,..., f11 fiiggvények li-
nearisan fiiggetlen rendszert alkotnak. Az I halmazon felvett értékeik
segitségével ez is bizonyithat6 (Theorem 2.4).

Most mar kimondhatjuk a 2. szakasz f6 dllitdsat (Theorem 2.5):

Az egyenlet barmely megoldasa eloallithaté az fi, fo, ..., fi1 fliggvények
linearis kombindaci6jaként; és forditva, minden ilyen linearis kombinacio
megolddasa az egyenletnek.
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A 3. szakaszban az egyenletet nem az egész szamok halmaza felett, hanem
egy algebrai struktiran, kommutativ, egységelemes gyiiriin vizsgaljuk.

Legyen R(+,-) kommutativ, egységelemes gytirii és G(+) Abel-csoport.
Haegy f : R — G fiiggvény megolddsa az egyenletnek, akkor ennek jelolése:
[ €S(R,G).

Ha ay,as : R — G additiv fiiggvények és ay € G, akkor az

f(x) :== az(z") + a1 (2®) + ag (r € R)
fliggvény nyilvan megolddsa az egyenletnek.
Alkalmas helyettesitésekkel az egyenletiink a kdvetkez6 alakra hozhato:
5
(@) + Y filoiy (@) + iy (D] = 0,

i=1
ahol z,t € Résy € R, f,fi + R — G (i = 1,2,3,4,5) ismeretlen
fliggvények, valamint egy rogzitett y € R esetén a

Giy,Viy : R = R (1=1,2,3,4,5)

fliggvények additivak. Ez az igynevezett “linearis” fiiggvényegyenlet, mely-
nek megolddsa ismeretes. A megoldas a csoporton értelmezett polinomok
elméletéhez illetve a Fréchet—egyenlethez kapcsolodik. Ekkor bizonyos to-
vabbi feltételek mellett a “linedris” fliggvényegyenletiink megoldasai a legfel
jebb negyedfoku polinomok.

A kovetkezOkben azt mutatjuk meg, hogy ebbdl a polinombél hidnyoznak
a péaratlan fokszamu tagok, azaz (Theorem 3.5):
Ha R nullkarakterisztikaju test, G linedris tér egy nullkarakterisztikajui test
felett és f €S(R,G), akkor 1éteznek olyan Ay : RF — G (k= 4,2,0, R? :=
R) k-additiv, szimmetrikus fiiggvények, melyekre

fz) = Ajz) + Ay(x) + Ag
teljesiil barmely x € R esetén. Itt
Aj(z) == Ag(z,x,. .., 2)

az Ay fliggvény diagonalizaltja.

Ez a tétel azt allitja, hogy csak a fenti alaku fiiggvények lehetnek az
egyenlet megoldasai. Meg kell azt is vizsgalnunk, hogy milyen feltételek
mellett lesz egy ilyen fliggvény valoban megoldasa az egyenletnek. Egy
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kicsit hosszadalmasabb szamolds végén megkaphatjuk ennek a résznek a fo
eredményét (Theorem 3.9):

Legyen R nullkarakterisztikaju test és G linearis tér egy nullkarakterisz-
tikdja test felett. Ekkor f €S(R,G) pontosan akkor &ll fenn, ha léteznek
a; - R — G (i = 1,2) additiv fiiggvények és ag € G, hogy

f(z) = az(z?) + a1 (2%) + ag

teljesiil minden x € R esetén.

Az értekezés masodik része — az elsé résszel ellentétben, mely inkdbb
algebra és szamelmélet — “igazi” analizis. Ertjiik ezalatt azt, hogy valds
fliggvényekkel, folytonossaggal, monotonitassal és méds, az els6 féléves Ana-
lizis targybdl jol ismert fogalmakkal és tételekkel taldlkozhatunk. Ez a fe-
jezet az ugynevezett Matkowski-Suto problémaéval, ilyen tipusi problémak-
ra vonatkozo kiterjesztési tételekkel, tovabba a témakorhoz még kapcesolodd
komplementer kozepekkel foglalkozik.

A dolgozat 4. szakaszaban attekintjiik a kvaziaritmetikai kozepekre vo-
natkozd, eredeti Matkowski—Suto probléma torténetét, valamint ismertet-
jiikk a megértéshez sziikséges definicidkat és korabbi eredményeket.

Legyen I C R nyilt intervallum, és jeldlje CM(I) az I-n értelmezett,
folytonos és monoton valés fiiggvények osztalyat. Egy M kozepet kvdzi-
aritmetikai kozépnek neveziink, ha létezik olyan ¢ € C'M(I) fiiggvény, hogy
az alabbi egyenldség teljesiil:

M(z,y) =~ (M) = Ap(z,y)  (wyel).
Ebben az esetben a ¢ € CM(I) fiiggvényt az M kvéziaritmetikai k6zép
generdlo figgvényének nevezziik.

A kvéaziaritmetikai kézepek osztalya jol ismert, a rajuk vonatkozo iro-
dalom igen kiterjedt.

Fontos a kvaziaritmetikai k6zepek egyenl6ségérol sz6l6 alabbi tétel (The-
orem 4.1).
Ha ¢, € CM(I), akkor az A, = A, egyenlGség pontosan akkor &ll fenn
I%-en, ha ¢ és 1) ekvivalens I-n. A két fiiggvény ekvivalencidja olyan a # 0
és [ konstansok létezését jelenti, melyekkel teljesiil az alabbi egyenloség:

o(x) = ap(z) + (x €1).
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Jel6lésben: ¢ ~ 1 I-n, vagy ¢(z) ~ ¢(x) (z € I).

A Matkowski-Suto problémat Suto vetette fel egy 1914-es dolgozataban:
mikor lesz két kvaziaritmetikai kozép szamtani atlaga a szamtani kozép?
Azaz mely kvaziaritmetikai kozepekre teljesiil az alabbi egyenlet:

Ap(x,y) + Ay(z,y) =2 +y (z,y € 1),

vagy a kozepek general6 fiiggvényét haszndlva

= <M> +yt (M) =z+y (z,yel).

Sut6 eredménye a kévetkezé (Theorem 4.2):
Ha ¢, € CM(I) kielégitik a Matkowski—Suto egyenletet, és ¢, 1) analitikus
fliggvények, akkor 1étezik p € R, melyre

p(x) ~ xp(), (x) ~ x-p(x) (z €T
teljesiil, ahol

xr ha p=0
Xp(x) = {epx ha p 3& 0 (‘/Ll € I)

Ezt a problémat Sutotol fiiggetleniil 1999-ben Matkowski tjra felfedezte,
aki a fenti tételt altalanosabb feltételek mellett bizonyitotta, a ¢ és ¥
fiiggvényrdl kétszeres folytonos differencidlhatésagot tételezve fel (Theo-
rem 4.3).

A végleges valaszt végiil Daroczy és Péales adta meg 2001-ben, amikor
ugyanezt a tételt igazoltak, anélkiil hogy a ¢ és v fiiggvénytol barmilyen
regularitdsi tulajdonsidgot megkoveteltek volna (Theorem 4.5).

A bizonyitas soran megmutatjak, hogy létezik olyan K C I részinter-
vallum, amelyen teljesiil a tétel allitasa, azaz

p(x) ~ xp(2), (@) ~ x-p(x) (z € K).

Ezutan a Daroczy, Maksa és Pales &dltal bizonyitott aldbbi kiterjesztési
tételt hasznaljdk (Theorem 4.6):
Ha ¢, € CM(I) kielégitik a Matkowski-Suto egyenletet, és 1étezik olyan
nemiires nyilt K C I részintervallum, amelyen p(z) ~ x,(z), t(x) ~
X—p(x) valamely p € R esetén, akkor ¢(z) ~ x,(x), ¥(x) ~ x_,(x) (x € I).

Ez a kiterjesztési tétel kulcsfontossagu a Matkowski—Suto probléma meg-
oldasa soran, és onmagaban is érdekes. Ezért a tovabbiakban hasonlé
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kiterjesztési tételeket mondunk ki és bizonyitunk, mas kozépértékosztalyok
esetén.

Az els6 kozépértékosztaly, melyet vizsgalunk, a silyozott kvaziaritmetikai
kozepek osztalya.
Legyen 0 < A < 1. Egy M : I? — R kozepet stlyozott kvdziaritmetikai
kozépnek neveziink, ha létezik ¢ € CM(I), hogy

M(z,y) = ¢~ (Ap(z) + (1= Ne(y) = Ap(z,y; 7)) (z,y €1).

A p fliggvényt a A sullyal stilyozott kvaziaritmetikai kdzép generdlo fiuggué-
nyéneknevezziik. A(x,y; \) jeldli a kozismert siilyozott aritmetikai kdzepet.
A Matkowski—Sutd probléma sulyozott kvaziaritmetikai kézepek esetén
az alabbi formaban irhaté:
Legyen 0 < A < 1, p # 0,1. Keressiik meg az sszes p,1p € CM(I)
fiiggvényt, melyek kielégitik a

pAL (2, y; A) + (1 — p)Ay(z,y; A) = A2, y5 M),
azaz a

pe~ (Ap(z) + (1= Ne(y))+
(1= "W (x) + (1= N)h(y)) = Az + (1 — A)y.

egyenletet minden z,y € I mellett.

Ad=pu= % eset az eredeti Matkowski—Suto probléma.

A probléma teljes megolddsa még nem ismert, a legdltalanosabb ered-
mény a kovetkez6 (Theorem 5.1):
Legyen 0 < A < 1, p > 0 (u # 1). Tegyiik fel, hogy a ¢,¢» € CM(I)
fiiggvények kielégitik a silyozott kvaziaritmetikai kozepekre vonatkozo
Matkowski-Suto problémat, és ¢, folytonosan differencidlhaté el nem
tin6 derivaltakkal I-n. Ekkor a kovetkezd esetek lehetségesek:

(Z) Ha A 7& %7 akkor ((107,(7&) ~ (XO)XO) I—H;
(i) Ha X = 5 és pu & {3,2}, akkor (p,1) ~ (x0, xo0) I-n;
(i1i) Ha X = § és pu = 1, akkor 1étezik (sq, s2) € S(I), hogy (o, ¥) ~ (s1, 52)
I-n;
(iv) Ha A =L és = 2, akkor Iétezik (ty,t5) € T(I), hogy (¢, 1) ~ (t1,t2)
I-n.
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A fenti jelolések jelentése:

P.(I) = {peR|I+pCRy}
P(I) == {peR|-T+pCR,},

W) = VETP  ha pePD)  (xel)
op(x) = /—r+p ha peP_(I) (x €1,

S(I) :=
T(I):=

(Xp» X—p) | P € R},
(X0, X0)} U {(7p,log ) [ p € PL(I)}U
{(5palog5p) | pE P,([)}.

A bizonyitani kivant kiterjesztési tétel ebben az esetben (Theorem 5.2):
Tegyiik fel, hogy a ¢, ¢ € CM(I) fiiggvények kielégitik a silyozott kvazi-
aritmetikai kozepekre vonatkozd Matkowski-Suto egyenletet, és legyen
(f1, f2) € S(I) UT(I). Tegyiik fel tovdbba, hogy J val4di részintervalluma
I-nek, melyen ¢ ~ f; és 1 ~ f, teljesiil. Ekkor o ~ f; és ¢ ~ fy I-n.

A bizonyitas meglehetdsen terjedelmes, meghaladja ezen Gsszefoglald ke-
reteit. Csak egyetlen 1épést emeliink itt ki, ez ugyanis érthetové teszi,
hogyan kapcsolédik a témdhoz a 6. szakasz. A kiindulasi egyenlet kiilonb6z6
atalakitdsai utdn kapjuk az aldbbi Gsszefiiggést (5.6):

f(A@(x,y; )‘)) = f(A¢($,y; )‘))

—_—

valamely zdrt intervallumon, ahol f(¢) := (¢) — t. Azt igazoljuk, hogy
ennek az egyenletnek a fenndallasdbol kovetkezik az &llitasunk. FErre két
mabdszert is ismertetiink. Az egyik konkrét szamolas, ez taldlhaté az 5. sza-
kaszban; a masik a komplementer kozepekre vonatkozo eredmények fel-
haszndldsa, ez a témaja a 6. szakasznak.

Az 5. szakasz 5.2-vel jelolt része az a-rendi kvéaziaritmetikai kdzepekre
vonatkozé Matkowski-Suto problémat targyalja, illetve a rajuk vonatkozo
kiterjesztési tételt bizonyitja.



64 OSSZEFOGLALO

Legyen a > —1. Egy M : I? — R kozepet a-rendi kvdziaritmetikai
kézépnek neveziink, ha létezik ¢ € CM(I), hogy

M(z,y) = g0,1 (‘P(x) +¢(y) + ap (ITer)> _. gl

minden x,y € [ esetén.

Az a—rendii kvaziaritmetikai kézepekre vonatkozo Matkowski—Suto prob-
léma a kovetkezo:

Keressiik meg azon ¢, € CM(I) fiiggvényeket, melyekre

Az, y) + AP (2, ) =x+y  (wye])

teljesiil.

A megolddsokrdl az aldbbi eredmény ismert (Theorem 5.4):

Tegyiik fel, hogy a ,1 € CM(I) fiiggvények kielégitik az a—rendii kvazi-
aritmetikai kozepekre vonatkozé Matkowski-Sutd egyenletet, és ¢ vagy ¢
folytonosan differencialhaté. Akkor létezik p € R, melyre p(x) ~ x,(z) és
P(x) ~ x—p(x) (z € I) teljesiil.

Most az aldbbi kiterjesztési tételt mondhatjuk ki (Theorem 5.5):
Tegyiik fel, hogy a ¢,1 € CM(I) fiiggvények kielégitik az a—rendi kvézi-
aritmetikai kozepekre vonatkozd Matkowski—Suto egyenletet. Tegyiik fel
tovdbbd, hogy J olyan valodi részintervalluma 7-nek, melyen ¢ ~ x, és
Y ~ x_, teljesiil valamely p € R esetén. Akkor ¢ ~ x, és 1) ~ x_, I-n.

A bizonyitas hasonlé az el6zé esethez. Ismét csak azt az egyenletet
koz6ljiik, mely kapcesolatot teremt a komplementer kdzepekkel (5.20):

AR @,0) = (A7 (@)
valamely zdrt intervallumon. Itt is f(¢) := ¢(t) — t.

A 6. szakasz a mar emlitett komplementer kozepekkel foglalkozik.
Legyen M, N szigoru kozép I-n, és legyen 0 < A < 1, u #0,1. N-et az M
(1, \)~komplementerének nevezziik, ha az alabbi egyenlet teljesiil

pM(z,y) + (L= p)N(z,y) =z + (1-Ny  (z,y € ).

Egy f: I — R fiiggvényt (M, u, \)-asszocidltnak neveziink, ha rendelkezik
az aldbbi tulajdonsiaggal:

Ha z,y € I kielégiti az M (x,y) = N(x,y) ésaz f(x) = f(M(z,y)) feltételt,
akkor f(y) = f(x).
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Ennek a szakasznak a f6 eredménye (Theorem 6.2):
Legyen 0 < A <1, u >0, u+# 1, és legyen M, N olyan szigord kozép I-n,
hogy N (i, A)-komplementere M-nek. Legyen tovdbba f : I — R folytonos
fiiggvény, mely kielégiti az

f(M(z,y)) = f(N(z,y))
fliggvényegyenletet minden x,y € I-re. Ekkor

(a) Minden olyan z,y € I esetén, melyre M(x,y) # N(z,y), f valamely
oldalon lokélisan konstans az A(x,y; \) pontban.
(b) Ha f (M, u, \)—asszocialt, akkor
(i) f konstans I-n, vagy
(ii)) M(xz,y) = N(x,y) = A(z,y; A) barmely x,y € I esetén.
Lathaté, hogy ez a tétel jol hasznalhaté az elobb emlitett két egyenlet
kezelésére.
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