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Abstract. The study provides an overview of modelling possibilities for the mechanical behaviour of media. 

The discrete, continuous or differential geometric as well as the discrete nature and continuous description 

grid continuum model in particular are highlighted. We point out that the differential geometric model is 

based on the concept of continuity and interprets a continuous medium model. We reveal that the grid 

continuum model is based on the application of numerical method and interprets a discrete medium model.  

1 Introduction 

The system of discretely located elements, classical con-

tinuum and generalised continuum can be used in litera-

ture to describe the mechanical behaviour of deformable 

solid bodies. The discrete system can be characterised as 

describe the system in both physics space and phase space 

as discrete domain functions. The classical continuum can 

be characterised by interpreting it as a continuous 

geometric locus in the physical space, applying 

continuous functions in the phase space to describe its 

condition. The generalised continuums can be described 

by modelling a discrete geometric locus retaining the 

internal structure of the matter in the physical space (e.g. 

with „micro-continuums” sitting on the grid points of 

some kind of grid system), we characterise the condition 

of the internal structure matter with continuous functions 

for the phase space description.  

The continuity of the three models differs in physical 

and phase space. We examine the three models according 

to this distinction in this study.  

2 Characterisation of discrete modelling 
in physical space 

2.1 Description of the discrete model 

There are the bodies, degrees of kinematic freedom of 

bodies, methods of interaction existing among bodies, 

dynamic degrees of freedom, matter equations, the 

conditions of equilibrium, and the relationships describ-

ing the equilibrium (movement), the initial positions of 

the bodies and the initial values of dynamic effects in the 

initial positions, those dynamic, occasionally kinematic 

conditions, which exist when we seek the equilibrium of 

the system and its movement. 

The system can be examined limited to mass points 

and rigid body sitting in grid points (it can be demon-

strated that its deformability does not play any role), 

solution for the system can be examined without actually 

applying equilibrium (movement) equations. It is enough 

to limit ourselves to what degree of kinematic freedom 

does an element sitting on the grid points possesses and 

what equilibrium (movement) equations can be applied.  

Hereinafter, the equation system of the discrete 

mechanic system is formally described. Provided there are 

n numbers of elements. The location of elements 

(reference points) is marked with ri, the position of ele-

ments (basis vectors of tangential space) is marked with 

ψi. Elements can have displacement ui and rotation φi, (i 

= 1,2,3 … n) degrees of freedom. The case of two degrees 

of freedom is examined separately and jointly as well.  

Case of displacement: The internal force between the 

ith and jth element, Fij and Fji = – Fij, depends on the dis-

tance of the two elements. The distance of the two ele-

ments is marked with rij = ri – rj in the initial state. This 

vector changes to value Rij with the shift of the two 

elements, where Rij = rij + ui – uj. Accordingly, the fol-

lowing forces act upon the ith element: 

           
    , , , , 

(   1  ,2,3    ,    1,2,3    ;     )

)

.

(ij ij ij ij i j

i i

c

i n j m m n



    

F F r u u
 (1) 

Here, the mi ≤ n inequality refers to the fact that there 

is not always a relationship between all elements in fact, 

different elements can have a relationship with a different 

number of elements. The fact that the magnitude of force 

between the ith and the jth elements can depend on various 

parameters was marked with cij in the context regarding 

Fij force. The equilibrium of the system for every ith 

element is given by force equations: 

     
1

( , , , ) , ( 1,2,3 ... ).
im

ij ij ij i j ij
c i n


   F r u u P 0   (2) 
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The Pi in the equation is the „external” force acting 

upon the ith element.  

It can be seen from the equation system (we are in a 

three-dimensional space), that 3n equations are available 

for determining 3n variables. Starting from the known ri 

positions of the individual elements in the task, the Ri = ri 

+ ui (i = 1,2,3 … n) is the new position of elements that 

can be determined under the effect of external forces: Pi 

(i = 1,2,3 … n). 

Case of rotation: The internal torque between the ith 

and jth elements, Mij and Mji = – Mij, depends on the 

relative position of the two elements. The relative position 

of the two elements is marked with ψij = ψi – ψj in the 

initial state. This vector changes to Ψij value with the 

rotation of the two elements, where Ψij = ψij + φi – φj. 

Accordingly, the following torques act upon the ith 

element: 
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See the annotation regarding the mi ≤ n inequality 

above. The fact that the magnitude of torque between the 

ith and jth elements can depend on various parameters was 

marked with dij in the context regarding the Mij torque. 

The equilibrium of the system for every ith element is 

given by torque equations:  

   
1

( , , , ) , ( 1,2,3 ... ).
im

ij ij ij i j ij
d i n


   M ψ φ φ M 0  (4) 

The Mi in the equation is the „external” torque acting 

upon the ith element.  

It can be seen from the equation system that 3n 

equations are available for determining 3n variables. 

Starting from the known ψi position of the individual 

elements in the task, the Ψi = ψi + φi (i = 1,2,3 … n) is the 

new position of elements that can be determined under the 

effect of external torques: Mi (i = 1,2,3 … n). 

Case of displacement and rotation: The internal force 

between the ith and jth elements, internal torque, depends 

on the distance and relative position of the two elements, 

see above. Accordingly, the following forces and torques 

act upon the ith element: 

                 , , ,( , ,  ), , ,ij ij ij ij i j ij ij i jc dF F r u u ψ φ φ   (5) 
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M M r u u ψ φ φ
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See the annotations regarding the mi ≤ n inequality and cij 

and dij above. The equilibrium of the system for every ith 

element is given by force and torque equations: 
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( , , , , , , , ) ,
im

ij ij ij i j ij ij i j ij
c d


  F r u u ψ φ φ P 0   (7) 
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  M r u u ψ φ φ M 0   (8) 

where (i = 1,2,3 … n). 

 

The Pi in the equation is the „external” force acting 

upon the ith element, while the Mi is the „external” torque 

acting upon the ith element. 

It can be seen from the equation system that 2×3n 

equations are available for determining 2×3n variables. 

Starting from the known ri position and ψi direction of the 

individual elements in the task, the new position Ri = ri + 

ui, and its new direction Ψi = ψi + φi of elements (i = 1,2,3 

… n) can be determined under the effect of Pi external 

forces and Mi external torques (i = 1,2,3 … n). 

2.5 Possibilities and limitations of the discrete 
model  

The discrete method provides an opportunity to examine 

the mechanical condition of a system consisting of a finite 

number of mass points or rigid bodies with assumption 

that the mass point has three displacement, and the rigid 

body has three displacement and three rotation degrees of 

freedom, the known position vectors and the direction of 

the individual rigid bodies enables the determination of 

force between two-two mass points and the determination 

of force and torque between two-two rigid bodies. These 

internal forces depend on the displacement of mass points, 

and the internal forces and torques depend on the 

displacement and rotation of rigid bodies. The equations 

of equilibrium (movement) of mass point and rigid body 

provide the same number of equations as the number of 

kinematic variables. The solution of equilibrium 

equations provides the locations of mass points and the 

location and direction of rigid bodies depending on 

external forces, or external forces and torques. 

The system provides a solution regarding the discrete 

points of space. That means that the theory for unknown 

quantities (as functions) whether they are displacements, 

rotations, forces or torques can only determine values in 

the discrete points of the physical space. 

3 Continuous in physical space model 

3.1 Description of continuous in physical space 
model 

A body is given as a continuous model, along with its 

location in space, position, shape, characteristics of 

material behaviour, support conditions of the body, ef-

fects on the body, kinematic and dynamic values in the 

initial position of the body.  

We identify a deformable body in the continuous 

model with its region occupied in the Euclidean space. Let 

there be given the {qi} coordinate system. The position 

vector is marked with r before the deformation, and with 

an R after the deformation. 

Firstly, overview the quantities describing the 

geometry; see the relationships themselves e.g. [1,2]. 

– Basis vectors in the r position vector point. 

– Components of the metric tensor. 

– Partial differentials of basis vectors. 

– Affine coefficients (Christoffel symbols). 

– Christoffel–Riemann curvature tensor for expressing 

the curvature of the Riemann space. 
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The following geometric terms can be expressed with 

the abovementioned quantities: 

– scalar products of vectors a and b, 

– angles between vectors a and b (cosine), 

– regular arc length between two points in space, 

– absolute differentials, 

– parallel shift along the curve. 

The basis of a continuous model is the continuity 

itself. This enables the application of Taylor Series, which 

is applied in practice in the following form: 

   (  , , ) ( , , ) ( , , ) / .F x x y z F x y z F x y z x x         (9) 

The consequence of this is that differential 

relationships are established among the unknown 

quantities. 

According to the continuous model, the position 

vector of all points of the deformable rigid body changes 

under external effect. In accordance with this, the 

differential geometric description of space can be used for 

the kinematic characterisation of the body. The 

interpreted terms are the following [1,2]. 

The difference of position vectors is the displacement 

vector: , u R r  this also describes the changes of the 

coordinate system at the same time. The components of 

the metric tensor in the deformed state are as the scalar 

product of basis vectors. The difference of the metric 

tensors can be relating to the deformation. The difference 

of the two tensors is the measurement tensor of the 

deformation: . γ G g  The relative stretch of a direction 

vector is described by the main diagonal elements, the 

change in the angle between two direction vectors is 

described by the off-diagonal elements of the 

measurement tensor [2], when the relative strains 

(stretches and angel changes) are small [3-5]. This leads 

to the tensor of small strains: ( ) / 2. ε G g  The change 

of affine connexion coefficient, ,k k k

ij ij ij   Γ  the 

relationships required for the equilibrium equations of the 

deformed state. The change of the curvature tensor 

provides the compatibility equations (if we make it equal 

to zero). The expression of different geometric objects 

with the components of the gradient tensor of 

displacement vector is required for establishing the 

theory. Here, we only provide a relationship for one 

geometric object regarding the measurement tensor of the 

strain: ( ) ( )( ) .   γ u u u u     The other 

relationship can also be expressed with the gradient tensor 

of the displacement, see e.g. [1-5]. 

By describing deformation with displacement two 

further characterisations of changes in space can be 

provided. The rigid body rotation of the neighbourhood of 

a points (the tangential basis vectors to the point) is given 

by orthogonal component of the polar decomposition of 

the gradient tensor of the deformed position vector. The 

other is the rotation of a direction. This is provided by the 

whole gradient tensor of the deformed position vector.  

The displacement of the points of the continuum 

clearly determines the rotation of neighbourhood of all the 

points. This cannot be an independent quantity. Con-

sequently, neither the rotation of a direction, nor the ro-

tation of the neighbourhood of a point can be interpreted 

as an independent kinematic variable.  

The kinematic characterisation of the continuum can 

be summarised as follows. The primary kinematic vari-

able of the continuum is the displacement field, while the 

secondary kinematic variable is the symmetrical strain 

tensor. The displacement of the continuum per points 

clearly provides the relative stretch and rotation of every 

unit vector, the angle change per point between two-two 

unit vectors and the rigid-body like rotation of the neigh-

bourhood of every point (that is to say the tangential basis 

vectors belonging to the point).  

Note: We have 3 + 6 kinematic variables, with six 

strain-displacement relationships (the kinematic equa-

tions). The kinematic description of the continuum indef-

inite.  

We wish to interpret internal forces in the continuous 

model in physical space as continuous. As a point has no 

dimension, no weight and only one concentrated force can 

be assigned to it in the physical space, the Newtonian 

model has to be modified so that we assign dynamic 

quantity to a small but finite volume rather than to a point. 

Avoiding details, let there be σn(x,y,z) vector quantity on 

an surface with n outward normal, which if we sum 

(integrate) on finite size surface figure, then ultimately we 

obtain concentrated force (force vector): 

                  
,, , )( ( )., ,A

A

dAx y z x y z



 n n
σ F   (10) 

The σn(x,y,z) quantity introduced this way is called stress 

vector [2]. The concentrated torque on a small but finite 

size surface figure can be interpreted similarly [2]: 

              
,, , ) ,( ,( ).A

A

x A y zdy z y x



  n n
r σ M   (11) 

The equilibrium of elemental tetrahedron can be 

examined with the help of forces and torques interpreted 

on a plane figure. It can be verified with force equations 

that stresses form a second order tensor quantity, and it 

can be verified with torque equations that the stress tensor 

is symmetrical [2]. 

The equilibrium of the elemental cuboid can be ex-

amined with the help of forces and torques interpreted on 

a surface figure. The general form of force equations is 

           0, ( , , ),
yixi zi i x y z

x y z

  
   

  
  (12) 

which can be extended with body force and the inertia 

parameter [2], the torque equations are met due to the 

symmetry of the stress tensor. 

Note: We have 6 dynamic variables, with three rela-

tionships (the equilibrium equations) among them. The 

dynamic description of the continuum is indefinite.  

There are relationships and material equations 

between quantities characterising the kinematic and dy-

namic side and provide exactly as many equations as the 

number of variables in the system.  
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3.2 Possibilities and limitations of the continu-
ous in physical space model 

The continuous model is based on many, primarily 

topological and metric assumptions (see [6,7]). 

The model can describe the change in shape of the 

deformable solid body (locally the relative stretches and 

also locally the angle change between two curves), and 

the internal forces (stresses) distributed in the body. 

The model cannot express the rotation of a point, the 

force acting upon a point, and the torque acting upon a 

point as a point has no dimensions and surfaces act upon 

each other rather than points. At the same time the model 

is suitable for expressing the rotation of a direction vector 

and the neighbourhood of a point as well as assigning 

force and torque to a small but finite size surface figure 

with any outward normal vector in the point. 

The model only describes the change kinematically 

correctly in case of fixed atomic-molecular order or 

strained (unchanged topology) particles. Therefore e.g.: in 

case of atomic structure the strain of the crystalline grid is 

described accurately by the continuous model. It cannot 

describe the rearrangement of the atomic order accurately 

in case of plastic flow as the rearrangement is 

accompanied by the damage of the topologic order. 

Similarly, the model does not reveal the rearrangement of 

atoms in fluids, the collisions of atoms-molecules in gases 

and their changeovers either.  

The model can only describe the collective movement 

of molecules. Therefore the model is suitable for 

describing acoustic vibrations not for the optical branch. 

It is capable of describing laminar flow in fluids and gases 

with adequate accuracy but no the cross diffusion. 

The model is not suitable for determining force 

between atoms-molecules and particles as it can only 

interpret defined force and torque in the integrated sense 

assigned to the surface figures of a small but finite size. 

The model does not reveal kinematic and dynamic 

parameters related to dimension of elements (atoms, mo-

lecule, particle) considered to be finite. Therefore, the 

values of forces between atoms and molecules constitu-

ting the matter cannot be determined in the model nor the 

values of rotation of particles and the torques occurring 

during rotation. 

4 Discrete in the physical space, con-
tinuous in the phase space model 

4.1 Description of the discrete in the physical 
space, continuous in the phase space model 

The matter is still considered to be the system of finite 

dimension elements in the physical space. (The data listed 

in the discrete model are known for the task; see the first 

paragraph of point 2.1.) We presume about this model that 

it is periodical and fixed. Because it is fixed, the behaviour 

of the medium can be characterised with the fact that the 

elements constituting the medium do not change places, 

they only move around their rest position at most. We 

presume in the study that in the grid points a mass point, 

a rigid body or a deformable solid body are located.   

We assigned one state function to all elements col-

lectively and not to each and every element in the phase 

space. We consider displacement as the example. Instead 

of the ( ( , , ))i j kP x y zu  displacement vectors assigned to 

the various ( , , )i j kP x y z  points, we consider one, the dis-

placement vector field ( , , )x y zu . Consequently, instead 

of the ( ( , , ))i j kP x y zu  „exact” solution, we consider the 

„approximate” solution ( , , )x y zu . The „transition” is 

briefly marked: 

                       ( ( , , )) ( , ., )i j kP x y z x y zu u   (13) 

In this case we have not yet made the theoretical 

description continuous in phase space. The mechanical 

relationships interpreted in discrete points are still 

interpreted in discrete points, but it is not written in the 

( ( , , ))i j kP x y zu  form, but in the 
( , , )

( , , )
i j kP x y z

x y zu  form. 

(There are the same numbers of variables in both forms.) 

The next step of continuous model construction in the 

phase space is to find such continuous equations, which 

describe the mechanical state of the discrete system of the 

continuous kinematic u(x,y,z) and dynamic analogue with 

this variables, as well as the material relations. It has to be 

noticed that we approach the „transition” analogue under 

(13) with one of the steps applied in the numerical 

method, the selection of approaching functions: the 

unknown functions are approached by the linear 

combination of known basis (functions), and we set up 

algebraic equations for determination of unknown real 

numbers (namely coefficients of the known basis 

functions). The next step of model construction in the 

phase space has to be analogue with the other step of 

numerical method: the distance of the exact and approx-

imate solution has to be determined and this distance has 

to be minimised or made orthogonal for any (complete) 

vector of the space of the applied basis function. The 

numerical method applies to the approximate solution of 

the known equation. The task during the establishment of 

the continuous model in the phase space is to set up 

(continuous) state equation related to the state functions 

interpreted as continuous one in the phase space. As we 

do not have a continuous operator in the phase space, we 

cannot interpret the distance of the exact and approximate 

solution for the numerical method in an analogue way. 

Consequently, it is not sufficient to consider the state 

functions as continuous when creating a continuous in the 

phase space model, but the related state equations also 

have to be „selected” continuous. The selection of the 

equation cannot be arbitrary as it is to be applied to 

describe a given mechanical system. The only possibility 

is to apply analogy. Avoiding details, in order to create a 

continuous in the phase space model, the Lagrange-

function of the discrete system has to be made continuous 

as the example in (13): 

     
( ( , , ), ( , , ),   , ( , , ))

( ( , , ), ( , , ), , ( , , )).

i j k i j k i j kL x y z x y z P x y z

L x y z x y z P x y z

 

 

u F

u σ
  (14) 
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Not the difference of the function values taken up in 

the discrete points but its continuous counterpart has to be 

included in the continuous Lagrange-function; applying 

the Taylor Series, for displacement: 

1( ( , , )) – ( ( , , )) ( , , ) / .i j k i j kP x y z P x y z x y z x  u u u  (15) 

Interpreting displacement (u), rotation (φ) and the 

strain modus (ε) as primary kinematic variable, the 

secondary kinematic variables are interpreted with the 

relationships below: 

                  , , ) , ,( )( ,x y z x y z
u
ε u   (16) 

                  , , ) , , ),(  (x y z x y z
φ
ε φ   (17) 

                  , , ) , ,( )( .x y z x y z
ε
ε ε   (18) 

Formally, to the analogy (13) of the discrete-con-

tinuous „transition”, a ( ( , , )) ( , , )i j kP x y z x y zF σ  type 

discrete-continuous „transition” should be also applied in 

the case of internal forces. In practice, we consider the 

partial differential quotients according to kinematic vari-

ables of the Lagrange-function as (generalised) dynamic 

variables. For these, in the case of the u, φ and ε variables 

   , , ) ( , , )( ( (, , , ), , ) / ,x y z L x y z x y z  
u u u
σ u ε r ε   (19) 

   , , ) ( , , )( ( (, , , ), , ) / ,x y z L x y z x y z  
φ φ φ
σ φ ε r ε   (20) 

    , , ) ( , , ), , , ), , ) /( ( (x y z L x y z x y z  
ε ε ε
σ ε ε r ε   (21) 

relationships can be set up. The generalised Hooke’s law 

for the generalised continuum can be set up in the form: 

                 .

    
    

     
        

u uu uφ uε u

φ φu φφ φε φ

ε εu εφ εε ε

σ C C C ε

σ C C C ε

σ C C C ε

  (22) 

Both in (19-21), and (22) we set out from the fact that 

the material equations, namely relations between the 

generalised strains and the generalised internal forces, are 

known.  

The state equations (the description limited to 

equilibrium), in accordance with the method of the model 

creation, are provided with by determining the maxima of 

the L functional describing the state. Formally, the 

following three equations are set up for variables u, φ and 

ε: 

      
( ( , , ), ( , , ), , ( , , )) /

  ( ( , , ), ( , , ), , ( , , )) / ,

L x y z x y z P x y z

L x y z x y z P x y z

   

  

u u

u

u ε ε

u ε u
  (23) 

      
( ( , , ), ( , , ), , ( , , )) /

  ( ( , , ), ( , , ), , ( , , )) / ,

L x y z x y z P x y z

L x y z x y z P x y z

   

  

φ φ

φ

φ ε ε

φ ε φ
  (24) 

       
( ( , , ), ( , , ), , ( , , )) /

  ( ( , , ), ( , , ), , ( , , )) / .

L x y z x y z P x y z

L x y z x y z P x y z

   

  

ε ε

ε

ε ε ε

ε ε ε
  (25) 

Finally, the functional – the Lagrange-function of the 

system –, which describes the state of the system also has 

to be given. The continuous Lagrange-function in the 

phase space can only be set up based on analogy. 

Regularly, we set out from the fact that kinetic energy is 

proportional to the square of velocity, while elastic energy 

is proportional to the square of the strain. Taking this into 

consideration, based on analogy, the Lagrange-function 

can be constructed. The state equations of the system for 

variables u, φ and ε can be set up in the following operator 

form:  

  ( ) ( ) ( ) .I       
uu u uu uφ uε u u

u C u C φ C ε Q  (26) 

  ( ) ( ) ( ) .I       
φφ φ φu φφ φε φ φ
φ C u C φ C ε Q  (27) 

    ( ) ( ) ( ) .I       
εε ε εu εφ εε ε ε
ε C u C φ C ε Q   (28) 

The Iij quantities are inertias of the „spread” matter in 

the generalised continuum versus the displacement, 

rotation and strain. The analogy is perfect with the motion 

equations of the classic continuum because the formulas 

were compiled according to its formalism. Such 

conditions from mathematical aspects exist, which ensure 

the correctness of the targeted boundary values ( [8]). 

4.2 Characterisation of discrete in the physical 
space, continuous in the phase space model 

The continuous in the phase space model is constructed 

based on analogy. The continuous, secondary kinematic 

variables, the continuous Lagrange-function of the system 

and the continuous internal forces are interpreted based on 

analogy. Following this, we set up the equations 

describing the state of the system based on the known 

mathematical algorithms. A peculiarity of the model is 

that no such experiments exist, which would enable direct 

measurement of material constants. While in the case of 

classic continuum, from the differential geometric 

description it can be concluded such experimental 

arrangement (uniaxial pull and shear), which connects the 

six strains of an elemental cube to stress assigned to three 

surfaces of the elemental cube can be interpreted, in the 

case of the generalised continuum no such geometrical 

shape exists, where the dynamic variables could be clearly 

assigned to its displacements. In case of generalised 

continuums not simply single-parameter experiments are 

required for the verification of the model. Firstly, the 

introduced kinematic and dynamic variables have to be 

interpreted, secondly, such experimental arrangements 

have to be prepared, where these phenomena can be 

detected, measured and the experiments have to be carried 

out, thirdly, the theoretical tasks regarding the targeted 

experimental  arrangement have to be set and have to be 

solved. Finally, the experimental results have to be 

compared with the theoretically determined results. As 

many experimental states have to be interpreted as the 

number of material constants exist in the theory. If these 

material constants are determined in accordance with the 

experiments, that is to say the parameters in the theory are 
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fitted to the measured results then the theory can be used 

for the task to be solved.  

The model describes the state of points located on grid 

points; the values of continuous functions taken up on grid 

points have mathematical and mechanical senses. 

The model can be created preferably when the 

mechanical relationship among elements located on grid 

points is known.  

5 Summary 

We overviewed three possibilities of modelling the 

mechanical behaviour of media. The first possibility, is 

that the motion of each and every mass particle consti-

tuting the medium described by an individual equation. 

The functions describing the state of the medium obtain a 

value in the location of mass particles characterised by it. 

The system is discrete from this aspect. This possibility 

can be restricted to the concurrent examination of a few 

thousand or ten thousand mass particles; it is not suitable 

for the examination of millions of particles or at atomic 

level for the concurrent examination of the scale of 1023 

gas molecules present in one cubic decimetre. As a second 

possibility, the application of some continuous functions 

has to be mentioned instead of the discrete domain 

functions. This in the first approach means that the state 

of the system described by a few functions interpreted in 

the continuous domain of some continuum consisting of 

many points including independent points instead of 

functions interpreted in a finite number of independent 

points. Two such spaces can be identified. One is the 

physical space, where the elements of the medium move, 

while the other is the phase space, where the state of the 

elements of the medium are mathematically characterised. 

Therefore, the second possibility is to consider a region of 

the Euclidean space (which has continuum cardinality) 

instead of the examined finite number of particles, and we 

extend the mechanical relationships related to the 

particles to this domain. In this model construction, we 

„spread” all mass present in points by default in one 

continuous region of the Euclidean space modelling the 

physical space, we have no mass particles but a medium 

with continuous distribution exists, along with this the 

functions characterising the system are continuous 

functions interpreted on a continuum. This model creation 

is based on differential geometry. This method leads to 

the term of classic continuum and as such only one exists. 

The third possibility is to keep the finite number of many 

points with their independent, unique size, characteristics 

as models, at the same time we embed them into the finite 

region of the Euclidean space with the help of their 

reference points, then we interpret the continuous 

functions describing the system on this range and extend 

relationships related to the discrete mechanical system for 

these continuous domain functions. In this model con-

struction, we „spread” the functions describing the states 

in the phase space by default: continuous domain (con 

tinuous) functions are included instead of discrete 

 

 

 

domain functions. We create the continuous domain 

Lagrange-function of the system and determine the state 

indicators and state equations for continuous functions. 

This model creation applies steps of the numerical method 

(selection of basic functions, creation of error principle). 

This method is suitable for describing fixed, periodical 

structure rigid bodies and leads to the generalised 

continuums. The generalised continuum, contrary to its 

name, is not continuous but a discrete system with typical 

discrete states (e.g.: optical vibration branch of atoms), 

which do not exist in the classic continuum. Many 

generalised continuums exist, these form a hierarchy. 
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