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Abstract: Taking into consideration the additional weight of a vehicle, today’s requirements can
only be met using new materials and designs. The application of metal foam is one of the most
promising methods of enhancing the impact energy absorption ability of the crumple zone. The
energy-absorbing capacity of thin-walled structures filled with metal foams during compression can
be notably improved, which results in lower loading on the passengers. The main goal of our research
is to develop a new design that is suited to absorb more impact energy while taking into consideration
weight optimization. The authors wanted to unveil the effect of the inhomogeneous filler material in
these thin-walled structures. Therefore, the present study investigates the compression test of two
metal foams of different densities, in different ways. In the first section, the foams were compressed
independently from each other by a recording of a stress–strain diagram. After the single compression,
the foams were loaded together, first in parallel, and subsequently in a serial scheme. The study
aimed to reveal the effect of the parallel and serial compression scheme focusing on the sum of impact
energy absorption.

Keywords: aluminum foam; crumple zone; passive safety system; serial compression

1. Introduction

When a vehicle has movement, it has kinetic energy, which strongly depends on its
weight and velocity. At the moment of impact, this energy is converted into impact energy
in a few milliseconds. Therefore, the impact force and the deceleration of the vehicle
and the passengers are remarkably influenced by the duration time of the collision [1–5].
That is why crumple zones have indicated roles during a crash. They are designed to
extend the duration time of the collision while absorbing the most impact energy possible.
This principle would ideally involve long and oversized crumple zones; however, weight
optimization and efficient utilization inhibit this possibility. The car body structure is a
so-called differing-strength frame, meaning the crumple zones are made of metals with
high plasticity, but the cage is of high-strength steel. The latter is intended to prevent
the deformation of the zone of passenger and driver, the former has a high deformation
capacity, allowing it to absorb the impact energy [6–11]. Vehicle electrification causes a
weight surplus, owing to the mass of the batteries and their safety system. Moreover,
modern vehicles contain more driving assistants and entertainment systems, increasing the
unloaded weight. The weight surplus not only influences energy inefficiency, but also has
a negative effect on the features of an accident. Therefore, weight optimization is one of the
most important factors in the vehicle industry. The recently applied high-strength steels are
not able to complete the passive safety-related requirements and allow for a lower weight at
the same time. Furthermore, not only have the applied materials been modified in the last
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decade, but the applied manufacturing process has, too. Taking into consideration these
requirements, the researchers took on the difficult task of investigating and developing the
crumple zone structure. A new frame and frame component must be developed which
is compact, low-weight, and can absorb as much energy as possible while inhibiting the
impact energy conduction in the direction of the cage. To improve the energy absorbing
capacity of a thin-walled crumple frame structure without a considerable weight increase,
the integration of aluminum foam—as a filler material—is a good, promising method for
the vehicle industry. A large number of investigations deal with the positive effect of the
foam on the compression features of thin-walled structures [12–18]. The shell bodies usually
have a special notch or thinned cross-sections that allow for predetermined deformation
during a collision, while the foam inside of it is loaded by compression. Figure 1 represents
a foam-filled thin-walled tube as a simplified crashbox specimens.
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The foam-filled thin-walled frame components could be considered absorptive struc-
tures, meaning several proportions of the compression load are absorbed naturally by the
deformation of the outer shell body, and the foam plays a role in improving this energy
absorption. If we would like the foam to absorb the same amount of energy, it also requires
a special construction, in which the foam is loaded in a radial constrain application. The
number of studies about radial constrained foam compression is less than that of normal
compression, but most of them report positive results. In the case of radial constrained
compression, the lateral strain of the foam is inhibited by the wall of the frame and re-
sults in higher compression strength and a higher amount of absorbed energy [19–21].
The long-term goal of the research is to develop a highly efficient, yet compact crumple
crash box based on the principle of the radially inhibited clogging of metal foams. The
literature search did not provide any clear results on how to influence the sealing results
when using foams of different densities at the same time and this is the subject of this
paper. The aim of the present study was to investigate this filler material and reveal the
effect of the inhomogeneity of the foam density relative to the amount of absorbed energy.
Therefore, in the study, we investigated two different densities of the same base-material
closed-cell aluminum foam with a low-speed compression test. First of all, the lower
and the higher-density foams were compressed separately, and the recorded stress–strain
diagram is represented in Figure 2a. In the next step, the foam was installed in a parallel
scheme, meaning the foams are compressed next to each other under the cross-head of
the test machine. This scheme is introduced in Figure 2b. In the next section, the foams
were compressed in serial mode meaning they were placed on top of each other to unveil
the effect of this set-up relative to the feature of the stress–strain curve as it can be seen
in Figure 2c. To reveal the effect of the order of the foam types, the serial method was
repeated, swapping the order sequence of the foams. In the first test, the lighter one was
placed at the top, while in the second, the heavier one was placed on top. In Figure 2 the
arrows represent the compression direction, and the scale next to the specimens shows the
compression range.
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2. Specimen Preparation and Experimental Method

The compression was a low-speed test. Therefore, the ISO 13314:2011 standard require-
ments must be considered, since it specifies a test procedure for the compressive features of
porous and cellular metals with a porosity of 50% or more [22]. According to the standard,
the compressive tests must be carried out at an ambient temperature under quasi-static
strain rate conditions. Keeping in mind the requirements of the standard, all of the speci-
mens used in our test have D30 mm x H30 mm of cylindrical dimensions. For designation,
the study applied the SP-LDX (Specimen-Low Density) and SP-HDX (Speci-men-High
Density) abbreviations, where the X character indicates the number of the actual specimen
serial number. Before compression, we documented the precise geometrical parameters and
weight of the specimens in order to minimize the impact of the inner material structural
variation. We utilized identical nominally sized specimens for all tests, but the density
definition was crucial because of the uneven cellular distribution. Four of each variety of
foam were used in the four specimens we performed. Table 1 contains the parameters of
the specimens. Referring to these values, there was no significant physical dissimilarity
between each density. The last column of the table is about the relative density (ρrel.),
meaning the proportion of the physical density (ρ) of the foam and the density of the basic
aluminum material (ρs) [23]. The two different density foams are well introduced in Table 1.
The lower one has an average of 0.22 g/cm3, and the heavier one is about 0.36 g/cm3.

ρrel. =
ρ

ρs
(1)

Table 1. Specimen parameters. (Own collaboration of authors).

Designation Diameter Height Volume Mass Density Rel. Density

SP-LD1 29.76 28.73 19.97 4.74 0.23 0.085

SP-LD2 29.55 28.95 19.84 4.54 0.22 0.081

SP-LD3 29.13 29.35 19.55 4.69 0.23 0.085

SP-LD4 29.88 29.81 20.89 4.81 0.23 0.085

SP-HD1 29.91 29.81 20.93 7.58 0.36 0.13

SP-HD2 29.95 28.73 20.23 7.02 0.34 0.12

SP-HD3 29.34 29.85 20.17 7.44 0.36 0.13

SP-HD4 29.79 29.34 20.43 7.49 0.36 0.13

3. Tools for Test

The compression tests occurred on an Instron 8801 servo-hydraulic material testing
device at the University of Debrecen laboratory. The test machine is capable of both dynamic
and quasi-static compression, while its software records the displacement in mm and the effort
in kN. An Instron 8800 MiniTower Control Unit was used to control the Istron 8801 material
testing system. The software required to use the system is the WaveMatrix software package.
The purpose of the measurement was to record the response properties of the metal foam to
its compaction, i.e., to record the engineering stress–strain diagram and to evaluate it. The
amount of data in the measurements is influenced by the sampling frequency. In this case,
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the frequency was chosen to be 500 1/s, which resulted in more than 10,000 data by the
end of the test. This frequency set-up was based on a recent measuring foam compression
test experience. Over this frequency limit, the data were mishandled inaccurately at the
end of the densification range by the system. Given the use of the quasi-static method, the
compression speed was chosen to be 1 mm/s, and the crumpling displacement of 25/55 mm
resulted in more than 80% of strain in the foam specimens. Knowing the acting force and
the displacement during the compression, the stress–strain curve could be structured. For
visualization and the interpretation of the results, the 3.16.2 version of the Logger Pro software
was used. The aim of the study is to compare and reveal the effect of the foams of different
densities in one method; therefore, the test environment and temperature conditions were the
same for all tests. No additional materials—for example, lubricator—were used since they
could have influenced the final results.

4. The Ideal Absorber

The stress–strain (or load–deflection) curve of an ideal energy absorber is long and flat,
like those in Figure 3. Up to a limiting nominal strain, εD, the absorber collapses plastically
at a constant nominal stress known as the plateau stress, σpl. The ideal energy absorber
for impact protection is the one with the longest plateau, as it will absorb the most energy
before reaching εD and the plateau stress will be just below that, allowing it to conduct the
energy. The energy that the foam can absorb per unit initial volume up to the plateau’s end
is represented by the area under the curve, or roughly σplεD [23].
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A consistent interpretation is required to compare the effects of various construc-
tions packed with aluminum foam. The definitions in the following text are provided in
accordance with the aforementioned ISO standards. The compressive stress for porous
and cellular materials may be calculated by dividing the compressive force by the initial
cross-section. The strain is shown on the diagram’s horizontal (x-axis), which may be
determined using the ratio of the actual displacement to the specimen’s original length. The
definition of it is crucial since we compared the initial figures for the maximum compressive
stress. In this instance, the maximum compressive stress may be related to the first local
maximum. The interpretation of the plateau stress cannot be disregarded because this
study concentrates on the amount of absorbed energy. The plateau is the mathematical
mean of the compressive stresses between 20% and 40% of the strain. The densification
strain point was calculated using the data of this area. The stress at about 1.3 times the
plateau stress marks the beginning of the densification area and the end of the plateau [22].
Finally, two distinct methods are used to determine the absorbed energy. First, the energy
is the area under the stress–strain curve up to 50% strain or up to the plateau end strain, as
also indicated by the standard. Then, because a sizeable difference could be anticipated in
the densification region, we computed the area under the curve up to 80% strain. Figure 3
shows a typical stress–strain diagram for compressing the foam. To determine the amount
of absorbed energy during compression, the stress–strain curve must be integrated with the
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above-mentioned limits. The following formula was applied using the Pro Logger software
to analyze the area of the curves:

Eabsorbed =
∫ ε=pl./total

ε=0
σ(ε)dε (2)

5. Thin-Walled Structures

When crashed axially, thin-walled structures, such as the frontal or rear rails, function
well as energy absorbers as can be seen in Figure 4. Being “efficient”, in this case, means
that a large amount of energy is absorbed per unit of volume or weight. When the foam is
compressed, the walls of its cells bend and buckle under nearly constant tension until the
cells are collapsed fully. When the entire tube buckles, the fold faces come into touch [23].
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The tube then behaves differently, folding into a series of regular ring-like folds. This
buckling process could be inhibited by a filler material such as metal foam and results
in a higher amount of absorbed energy [23,24]. The effect of the filler material is well
represented in Figure 5.
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6. Results
6.1. Single Compression Scenario

In the first section, the foams were compressed separately, first the lighter one, then
the heavier one. Both tests resulted in a typical stress–strain diagram. The distinction is
made between the linear elastic, flat plastic, and densification zones. The lighter foam
(SP-LD1) reaches the elastic–plastic transient at 1.31 MPa and 2.39% of the strain, while the
heavier one (SP-HD2) at 2.046 MPa and 3.15% of the strain. The effect of the density could
be well introduced among the plateau stress, since the SP-HD1 has a higher flat stress range
resulting in 1.445 MPa of plateau stress during the 20–40% strain, compared to the SP-LD1
which was just 1.062 MPa in the same measurement period. Naturally, the density and the
cell size also influence the densification range. Smaller-sized cells result in sharp steepness
in the densification range relative to the lighter ones. The densification zone could be best
described by the steepness of the characteristic. Figures 6 and 7 represent the stress–strain
curves of the first test.
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Figure 7. Stress–strain of single compressions up to 80% strain (own collaboration of authors).

In order for the results to be compared, they are collected in Table 2. The table data are
presented in the following order: first maximum stress (σmax), and then plateau stress(σpl)
where both of them are given in MPa, and the end of plateau stress(εD) as a percentage.
As mentioned in “The ideal absorber” chapter, the absorbed energy is determined for the
plateau range (Eabs.plateau) and the whole compression (Eabs.total) in MJ/m3. These values
are also available in the last two table columns. To verify the results of the compression test
we employed a calculation method using the material properties of the samples and the
Formulas (3) and (4) [23]:
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σplateau ≈ (0.25 . . . 0.35)σys

(
ρ

ρs

)m
(3)

Table 2. Results of single compressions (own collaboration of authors).

Label σmax [MPa] σpl [MPa] σpl *
[MPa] εD [%]

Eabs.plateau
[MJ/m3]

Eabs.total [MJ/m3]

SP-LD1 (0.22 g/cm3) 1.315 1.062 1.044 * 70 0.76 2.653

SP-HD1 (0.36 g/cm3) 2.046 1.445 1.386 * 73 1.25 3.996

* Calculated plateau stress with the Formula (3).

The ρ/ρs is the relative density, which is the ratio of the sample density and the base
aluminum density. The formulas use the σys yield strength of the base material of the
sample, while the εD is the densification strain. For the currently available metal foams, m
lies between 1.5 and 2.0, and α1 is between 1.4 and 2 [23].

6.2. Parallel Compression Scenario

For this test, the foams SP-LD2 and SP-HD2 were used. However, contrary to our
expectations, the stress–strain curve did not totally add up mathematically, but rather,
remarkable changes occurred. In the first 20% of the strain, the real stress of the compression
stayed under the mathematical summation; however, in the second half of the plateau
and the densification zone, the curve closely approached the theory summation. As
hypothesized, the denser foam was predominant, and the lighter foam was only present
as a mechanical alloy and it had a positive effect on the test results. Due to the parallel
arrangement, the obtained values can be interpreted as a common element, as the foams
were compressed simultaneously. The first local maximum of the curve occurred at 3.99%
deflection at 2.014 MPa. This was followed by a plateau section at a higher location than
in the previous test, with an average value of 2.764 MPa. No significant deviation in the
runout uniformity of the plateau section was observed, and the section was nicely uniform.
During the first 20% of the strain, the lighter foam had no significant effect on the test, but
after this, it improved the performance of the compression. The densification zone started
at 63% strain. The higher stress values naturally meant a higher amount of energy absorbed
during the test. The diagram obtained during the test is shown in Figure 8.
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Figure 8. Stress–strain diagram of parallel scenario up to 80% strain (own collaboration of authors).

The values determined from the data collected during the test are summarized in
Table 3. It can be clearly stated that too large a difference in density would have a negative
effect on the results of the measurement, which is why it was important not to choose
foams that differed in density too much. Similarly, a large proportion of the additional
components are present in the alloyed metals. Choosing an extremely low percentage
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of alloying elements in the metal may have little or negligible effect on the mechanical
properties of the base metal.

Table 3. Results of parallel compression (own collaboration of authors).

Label σmax [MPa] σpl [MPa] εD [%] Eabs.plateau [MJ/m3] Eabs.total [MJ/m3]

SP-LD2 + SP-HD2 2.014 2.764 63 1.55 6.163

6.3. Serial Compression Scenario

The in-line arrangement promised to be a much more exciting contest, as the single
test proved that foams with different densities have different linear elastic properties.
These, in turn, suggest that the degree of compression of the foams is different for the
same compression displacement. Of course, the sum of the partial foam compression
should be equal to the cross-head displacement. However, the simultaneous compression
of foams with different properties resulted in new stress–strain characteristics. While in
the parallel arrangement, the combining property of the lighter foam was weaker, here it
significantly affected the curve characteristics. A very interesting and unexpected result
was that the order of the foams also affects the curve and therefore different results can
be obtained just by placing the foam closer to the cross-head. As we did in the parallel
scenario, the two foams were interpreted as one in the diagram. The serial connection was
tested using two methods, where the order of the foams was modified in accordance with
Figure 1. Figures 9 and 10 represent the results of the tests.
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Figure 9. Stress–strain curve of serial 1. scenario up to 90% strain (own collaboration of authors).
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First, the SP-LD3 and the SP-HD3 labeled specimens were used where the lighter
was placed closer to the crosshead, while in the second step, the order was changed. The
linear-elastic section reaches its first local maximum at 1.949% strain where the stress was
0.564 MPa. It is interesting that both layouts (parallel and serial) used the same foam, but
showed a different curve occurrence. At up to 30% deformation, only the low-density foam
was compressed, then at 35%, it started to harden. This appears as a rising section in the
plateau area. After that, the denser foam started to bulk and created the second plane of
the plateau section. Another interesting phenomenon is the beginning of the thickening
zone. At nearly 80% deformation, the actual hardening of the foam structure begins. This
means that the ideal energy absorption range was extended. It is important to mention the
regression before the hardening zone, which can be explained by the physical unification of
the foam with two densities. Based on the diagram, we analyzed the plateau section in two
parts. The average plateau value in the first section was 0.69 MPa and in the second section
2.43 MPa. Table 4 collects the values of the test. The snapshots clearly show the order of the
deformation in Figure 11. By changing the order of the foams, similar results were obtained.
Figure 10 clearly shows the two levels of plateau sections. A sharp transition between the
two may be observed. Then, as in the previous design, a setback may be observed before
the hardening zone.

Table 4. Results of serial compression (own collaboration of authors).

Label σmax [MPa] σpl [MPa] εD [%] Eabs.plateau [MJ/m3] Eabs.total [MJ/m3]

SP-LD3 + SP-HD3 0.564 1.908 83% 1.299 1.756

SP-DH4 + SP-LD4 1.041 1.991 81% 1.34 2.56
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7. Energy Efficiency

More pertinent information on the used and measured metal foams may be found
when looking at the energy efficiency. With the use of this technique, we can learn how
much of the foam’s capacity is being used for energy absorption. The goal of improving
crashworthiness is to employ foams of the greatest absorption capability to lessen the load-
ing effect of collisions. We can offer recommendations for development and optimization
after taking these results into account. The long-term goal of our research is to create a
crash box for vehicles that uses foam to absorb energy. We may formulate the creation and
study of the crumple box using these efficacies. The crash absorption effectiveness of any
structure may also be compared as a good yardstick. The following formula was used to
calculate the impact energy absorption capacity of the foam [25–27]:

Weff =
Wabsorbed
σoε0

104 (4)
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where the σ0 and the ε0 represent the actual stress and strain values of the stress–strain
curve region where we want to define the foaming efficiency. Although the densification
zone has the potential to absorb a significant amount of energy, it is advisable to use the
foam until the end of the plateau phase. After this limit, the densified foam may be able to
conduct energy instead of absorbing it. Therefore, the energy efficiency calculation was
performed for the plateau stage and collected in Table 5.

Table 5. Energy efficiency (own collaboration of authors).

Type of Method Labels η plateau [%]

Single test SP-LD1 49.64

SP-HD1 37.39

Paralell test SP-LD2 + SP-HD2 64.61

Serial test
SP-LD3 + SP-HD3 43.37

SP-HD4 + SP-LD4 59.42

8. Specific Energy Absorbing (SEA)

When weight is a crucial project parameter, Specific Energy Absorbing (SEA) enables
the comparison of the energy absorption capacities of the two different materials and
designs. It goes without saying that the energy absorption capacity of a crumple structure
can be increased by changing the density of the foam used [28–30]. However, this is limited
by mass optimization. Therefore, SEA is an excellent value for determining how much
energy a unit mass of foam or foams can absorb.

EA =
∫ δ

0
F(x)dx (5)

SEAmass =
EA
m

(6)

SEAvolume =
EA
V

(7)

where the m is the mass, the V is the volume of the specimens, and the EA is the amount of
the absorbed energy, given in J. Basically, it is a value given by the ratio of the absorbed
energy to the volume or mass. This can certainly be a guideline for the development of a
mass optimization passive safety system. With SEA, the performance of the development
can be expressed objectively, and it may also help to find the most effective design for
passive safety systems [31–34]. Before the compression tests, the volume and mass of
the foams were recorded and can now be used to determine the SEA in J/g. According
to the content in Table 6, it was revealed that the different density foam had a positive
effect on the SEA. Furthermore, applying the same foam, this value could even be further
influenced by the positioning of the foams either in parallel or in series. In the case of
crumple zone development overweight optimization, the space requirements are also
important conditions. Hence, this study investigated the SEA value relative to the volume
of the foams. This is also a great way to investigate the effect of foam placement, as both
the parallel and in-line arrangements used the same volume unit, but the amount of energy
absorbed, as shown in the previous table, was not the same, resulting in different overall
efficiencies. Analyzing the data in Table 6 reveals that the effect of the different scenarios
is well established. In the case of SEA, with regards to volume, there is no remarkable
deviation between each concept, except in the serial method. With the serial design, the
characteristic of the curve may be influenced, rather than the amount of energy.
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Table 6. SEA of each scenario (own collaboration of authors).

Type of Method Labels SEAmass
[J/g] SEAvolume [J/cm3]

Single test SP-LD1 0.559 0.132

SP-HD1 0.541 0.199

Parallel test SP-LD2 + SP-HD2 0.524 0.308

Serial test
SP-LD3 + SP-HD3 0.146 0.087

SP-HD4 + SP-LD4 0.213 0.128

9. Conclusions

In this investigation, the effects of varying the density of the foam arrangement were
shown through the compression of closed-cell aluminum foam. The inquiry focused on
the energy absorption performance since the test was the first step in a later crash-box
optimization. Our hypothesis suggests that the actual arrangement of the foams may have
a significant impact on the impact energy-absorbing capability of a crumple structure.
The study was divided into three parts. In the first section, a single test was presented
to reveal the mechanical parameters of the foams used in the test. Subsequently, the
specimens were compressed in serial and parallel arrangements at a rate of 1 mm/s up
to 80% deflection, while the force and displacement diagram was recorded to construct
the stress–strain diagram. The minimum 80% compression was necessary to allow for
the full compression of the foam and to be able to investigate each phase separately. The
study provided important and useful results that will be applicable in our future research
development. In the study, it was established that the energy absorption capacity of a metal
foam structure is not directly proportional to its mass and/or volume, contrary to previous
assumptions. The relative position of the foams of different densities with respect to the
direction of the compression test could be important. Table 7 summarizes the results of the
different compression scenarios.

Table 7. Result summarization (own collaboration of authors).

Label SP-LD1
(0.22 g/cm3)

SP-HD1
(0.36 g/cm3)

SP-LD2
+

SP-HD2

SP-LD3
+

SP-HD3

SP-DH4
+

SP-LD4

Arrangement single single parallel serial serial

σmax [MPa] 1.315 2.046 2.014 0.564 1.041

σpl [MPa] 1.062 1.445 2.764 1.908 1.991

εD [%] 70 73 63 83 81

Eabs. [MJ/m3] 0.76 1.25 1.55 1.299 1.34

Eabs.total [MJ/m3] 2.653 3.996 6.163 1.756 2.56

SEAmass [J/g] 0.559 0.541 0.524 0.146 0.213

SEAvolume [J/cm3] 0.132 0.199 0.308 0.087 0.128

η plateau [%] 49.64 37.39 64.61 43.37 59.42

Measurements have shown that the same structure of foams will produce different
mechanical properties in parallel and in series as seen in Figure 12. The thesis is that the
higher-density material can be considered as the base metal in an alloy and the smaller-
density foam as an alloying agent that affects the compressive properties of the structure.
However, the effect of this physical alloy can be influenced if used in different arrangements.
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Figure 12. Comparison diagram (own collaboration of authors).

The measurements show that the plateau section, which is important for energy
absorption, can be influenced from a design point of view. In the case of a parallel arrange-
ment, the plateau section was displaced in the positive direction along the Y-axis, but the
two foam properties did not add up. This result is represented in Figure 13. In the case of
the in-line arrangement, the platform section can be stretched. The onset of the previously
observed thickening zone was shifted and instead of 60–70%, it reached 80% deformation.
In crashworthiness, the densification zone of the foam must be avoided since the densified
cells can conduct the energy. With this solution, this effect can be avoided or delayed.
This means that the structure can be kept longer in the plateau stage thus increasing its
energy absorption capacity. A further significant result is the layout of the plateau range.
Figures 9 and 10 illustrate well the two linear stages, based on which the new characteristic
can be interpreted as a target to be achieved when designing a vehicle body, and this could
be useful in the case of crashworthiness.
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This is an important result because if we want to use the foam structure studied herein
in a crash box, we can conclude that the structure can absorb more and more energy in
case of an impact, with increasing deformation. At low impact energy, only the foam with
lower density plays its role in the absorption, while at higher impact energy, both foams
are compressed. The chapter about SEA (Specific Energy Absorption) also confirms the
efficiency of the structure, since the amount of the energy absorbed—relative to the mass
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and the weight—could be significantly improved without significantly increasing the mass
or the volume of the structure in the case of the parallel concept. This type of design study
was important and the results obtained are of great relevance to this research, as no studies
of this type were found in our literature search on which to base subsequent crumple zone
design work.

Author Contributions: Conceptualization, J.K. and T.A.K.; methodology, J.K.; software, Z.N.; vali-
dation, J.K. and M.F.; formal analysis, L.T.; investigation, J.K.; resources, M.F.; data curation, Z.N.;
writing—original draft preparation, J.K.; writing—review and editing, T.A.K.; visualization, J.K.;
supervision, T.A.K.; project administration, L.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the Hungarian State and the European Union
for their support in project No. 2020-1.1.2-PIACI-KFI-2020-00081.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Eichaker, L.; Trepeck, C.; Arnett, M.; Chen, H.F.; Wiechel, J.; Guenther, D. Increased Vehicle Intrusion as a Result of Vehicle

Weight. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual, 1–5 November 2021.
[CrossRef]

2. Khata, E.M. Analysis of Impact Energy as a Basis of Collision Severity in Vehicle Accidents. Ph.D. Thesis, Jomo Kenyatta
University of Agriculture and Technology, Juja, Kenya, 2021.
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