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Introduction

1.1. Preliminaries

In this section, we introduce the necessary notations and terminology.
As usual, N, Q and R denote the set of natural, rational and real numbers,
respectively, R, denotes the set of positive real numbers and Ny denotes the
set N U {0}.

Let I C R be a nonvoid open interval. A two-variable continuous func-
tion M : I> — I is called a mean on I if

min(x, y) < M(x,y) < max(x, y) (x,yel)

holds. If both inequalities are strict whenever x # y, then M is called a strict
mean on I. A mean M on [ is said to be symmetric if M(x,y) = M(y, x)
holds for all x,y € I. A mean M on R, is called homogeneous if M(tx, ty) =
tM(x,y) holds for all ¢, x, y € R,..

Classical examples for two-variable symmetric strict and homogeneous
means on R, are the arithmetic, geometric and harmonic means, which will
be denoted by A, G and , respectively, i.e.,

xX+y 2xy

Alx,y) = — S(x,y) == Vxy, H(x,y) :=

Another class of two-variable symmetric and homogeneous means on
R is the class of power means, also called Holder means. We will denote
the power mean of exponent p by M, and it is defined as

x+y

(xp +yP
My(x,y) = 2

N if p=0.

7
), if p #0,
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It is easy to see that the class of power means contains the arithmetic, geo-
metric and harmonic means by choosing the value of p as 1, 0 and -1,
respectively.

The two-variable Gini and Stolarsky means (cf. [26], [45], [46]) are two
substantial generalizations of the power means. These means play important
roles in the theory of means and in various application of inequalities in
mathematics.

For parameters p, g € R, the two-variable Gini mean G, : R2 - R, is
defined, for x,y € R, by

1
P 4+ yP =q
(x y) for p # ¢,
x4+ y4

Gpqlx,y) =
(xplnx+yplny
exp| ——————

xP 4+ yP ) forp =g,

and the two-variable Stolarsky (or the difference) mean S, : RZ — R, is
the following:

P _ P ﬁ
(M) i if (p = @)pg(x —y) # 0,

p(x? —y9)
1 Pl -yP1

exp(__+w), if p=q, palx—y) %0,
p x[’—yp
xl’_yp P .

B [ A 1 fq=0, plx—y)#0.
Spq(x,y) = (p(logx—logy)) na Pemnz

4 _ 14 q

(#) i if p=0, glx—y) #0,

q(log x — logy)

VT, ifp=q=0,

X, if x=y.

For positive numbers x and y, their power mean of exponent p can also
be obtained as G, o(x, y) and as S, ,(x, y) (in particular, G o = S2.1, Gop =
So0and G_1p = S_, 1 are the arithmetic, geometric and harmonic means,
respectively), thus power means are contained in both classes. Alzer and
Ruscheweyh ([1]) proved that the means that are simultaneously Gini and
Stolarsky means are exactly the power means.

Another possible generalization of the power means is the class of the
so-called quasi-arithmetic means ([28]). If I C R is a nonvoid open interval,
a two-variable function M : I> — [ is called a quasi-arithmetic mean on I
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if there exists a continuous, strictly monotone function ¢ : I — R such that

o(x) + so(y))
2

for every x,y € I. Here ¢ is called the generating function of the quasi-
arithmetic mean.

In this definition by choosing I = R, and ¢(x) = In x we get the geo-
metric mean, while the power mean of exponent p can be obtained by taking
I = R, and ¢(x) = x”. Thus, the class of power means is contained in the
class of quasi-arithmetic means, moreover, the only homogeneous quasi-
arithmetic means are exactly the power means ([28]).

These classes of means as well as other possible generalizations of the
power means provide a large field for research. Numerous researchers dealt
with the equality and comparison problems, while others worked on Holder
and Minkowski-type inequalities (cf. [6], [9], [10], [11], [14], [19], [20],
[31], [32], [37], [38], [39], [40], [44]). We concentrate on solving the in-
variance equation for these classes of means.

(1.1) M(x,y) = My(x,y) := ¢! (

1.2. The general form of the invariance equation

Given two means M, N : Ri — R, and x, y € R4, the iteration sequence

X1 ‘=X, Yy =y,

1.2
(1.2 Xna1 := M(Xp, yn), Yn+1 = N(xn, Yn) (n e N)

is said to be the Gauss-iteration determined by the pair (M, N) with the
initial values (x,y) € Rﬁ. It is well-known (cf. [8], [23]) that if M and N are
strict means then the sequences (x,) and (y,) are convergent and have equal
limits M ® N(x, y) which is a strict mean of the values x and y. The mean
M ® N defined by this procedure is called the Gauss composition of M and
N.

A very important result ([23]) in characterizing the Gauss composition
of means is the following: If M, N : Ri — R, are two strict means, their
Gauss composition K = M ® N is the unique strict mean solution K of the
functional equation

(1.3) K(x,y) = K(M(x,y),N(x,y))  (x,y €Ry),

which is called the invariance equation. If (1.3) is valid then we say that K
is invariant with respect to the mean-type mapping (M, N).
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The simplest example when the invariance equation holds is the well-
known identity

x+y 2xy
xX+y

\/_ - (xey € R+)9

that is,
9()(', l/) = 9(‘A(-x’ y)’ f}f(_x, y)) (X,y € R+)

Another invariance equation is the identity
A®G(x,y) = A G(AMX Y, 5(x, )  (xyeRy),

where A ® G denotes Gauss’s arithmetic-geometric mean. This mean had
an important role in the history of mathematics. In 1791, when he was only
14, Gauss played a game of choosing two numbers arbitrarily and creating
the sequences defined in (1.2) with M(x,y) = A(x,y) and N(x,y) = G(x, y).
He observed, by calculating the two sequences up to several digits, that the
two values became indistinguishable very rapidly (i.e., they converged very
rapidly to the common limit). On May 30, 1799 he discovered that the arc
length of the famous (Bernoulli-) lemniscate with foci O; and O, can be

expressed by m |O1 O»]. He introduced the lemniscate functions and

studied the theory of these functions. Later, he examined the elliptic func-
tions (generalizations of the lemniscate functions) and the elliptic integrals
and found the general form of A ® G, which is

-1

A®5G(x,y) = f \/ (x,y € Ry).

x2cos 1 + y2 sin® ¢

The invariance equation in more general classes of means was studied
extensively by many authors in various papers. The invariance of the arith-
metic mean A (i.e., when in (1.3) K is equal to the arithmetic mean) with res-
pect to two quasi-arithmetic means was first investigated by Sutd, and later
by Matkowski (([47], [48]), [33]). This problem was completely solved by
Daréczy and Pales ([23]), assuming only continuity of the unknown func-
tions involved. The invariance equation involving three weighted quasi-
arithmetic means was studied by Burai ([13], Jarczyk—Matkowski [30]) and
Jarczyk ([29]). The final answer (where no additional regularity assump-
tions are required) was obtained in ([29]). The invariance of the arith-
metic mean with respect to Lagrangian means was the subject of investi-
gation of the paper [35] by Matkowski. The invariance of the arithmetic,
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geometric, and harmonic means with respect to the so-called Beckenbach—
Gini means was studied by Matkowski ([34]). Pairs of Stolarsky means for
which the geometric mean is invariant were determined by Btlasifiska-Lesk—
Glazowska—Matkowski ([7]). The invariance of the arithmetic mean with
respect to further means was studied by Gtazowska—Jarczyk—Matkowski
([27]), Burai ([12]) and Domsta—Matkowski ([25]).

In recent years, under the supervision of Professor Zsolt Péles, I studied
the invariance equation for different classes of means. The results the thesis
is built upon appeared in the papers [2], [3], [4] and [5]. The exact references
will always be given at the appropriate sections.

In the first part of the thesis we consider the invariance of the arithmetic
mean with respect to the so-called generalized quasi-arithmetic means, and
give the general solution under 4-times differentiability assumptions. In the
second part we focus on the classes of Gini and Stolarsky means, and solve
the invariance equation in several settings. We consider the cases when all
the three means involved in the invariance equation come from the same
class and also the cases when the three means are either Gini or Stolarsky
means. By representing the Gini and the Stolarsky means as special cases of
a common generalization, we will be able to determine the solutions of these
equations. However, the procedure involves tedious computations, therefore
we used the computer algebra package Maple V Release 9 to perform these
calculations. In these cases, the exact code is always provided (and mostly
the output as well), thus the interested reader can repeat and reproduce the
calculations.






Generalized quasi-arithmetic means

In this chapter we consider the invariance equation involving a possible
generalization of the quasi-arithmetic means. First, we recall the solution
of the invariance equation for the class of quasi-arithmetic means defined
in (1.1) and also for weighted quasi-arithmetic means. Then we state and
prove the new results for generalized quasi-arithmetic means. These results
appeared in the paper [2].

2.1. The invariance equation for quasi-arithmetic means

There is an extensive literature studying the invariance equation (1.3) in
this class of two-variable means. The invariance of the arithmetic mean A
with respect to two quasi-arithmetic means, i.e., the functional equation

o (sa(x) + so(y)) ! (w<x) +Y(y)

2.1 > >

) =x+y (x,yel)
(where I is a nonvoid open interval) was first investigated by Sutd, who
found the analytic solutions ([47], [48]). Matkowski found the same solu-
tions, but assuming only twice continuous differentiability concerning the
generating functions of the quasi-arithmetic means ([33]). These regularity
assumptions were weakened step-by-step by Dardczy, Maksa and Péles in
the papers [21], [22], and finally in 2002 the following result was proved,
which is the general solution of this - the so-called Matkowski—Sutd - prob-
lem:

THeEOREM 2.1. (Daréczy—Pales [23]) The strictly monotone, continuous
Sfunctions ¢ and  satisfy (2.1) if and only if

(i) either there exist constants p, a, b, ¢, d with acp # 0 such that
@(x) = ae’ +b, y(x)=ce ™ +d  (xel);

7
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(ii) or there exist non-zero constants a, ¢ and constants b, d such that
@(x) =ax+b, W(x)=cx+d (xel.

Furthermore, they solved the invariance equation for quasi-arithmetic
means even in the general setting:

Tueorem 2.2. (Dar6czy—Pales [23]) If M, : I’ -, My : I? > I and
M, : I = I are quasi-arithmetic means on I, then the invariance equation

M, = My ® M,

holds on I? if and only if there exist a function f which is continuous and
strictly monotone on I and a constant p € R such that

Mt,a(xa !/) = Mf(x’ y)’ M(ﬁ(xe y) = M)(pof(x’ y)
and
Mi(x,y) = M)(_polf(xa Y)
hold for every (x,y) € I, where
X, ifp=0,

Xp(x) = . (xel.
e, ifp#0

2.2. The invariance equation for weighted quasi-arithmetic means

If I c R is a nonvoid open interval, a two-variable function M : I> — I
is called a weighted quasi-arithmetic mean on I if there exist a continuous,
strictly monotone function ¢ : I — R and a number O < A < 1 such that

M(x,y) = Ap(x, 3 D) = ¢ (Ap(x) + (1 = D(y))

for every x,y € I. In this case the A is said to be the weight and the function
@ is the generating function of the weighted quasi-arithmetic mean.
If in this definition we choose ¢(x) := x for x € I, then we have

M(x,y) = Ax+ (1 = Dy = A(x,y; D) (x,y e,

which is the well-known weighted arithmetic mean on I. In 2003, Daréczy
and Péles solved the Matkowski-Sutd problem for weighted quasi-arithmetic
means, which was the following: Let A, and A, be two weighted quasi-
arithmetic means on / with the same weight A and the question is when the
invariance equation

(2.2) A (A, 3. ), Ay (%, 3.3 4) = Ak 3 )
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holds for all x,y € I. It is obvious that if A4 = % then this equation simpli-
fies to equation (2.1), the original Matkowski—Sut6 problem. They had the
following result:

TaeEOREM 2.3. (Dardczy—Pales [24]) Let ¢, ¥ be continuous, strictly mo-

notone functions on 1. If they are solutions of (2.2) with A # % and are

continuously differentiable on I with nonvanishing derivatives on I, then
there exist constants a, b, ¢, d with ac # 0 such that, for x € I,

w(x) =ax+ b, Y(x)=cx+d.
In 2007, Burai investigated the Matkowski—Sut6-type equation
Ap(x,y; )+ Ay(x,y; 1 =) =x+y

and gave the continuously differentiable solutions ¢ and  ([13]).

The solution of the invariance equation for weighted quasi-arithmetic
means in the general case was obtained by Jarczyk and Matkowski in 2006
under twice continuous differentiability conditions ([30]). In 2007, Jarczyk
described the solution without these regularity assumptions.

THEOREM 2.4. (Jarczyk [29]) Let I be an open interval. Continuous and
strictly monotone functions o, W,k : I — R and numbers A, u,v € 10,1[
satisfy the functional equation

0s ¥ (w7 () + (1 = ) +
' (1= Ve (k™ (vk(x) + (1 = k() = Ap(x) + (1 = Dep(y)

for all x,y € I if and only if the following two conditions are fulfilled:

%
A= —Y
() l—pu+v
(ii) there exist a,c € R, ac # 0 and b,d € R such that

U(x)=ap(x)+b and k(x)=ce(x)+d (xel),
ord= % and

Y(x) =ae*® +b  and k(x)=ce PV 1d (xel),

with some p € R\ {0}.



10 CHAPTER 2. GENERALIZED QUASI-ARITHMETIC MEANS

2.3. The invariance equation for generalized quasi-arithmetic means

In this section we investigate the following generalization of the quasi-
arithmetic mean: Given two continuous strictly monotone functions ¢y, ¢ :
I — R such that ¢; and ¢, are strictly monotone in the same sense, the
generalized quasi-arithmetic mean N, : I?> — I is defined by

My(x.y) = ¢ (@) + @) (xyeD,
where
@=Ly,  ¢i=grte.

From this generalization of the quasi-arithmetic mean, if f : I — R is
a strictly monotone function and 0 < 4 < 1, by choosing ¢;(x) := Af(x)
and ¢y(x) := (1 — A) f(x) we can obtain the weighted quasi-arithmetic mean
generated by f and with weight A.

Our aim is to characterize the invariance of the arithmetic mean with
respect to generalized quasi-arithmetic means (to solve the Matkowski—Suto
problem for generalized quasi-arithmetic means), that is, to solve the equa-
tion

Mgo(x’y)'i'MW(x’y):x—'—y ('x’ y€1)9

which, in detailed form, is equivalent to the functional equation

Q4 (@1 + @) (1) + @) + W1 +¥2) T (Y1(x) +Yo) = x+y

for x,y € I, where ¢, @2, Y1, Yo : I — R are continuous, strictly monotone
functions such that ¢, ¢, and i1, ¥ are monotone in the same sense.
Clearly, if ¢; := ¢ := % and ¥ = Yy = %, then (2.4) simplifies to
(2.1). Functional equation (2.4) also generalizes equation (2.3) in the case
when ¢(x) = xand A = %, i.e., the outer mean is the arithmetic mean.
In order to formulate the solution of the invariance equation, we need
the following definition:

DerNiTioN. Let 7 € R be a nonempty open interval. Let DY(7) denote
the class of all pairs (g1, ¢») of continuous functions defined on I such that
either ¢; and ¢, are strictly increasing or ¢; and ¢, are strictly decreasing.
For k > 1, let D¥(I) denote the class of all those pairs (@1, ¢2) of k-times
continuously differentiable functions defined on I such that (,0'1 (x)go’z(x) >0
for x € 1.

It easily follows from this definition that if the pair (¢, ¢2) € D),
then (g1, ¢2) € DO(I). Under the assumption (¢;, @) € DO(I), the left hand
side of (2.4) is well-defined.
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Now we can give the solution of the invariance equation (2.4).
THEOREM 2.5. (Bajdk—Pales [2]) Let (@1, ¢2), (W1, ¥n) € D*(I). Then,
for every x and y in I, the functional equation (2.4) holds if and only if

(i) either there exist real constants p, ay, a, c1, ¢z, b1, by, di, do
withp #0, ayay >0, cy ¢ > 0 and a| c; = ay cp such that, for x € I,

(2.5) o1(x) = ay e™ +by, ©2(x) = ay eP* +b,
and

(2.6) Yi(x) =c1 e P +d;, Ua(x) = cy e P +dy

(ii) or there exist real constants a, b, c, dy, d» with ac # 0 such that, for

x €l

2.7 @1(xX) + p2(x) =ax+b
and

(2.8) Y1(x) = cpa(x) +dy, Y2(x) = cp1(x) + da.

2.3.1. Proof of the sufficiency.

For the sufficiency part of Theorem 2.5, we need not require the 4-times
continuous differentiability of the unknown functions, therefore we have the
following stronger statement.

TreoreM 2.6. (Bajak—Piles [2]) Let (@1, ¢2), (U1, ¥2) € D) and as-
sume that one of the alternatives (i)—(ii) of Theorem 2.5 holds. Then the
functional equation (2.4) is satisfied for every x and y in I.

Proor. Assume that alternative (i) of Theorem 2.5 is valid, i.e., for x € I,
@1(x) = ay e’ +by, 02(x) = ay e’ +by
and
Y1(x) = ¢ e +dy, Yo(x) = ¢ e +dp

for some real constants ap, az, by, by, cy,c2,dy,dy, p with ajc; = axcp and
ajaxcicpp # 0.

Then ajar > 0, cjcp > 0and for x € 1,

(1 +@2)(x) = (a1 + az) e’ +by + by,
which yields that
y—br—b

n————.

B 1
(1 +¢2) ' (y) = —1
p a +ap
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Thus, the means determined by ¢, ¢, and Y1, Y, are of the form

1. ay eP*+by+ay el +by, —b; — b
M,(x, y) = ~In 1 1 2 2 1 2
(2.9) p a t+az
’ 1 aj el +as ely
=—In——F——
p ay +az
and
1. c1e P +cype™
(2.10) My(x, y) = ——In = 2
p 1t
respectively. In view of ap ¢co = a; ¢, we have
aj () as C1
(2.11) = , = .
ay +ap cl1+ a + ap cl1+

Substituting (2.9) and (2.10) into (2.4) and also using (2.11), for all x,y € I,
we get

1 ay e’* +ay ebY c1 € P +cyp e
Mop(x, y) + My(x, y) = —|In —1In
p ay +a Cl1+C
ar opx G Lpy
_ 1 ( a)t+ap € +a|+a2 € ]
-, _C a-px 4 _C2  a-py
p c1+c P +Cl+c‘2 € Py

1 a4 epx 92 opy
= —1In aitaz aitaz epxtpy
S apy 2 px
p c1+c ¢ +C|+c2 €

1
= —IneP™ = x4y,

which was to be proved.
Assume now that alternative (ii) of Theorem 2.5 is valid, i.e., for x € 1,

e1(x) +p2(x) =ax+b

and
Y1(x) = cpa(x) +dy Yo(x) = co1(x) + dz
for some real constants a, b, c, dy, d, with ac # 0. Then

-b
(01 + o) ') = =2

Thus, for x,y € 1,

e1(x) + pa(y) — b
- .

(2.12) M,(x, y) =
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On the other hand, for x € 1,
U1(x) +¥a(x) = cpa(x) +di + cp1(x) +da
= c(p1(x) + @2(x)) +dy + d>
=clax+b)+d| + dy,

whence
y— d] — dz —cb
ca '

W1 +y2) " (y) =
Therefore, for x,y € 1,

—dy—dr)—cb
My, y)zllfl(x)-ﬂ,l’z(y)ca 1—dr—c

_ C(pz(x)+d1 +c<p1(y)+d2 —d1 —dQ—Cb
ca
_ ) +eiy) -b
a

(2.13)

Substituting the formulae obtained in (2.12) and (2.13) into (2.4), we get

My (x, y) + My(x, y) = QW+ o) —b o) +e1w) = b

a a
_ P10+ () + 91(y) + p2(y) — 2b
a
ax+b+ay+b—2b
= =x+y,
a

hence the proof is complete.

2.3.2. Partial derivatives of generalized quasi-arithmetic means.

To give the general solution of the invariance equation, we will need ex-
plicit formulae for the partial derivatives of the mean My, along the diagonal

of the Cartesian product I X I.

Tueorem 2.7. (Bajdk—Pdles [2]) If ¢ = (¢1,92) € D) then My, is

k-times continuously differentiable on I X I and, for all x € I,
(i) if o € DY), then

’

¢ @
(2.14) mmmm=jm, %mmm=§w;
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(ii) if @ € D*(I), then

12 1 1,12
Y Y-y
(9%3\/[‘,’()6, X) = %(x),
¥
QDNCP’ 90/
(2.15) 0102 Mp(x, ¥) = ———22(x),
12 1 7,12
Y ¢, -y
My (x, x) = %(X);

(iii) if@ € D3(I), then

390/1290/3 _ ‘,0,"(/7",0,3 _ 390//90/290//90/ + 90/490///
6‘;’3\/[‘,,()(, x) = 1 1 — 171 1 (x),

2

2 12 12 r 92
PP P T =39 0T+ "))
- o7 (x),

(2.16) 910, My(x, x) =

Pl 2 72 12 1 12 1
e ("' 0" = 39"y + ¢ o))
81653\@()6, x) = ——1 2 3 = 22 (%),
3¢//2(,0/3 _ S0///"0/(’0/3 _ 3¢//¢/2¢//¢/ + 90/4"0///
8§M¢(x, x) = 2 2 Pz 272 2 (%)

(iv) if @ € D*(I), then
1 nrrr ’ nr 11/
I M(x, x) =( - F(so ¢t - 100" ¢ o

+ 6(/7/”‘,0/350;",0;2 + 15(/7”3Q0;4 _ 1890//2Q0/2Q0l1/g0/12

+ 390’,§0’4§0’1,2 + 4QDNQD,4§0,1HS0,1 _ wi"'tp,é))(X),

FrMy(x, %) =( - %Qﬁ”’@’zfﬁ’f ~10¢"¢"¢' ¢}’ + 39" ¢ g
+15¢"°01 = 96200 o] + ¢ ) (),
(2.17)
RAMy(x, x) =( - %(sﬂ”’@’zw’ﬂv’zz —109"¢" ' ¢ *}’
+ " @0y + 15070 20 = 3¢ e 0

mr 13 12 1

"2 12 12 1w 14 1o
+ "0 e 2 = 39" 20 + o o)),
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’
(’01 "y o1 1/ mr 13 1oy

2 /3 3
0103 M(x, X)=(—97(90””s0’ ¢5" = 109" "¢'0)" + 3¢ " ¢l ¢y

+15 90//390/23 -9 90/290//290/2/90/2 + S0//‘;7/490/2//))()() ,

mroro 14

1 2 4
ABMy(x, x) == —=(¢""¢"%e4* = 100" 0" ¢ o}
4
+6 w///(pﬂgpé/‘péZ +15 QDU3‘P£4 ~18 QDHZQO/ZQD/Z/QD/ZZ
r 04 2 BNZ SN 1 16
+3¢" 0" ) + 40 0 o — @) )().
Proor. (i) Let ¢ € DYD). ¢1 and ¢, are continuous, strictly monotone

functions in the same sense, since ¢¢, > 0. Therefore ¢ = ¢; + ¢; is also
continuous, strictly monotone, and hence invertible. Therefore,

(2.18) Mu(x,y) = (g1 + 2) " (@1(x) + 2(1))

is well-defined for every x, y € I. Having that ¢’ is continuous and does

not vanish anywhere, it follows by the standard calculus rules that M, is

continuously differentiable on /1. If, in addition, ¢ € Dk (Z) holds for some

k > 2, then the k-times continuously differentiability of M,, also follows.
Using (2.18), we have

(2.19) oMy(x, ) = e1(x) +p2(y)  (x,y € ).
By differentiating this identity with respect to the first variable,
(2.20) ¢ Mp(x, 1)) - O Myp(x, ) = 1 () (x,y €.

Thus, taking y := x, the first equality in (2.14) follows. The second equality
in (2.14) can be obtained by differentiating (2.19) with respect to the second
variable.

(i) To prove the formulae for the second-order partial derivatives in
(2.15), letp € D2(I). Then, by differentiating (2.20) with respect to the first
variable, we get

¢ (My(x, ) - (1 M(x, ) + ¢’ (My(x, 1)) - M, 1) = ¢7 ().
Therefore, taking y := x and using (2.14),

” 90, (X) ? ’ ”
¢ (x)- (‘p}(x)) + ¢ () - T M (x, X) = ¢ (%),

whence we get
(pIZ’p/l/ _ 90//90/12

P Mp(x, x) = o (x).
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By differentiating (2.20) with respect to the variable y and then substituting
y = x, the second equality in (2.15) follows, while differentiating (2.19)
twice with respect to the second variable, we obtain the last identity of
(2.15).

In cases (iii) and (iv), the same argument provides the formulae for the
third- and fourth-order partial derivatives. m|

2.3.3. Necessary conditions.

In this subsection, we deduce various necessary conditions of the equali-
ty (2.4). Assuming first- and second-order differentiability properties of the
unknown functions, ¢; and v, will be completely determined and described
in terms of ¢; and ¢,. The third- and fourth-order necessary conditions
provide further differential equations for ¢; and ¢, which can finally be
solved and thus the forms of the unknown functions can be determined.

First-order necessary condition.

Lemma 2.1. Let (1, @2) and (W1, ¥2) be pairs of class D'(I) that satisfy
the functional equation (2.4). Then
G_ L. BN
¢ v ¢ v

Proor. Differentiating (2.4) with respect to the first variable, we get

01 My(x, x) + 01 My(x, x) =1,

whence, using (2.14),

(2.21)

o Y
—t =
Y

Therefore

¢ v
By differentiating (2.4) with respect to the second variable, the same calcu-
lation yields that
7 _Y
¢ Y
which makes our proof complete. |
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Second-order necessary conditions.

LemMma 2.2. (Bajak—Pales [2]) Let (o1, ¢2) and (Y1, Y2) be pairs of class
D2(I) that satisfy the functional equation (2.4). Then there exists a (nonzero)
real constant ¢ such that

(2.22) 'Y =c.
Proor. Differentiating (2.4) once with respect to both variables, we get
010:My(x, x) + 0102 My (x, x) = 0,
which, by (2.15), yields that
W%%+W%%

o e =0.

Hence, by the first-order conditions in (2.21),
(2.23) & + i =0,

Y
ie.,

oY+ =0,

which means that

(¢'y') =0.
Thus, by integrating, we get that there exists a constant ¢ such that

Y =c,

therefore (2.22) is valid. |

As a consequence of this and the previous lemma, we can formulate the
following theorem, which describes the connection between the functions
@1, @2 and Y1, ¥y, respectively.

Traeorem 2.8. (Bajak—Péles [2]) Let (¢1, ¢2) and (Y1, ¥»2) be pairs of
class D*(I) that satisfy the functional equation (2.4). Then there exists a
(nonzero) real constant ¢ such that

., _ 9 ., _ ¢
)= /22 and U, = ,21 .
¥ ¥

Proor. It immediately follows from (2.21) and (2.22). ]
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Third-order necessary conditions.

In order to formulate the higher-order necessary conditions, first we have to
analyze the first- and second-order conditions. By differentiating (2.21), we
get

(2.24) 1//_1’290_2;_290922 and w—%=¢—{—2¢—?,
¢ ¢ oo ¢
and, from (2.23), we get
(2.25) y._.¢
¥ @

Differentiating (2.25) once (assuming that (¢1, ¢2) and (1, ¥) are pairs of
class D3(1)),

7’ 244 7 2
(2.26) LA - 2(9"_,)
¥ ¢ ¢
and twice (assuming that (¢;, ¢») and (¥, ¥») are pairs of class DI ),
l/’l/// 2244 nr, 1 r’ 3
@27) - o[
v ¢ ¢ ¢

Now we are able to state and prove the third-order necessary condition.

Lemma 2.3. (Bajak—Pales [2]) Let (@1, ¢2) and (Y1, ¥2) be pairs of class
D3(I) that satisfy the functional equation (2.4). Then

.7 AN 24

73 7”2 ’ ’ o 12
(2.28) ("¢ =" )Ne) — 03 @1 @y + ¢ (] 0y — 195) = 0.
Proor. Differentiating (2.4) twice with respect to the first variable and
once with respect to the second variable, we get
PR HMy(x, x) + 310 My(x, x) = 0.

Hence, applying (2.16) for the means M, and My, we get

r o227 1’ 72 o IR AN
W N O I A
(p/ ¢/2 (p/ ()0/2 ‘,0,2 SDI S0/ S0/ (P/ w/ lﬂ'z w/
’7 12 g 7,07,

QYR WY

‘/”2 ,7[,/2 wr wr lﬁ’ wz
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Now, using (2.21), (2.24), (2.25) and (2.26), it follows that

2 2
OO A ¢

(P, S0/2 ‘,0’ ‘p/2 <p/2 (p/

72 17\2 12 s
- ; ,+(_"D_+2("D_))¢Lﬁ
U2 2

90/ 90/ SO/Z ‘p/
O\ 057 ¢ AV AN
S\ ot o N2 )

¢ g2 ¢ N @? o

which simplifies to (2.28).

=0,

Fourth-order necessary conditions.

Lemma 2.4. (Bajdk—Pales [2]) Let (@1, ¢2) and (Y1, ¥2) be pairs of class
D*(I) that satisfy the functional equation (2.4). Then

(2.29) ¢ (@19 — ) =0
and
(230) " s

- (pNZ = 0.
Proor. Differentiating (2.4) twice with respect to both variables, we get
PRIy (x, x) + 1AMy (x, x) = 0.
By applying (2.17) for the means M, and My, we get

A N A A T A R A A %
’ 72 2 10 2 2 VNS 3 02 2
(27 0/ Y ¢ et L2 7 L 202
’ 2 ,2 2 n )
A O Al W A A W A A s K
Q0,2 90/ 90/2 90/ QD/Z (P, 90,2 90;2 "0/ "0/ "0/ 90/
110 w/z wlz "0 o lﬁlz w/Z "y lﬁ” w/Z "3 w/Z w/z
TN Y g Y Y VY

15
lr/// lﬁ’z l///2 wl lﬁ’ l///Z w/Z + l,/// l,/// w;Z +

w/3 F'ﬁlz
B R I N L A A

- - — 4 — = =
wll wl wlZ w’ wlZ w’ wzl "blz w/ lﬁ, wl wl
Similarly to the calculation in the third-order case, using (2.21), (2.24),
(2.25), (2.26) and (2.27), we obtain

72 "IN 11 ’ 2
- ") "1 (T 15 — ¢7)
72 12, ’ " ’r
+ @0 (@) — e ¢y — 1) = 0.

2.31) (o
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Multiplying (2.31) by (¢} — ¢}) and (2.28) by ¢" (7¢] ¢} — ¢’?) and adding
these equations, we get

"2 92 1 10 m r o

370 15019y — ) =0,

12 7

which, in view of ¢"“¢ ¢} # 0, reduces to (2.29). Hence the last term on
the left hand side in (2.28) is zero. Therefore, the first term is also equal to
zero, i.e.,

(2.32) ("¢ =) =) =0
holds.
By (2.29), the last term on the left hand side of (2.31) is zero, whence

1y 12 "o ’r 72
¢ =" )T 1 — ") =0

is obtained. Multiplying (2.32) by ¢" (¢, — ¢}) and adding it to the equation
above,
PRI 7”2
¢ —¢") =0
follows.
Now assume that there exists a g € I such that ¢"’¢’ —¢”’? # 0 at ¢. This

means that there exists a neighborhood U of ¢ such that ¢’ ¢’ — ¢”’% # 0 for
u € U. Therefore ¢" = 0 for u € U, which yields that ¢”” = 0. Thus, for

", 7”2 _ 7 72

u € U, we have ¢ ¢’ — ¢’ = 0. This contradiction shows that ¢’ ¢" — ¢
vanishes on I, i.e., (2.30) follows. |

Now, having the statements of the previous lemmas, we are ready to
determine the general solution of the invariance equation (2.4).

2.3.4. The proof of the main theorem.

By equality (2.30) of Lemma 2.4, it follows that
(2.33) (“’—) -0,
®
which shows that there exists a constant p such that
‘plll + ‘,0’2, B 90_//
Pty ¢

According to the value of the constant p, we distinguish two cases.
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Case 1: p # 0. Then ¢” does not vanish. By (2.29), we have that
¢y = ‘D;‘lpz Therefore

7 7’ 90,, ¢;/¢; 7’
_Aitey LT e 9

A

//

Similarly, we can also obtain that = p. Thus, ¢; and ¢, are solutions

of the second-order linear dlfferentlal equation f”’ — pf’ = 0. The general
solution of this differential equation is of the form f(x) = ae* +b, hence
(2.5) follows for some constants ay, a», by, b, with aja, > 0.

By (2.25), we also have

7
An analogous argument shows that (2.6) holds. We note that 1 and ¢, can
also be obtained by using Theorem 2.8.
Case 2: p = 0. This means that ¢’ = 0 and, by (2.25), y"" = 0 also
holds. Therefore, there exist constants a, b, ¢, d with ac # 0 such that
px)=ax+b and Y(x) =cx+d.
From (2.21) we get

¥} c ¢ c
2 ’ ’ 1 4,/ ’
lﬁll Y = 902 and Yo =— = -y,

¢’ ¢’ a
which means that there exist constants d;, d, such that

I Cc
ll/1=;902+d1 and ¢’2=5901+d2-

Thus, with the notation ¢ := ¢/a, equations (2.7) and (2.8) hold. m|

We remark that Matkowski and Volkmann, motivated by our investiga-
tions, considered a particular case of (2.4), namely when ¢1 = Yo =: ¢
and ¢» = 1 =: . In this case, they could eliminate the unnatural 4-times
continuous differentiability conditions (however, the solution of (1.3) in this
class of means without regularity is still an open problem). They obtained:

THEOREM 2.9. (Matkowski—Volkmann [36]) Let ¢, : I — R be conti-
nuous and strictly increasing. Then the functional equation
@+ (@ +YW) + @+ (e +v) =x+y  (vyel)
holds if and only if there exist a,b € R, a > 0, such that
o) +Y(x)=ax+b (xel.






Gini and Stolarsky means

In this chapter, our aim is to solve the invariance equations when the
three means involved in the equation are either Gini or Stolarsky means.
Due to the symmetry of these classes of means, this results six different
types of invariance equations.

1. The equation when all three means are Gini means, i.e.,

(3.1) Gpg(Gap(X,y), Gea(x,y)) = Gpg(x,y)  (x,y €Ry).
2. The equation when all three means are Stolarsky means, i.e.,
(3.2) SpaSap(xy), Sca(x,y)) =Spa(xy)  (x,y €RY).

3. The equation when the outer mean is a Gini mean and one of the means
inside is a Gini mean and the other is a Stolarsky mean, i.e.,

(3.3) Gpq(Sap(x,y), Gea(x, ) = Gpg(x,y)  (x,y €Ry).

4. The equation when the outer mean is a Gini mean and the means inside
are both Stolarsky means, i.e.,

(34) Gp,q(S a,b(x’ !/), SC,d(x7 y)) = Gp,q(x’ _’/) (X, y € R+)

5. The equation when the outer mean is a Stolarsky mean and the means
inside are both Gini means, i.e.,

(35) SP,L](Ga,b(x’ !/), GC,d(x’ _’/)) = Sp,q(x’ _’/) (x’ y € R+)

6. The equation when the outer mean is a Stolarsky mean and one of the
means inside is a Gini mean and the other is a Stolarsky mean, i.e.,

(36) Sp,q(Ga,b(x, y)’ Sc,d(-x’ y)) = Sp,t](-x’ y) ()C, ye R+)

Our task in each case is to determine all 6-tuples (a, b, ¢, d, p, q) such
that the corresponding identity holds.

Our idea was to follow a method similar to that used in the previous
chapter, but in the case of Gini and Stolarsky means, the computation of the

23
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various higher-order partial derivatives of the means becomes very comp-
licated. This motivated the usage of the computer algebra system Maple
V Release 9 to perform these vast calculations, thus making the solving
of these invariance equations more simple. However, a direct calculation
would be too hard also for a computer algebra system, thus we need to
reformulate the problem and find the appropriate setting the computer can
work with.

We note here that invariance equations for different mean values, in-
cluding some special cases of the above equations were investigated by
G. Toader, S. Toader and I. Costin (cf. [16], [17], [18], [49], [50], [51],
[52]). Some of these papers also make heavy use of computer algebra sys-
tems.

The solutions of the first two from the above equations can be found in
the papers [3] and [4], whereas the other four equations are solved in [5].
However, the approach followed here will be based on [5], which uses a
more general setting than the previous two papers. We consider a common
generalization of both the Gini and the Stolarsky means, which enables us
to deal with the six equations as special cases of a more general equation.

3.1. A common generalization

First we reformulate the invariance equation (1.3).

Lemma 3.1. (Bajak—Piles [5]) If M,N : R2 — R, are homogeneous
(resp. symmetric) strict means, then their Gauss composition M ® N is also
homogeneous (resp. symmetric). Furthermore, if K : R2 — R, is a ho-
mogeneous strict mean then K = M ® N, i.e., (1.3) holds if and only if the
single-variable function Fg yy : R — R defined by
(3.7)

Fxun@) :=InK (M(e",e™),N(e",e™)) —InK(e",e™) (u € R),

vanishes everywhere on R. In the case when K, M, N are analytic functions,
Fxmn is also analytic and vanishes on R if and only if

(3.8) FOn©) =0

for all k € N. If, additionally M, N and K are symmetric strict means, then
Fxmn is an even function and Fg p N vanishes on R if and only if (3.8)
holds for all even k € N.
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Proor. Assume that M and N are homogeneous strict means and let
K := M®N. Replacing x and y by ¢x and ty in the invariance equation (1.3)
and using the homogeneity of M and N, we get

TK(IM(x,y),tN(x,p)) = 1K(tx,ty)  (,x,y €R,).

Hence, with the notation K;(x,y) := %K(tX, ty), we obtain that, for every
fixed r € R, the strict mean K; is another solution of the invariance equation
(1.3), i.e., it satisfies

KZ(M(xa y)’N(x’ y)) = Kt(x7 _l/) (x’y € R+)

By the unique solvability of (1.3), it follows that K = K, for all € R,.. This
results the homogeneity of K.

If the means M and N are symmetric, then applying the invariance equa-
tion (1.3) twice, for x,y € R, we get

K(x,y) = K(M(x,y), N(x,y)) = K(M(y, x), N(y, x)) = K(y, x),

which proves that K is also symmetric.
It is obvious that if (1.3) holds, the function F' defined in (3.7) va-

nishes on R. To prove the opposite implication, write x = +xy \/5 and

y= \xy \/g . Then, utilizing the homogeneity of the means, the invariance
equation (1.3) is equivalent to

KA =1 () eonero
With the notation ¢ := \/g , the above equality can be rewritten as

K(M (t, t_l),N(t, t_l)) = K(t, t_l) (t € R,).
Finally, by substituting # = e* and taking the logarithm of the two sides, we
get that the invariance equation is equivalent to

Fxun@) =InK (M(e",e™),N(e",e™)) —InK(e",e™) =0 (u € R).

Here we should observe that, by the mean value property, Fgan(0) = O.
Thus, the proof of the remaining part of this theorem follows from known
properties of analytic functions. |

Now we consider a common generalization of the Gini and Stolarsky
means. For a given Borel probability measure u on [0, 1] and parameters
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r, s € R, the two variable mean M, ; , is defined by

(3.9) 1 N

[y dua(e)

01 s ifr#s

I (xty' =) du(r)
Myspu(y) =920 (x.y € Ry).

[ In (x"y")(xy" ) du(r)
exp 0 1 , ifr=s
Of (x'y'=") " du(®)

For fixed x,y € Ry, the function (r, s) = M, ,(x,y) is continuous (more-
over infinitely many times continuously differentiable) on R X R.

The mean defined in (3.9) can be considered as a common generaliza-
tion of both of the Gini and of the Stolarsky means, because if u is equal
to @ (where ¢, stands for the Dirac measure concentrated at x), we get
the Gini mean G, 5, and if u is equal to the Lebesgue measure, we get the
Stolarsky mean S, ;. Therefore each of the six invariance equations which
involve Gini or Stolarsky means are particular cases of the following equa-
tion

(3.10) Mp,q,K(Ma,b,y(x, Y), Mc,d,v(x, l/)) = Mp,q,K(X, Y) (x,y € Ry),

where each of y, v and « is equal to the Lebesgue measure on [0, 1] or to the

measure @. In view of Lemma 3.1, the above invariance equation holds

if and only if, for all u € R,

FMp,q,K,Ma,b,ﬂ,M(-’d’y(M) = ln (Mp,q,K(Ma,b,,u (ell, e_u)9 MC,d,V(eua e_u)))
—In (Mp,q,K(eu, e ") =0,

ie., forallk e N,
(k) —
(3.1 1) FMp.q,K’Ma,b,‘usMc,d,v (0) - 0

In order to get a more useful representation of the means M, ,,, intro-
duce the function L, : R — R, by

ok
L) :=1In [Z %uk],

k=0



3.1. A COMMON GENERALIZATION 27

where y; denotes the kth central moment of the measure u defined as
1

k= f (- Dduy (ke NU{OD.

0

Assuming that y is symmetric with respect to % (i.e., u(A) = u(1 — A) for all
Borel sets A C [0, 1]) it follows that w1 = O for all k € N.

Lemma 3.2. (Bajadk—Péles [S]) Let u be a Borel probability measure on
[0,1] and r, s € R. Then

(3.12) Myou(ey) = exp(My, (nxIny)  (nyeRy),
where M, , R2 — R, is defined by
+ L,(r(u—-v))—L,(s(u—-v
M20+ u(( )) ,u(( ))’ ifr#s,
(3.13) M (u,v) = ey
“ro +(u =o)L (r(u - v)), ifr=s.

Proor. We have the following computation:

1 1
f Wy Y du(r) = f (V) ) () duo)
0 0
] 1
— (@)rf(er(lnx—lny))t_z d/l(t)
0

1
» < (r(nx - Iny)F
= (v [ 3
J £

00 _ k
— (@)r; ( (lnxk‘ln!/)) m
= (Vxy) exp (Ly(r(In x — Iny))).

From this formula, the statement of the lemma immediately follows if r # s.
By passing the limit s — r, the formula for the case r = s can also be
obtained. O



28 CHAPTER 3. GINI AND STOLARSKY MEANS

In order to obtain high-order approximation of the mean considered in
(3.9), for a Borel probability measure ¢ and m € N, we define the following
truncated function as

mo i
(3.14) Lym(2) = ln[ Z_,Uk) (zeR),
k!
k=0
and, if r, s € R,
(3-15) Mr,s,,u;m(xy y) = eXp (M:",s,'u;m(ln X, ln U)) (xy y € R+)7
where My ..., : R? — R, is defined by
(3.16)
u -2|r v, Lym(r(u = v)) = Lym(s(u — v)), —
M yim (U, 0) = U+ e
2 + (u = v)L,,, (r(u —v)), ifr =s.

The following lemma will play a very important role in solving the in-
variance equations.

Lemma 3.3. (Bajak—Péles [S]) Let u be a Borel probability measure.
Then, for all m,i € No withi < m,

(3.17) (LP(©0)) = (LD,.(0)).
Furthermore, forall r,s € R and m,i, j € No with i+ j < m,
(3.18) BM, s, (1,1) = Mg (1, 1).

Proor. Define the functions S, : R - Rand S, : R > Rby

0 k m  k
Z Z
Su@) = Z E#k and S um(2) = Z E’uk'
k=0 k=0
Computing their ith derivatives, for all 0 < i < m, we trivially have that
S10) = S jn(0) = .

On the other hand, the functions L, and L, are of the form L, = InoS,
and L, = InoS,,, respectively. Thus, (3.17) follows by induction on i by
using the smoothness of the logarithm function.

To prove (3.18), let i, j,m € N such that i + j < m. By the identities
(3.12) and (3.15), the partial derivatives

M5, (1, 1) and 80 Mys (1, 1)
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are expressed via the same expression in terms of the partial derivatives of

HEM:, (0,00 and  IEM,,.,(0,0),

T8, r,8,05m
respectively, where 0 < @ < i and 0 < 8 < j. Finally, observe that the partial
derivatives

HAM;,,(0,0) and  F}EM], 1, (0,0)

can be computed in the same form involving the derivatives
) )
L;7(0) and  L;;,(0),

respectively, where y < @+ < i+ j < m. Hence, the equality (3.18) follows
from the first statement of this theorem. O

Using the following corollary, the computation of the higher order deri-

%) ;
vatives F My gse-Mapn Moy at 0 can be replaced by the computation of the
derivatives F, *) at 0 provided that k < m. Thus, we will

K31 > Mabym Mcdvm
be able to check condition (3.11) more easily in the sequel.

CoroLLARY 3.1. (Bajak—Péles [5]) Let a,b,c,d, p,q € R and u, v,k be
Borel probability measures on [0, 1]. Then, for all k,m € Ny with k < m,

Fy v, (0 = Fyy) (0).

Mp,q,KaMa,b u-Me, p q, K;maMa,b,p;m9Mc$d,v;m

Proor. The statement easily follows from the second assertion of the
previous lemma. O

3.2. The invariance equations

While solving the six invariance equations we will consider them as
special cases of equation (3.10). The common sketch of finding the solutions
of these equations is the following: By Corollary 3.1, we can consider each
equation as the appropriate special case of the identity
(3.19)

FM[I,q,K;kvMa bk MLde(u) =

Mquk( abyk(u u)’M:,d,v;k(u I/t)) quk(u’_u)zo

We get solutions for the unknown parameters a, b, ¢, d, p,q by computing
the Taylor coefficients of the function

FM pauckoMapck:Med i

at x = O up to a sufficiently high order, and determining the conditions when
all these coefficients vanish. This function is even due to the symmetry of
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the means, thus all coefficients of odd order are zero. Therefore in every case
we have to differentiate up to 12th order to get sufficiently many conditions
for the six parameters. Our task will be to determine the common roots of
this system of six polynomial equations for six unknowns. The simple forms
of the low-order coefficients immediately help us to reduce the number of
parameters. Despite the fact that the computer can perform the calculations
easily, the form of the higher-order coefficients is very complicated, as they
involve high powers of the unknown parameters. These polynomials can be
factorized, thus, by examining the factors, we can deduce solutions of the
equations. However, after the factorization, besides the simple factors, these
coefficients always contain higher-order polynomials of the unknowns. To
determine if they have common roots, we will calculate the resultants of
these polynomials with respect to one of the variables. Common roots can
occur if and only if the resultants are zero (cf., e.g. [15], [43]). Thus we can
get new conditions for the unknown parameters. In many cases, these resul-
tants can also be factorized and by analyzing these factors, we can obtain
new solutions of the equations. In the most complicated problems we have
to calculate resultants of the resultants (with respect to another variable) to
examine the cases when those resultants vanish. The exact forms of the re-
sultants will mostly be suppressed as they contain very large constants and
very high powers of the unknows, but the exact code to perform these calcu-
lations will always be given. The computation time on a dual-core processor
does not take considerable time in any case.

The Gini and the Stolarsky means can be written as special cases of the
mean defined in (3.9), with the help of the Dirac and the Lebesgue measure,
respectively. To calculate the central moments of these measures, which will
be needed for the calculations, let m denote the measure 50;6‘ and n denote
the Lebesgue measure on [0, 1]. The ith central moments (i € Ny) of these
measures are 0 whenever i is odd and

1 1

m == n=—-

27’ (i +1)2°°

when i is even.
In the syntax of the Maple language, we define these central moments
as, for0 <i <6,

> for i from 0 to 6 do m[2%i]:=1/2A(2*i) od:
> for i from @ to 6 do n[2*i]:=1/(C(2*i+1)*2A(2*i)) od:

6,9

(When a Maple command is terminated by the semicolon sign *“:”, the out-
put of the command is suppressed, otherwise the commands are ended by



3.2. THE INVARIANCE EQUATIONS 31

6,9

;” to obtain a visible output.) Higher order central moments will not be
needed in the calculations, because we do not have to use approximations
of the means higher than 12th order.

The functions L, K : R X Ny — R are defined by L(u, k) := Ly.x(«) and
K(u, k) := Lyx(u), which in the computer algebra language can be executed
as

> L:=(u,k)->InCadd((ur(2*1))*m[2*i]/(2*1i)!,i=0..k)):
> K:=(u,k)->InCadd((ur(2*1))*n[2*i]/(2*1)!,i=0..k)):

With the help of the functions L and K, we define G, H : R* x Ny — R by
G(r, s,u,v,k) := M;‘,&m;k(u, v)

and

H(r,s,u,v,k) := M:"S’n;k(u, v).

While using the computer algebra package, the functions G and H will play
the roles of the approximations of the Gini and the Stolarsky means, res-
pectively. We can give the order of the approximation as another variable,
thus, to simplify the calculations, we can use as low-order approximation
as possible in the computation of the higher-order derivatives. In the Maple
language to define the functions G and H, we do

> G:=(r,s,u,v,k)->(u+v)/2+(L(r*(u-v),k)
-L(s*(u-v),k))/(r-s):

> H:=(r,s,u,v,k)->(u+v) /2+(K(r*(u-v) ,k)
-K(s*(u-v),k))/(r-s):

Using the functions G and H we can express the six special cases of (3.19)

as follows

(3.20)
FMp,q,m;k ,Ma,b,m;k,My,d,m;k (I/l)

=G(p,q,G(a,b,u,—u,k),G(c,d,u,—u, k), k) — G(p,q,u,—u, k) =0,
F My g Mayito Mo (W)

= H(p,q,H(a,b,u,—u, k), H(c,d,u,—u,k),k) — H(p,q,u,—u,k) = 0,
FMy g vt Mt Mg e (W)

=G(p,q,H(a,b,u,—u,k),G(c,d,u, —u, k), k) — G(p, q, u, —u, k) = 0,
FMy gt Ma iMoo (1)

=G(p,q,H(a,b,u,—u, k), H(c,d,u, —u, k), k) — G(p, q, u, —u, k) = 0,
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F Mp,q,u;k,Ma,b,m;k,Mc,d,m;k(u)
= H(p,q,G(a,b,u,—u,k),G(c,d,u, —u, k), k) — H(p, q,u, —u, k) = 0,
F Mp,q,n;kaMa,h,m;k,Mc,d,n;k(u)
= H(p,q,G(a,b,u,—u,k), H(c,d,u,—u, k), k) — H(p,q,u, —u, k) = 0.

These equations correspond to equations (3.1)-(3.6). The first two involve
only Gini and Stolarsky means, respectively, while the remaining four equa-
tions are mixed equations. We note here that in view of the symmetry of the
Gini and the Stolarsky means in the parameters, we may always assume that
a > b,c>dand p > g in the sequel.

3.2.1. The invariance equation for Gini means.

First we recall the characterization of the equality of two variable Gini
means.

Lemma 3.4. (Péles [41]) Let a, b, c,d € R. Then the identity
Gup(x,y) = Gealx, y) (x,y € Ry)
holds if and only if

(i) either a+ b = ¢ +d = 0 and, in this case, the two means are equal to
the geometric mean;

(ii) or{a,b} = {c,d}.
We give the general solution of the invariance equation (3.1).

TueoreM 3.1. (Bajak—Pdles [3]) Let a, b, c,d, p, g € R. Then the invari-
ance equation (3.1), i.e.,
Gp,q(Ga,b(x’ y), G(),d(x7 y)) = Gp,q(xa y) (x’ Y € IR+)
holds if and only if

(i) eithera+b=c+d=p+q=0,i.e., all the three means are equal to
the geometric mean;
(ii) or {a,b} = {c,d} = {p,q}, i.e., all the three means are equal to each

other;
(iii) orf{a,b} ={-c,—d}and p+q =0, i.e., G, is the geometric mean and
Ga,b =G_c—d;

(iv) or there exist u,v € R such that {a,b} = {u + v,v}, {c,d} = {u — v, —v},
and {p, q} = {u, 0} (in this case, G, 4 is a power mean);
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(v) or there exists w € R such that {a, b} = Bw,w}, c+d =0, and {p, q} =
{2w, 0} (in this case, G, 4 is a power mean and G4 is the geometric
mean);

(vi) or there exists w € R such thata+ b =0, {c,d} = (3w, w}, and {p, q} =
{2w, 0} (in this case, G, 4 is a power mean and G, is the geometric
mean).

As an immediate consequence, we obtain the following solution for the
Matkowski—Sutd equation, i.e., when G, is equal to the arithmetic mean.

CoroLLARY 3.2. (Bajadk—Péles [3]) Let a, b, c,d € R. Then the Matkow-
ski—Suto-type equation
Gap(x,y) + Gealx,y) =x+y  (vyeRy)
holds if and only if
(i) either {a,b} = {c,d} = {1,0}, i.e., the two means are equal to the
arithmetic mean,
(ii) or there exist v € R such that {a, b} = {1 + v,v}, {c,d} = {1 — v, —v};
(iii) or {a,b} = {%, %} and ¢ +d = 0 (in this case, G.q4 is the geometric
mean);
(iv) ora+ b = 0 and {c,d} = {%, %} (in this case, G,y is the geometric
mean).

Proor oF THEOREM 3.1. The proof of the sufficiency of conditions (i)—
(vi) is easy calculation, thus we have to prove the necessity of these condi-
tions.

Using Lemma 3.1 and what we established previously, the invariance
equation is equivalent to

FMp.q,m;k,Ma,b,m;kaMc,d,m;k(M) =
G(p9 q, G(a, b’ u,—u, k)9 G(C’ d9 u,—u, k)’ k) - G(p7 q,u,—u, k) = 09
which, by Corollary 3.1, holds if and only if

(3.21) F®©,k) = FY

p,q,m;k’Ma,b,m;ksMr,d,m;k

0=0  (keN),

where, in view of the first identity in (3.20), F : R X N — R is defined for
x€Rand k € N as

F(x,k) := G(p,q,G(a, b, x,—x,k),G(c,d, x,—x,k), k) — G(p, q, x, —x, k),
1.e., in the Maple language we set

> F::(x;k)_>G(p!qu(a!b!X)_x’k)!G(C!d!xy_x!k)!k)
‘G(psQ;x;‘Xsk);



34 CHAPTER 3. GINI AND STOLARSKY MEANS

To derive the necessity of the conditions of Theorem 3.1, we check equation
(3.21) only for the values k = 2,4,6, 8, 10, 12.

First we evaluate the second-order Taylor coefficient C> of F(-,2) at
x=0:

> C[2]:=simplify(coeftayl (F(x,2),x=0,2));

which yields

1 1 1 1 1 1
Cy = 4a+ 4b+ 4c+ 4d 2p 2q
(We note here that the Maple-definition of the function G is valid only if
(p — ¢)(a — b)(c — d) # 0, however, the Taylor coeflicient C, and also the
subsequent ones, are correct also in the singular case (p—¢q)(a—b)(c—d) = 0.)
From (3.21) we have that all Taylor coefficients have to be zero, therefore
we obtain our first necessary condition:

atb+c+d p+gq
4 o2

If one tries to compute the higher-order coefficients C4, Cg, ..., then
the expressions obtained are so complicated that it is hard to get further
information. To show this, we calculate the 4th order Taylor coefficient by
the command

> C[4] :=simplify(coeftayl (F(x,4),x=0,4));

Here we have that

P abp aba Eq dp Ep Cq B Eq
32 16 16 32 32 32 32 32 32
adgq acp acq adp bdqg bcp bcqg bdp
16 16 16 16 16 16 16 16

+b2q+cdp+cdq P & d* d*c ba* ba
32 16 16 24 24 24 24 24 24
3 3 3 3 2 2

a L, 4L P pPe 4P

____+_ Jui—

7w utn Tt T2
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In order to simplify the evaluation of the higher-order Taylor coefficients
Cy, we introduce the notations

_atb+c+d p+gq

w:

4 2

v.:a+b—(c+d)

=

p—q\

’:Z(T)’

_(@=b?+(c-d)?
r = 8 .
S,_(a—b)z—(c—d)z

: 2 .

(In these definitions we utilized the symmetry of the mean in the parameters,
and in the case of w also the condition that C, = 0.) Then, provided that
a>b,c>dand p > g, we can express the parameters a, b, ¢, d, p, q in the
following form:

i=w+v+sqrt(r+s); bi=w+v-sqrt(r+s);
i=w-v+sqrt(r-s); d:=w-v-sqrt(r-s);
r=wHsqrt(t); q:=w-sqrt(t);

>

T N Q

a=w+v+ Yyr+s

b=w+v—Vr+s

ci=w—-v+ Nr—s

di=w-v—Vr—s
pi=w+ Vi
g=w- Vi

These parameter transformations proved to be the most useful in the sub-
sequent calculations, because they provide the most simple form for the
higher-order coefficients.

Now we evaluate again the 4th order Taylor coefficient by inputting:

> C[4] :=simplify(coeftayl (F(x,4),x=0,4));

Then we obtain a much easier form than previously:

1
Cy = gtw— gvs - §wr
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The condition C4 = 0 yields that wt = wr + vs. If w = 0, then p + g = 0 and
hence (by Lemma 3.4) G, is equal to the geometric mean. Therefore the
invariance equation (3.1) can be rewritten as

Gap(x,Y)Gealx,y) = xy (x,y e Ry).

This results

Gap(x,y) = G_c—a(x,y) (x,y € Ry).

1
Gea(l/x,1/y)
Using Lemma 3.4 again, this identity yields that eithera+ b =c+d =0or
{a, b} = {—c, —d} must hold. Together with p + g = 0, these equations show
that either condition (i) or condition (iii) of Theorem 3.1 must be satisfied.

In the rest of the proof, we assume that w is not zero. Then, we can
express ¢ in terms of w, v, r, s:

> t:=r+v*s/w;

(3.22) f=re
w

Next, we evaluate the 6th order Taylor coefficient:
> C[6] :=simplify(coeftayl (F(x,6),x=0,6));

B —2(=3w?s? + 3v%s% — 15w?rv® — 5uwisv — 1003 sw + 15w*?)

B 45w

If v = 0, then the condition C¢ = 0 simplifies to w?*s? = 0, whence s = 0

follows. Therefore (3.22) yields t = r and we obtain that a = ¢ = p and

b = d = g which means that condition (ii) of Theorem 3.1 must be fulfilled.
In the rest of the proof, we assume that v is also not zero. We can observe

that the 6th order coefficient Cg does not involve higher-order powers of r.

Therefore the equation Cg = 0 can be solved for r.

C6Z

> ri=(15*Wh4*vA2-3*WA2*SA2+3*VA2%SA2-5%wA3*v*s
-10%w*vA3*3) /(15%wA2*%vA2) ;

42 _ 322 22 5,30 3
(3.23) - 15w v” — 3w?s” + 3v~s” — Sw’vs — 10wv’s
15w?v?
Finally, we evaluate the 8th order Taylor coefficient of F'(:, 8), the 10th order

Taylor coefficient of F'(-, 10) and the 12th order Taylor coefficient of F(-, 12),
respectively, at x = 0:
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> C[8]:=factor(simplify(coeftayl(F(x,8),x=0,8)));
> C[10] :=factor(simplify(coeftayl (F(x,10),x=0,10)));
> C[12] :=factor(simplify(coeftayl (F(x,12),x=0,12)));

We have that
w—w)(v+w)s

70875uw3v?
+ 1530% s — 9245w*v%s — 7395w’ vs® — 153uw’s”)

Cg := 2100wy’ — 3850w?v*s + 4200w°v — 255w’ s>

20— w)(v + w)s
1063125wdv*
+20100w’v” — 299575ul10s — 4260w*t’s® — 73200w’ v’ 52

- 930wr’s* + 66600w’y’ + 4805w v*s® — 286500udv?s
+279%%s° — 169020w’ v’ s* — 16740w v’ s* — 558w 0> s
+45955u00% 5% + 17670w vs* + 279w’ s%)

10 = (28500w’v’ — 59675w*v®s + 34470w’v’ s>

2 —w)v+w)s
T 2631234375w7 00
— 54365475uf0® s — 253173750800 5° + 335826w*v?s’

—559710wv’ 5% — 215221875ub'?s + 22875570uv* s

+ 16977870w’ v’ s¢ — 7649370w’v’ s¢ — 1246797750w8v' s

— 34684335w81? s> — 777170000w' 1v° s* — 159926550w v° s*
— 335826w%v*s” + 641072375w'%* s> + 270963000w°v! ! s
— 1046615000w’v’ s* + 11659365w*v’ s> — 133190250w v’ s*
— 1967022000w'%t® s + 177650700uw’v’ s* — 8768790w’vs®
+385915750w’ v’ s* + 149400w?v® s> — 98002025u* 0! s>
+76725000w’v"? - 571725000°0!! — 478665000w' v’

+ 188100000w" 307 — 111942u8s7 + 1119420557)

12 (- 3272692500w' % s + 22181100w*v’ s*

The coeflicients in Cg, Cyg, C12 are obviously zero if s(v — w)(v + w) = 0.
Thus, we have to consider the sub-cases s = 0, v = wand v = —w.

In the case s = 0, (3.22) and (3.23) imply thatt = r = w?. Then we get
that

{a,b} = 2w + v, v}, {c,d} = 2w —v, —v}, {p,q} = {2w, 0},
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i.e., condition (iv) holds with u := 2w. Conversely, if condition (iv) holds
and u # 0, then we have
(3.24)
Gp,q(Ga,b(xa Y), Gc,d(xa y)) = Gu,O(Gu+u,v(xa Y), Gu—v,—v(x’ !/)) =
1

xu+v + yu+v xu—v + yu—v % xu+v + yu+v xuyv + yuxv u
( 2 + g0 20+ y‘”)) - ( 2+ 200 +yh) )

1
Xyt
( 2 y ) = Gu,O(x’ y) = Gp,q(x> y)

Thus (3.1) is satisfied if u # 0. If u = 0, then the parameters also fulfill
condition (iii), hence (3.1) holds in this case, too.

If v = w, then, by (3.22) and (3.23), r = w> —sand t = r + s = w?,
respectively. Hence,

{a,b} = (Bw, w}, c+d=0, {p,q} = {2w, 0},

i.e., condition (v) holds. Conversely, if condition (v) holds and w # 0, then,
using the identity (3.24) with u := 2w, v := w, we have

Gpg(Gap(x,y), Gea(x,y)) =
G2w,0(G2w+w,w(xe y)’ G2w—w,—w(-x’ y)) = GZw,O(x, !/) = Gp,q(x’ y),

which shows that (3.1) is fulfilled. If w = 0, then all the three means are
geometric means, and hence (3.1) holds trivially.

The last case when v = —w holds, similarly to the case v = w, implies
that condition (vi) is valid. If condition (vi) holds, then (3.1) can also be
verified.

In the rest of the proof, we can assume that s(v + w)(v — w) is not zero.
The Taylor coefficients Cg, C1g and C1; are of the form

_(v-—w)+w)s
~ 70875w3?

2w+ w)s

s 1063125w50*

10

and

_ 2-w)(v+w)s

" 2631234375w715 |
where Pg, Pjp and Py are polynomials of the variables v, w and s. They
can be obtained by the following Maple commands (whose output is sup-
pressed):

Ci2

25

> P[8]:=0p(5,C[8]): P[10]:=0p(5,C[10]):
P[12] :=0p(5,C[12]):
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The equalities Cg = Cj9o = C1p = 0 and s(v + w)(v — w) # 0 imply that
Pg = Pig = P1» = 0. In what follows, we show that there is no solution
v, w, s to this system of equations.

The variable s is a common root of the polynomials Pg and Pjg. There-
fore the resultant Rg ¢ of these two polynomials (with respect to s) is zero:

R[8,10]:=factor(resultant (op(5,C[8]),0p(5,C[10]),s));

Rg 10 := 136687500w'>0" (v — w)* (v + w)?

(1178440166794705680 v'8 — 34849488132334981400 w?v'®
+27095657773476976150 w*v'* + 2157163953185024831539 wv'?

+ 19335728720363587723895 wdv'® + 77098340762854904758838 w'’s®
+ 135541716064734053550290 w'20® + 44498612407766474466 w'®
+2100034048587009260985 w'®v? + 52974528518488497499557 w'4v*)

After the computation of Rg 1o, we determine the resultant Rg ;o of Pg and
P17, and the resultant Ry 12 of Pjo and Pj, respectively, by performing the
commands

> R[8,12] :=factor(resultant (op(5,C[8]),0p(5,C[12]),s)):
R[10,12] :=factor(resultant(op(5,C[10]),0p(5,C[12]),s)):

We do not output the explicit results of these computations, but we get that
Rg 10 = Kz 10w 0" (w + v)*(w = v)* Py 10(v, w),
Ry 12 = Ky 1w v (w + v)*(w = 0)* Py 12(0, w)
and
Ri0,12 = Ki0.2w 0P (@ +0)°(w — 0)° Pro,12(0, w),

where K3 10, K3 12 and K¢, 12 are nonzero real constants and Pg 19, Ps 12 and
P10,12 are polynomials of v and w. Since the cases w = 0, v = 0, v = w and
v = —w have already been discussed, the only remaining possible solution
can occur as a common root (v, w) of the following system of equations:

Pg1o(v,w) =0, Pgio(v,w)=0, Pig12=0.

However, by calculating the resultant O of polynomials Pg 19 and Pg j» with
respect to v

Q[1] :=factor(resultant(op(4,C[8,10]),0p(4,C[8,12]),Vv));
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we have that the resultant O is of the form

468
Or=quw™”,

while calculating the resultant Q, of polynomials Pg 1> and Pjg 12 with re-
spect to v

Q[2] :=factor(resultant(op(4,C[8,12]),0p(4,C[10,12]),Vv));

we have that the resultant Q> is of the form

1196
O =qw 7,

where g1 and g are nonzero (large) constants. This yields that Pgjo =
Pg 12 = Pjo.12 = 0 is not solvable for v and w since we already have that
w # 0. Thus the solution set of (3.1) is described completely. O

As an application of Theorem 3.1, consider the following problem. If
x,y € R;, determine the Gauss composition of the Gini means Gy 1(x, y)
and Gy —1(x, y), i.e., determine the common limit of the sequences defined
as follows:

X1 =X, yl = !/,
4 4 2 2
L _ 3 Xy T Yn L _ 3 Xn T Yy
Xn+l = G4,1(xn’ yn) = s Yn+1 = G2,—1(xn, yn) = 1 1
Xn + Yn 41
Xn Yn
where n € N.

Using case (iv) of Theorem 3.1,
Gu+v,v ® Gu—v,—v = Gu,O’

withu = 3 and v = 1, it is very easy to determine that the Gauss composition
of the two means is the power mean of exponent 3, i.e., the common limit
of the two sequences is

3 x3 <+ 3
G30(x, ) = M3(x,p) = 4/ zy .

3.2.2. The invariance equation for Stolarsky means.

We start with the characterization of the equality of two variable Sto-
larsky means, which will be needed later.
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Lemma 3.5. (Pdles [42]) Let a, b, c,d € R. Then the identity
Sa,b(x’ y) = Sc,d(x7 .1/) (x’y € R+)
holds if and only if one of the following possibilities is valid:

(i) a+ b = c+d = 0 and, in this case, the two means are equal to the
geometric mean;

(ii) {a,b} = {c,d}.
We give the general solution of the invariance equation (3.2).

TaeOREM 3.2. (Bajak—Pdles [4]) Let a, b, c,d, p,q € R. Then the invari-
ance equation (3.2), i.e.,

Spa(Sap(,y), Scalx,y) =S,pqx,y)  (x,y €RY)

is valid if and only if one of the following possibilities holds:

(i)a+b=c+d=p+q=0,ie., all the three means are equal to the
geometric mean;
(ii) {a,b} = {c,d} = {p, q}, i.e., all the three means are equal to each other;
(iii) {a,b} = {-c,~d}and p+q = 0, i.e., S, is the geometric mean and
Sa,b = S—c,—d-

It is interesting to observe here that the parameter sets when (3.1) holds
is much bigger then the corresponding set for (3.2).

As a consequence also in this case, we obtain the following solution
for the Matkowski—Sut6 equation, i.e., when S, , is equal to the arithmetic
mean in (3.2).

CoroLLARY 3.3. (Bajadk—Péles [4]) Let a,b,c,d € R. Then the Matkow-
ski—Suto-type equation

Sapy) +Scalx,y) =x+y (x,y eRy)

holds if and only if {a, b} = {c,d} = {2, 1}, i.e., both means are equal to the
arithmetic mean.

Proor oF THEOREM 3.2. Using Lemma 3.1 and the previous results of
this chapter, the invariance equation in this case is equivalent to

F Mp,q,n:k,Ma,b,n;k,Mc,d,n;k(u) =
H(p’ q’ H(a7 b’ u,—u, k)7 H(C’ d7 u,—u, k), k) - H(p, q, u,—u, k) = 0,
which, by Corollary 3.1, holds if and only if

(3.25) FP©,k) = FY 0)=0 (ke

Mp,q,n;k’Ma,b,n;k’Mc,d,n;k
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where, in view of the second identity in (3.20), F : R X N — R is defined
for x e Rand k € N as

F(x,k) := H(p,q,H(a,b, x,—x,k), H(c,d, x, —x, k), k) — H(p, q, x, —x, k),
i.e., in the Maple language we set

> F::(x;k)‘>H(p’Q;H(a;b;X;‘x;k);H(C;d;xy‘xyk);k)
‘H(p;Q;Xy‘X,k);

To derive the necessity of the conditions of Theorem 3.2, we have to check
equation (3.25) for the values k = 2,4,6, 8, 10, 12.

First we evaluate the second-order Taylor coefficient C, of F(-,2) at
x=0:

> C[2]:=simplify(coeftayl (F(x,2),x=0,2));
which yields

1
Cr=—d-—-p+—=b-——qg+-—=a+

(We have to note here that the Maple-definition of the function H is valid
only if (p — g)(a — b)(c —d) # 0, but C, and all the subsequent Taylor
coefficients are correct also in the singular case (p — g)(a — b)(c —d) = 0.)
From (3.25) we have that all Taylor coefficients have to be zero, there-
fore we obtain the first necessary condition, which is the same as in the case

for Gini means:
atb+c+d p+gq

4 2
In order to simplify the evaluation of the higher-order Taylor coefficients,
we introduce the same notations as previously, utilizing C, = 0:

_atb+c+d p+gq

v 4 2
_a+tb—(c+d)
v .——4 .
— 2
(3.26) t:=(¥) :
. _(@-b?+(c-d)?
= 3 ,
_(a—bP?—(c—d)?
S = 8 .

Then, provided that a > b, ¢ > d and p > ¢, we can express the parameters
a,b,c,d, p, q in the following form:
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> a:=w+v+sqrt(r+s); b:=w+v-sqrt(r+s);
c:=w-v+sqrt(r-s); d:=w-v-sqrt(r-s);
p:=w+sqrt(t); q:=w-sqrt(t);

a=w+v+ Yyr+s

b=w+v— Vr+s

ci=w—-v+ NVr—s

di=w-v—Vr—s
pi=w+ Vi
g=w- Vi

Now we evaluate the 4th order Taylor coefficient by performing the com-
mand

> C[4]:=simplify(coeftayl (F(x,4),x=0,4));
Then we obtain
Cy:=——vs— —w* + —wt — —uwr

45 135 45 45

The condition C4 = 0 yields that wt = wr + vs + %wuz.

If w = 0, then p + g = 0, which means that S , ; is the geometric mean.
Therefore the invariance equation can be written as

S a6 YScalx,y) = xy (x,y e Ry).

This results

Sap(x,y) = =S _c-alxy)  (nyeRy).

1
Seca(l/x, 1/y)
Using Lemma 3.5, this identity yields that either a + b = ¢ +d = 0 or
{a,b} = {—c,—d} must hold. In this case we get that one of the conditions
(i) or (iii) of our theorem is valid. Conversely, if condition (i) or (iii) holds
then (3.2) can easily be seen.

In the rest of the proof, we may assume that w is not zero. Then, from
condition C4 = 0, we can express ¢ in terms of w, v, , :

> ti=r+v*s/w+(4/3)*vA2;

(3.27) pmrs Bt
w 3

Next, we evaluate the 6th order Taylor coefficient Cg of F(-,6) at x = 0:
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> C[6]:=factor(simplify(coeftayl(F(x,6),x=0,6)));

We get that

_ 209uw?s? + 8w*v* + 45w?rv? + 39w3sv + 6wv’ s — 13w*v? — 9 s?)
N 8505w

CG:

Here, if v = 0 then Cg = 0 implies that s = 0. Hence, from (3.27) it follows
that t = r and we getthata = ¢ = pand b = d = ¢, i.e., condition (ii) of
our theorem holds. Conversely, if condition (ii) holds then the invariance
equation (2.8) is trivially valid.

In the rest of the proof, we may assume that v is also not zero. The
6th order coefficient C¢ does not involve higher-order powers of r, thus the
equation C¢ = 0 can be solved for r.

> ri=(13*wA4*vA2-9%wA2%sA2-8*WA2VA4+9*vA2%5A2-30%WA3*v*s
_67‘:W=':VA3=':S)/(457‘:W/\2=‘:VA2) ;

13uw*v? — Quw?s? — 8w?u* + 9v%s? — 39uwivs — 6wes

(3.28) :
" 45w2p?

Now, we evaluate the 8th order Taylor coefficient of F(-,8), the 10th order
Taylor coeflicient of F'(-, 10) and the 12th order Taylor coefficient of F(-, 12),
respectively, at x = 0:

> C[8]:=factor(simplify(coeftayl(F(x,8),x=0,8)));
> C[10] :=factor(simplify(coeftayl (F(x,10),x=0,10)));
> C[12] :=factor(simplify(coeftayl (F(x,12),x=0,12)));

We have that

|
Cgi= —
7 9568125w312

+ 224w — 464400 s® + 756w s + S1w's® + 11976w’ v’ s + 810t s*

+4992u00° — 162w0?s* — 17379w*v*s? — 1273200’ s + 297w’ s%)

(4347w vs® — 3616wdv* + 12420%00s% + 16137ub0?s?
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2
2841733125w5v*
+ 107406w 0% s> — 338432w' %00 + +34928uw°!% — 523908uw%0° 53

+ 2187wV s® + 126459w*0'0s% + 316272w0'0 + 1435410800
+92508w’! s + 24948u?1®s* + 1319016w' v’ s — 847044u”v’ s
+927324w'%*s? — 1197324508 5% — 564480w” v’ s — 729u° s°

+ 5502600’ s* — 794610w 0’ s* + 672786wv*s* + 3402wv’ s

— 52002w’vs® — 313065w*1%s* + 1263492uwv° s> — 384669wSv? s*
+ 7290°5%)

(141632w'%® — 2187w?v*s® — 58806w’v’ s

C]() =

2
872767286015625w7 10
— 24723510120 v’ s” — 36269208w* v’ s® — 6728400999us* 18 s©

— 23518313469u8v*s° + 28808296272w' %! — 43502512128w'%8

— 32563674368w'*0'° + 55532868672w'?v!? + 4082581552u5v'®
+51381378wr’s” + 1616450580w’v!! s> + 66139190820w"v” s°
+5633126127w*0!2s* — 27686800350w’y’s° + 23171026860w! o3 s°
— 198268186320w'3v° s> + 90673028 s® — 50400222003w'2v*s*

+ 8922828051w'%%s® + 527871816w*v'%s8 + 2575113768w v’ s”
+33853773582w'%00s* + 8610065640w°0'3 s> + 7873495747208 5*
+ 806989878w’vs” — 5632745687 1wdv'?s* — 297179050266w' 0! s>
— 14684723544w"3 1’ s + 203758408416w'v” s + 2387944944w'*15 52
— 67821635178 '%s* + 10150547496wv'3 s + 13660568109uw°0'* 5>
— 84844566450w v s* + 337457994084w'? ¥ 5* + 90673020% 58

— 3441528204uw°0"3 s — 6773520159000’ s> + 342237888720w! v’ s°
—961134012uv"s” + 20796014601w’0% s — 6323986791000’ s
—195782704164w' v 5)

Ciy := (54403812u*v* s® — 36269208uw50? 58

The Taylor coefficients Cg, Cg and C1; are of the form

1 2
— Py Ci=
9568125w32 " > 107 2841733125504

Cg = P1o
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and
2

= §72767286015625076 " 12
where Pg, Pjp and P, are polynomials of the variables v,w and s. The
equalities Cg = C19 = C12 = 0 imply that Pg = P19 = P15 = 0.

The variable s is a common root of the polynomials Pg and Pjg. There-
fore the resultant Rg 1o of these two polynomials (with respect to s) is zero:

Ciz

> R[8,10] :=factor(resultant(op(4,C[8]),0p(4,C[10]),s));

Ry 10 = 28242953648100000000w**v** (v — w)é(v + w)®

(395726752304 v*2 — 28019198519832 w?v*° + 1192972799035666 w*v?®
—36617671790074251 w’u?® + 601554420387156651 w®v?*
—3652037976710860175 w'%?? — 1101310194408221307 w'%*°

+ 62048533824813847173 w'*v'® — 175575191501013599783 w!®y!®
+52614376847529172973 w'¥v'* + 435211540238087039223 w*%v!?

— 793895884964266327270 w**v'® — 773252618095825970136 w*1®

— 492199682627262911866 w1 + 183522699320559043726 w*v*

— 43030934088053846752 w*'v* + 912066926976343384 w*?)

The resultant is zero if either vw(v — w)(v + w) = 0 holds or v and w are
solutions of a homogeneous two variable polynomial equation of degree 32.
First, consider the case when vw(v— w)(v+ w) = 0. We have that vw # 0,
hence (v — w)(v + w) = 0 must hold, i.e, v = zw. Thus, from (3.27) and
(3.28), we get that r = %2 Fsand? = %wz, respectively.
In the case when v = w, the equations in (3.26) yield that

(3.29)
p=(1+ 2,

1+ ——= =(1- =
3 w

3

The first equality yields that S. 4 is the geometric mean. Hence, we may
assume that ¢ = —d = 1. To simplify the computations, we can also assume
that w = 3. We show that these parameters are not solutions of the invariance
equation. For k € N, we now have that

F(x, k) ::H(3 + V13,3 - V13, H(7,5, x,—x, k), H(1, -1, x, —x,k),k)
- H(3 + \/B,?) — \/E,x, —x,k).

In Maple, we input

(1-Y2).,

7 5
c=-d, azgw, bzgw,
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> F:=(x,k)->H(3+sqrt(13),3-sqrt(13),H(7,5,x,-x,k),
H(1,-1,x,-x,k),k)-H(3+sqrt(13),3-sqrt(13),x,-x,k);

We compute the 10th order Taylor coefficient of this function by

> simplify(coeftayl (F(x,10),x=0,10));

whence we get that this coefficient is — 152737552, i.e., it is not zero, which means

that the parameters in (3.29) do not provide solution to the invariance equa-
tion.
In the case when v = —w, we have that

R e
a=-b, c=zuw, =3zWw P= + 3 |w 4= o
whence a similar calculation as in the previous case shows that we again do
not get an additional solution to the invariance equation. Thus, we have to
return to the case when v and w are solutions of a homogeneous two variable
polynomial equation.

The variable s is also a common root of the two polynomials Pg and
P1;. Therefore the resultant Rg 1, of these polynomials (with respect to s),
and the resultant Ry 12 of Pjp and P, (with respect to s), is again zero:

> R[8,12] :=factor(resultant(op(4,C[8]),0p(4,C[12]),s)):
R[10,12] :=factor(resultant(op(4,C[10]),0p(4,C[12]),s)):

We do not output the explicit results, but we get that
Rs 10 = Ks 1ow™ o™ (w + v)* (w — 0)* Py 10(0, w),
Rg12 = K3 1ow v (w + 0)'°(w — v)'"Pg 120, w)
and
Rio.12 = Kio,20™ 0™ w + 0)P(w — v) P Py 12(v, w),

where K3 10, K312 and K| 12 are nonzero real constants and Pg 19, Ps 12 and
P0.12 are polynomials of v and w. Since the cases w = 0, v = 0, v = w and
v = —w have already been discussed, the only remaining possible solution
can occur as a common root (v, w) of the following system of equations:

Pgio(v,w) =0, Pgia(v,w)=0, Pig12=0.

However, by calculating the resultant QO of polynomials Pg 19 and Pg j» with
respect to v

Q[1] :=factor(resultant(op(4,C[8,10]),0p(4,C[8,12]),Vv));
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we have that the resultant O is of the form

1408
O1=qw ™",

while calculating the resultant O of polynomials Pg 12 and Pig 12 with res-
pectto v

Q[2] :=factor(resultant(op(4,C[8,12]),0p(4,C[10,12]),V));

we have that the resultant O is of the form

2904
0> = ™",

where g1 and ¢g» are nonzero (large) constants. This yields that Pg 1o =

P32 = Pjo.12 = 0 is not solvable for v and w since we already have that
w # 0. Thus we have all solutions of (3.2). O

3.2.3. The mixed invariance equations.

Now we are going to solve the remaining four mixed invariance equa-
tions. The following theorems completely describe the solution sets of these
equations.

TueorEM 3.3. (Bajak—Pdles [5]) Let a, b, c,d, p,q € R. Then the invari-
ance equation (3.3), i.e.,

Gp,q(Sa,b(xv y)7 Gc‘,d('xv y)) = Gp,q(x’ y) ('xa y € IR-‘-)

is valid if and only if one of the following possibilities holds:

(i) a+b=c+d=p+q=0,ie, all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {w,2w} and {c,d} = {p,q} =
{0,w}, i.e., all the three means are equal to each other, and they are
also equal to the power mean of exponent w,

(iii) there exists a w € R such that {a, b} = {w,2w}, {c,d} = {0, —w} and
p+q =0, ie, G, is the geometric mean and the two means S 4
and G_._q4 are equal to each other, and are equal to the power mean
of exponent w;

(iv) there exists w € R such thata + b = 0, {c,d} = {(Bw,w}, and {p,q} =
{2w, 0} (in this case, Gp 4 is a power mean and S ., is the geometric
mean);

(v) there exists a w € R such that {a, b} = {w, 2w}, {c,d} = {—w, 2w} and
{p.q} =10, -w}, i.e., Sy is the power mean of exponent w and G, is
the power mean of exponent —w.
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Proor. The sufficiency of the conditions (i)—(v) can easily be checked.
Thus, we have to prove the necessity of these conditions.
The invariance equation in this case is equivalent to

(k) —
FMp,q.msMa,b,mMc,d.m (0) - O (k € N)’

which, by Lemma 3.1 and Corollary 3.1, holds if and only if

(3.30) FO0,k) = FY 0=0 (keN),

p,q,m;k,Ma,b,n;k’Mz:,d.m;k

where, in view of the third identity in (3.20), F : R X N — R is defined for
x€Randk € N as

F(-xa k) = G(p7 q’ H(a’ b’ X, —X, k)’ G(C9 d’ X, =X, k)’ k) - G(P’ q’ X, =X, k),
i.e., in Maple we set

> F::(x’k)_>G(p5q!H(alb5X!_xlk)!G(cldixy_xyk)yk)
‘G(paQ;X;‘x;k);

Now we derive the necessity of the conditions of Theorem 3.3 by checking
(3.30) for the values k = 2,4,6, 8,10, 12.
The second-order Taylor coefficient C; of F(-,2) at x = 0:

> C[2]:=simplify(coeftayl (F(x,2),x=0,2));

which yields
1 1 1 1 1 1
=—=p+-c+-—a+—=b+-d-=
Co=—gprgetpatpbryd-sa
Since C, = 0, we have that
a+b N c+d p+gq
12 4 27
Now we introduce the following notations (which will be different than that
in the solution of the previous two invariance equations, but by the same
motivation):

(3.31)
‘_a+b+c+d_p+q _a+b c+d t'—(p_q)2
) S S ) 4 =)
(a—Db)* +9(c — d)? (a—b)* -9 —d)?
r .= . S .= .
72 72

Then, provided that a > b, ¢ > d and p > ¢, we can express the parameters
a,b,c,d, p, q in the following form:
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> a:=3*w+3*v+3*sqrt(r+s); b:=3*w+3*v-3*sqrt(r+s);
c:=w-v+sqrt(r-s); d:=w-v-sqrt(r-s);
p:=w+sqrt(t); q:=w-sqrt(t);

a:=3w+3v+3Vr+s, ci=w-v+ Vr—s, pi=w+ \/Z,
b:=3w+3v-3Vr+s, di=z=w—-v— Vr—s, q::w—\/z.

Now we evaluate the fourth-order Taylor coefficient C4 of F(:,4) at x = 0:

> C[4]:=simplify(coeftayl (F(x,4),x=0,4));

which yields
2 2 2 7 2 2 2
C4 = ngz - ngl) - 1—5w3 - Ewr - Ews - BU?’ - EU?’
1
- EUS + gwt

First we consider the case when w = 0. Then p + ¢ = 0, which means that
G, 1s the geometric mean. Therefore the invariance equation (3.3) can be
rewritten as

Sap(X,YGealx,y) =xy  (x,y €Ry).
This yields

Sap(x,y) = Gc-alx,y)  (x,y €RY).

Gea(l/x,1/y)
Using the result of Alzer and Ruscheweyh ([1]), this identity yields that both
means are power means, i.e., either a + b = ¢ + d = 0 or there exists a real
number u such that {a, b} = {u,2u} and {c,d} = {0, —u} must hold. In this
case we get that one of the conditions (i) or (iii) of our theorem is valid.

In the rest of the proof, we may assume that w is not zero. Hence,
equation C4 = 0 can be solved for #:

> t:=1/5%(6*W*VA2+6*WA2*V+2*WA3+7* W r+2*w*s+2*vA3+

2*V¥r+7*v*s) /w;

. 6w + 6w v +2uw + Twr+2ws+20v> +2vr + T vs

Sw
The next commands compute the Taylor coefficients Cg, Cg, C1o and Cy2

> C[6] :=simplify(coeftayl (F(x,6),x=0,6));
C[8] :=simplify(coeftayl (F(x,8),x=0,8));
C[10] :=simplify(coeftayl(F(x,10),x=0,10));
C[12] :=simplify(coeftayl(F(x,12),x=0,12));
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which yields:

2

Coi=— —— ( — 1440 w?v* — 3818 wPvr — 1212 w*r — 246 w?r? — 1191 w?s® + 168 v*r
7875w

+ 588 us + 84 0212 + 1029 0252 — 2318 wi s + 588 v?rs — 6807 wv?r — 912 w?rs

— 4182 w?v?s — 5533 wus — 1408 wor — 1632 w's — 96 w’v + 1635 w*v? + 34 u®

+ 8410 — 324 wors — 1970 w® — 246 wv® — 162 wor? — 162 wvsz),

1
=035 ( —40332w’ s + 1428 wriv? — 19152 w2 s — 328280 w*v’r — 8747 wvs’
w

— 351580 w*v’s — 65732 w0’ s + 2856 v’ rs — 32380 w0’ 57 — 41560 w0 r* — 29097 w’rs>
+ 1428075 + 408 0712 + 4998 1’ 5% + 136 0° 1> — 8404 v w? — 4344w — 39096 wr®
— 17776 w°0® + 53646 wv? — 63684 w*s® + 6704 wbv — 8914 wv* + 5831 v°s® + 1224 wod

Cg‘

—7914w’s - 36372w’ 2 — 59862 w’ s> + 1360° + 408 0" r + 1116 w® — 30912 w’ r

+ 10404 wr?v?s — 88284 wrs + 17850 wv*s? — 305152 w’v?s — 238010 w’v’r — 46912 w?v°r

— 180760 wv*s — 142484 wPor + 4998 v rs? — 162634 wbvs — 313472 w 0% r + 8976 we’s

— 153250 wv?r? — 143530 wv?s? + 1428 0> 125 + 4998 ws>v? — 114640 wor? + 3876 we®r

— 275350 whvrs + 20349 wrv? s? — 3052 w?ur® — 128410 w*vs® — 98590 w?v’rs — 242680 w v rs

— 10176 w?or*s — 13746 wvrs® + 4080 wv* 2 + 19380 wv4rS),
We do not output the explicit forms of Co and C, as they contain very large
polynomials of the variables v, w, r and s. Unfortunately, these polynomials

involve higher-order powers of all variables, thus we cannot express any of
these variables. To summarize the forms of these coeflicients, we have that

CZk = %P%(r, S, 0, w) (k = 3, 4, 5, 6),
wk—

where ¢y is a nonzero real constant and Py is a four variable polynomial.
By condition (3.30), we have that Cs = Cg = C19 = C2 = 0, which yields
the following system of four equations for the unknowns r, s, v and w:

(3.32) Poy(r, s,v,w) =0 (k=3,4,5,6).

To eliminate the variable r first, observe that if (7, s, v, w) is a solution of
(3.32), then r is the common root of the polynomials Pok(-, s, v, w) for k =
3,4,5,6. Therefore the resultant of Pg(:, s, v, w) and Py(-, s, v, w) with re-
spect to r is zero for k = 4,5, 6. Thus, we need to compute these resultants:

> R[6,8]:=factor(resultant(op(2,C[6]),0p(2,C[8]),r)):
R[6,10] :=factor(resultant(op(2,C[6]),0p(2,C[10]),r)):
R[6,12] :=factor(resultant(op(2,C[6]),0p(2,C[12]),r)):
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Again, we do not output the explicit results of these computations. Here we
get that

Rook = oW (w + v)*Poi(s,v,w)  (k =4,5,6),

where c¢g 2 1s a nonzero real constant and Pg o is a three variable polyno-
mial. Thus, either w + v = 0 or (s, v, w) is a solution of the following system
of three polynomial equations:

(3.33) Pe (s, v,w) =0 (k=4,5,6).

We consider first the case when w+v = 0 (but w # 0). Then a+b = 0 and
hence S .5(x,y) = v/xy = Gop(x,y) holds. This shows that the invariance
equation (3.3) is now equivalent to (3.1), where a = b = 0. Observe that,
by p+g = 2w # 0, G, cannot be the geometric mean. Therefore, in
Theorem 3.1, the first five cases cannot be valid. Thus, only the sixth case
of Theorem 3.1 can hold, whence we get that there exists w € R such that
{c,d} = {3w,w}, and {p, q} = {2w, 0} (i.e., the assertion (iv) of Theorem 3.3
holds). (In this, we can also get thatt = r — s = w?.)

In the rest of the proof, we assume that w(w + v) # 0. Then (3.33) must
be satisfied by (s,v, w). Repeating the above procedure, we compute the
resultants of Pgg(:, v, w) and Pg2x(-, v, w) with respect to s for k = 5, 6:

> R[6,8,10] :=factor(resultant(op(4,R[6,8]),
op(4,R[6,10]),s)):

R[6,8,12] :=factor(resultant(op(4,R[6,8]),
op(4,R[6,12]),s)):

The explicit result of these computations is suppressed again. Here we ob-
tain that, fork = 5,6

- 3(k—
Res2x = 6822w + 0)v° (v — w) w** D (w + v)** D Pg g 21 (v, w),

where cg 8 2 1s a nonzero real constant and Pg g o is a two variable homoge-
neous polynomial. Thus either v € {0, w, —2w} or (v, w) is a solution of the
following system of two polynomial equations:

(3.34) Pegor(v,w) =0 (k=5,6).

Assume that v € {0, w, —2w}. We distinguish three subcases according
to the inclusion v € {0, w, —2w}.

Subcase 1: v = w. In this case ¢ + d = 0, thus G.4 is the geometric
mean. However, by simplifying the resultants Ce g, Ce 10 and Cg 12, we get
that these resultants are of the form Cgor = c6,2kw8(k_1), hence they can
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only be zero if w = 0. This means that we do not get new solutions in this
subcase, and only assertion (i) of Theorem 3.3 can hold.

Subcase 2: v = —2w. First we simplify the resultants Ce g, Ce 10 and
Cs,12 and denote them by K3, K 10 and Kg 12, respectively, by performing
the commands

> Vi=-2%W;
K[6,8]:=factor(simplify(R[6,8])):
K[6,10] :=factor(simplify(R[6,10])):
K[6,12] :=factor(simplify(R[6,12])):

We have that in this case the resultants are of the form
Koox = ds ™ (95 + 4w*) Q6 21(s, w) (k=4,5,6),

where de 2k 1s a nonzero real constant and Qg 2 1S a two variable polyno-
mial. Thus, either the system of the polynomial equations Qgg(s,w) =
O6.10(s, w) = Q¢ 12(s, w) = 0 has a solution or 9s + 4u? = 0. Computing the
resultants of these polynomials by

> resultant(op(4,K[6,8]),0p(4,K[6,10]),s):
resultant (op(4,K[6,8]),0p(4,K[6,12]),s):

we have that the resultants can only be zero if w = 0 in which case we do
not get a new solution.

If s = —4w?/9, first we simplify the Taylor coefficients C¢, Cg, Cg and
C1> and denote them by Kg, Ks, K19 and Kj, respectively, by the com-
mands

> s:=-4*WA2/9:
K[6]:=factor(simplify(C[6])):
K[8]:=factor(simplify(C[8])):
K[10] :=factor(simplify(C[10])):
K[12]:=factor(simplify(C[12])):

We have that these coefficients are of the form
Koy = dyw(9r = 5uP)Qu(r,w) (k= 3,4,5,6),

where dy; is a nonzero real constant and Qy; is a two variable polynomial.
Thus, either the system of polynomial equations Qg¢(r,w) = Qg(r,w) =
Qio(r,w) = Qua(r,w) = 0 has a solution or 97 — 5uw?> = 0. Computing
the resultants of these polynomials by
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> resultant(op(4,K[6]),0p(4,K[8]),r):
resultant (op(4,K[6]),0p(4,K[10]),r):
resultant (op(4,K[6]),0p(4,K[12]),r):

we have that the resultants can only be zero if w = 0. Therefore we again do
not have new solutions.

In the other case, when r = 5w?/9, we get that ¢ = w?. Thus {a,b} =
{—2w, —4w}, {c,d} = {2w, 4w} and {p, g} = {0, 2w}, i.e., assertion (v) of The-
orem 3.3 holds.

Subcase 3: v = 0. We simplify the resultants Cgg, Ce 10 and Cg 12 and
denote them by Ks 3, K¢ 10 and Kg 12, respectively, by performing the com-
mands

> v:=0;
K[6,8]:=factor(simplify(R[6,8])):
K[6,10] :=factor(simplify(R[6,10])):
K[6,12] :=factor(simplify(R[6,12])):

We have that in this case the resultants are of the form
Kook = do ™ (95 + 4w2)2Q6,2k(S, w) (k=4,5,6),

where dg 7 1s a nonzero real constant and (g ok 1S a two variable polyno-
mial. Thus, either the system of the polynomial equations Qe g(s,w) =
Qe.10(s, w) = Q¢ 12(s, w) = 0 has a solution or 9s + 4u? = 0. Computing the
resultants of these polynomials by

> resultant(op(3,K[6,8]),0p(3,K[6,10]),s):
resultant (op(3,K[6,8]),0p(3,K[6,12]),s):

we have that the resultants can only be zero if w = 0. Therefore solving the
system of equations does not give new solutions.

If s = —4w?/9, first we simplify the Taylor coefficients C¢, Cg, C19 and
C1> and denote them by Kg, Ks, K19 and Kjj, respectively, by the com-
mands

> s:=-4*wAr2/9:
K[6] :=factor(simplify(C[6])):
K[8] :=factor(simplify(C[8])):
K[10] :=factor(simplify(C[10])):
K[12]:=factor(simplify(C[12])):
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We have that these coefficients are of the form
Ko = doyw(9r = 5u0)Qui(r,w) (k= 3,4,5,6),

where dp; is a nonzero real constant and Qy; is a two variable polyno-
mial. Thus either the system of polynomial equations Q¢(r, w) = Qg(r,w) =
Qi0(r,w) = Q12 = 0 has a solution or 9r—5w? = 0. Computing the resultants
of these polynomials by

> resultant(op(3,K[6]),0p(4,K[8]),r):
resultant(op(3,K[6]),0p(4,K[10]),r):
resultant(op(3,K[6]),0p(4,K[12]),r):

we have that the resultants can only be zero if w = 0. Therefore we again do
not have new solutions.

Otherwise, if r = 5w?/9, we get that + = w?. Therefore {a,b} =
{2w, 4w}, {c,d} = {0,2w} and {p, q} = {0,2w}, i.e., assertion (ii) of Theo-
rem 3.3 holds.

Finally, we may assume that v ¢ {0, w, —2w}. Then (3.34) must be satis-
fied by (v, w). We compute the resultant of Pg g 10(-, w) and Pg g 12(:, w):

> R[6,8,10,12] :=factor(resultant(
op(5,R[6,8,10])*op(6,R[6,8,10]),
op(5,R[6,8,12])*op(6,R[6,8,12]),v)):

Here we obtain that

35690
Re6.8.10,12 = C68,10,12W ,

where c¢g 310,12 1S a nonzero real constant, showing that the polynomials
Pg.3.10 and Pg g 12 do not have common root if w # 0. ]

THEOREM 3.4. (Bajdk—Pdles [S]) Let a, b, c,d, p,q € R. Then the invari-
ance equation (3.4), i.e.,

Gpg(Sap(,y),Scax,y) = Gpglx,y)  (x,y €RyY)

is valid if and only if one of the following possibilities holds:

(i) a+b=c+d=p+q =0, ie, all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {c,d} = {w,2w} and {p,q} =
{0, w}, i.e., all the three means are equal to each other, and they are
equal to the power mean of exponent w;

(iii) {a,b} = {-c,=d}and p + q = 0, i.e., G, is the geometric mean and
Sa,b = S—c,—d-



56 CHAPTER 3. GINI AND STOLARSKY MEANS

Proor. We use a similar argument as in the previous proof.

The sufficiency of the conditions (i)—(iii) can easily be checked. To
derive the necessity of the conditions of Theorem 3.4, we are going to check
equation
(3.35) FO0,k) = FY

p.q,m;ksMa,b,n;ksMc,d,n;k (0) = 0 (k € N)’
only for the values k = 2,4, 6, 8, 10, 12, where, in view of the fourth identity

in (3.20), F : RX N — R is defined for x € R and k € N as
F(x,k) := G(p,q,H(a,b, x,—x,k), H(c,d, x,—x, k), k) — G(p, q, x, —x, k).

In the description of the proof, we will only provide the mathematical de-
tails. The Maple commands that produce the results will be omitted since
they are completely analogous to those in the previous proof.
First, we evaluate the second-order Taylor coefficient of F(-,2) at x = 0,
which yields
1 1 1 1 1 1
Cri=—=p+-—c+—a+-—=b+—d-=
2ETP TR TR TR TR 21
By condition (3.35), C, = 0, thus
atb+c+d p+gq
12 2

Now we introduce the following notations

a+b+c+d p+g a+b—(c+d) D —q\2
S R n— =05
r._(a—b)2+(c—d)2 s__(a—b)Z—(c—d)Z
' 72 ’ ' 72 ‘

Then, provided that a > b, ¢ > d and p > ¢, we can express the parameters
a,b,c,d, p, q in the following form:

a:=3w+3v+3Vr+s, c:=3w-3v+3Vr—s, p:=w+\/;,
b:=3w+30-3Vr+s, d:=3w-3v-3Vr—s, q:zw—\/f.
Now we evaluate the fourth-order Taylor coefficient C4 of F(-,4) at x = 0,
which yields
4 , 4 5 3 3 1

Cy:= —ng — Ew - gwr— gvs+ gwt

First we have to consider the case when w = 0. Then p + g = 0, thus G, is
the geometric mean. The invariance equation (3.4) now can be rewritten as

Sap(X, S calx,y) = xy (x,y € Ry).
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This yields

Sa,b(x’ y) = S—C,—d(-x’ 1/) (-x’ y € IR+),

Sea(l/x1/y)

whence we have that in this case one of the conditions (i) or (iii) of our
theorem is valid. We note that this result also follows from Theorem 3.2,
since the geometric mean is also a Stolarsky mean.

In the rest of the proof we assume that w # 0. Hence we can solve
Cy =0 fort:

. 4uw? + 9wr + us + 12un?
T Sw

We also have to compute the Taylor coefficients C¢, Cs, C1o and Cj, in the
same way as in the proof of Theorem 3.3. Here we have that

2
T 7875w

+ 2376wt — 236 wS — 17017 s% + 10989 wzvzr)

Cs : (2214wu3s + 10863 w’vs + 648 wors + 324 w?r? + 2025 w?s® + 2088 w'r — 141 w*v?

1
Cs :=- W( — 2136w’ +25008 w’v® — 16654 wv? + 5832w vr’s + 20952 w2 + 37800 w’ s>
wr

— 12393 wrv?s? + 52002 w?rv’ s + 204372 w v r + 16872 w’r + 144018 wv*r — 16524 v* s*w
+ 18225 wrs® + 6075 w?us® + 223272 w*eP s + 1944w + 92826 w v r? + 18798 w’v*

+ 175554 wors + 113622 wPos + 92502 wiv? s — 4131 0% s> + 28368 w2u5s)

2
19490625w3
+ 611501967 w0’ s + 135594000 wPrs® — 11932272 v° s*w + 725783409 wPv? s>

+ 420278220 sw® + 690152319 w®v?r? + 400604049 wdv?r + 120654603 w*v>

+ 417636081 w*v* r? + 865710342 wPu*r — 23864544 1°s%w? + 30314736 wv* s>

+ 24603750 w*r?s? — 2992516 w'? — 45335067 w'%? + 102201777 wb® + 1458489888 w’v’rs
+ 353110833 wtv?rs? + 172975662 w’v’ sr + 341082333 wvr?s + 710902818 w”vrs

+ 7453296 w’rivs — 13423806 w?r?v” s* + 111825684 w’ 2o’ s — 35796816 w?rv* s>

— 8949204 wrv’ s> + 16402500 w'vrs® — 38472759 wbv* + 33510024 w*o® + 63395784 wkr?

+ 19511856 w'%r + 30314736 w°r> + 1863324 w*r* — 2237301 v*s* + 83288250 w®s?

Cio := (385977069 w*ots? + 737675424 w' v’ s + 266772447 w*®r + 132586875 vw’ s°

+4100625 w's* + 161393481 w’vs)
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Cp = (403741013760 wobr + 1533816436995 wdu? s> + 147670340625 w’v?s*

" 14780390625uw*
+ 477511402500 w’rs® + 42575378760 v w*s + 522785591820 w' ' v?r — 2200331952007 s>w?

+ 2393789829120 w’v?s? + 14167659375 w’rs* + 2341418351265 w’v*r — 80822008720 w'31?

+ 1426729627620 w v* 1> + 114233471370 w*’ s + 1302340759380 v’ s + 2409383453130 w’v°r

— 825124482010 s*w + 811261449855 w’v* 3 + 1111235137515 w’0°r? + 28335318750 w’ 52

+ 748889853750 wlvs® + 1595845152 w’ > + 136561899375 w'! s> + 123363069120 w'! 12

+ 2833531875 whvs® — 1237686723 0° s + 262774218960 w’ v® + 2817190076265 w®v’ s

+ 789387491385 w’ r2v% 5% + 174787358220 wv® ¥ s + 7979225760 wvr* s + 28335318750 wvr? s>

+ 574262460000 wdvrs® + 513728658315 w*v3 s + 358526321280 wv rs — 12376867230 w*r*v? s>

— 49507468920 w? vt 52 — 12376867230 w? 203 s> — 33004979280 w?rv’ s> — 66009958560 w r® s>

— 6188433615 wrv*s* + 1078454668365 w’ 105> + 4352648210865 w’v*r? + 1354355588070 w'%v’ s

+ 135314370180 w’ r*v? — 32530323735 wvd s> + 2326102237980 w’v?r? + 291555804375 w’ 12 s>

+ 4385267094735 w’ v?rs® + 5785680885480 wdv’ 51 + 2159275162860 wivr? s + 17727300960 w'3r

+ 8019256823460 b’ rs + 512836526340 w®rvs + 4451805506610 w®r?v’ s — 3686158848 w'>

+ 146366403840 w*rv’ s> + 136945365120 w’r® + 47843358750 w’ s* — 15356483415 wiv*s*

+ 178593908460 w'?vs — 223894817745 w''v* + 109692392715 w’v® + 32931348336 w’v'®

+ 1663233280740 w'vrs + 2328040789110 w’ rv*s” + 4337072582355 w'v* s> + 36591600960 w'r*)
This means that the coefficients are of the form

Co = %sz(r, S, 0, W) (k=3,4,5,6),
wk—

where ¢y is a nonzero real constant and Py is a four variable polynomial.
By condition (3.35), we have that Cs = Cg = C19 = C2 = 0, which yields
now the following system of four equations for the unknowns r, s, v and w:

(3.36) P (r, s,0,w) =0 (k=3,4,5,6).

We use the same method as in the proof of Theorem 3.3 to determine if
these polynomials have common roots. First we eliminate the variable r by
calculating resultant Rg o of Pe(:, 5,0, w) and Py(:, s,v,w) for k = 4,5,6.
We get that

Rook = c.uw™ 2 Po i (s, v, w) (k=4,5,6),

where cg 2 1s a nonzero real constant and Pg o is a three variable polyno-
mial. In the next step we eliminate the variable s by calculating the re-
sultants Re g 10 and Rg 8,12 of Pgg(-,v, w) and Pe 2k (-, v, w), respectively. We
obtain that, for k = 5,6

Rosax = cosont w30 — 5w)(3v + 5w)(v — )" (v + w) ' Pe g 24 (v, w),
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where ce 82k 1S a nonzero real constant and Pg g2k is a two variable homo-
geneous polynomial. Thus either v € {0, w, —w, —5w/3,5w/3} or (v,w) is a
solution of the following system of two polynomial equations:

(3.37) Pegok(v,w) =0 (k=35,6).

Assume that v € {0, w, —w, —5w/3, 5w/3}. We have to distinguish the
following cases:

Subcase 1: v = 0. In this case, by simplifying the resultants Rg g, Re 10
and Re 12 and denoting them by K¢ g, K¢ 10 and Kg 12, respectively, we get
that

Kook = dooiw™ ™ s* Qs on(s,w) (k= 4,5,6),
where dg o 1S a nonzero real constant and (g2 is a two variable poly-
nomial. Thus either the system of the polynomial equations Qg s(s,w) =
Oe.10(s,w) = QOg.12(s,w) = 0 has a solution or s = 0. However, by compu-
ting the resultants of Qg s(-, w) and Qg 19(-, w), we get that this resultant can
only be zero if w = 0, therefore we do not have new solutions here.

On the other hand, if s = 0, then simplifying the Taylor coefficients
Cs,Cs,Cyo and Cyy, denoting them by Kg, K3, K19 and K, respectively,
and solving the system of equations Kg(r,w) = Ks(r,w) = Kijp(r,w) =
Kip(r,w) = 0, we have that there may exist a solution if either w = 0 or
9r —w? = 0. If r = w?/9, then we obtain that = w?. Hence {a, b} = {c,d} =
{4w, 2w} and {p, g} = {2w, 0}, i.e., all the three means are equal to the power
mean of exponent 2w, thus assertion (ii) of Theorem 3.4 holds.

Subcase 2: v = tw. In both cases, by simplifying Re g, Re,10 and Re 12,
we have that these resultants can only be simultaneously zero if w = 0, thus
we do not get new solutions.

Subcase 3: v = +5w/3. By simplifying the resultants R g, Re 10 and
Re,12 and denoting them by K¢ g, K¢ 10 and Kg 12, respectively, we have that

Kook = do ™2 Q6 21(s, w) (k=4,5,6),

where dg ok is a nonzero real constant and Qg 7 is a two variable polynomial.
However, the resultants of the polynomials O g and Qg 10 is zero if and only
if w = 0, thus in this case we do not get new solutions either.

Finally, we may assume that v ¢ {0, w, —w, —5w/3, Sw/3}. Then (3.37)
must be satisfied by (v, w). Computing the resultant Re g 10,12 of Pe 3,10 and
Pe 3.12 we obtain that

17100
Re.8,10,12 = C6.8,10,12W ,
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where ce 810,12 is a nonzero real constant, showing that the polynomials
Pe .10 and Pg g 12 do not have common root.
O

TueoREM 3.5. (Bajak—Pdles [5]) Let a, b, c,d, p,q € R. Then the invari-
ance equation (3.5), i.e.,

Sp,q(Ga,b(xa U), Gc,d(-x9 y)) = Sp,q(xa y) (x’ Yy € IR+)

is valid if and only if one of the following possibilities holds:

(i) a+b=c+d=p+q =0, ie, all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {c,d} = {0,w} and {p,q} =
{w, 2w}, i.e., all the three means are equal to each other, and they are
equal to the power mean of exponent w;

(iii) {a,b} = {-c,—d}and p + q = 0, i.e., S, 4 is the geometric mean and
Ga,b = G—c,—d;

(iv) there exists a w € R such that {a, b} = {w, 3w}, {p,q} = {2w, 4w} and
c+d=0,i.e., Geq is the geometric mean and S , 4 is the power mean
of exponent 2w;

(v) there exists a w € R such that {c,d} = {w, 3w}, {p,q} = {2w, 4w} and
a+b=0,ie., Gyyp is the geometric mean and S , , is the power mean
of exponent 2uw.

Proor. We again use a similar argument as in the previous proofs.
The sufficiency of the conditions (i)—(v) can easily be checked. To de-
rive the necessity of the conditions of Theorem 3.5, we check equation

(3.38) FO,k) = F® 0)=0 (keN)

Mp,q,n;ksMa,b,m:k»Mc,d,m;k

only for the values k = 2,4, 6, 8, 10, 12. Here, in view of the fifth identity in
(3.20), F : Rx N — R is defined for x € R and k € N as

F(x,k) := H(p,q,G(a, b, x,—x,k),G(c,d, x,—x,k), k) — H(p, q, x, —x, k).

We evaluate the second-order Taylor coefficient of F(-,2) at x = 0,
which in this case yields

1 1 1 1 1
Cri=— - - -b+-d-—
2 6p+40+4a+4 +4 6q
By condition (3.38), C, = 0, thus
atb+c+d p+gq

4 6
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This

w =

identity motivates to introduce the following notations
a+b+c+d p+gq a+b—-(c+4d) P —q\2
e U7 =5
r'_(a—b)2+(c—d)2 ‘e (a —b)?> — (c — d)?
: A , : A .

Then, provided that a > b,c > d,p > g, we can express the parameters
a,b,c,d, p, q in the following form:

a=w+v+ Vr+s, c:=w-v+ Vr—s, p:=3w+3\/z_‘,
b=w+v— Vr+s, di=w—-v— Vr—s, q::3w—3\/;.
Now we evaluate the fourth-order Taylor coeflicient C4 of F(:,4) at x = 0,
which yields
4 1 1 3
Cy:= Ew3 - gwr - gvs + gwt
If w =0, then p+ ¢ = 0 and hence S, is the geometric mean. The

same argument as in the previous proofs shows that assertion (i) or (iii) of
Theorem 3.5 must hold. We note that the same consequence immediately
follows also from Theorem 3.1, since the geometric mean is also a Gini
mean. Therefore in the rest of the proof we assume that w # 0. Then C4 = 0
is solvable for ¢:

_4w3 — Swr — Sus
w

Computing the Taylor coefficients C¢, Cg, C19 and C1, we obtain that

Ce := 35 (44 w® — 105 w*v? — 8wors — 5wivs + 105 w??r + T0wv’ s — 40 wr — 4 w?r?
w
+21uw?s* - 25 vzsz)
1
Cyi== 375 (=350ws* = 378w’ - 136w’ r? = 8w’r’ — 25075 + 136w + 224w s
w

T 15592503

+ 17008’ + 140w v*r + 280 w*v3s + 18 w? 5% + 51 w’rs® + 350 W v*r + 238 w3 v?r?

+ 84w s? + 238w sr — 24 wvsr? — 34 wtvsr — 75 wr*s? + 8w'r— 6 wévs)
(57750 wdutr + 47520 wrs® + 162855 w®v?r? + 19866 w's® + 13844 w'?

+ 183645 w*v*s? + 162855 w v’ s — 138600 w’ v’ s — 37040 wv’ s> — 107415 wv?r

+ 88935 w*0r + 160545 w*u*r? + 10230 w*r2 5% + 46035 w’vs® + 57705 wdv?s? — 3125 v*s*

+ 61380 w0312 s + 46035 w*v?r® + 46705 w’vs + 55110 w v’ s — 218295 w’v* + 86800 w'r

— 37040 w®r® — 101475 w'%? — 88935 WSS + 1705 ws* — 62184 wkr? — 34395 w vsr?

— 5680w’ rivs — 18750 w’r*v?s? — 12500 wrv’s® + 120582 w’v’ sr — 32430 w’ vsr — 1420 w'r*
— 20535 w*rv?s* + 434280 w’ v’ rs + 6820 w3urs3)
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Ci = (157342185 w'v*r? + 141576435 w’ vt s* + 104873769 w10s? — 431875075

425675250
+ 27495468 w’ v’ r? + 9066057 w’v’s* + 8300292 w’v?r* — 159128970 w'? s — 243232 W’ ¥

+ 30180150 wbvs® — 9065920 w’ r* + 37302944 w'3r + 62522460 w'v’ s + 65044980 w’v?r
— 130225095 w’s*r + 943215 w’rs* + 19745404 w'%vs — 77297220 w' ' v?r + 16939923 w12 s>
+16234218 w*s’ s> + 2692690 w’ s* — 74729655 wdv’ s + 66705639 wv®r? — 37059712 w’ 13
+2885883 w'!s? + 15345728 w'!r? + 50945895 wv* P — 23543520 w'30? + 11971960 0w s
+ 10780770 w’v®r + 1886430 w’ 5% — 3378375 w1Bs? + 21585564 w’rs® + 188643 wvs’
+32516795 w0 s + 20931308 w’v? 5% — 16896332 w’rPvs — 21533691 w’r2v? s>
— 36263680 w*rv’ s> + 36060820 w'Ovsr — 46638660 wivsr? + 51334215 w 1?5
— 1216160 w*r*vs — 4318750 w* 1% s> — 4318750 w?r?v® s> — 2159375 wrv*s*
+ 237567330 w®o® s + 163873710 w v rs? + 45864819 w*v® sr? + 310774464 w’rs
+ 146726580 wbv’ rs + 40216176 w*v’ sr + 13833820 > w5 + 1886430 wvr? 53
+ 33201168 wdvrs® — 77486409 w’1° + 19819800 w’v®r — 12524375 wu*s*
— 19819800w’s® — 78062985 w''v* — 6279808 w'*)

This means that the coeflicients are of the form

C2k = %sz(r, s, 0, U)) (k = 35 4’ 59 6)7
w

where ¢y is a nonzero real constant and Py is a four variable polynomial.
Thus we obtain the following system of four equations for the unknowns
r,s,v and w:

Poi(r,s,0,w) =0 (k=3,4,5,6).

The resultants Rg o of the polynomials Pg(-, s, v, w) and Py(-, s, v, w) are
Rk = couw™ 2 5(v = w)(v + w)Pe (s, v, w) (k=4,5,6),
where cg 2k 1s a nonzero real constant and Pg o is a three variable polyno-
mial. Thus either s = 0,v+w = 0,v — w = 0 or (s, v, w) is a solution of the

following system of three polynomial equations:

Peor(s,0,w) =0 (k=4,5,6).

First we consider the solution of the system of equations. We eliminate
the variable s by calculating the resultants Rg g 10 and Rg g 12 of Pgg(-, v, w)
and Pg2x(-, v, w). We obtain that
Resar = cos o' P - w) v+ wy Pegouv,w) (k= 5,6),

where cg g 2k 1s a nonzero real constant and Pg g ox is a two variable homoge-
neous polynomial. Then, by calculating the resultant of Pg g 10 and Pe3g 12,
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we get that this resultant is zero if and only if w = 0, thus we do not get new
solutions.
Now we have to distinguish the following subcases:

Subcase 1: v = 0. By simplifying the Taylor coefficients and calculating
the resultants, we obtain that either w = 0 or r = w?. If r = w?, then
again by simplifying the Taylor coefficients, we get that s = 0 must hold,
and 1 = w?/9. Thus {a,b} = {c,d} = {2w,0} and {p,q} = {4w,2uw}, i.e,
all the three means are equal to the power mean of exponent 2w, therefore
condition (ii) of Theorem 3.5 is valid.

Subcase 2: v = w. Then ¢ + d = 0, therefore G., is the geometric
mean. By simplifying the Taylor coefficients and calculating their resultants,
we get that either w = Oorr+ s = w?. Ifr+s = w? then r = w?/9,
thus {a, b} = {3w,w} and {p,q} = {4w, 2w}, i.e., S, is the power mean of
exponent 2w, therefore condition (iv) of Theorem 3.5 holds.

Subcase 3: v = —w. Then a+b = 0, therefore G, is the geometric mean.
The same argument as in the previous subcase shows that either w = 0 or
r—s = w? must hold. If r — s = w?, then t = w?/9, thus {c¢,d} = {3w, w}
and {p, g} = {4w, 2w}, i.e., S ,, is the power mean of exponent 2w, therefore
condition (v) of Theorem 3.5 is valid.

Subcase 4: s = 0. Then by simplifying the resultants Rg g 10 and Re 312,
we have that these resultants can only be zero if v = 0,v = w,v = —w or
w = 0. Thus we do not get new solutions in this subcase. O

THEOREM 3.6. (Bajdk—Pdles [S]) Let a, b, c,d, p,q € R. Then the invari-
ance equation (3.6), i.e.,

Sp,q(Ga,b(xa y)’ SC,d(x’ y)) = Sp,q(x’ U) (x’ Y € IR+)

is valid if and only if one of the following possibilities holds:

(i) a+b=c+d=p+q =0, ie, all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {0,w} and {c,d} = {p,q} =
{w, 2w}, i.e., all the three means are equal to each other, and they are
equal to the power mean of exponent w;

(iii) there exists a w € R such that {a, b} = {0, w}, {—c, —d} = {w, 2w} and
p+q =0, ie, S, is the geometric mean and the two means G
and S _._q are equal to each other, and are equal to the power mean
of exponent w;
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(iv) there exists a w € R such that {a, b} = {w, 3w}, {p,q} = {2w, 4w} and
c+d=0,1ie, S.qisthe geometric mean and S , 4 is the power mean
of exponent 2w;

(v) there exists a w € R such that {a, b} = {w, 2w}, {c,d} = {—w, 2w} and
{p.q} = {w, 2w}, i.e, S¢q is the power mean of exponent —w and S p 4
is the power mean of exponent w.

Proor. We again use a similar argument as before.
The sufficiency of the conditions (i)—(v) can easily be checked. To de-
rive the necessity of the conditions of Theorem 3.6, we check equation

(3.39) FO,k) = F® 0)=0 (ke

Mp,q,ﬂ;k’Ma,h,m;kst‘,d,n;k
for the values k = 2,4,6,8,10,12. Here, in view of the sixth identity in
(3.20), F : Rx N — R is defined for x € R and k € N as
F(x,k) := H(p,q,G(a,b,x,—x,k), H(c,d, x,—x, k), k) — H(p, q, x, —x, k).

The second-order Taylor coefficient of F(-,2) at x = 0 in this case yields

Gy = —1p+ic+la+lb+id—lq
6 12 4 4 12 6
By condition (3.39) C, = 0, thus
a+b N ct+d p+gq
4 12 6
Now we introduce the following notations

w::a+b+c+d:p+q U_:a+b_ﬂ t:(w)z
4 12 6 ' 4 12 ° ’ 6 ’
_ Na-by+(c—d)? _ Na-by—(c—d)?
r= = , s = 7 .

Then we can express the parameters a, b, ¢, d, p, g in the following form:

a:=w+v+ Vr+s, c:=3w-3v+3Vr-s, p:=3w+3\/z_‘,

b =w+v— Vr+s, d:=3w-3v-3Vr-s, q:=3w—3\/;.
The fourth-order Taylor coefficient C4 of F(-,4) at x = 0 yields

c 2, 22+237 +2 +23+2 7+3t
= WU — —wvT + W — —WF+ — WS+ U+ —or — —US + —Ww
75 5 15 15 15 15 15 15 5

If w =0, then p + g = 0, and hence S , , is the geometric mean. The same

argument as in previous proofs shows that assertion (i) or (iii) of Theorem
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3.6 must hold. Thus, in what follows we may assume that w # 0. We can
solve C4 = 0 for

2w’ + 6wrv — Twr — Tvs — 6wv* + 2ws + 20° + 2ur
Qw
We compute the Taylor coefficients C¢, Cs, C19 and C>. Here we have that

2
Ce :=— 350 ( —255wPv?r + 122 wor — 28 V2 sr — T8 wv' s + 48 wvr + 2wus® + 2wor? + 32 wlrs
w
— 157 wvs + 48 wts — 2w?r? — 4T w?s® + 49 0% s — 28 vt s + 8 v + 407r% + 150 W% s + 400
—26uC + 4wors + 50w v® — 48wt + 12wtr + 123 w*? — 48w + 6wu5)
1
Cs == ——=— (= 240wr’v* = 1600 w0’ r + 5074 w'vs + 323 vs*w® — 28w’ — 1384 w0’/
1575w?

— 1680 sr + 11004 w*v?s + 8746 wv*r + 528 18 sw — 84 wriv? + 294 v? s*w — 1050 v* s*w

+ 5570w v?r? + 2180 w0’ s + 1137 wrs® — 84 v° sr% — 3044 wlvr + 9152w v?r + 29403 %

— 4298 wtvs® + 540w’ + 800 + 64w — 11064 w*v®r + 4130w v? s> — 8992 w v?s — 228 wre®
— 840 s + 504w r — 1404w’ s + 28 w2 — 72w — 314 w3s> +2940° 52 — 1598 w v
—3822wv? + 1664 wfv® + 896 wdv — 1572 w*v® + 1240 w0 — 24407 w? + 2407 r + 240712

+ 8037 + 3118w’ sr + 24 w?r?vs — 354 whrvs® + 612 wr?v?s — 1197 wrv? s + 1140 wrv*s

+ 7766 wtvrs — 8120w v?sr — 5816 w vs — 3488 wvr? — 672 wirts — 2716 wrs — 844wV’ s*
+2278uw’s? - 3430°5)

Here we suppress the exact forms of Cyyp and Cpp, but we have that the
coeflicients are of the form

Cox = %sz(r, s,o,w)  (k=3,4,5,6),
w

where ¢y is a nonzero real constant and Py is a four variable polynomial.
Thus, we obtain the following system of four equations for the unknowns
r,s,v and w:

(3.40) Py (r,s,0,w) =0  (k=3,4,5,6).
The resultants Rg o of the polynomials Pg(-, s, v, w) and Py(-, s, v, w) are
Reok = c626W ™ (0 = w)(v + w) P 215, v, w) (k=4,5,6),

where cg 2 1s a nonzero real constant and Pg o is a three variable polyno-
mial. Thus either v—w = 0,v+w = 0 or (s, v, w) is a solution of the following
system of three polynomial equations:

(3.41) Pe 21 (s,v,w) =0 (k=4,5,6).
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Ifv—w=0,then c+d = 0, hence S, is the geometric mean. By
simplifying the coefficients C¢, Cs, C19 and C» and computing their resul-
tants, we have that these coefficients can only be zero if w = 0 or r + s = w?.
If r+s = w?, we get that t = w?/9, thus {a, b} = {3w,w} and {p, g} = (4w, 2w},
i.e., § 4 is the power mean of exponent 2w, therefore assertion (iv) of The-
orem 3.6 holds.

On the other hand, if v + w = 0, then a + b = 0, hence G, is the
geometric mean. The same method (or applying Theorem 3.2) shows that
in this case all the three means are equal to the geometric mean, thus we do
not get new solutions.

Now we consider the system of equations in (3.41). We eliminate the
variable s by calculating the resultants R g 10 and Re g 12 of Pgg(-,v, w) and
Pe.10(-, v, w), and Pg3(-, v, w) and Pg 12(-, v, w), respectively. We obtain that,
fork=5,6

Resok = cogont w4 (2v — w)*(v — 2w)(v + Tw)
(0 = w) (v + w)* 2 Pg g 21 (v, w),

where ce g2k 1S a nonzero real constant and Pg g ok is a two variable homo-
geneous polynomial. Then, by calculating the resultant of Peg 10(:, w) and
Peg.12(-,w), we get that this resultant is zero if and only if w = 0, thus we
do not get new solutions.

Finally, we consider the remaining cases:

Subcase 1: v = 0. In this case, by simplifying the coefficients Cg, Cg, C1g
and C,, and calculating their resultants with respect to r, we have that either
w = 0or9s —4uw? = 0. If s = 4w?/9, then by again simplifying the Taylor
coefficients, we obtain that » = 5w?/9 and ¢ = w?/9. Thus {a, b} = {2w, 0}
and {c,d} = {p, q} = {4w, 2w}, i.e., all the three means are equal to the power
mean of exponent 2w, hence assertion (ii) of Theorem 3.6 holds.

Subcase 2: v = 2w. The same argument as in the previous subcase
shows that here we also have that either w = 0 or 9s—4w? = 0. If s = 4w?/9,
then we obtain that » = 5w?/9 and 7 = w?/9. Thus {a, b} = {4w, 2w}, {c,d} =
{—2w, —4w} and {p, g} = {4w,2w}, i.e., S.4 is the power mean of exponent
—2w and §,, is the power mean of exponent 2w, hence assertion (v) of
Theorem 3.6 holds.

Subcase 3: 2v = w. In this case, by simplifying the resultants Rs 3, Re,10
and Re 12, we get that these resultants are zero if and only if w = 0, thus we
do not get new solutions.



3.2. THE INVARIANCE EQUATIONS 67

Subcase 4: v = —7w. The same argument as in the previous subcase
shows that we do not get new solutions in this case either. |

It is worth noticing that in Theorem 3.3, Theorem 3.4, Theorem 3.5 and
Theorem 3.6, the means G, 4 and all the Stolarsky means involved (except
in case (iii) of Theorem 3.4) are equal to power means.

In the proofs of the six theorems for the Gini and the Stolarsky means,
after transforming the problem, we use the computer algebra package Maple
to help us in performing the vast calculations. However, during the proce-
dure we always had to analyze and interpret the outputs of the calculations
that could not have been carried out without using the high performance of
the computer algebra package.






Summary

The Gini and the Stolarsky means form a very important area of research
in the theory of mean values. In the most general case (i.e., when p # ¢q),
the Gini mean of two positive real numbers x and y is defined by

1
_xp +yp)l)fl

Gp,q(.x, y) = ()Cq + yq

and if (p — q)pq(x — y) # 0 the Stolarsky mean of two positive real numbers
xand y is

1
q( xP — yP) p=q

swas=(3=)
For the complete definition covering all exceptional cases, see the defini-
tions in Chapter 1.

Another important class of mean values is the class of quasi-arithmetic
means. The quasi-arithmetic mean (generated by the strictly monotone con-
tinuous function ¢) of x and y from a nonvoid open interval [ is

@(x) + <p(y))
=

A possible generalization of the quasi-arithmetic means is the follow-
ing: If the continuous, strictly monotone functions ¢; and ¢, are strictly
monotone in the same sense on an interval /, the generalized quasi-arithme-
tic mean is defined by

:mww:w%

Mp(x,y) == (@) +@2(y)  (x,y e,
where
¢ = (p1,92), @ =@+ @

If M\N : Ri — Ry are two strict means, their Gauss composition
K = M ® N is the unique strict mean solution K of the functional equation

K(x9 .1/) = K(M(.X', y)vN(x7 _l/)) (x,!/ € IR+)7
69
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which is the invariance equation. For the detailed definition of the Gauss
composition and the characterization of the solution of the invariance equa-
tion as well as for some examples when the invariance equation holds, see
Chapter 1.

In the thesis we examined and solved the invariance equation for the
above generalization of the quasi-arithmetic means as well as for the classes
of Gini and Stolarsky means.

The invariance of the arithmetic mean with respect to two quasi-arith-
metic means (the Matkowski—Sut6 problem) was first investigated by Mat-
kowski. The general solution of this problem without any regularity assump-
tion was described by Dar6czy and Pédles. They also solved the invariance
equation for quasi-arithmetic means in the general case. The complete so-
lution of the invariance equation in the class of weighted quasi-arithmetic
means was given by Jarczyk. These preliminary results in detailed form can
be found in the first two sections of Chapter 2. In the third section we deal
with the invariance of the arithmetic mean with respect to generalized quasi-
arithmetic means, which is also a Matkowski—Sut6-type problem. Our theo-
rem generalizes the solution of Daréczy and Péles and the result of Jarczyk
in the case when the outer mean in the invariance equation is the arithmetic
mean, but under some higher-order regularity conditions for the generating
functions.

THEOREM. Let @1, @y and Y1, Y be 4-times continuously differentiable
functions defined on a nonempty open interval I such that ¢} (x)¢}(x) > 0
and Y (Y5 (x) > 0 (i.e., @1, w2 and Yy, Yo are strictly monotone in the
same sense, respectively) for x € 1. Then, for every x and y in I, the func-
tional equation

(@1 + 027 (P10 + @2) + W1 +¥2) ™ W1(0) +¥a) = x+y
holds if and only if
(i) either there exist real constants p, ai, ay, c1, 2, by, by, dy, da
withp #0, a1 a; >0, ci ca > 0and ay ¢ = ay ¢y such that, for x € 1,
e1(0) =ar e +b1,  @a(x) =ar e’ +by,
and

Yi1(x) =cp e P +dy, Ur(x)=cr e P +do;

(ii) or there exist real constants a, b, c, dy, dy with ac # 0 such that, for
x €l
e1(x) +pa(x) =ax+b,
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and
Y1(x) = cpa(x) +dy Yo (x) = co1(x) + da.

The method used in the proof of the above theorem is based on com-
puting the partial derivatives of the means along the diagonal of 7 X I up to
fourth order and thus getting conditions to prove the necessity part of the
solutions. For the sufficiency part the regularity conditions are not needed.

In Chapter 3 we concentrate on solving the invariance equation when
the three means involved are either Gini or Stolarsky means, which results
six equations. With the help of a common generalization of both the Gini
and the Stolarsky means, we are able to deal with these equations as special
cases of a more general equation.

First we reformulate the general invariance equation:

Lemma. If M, N : Ri — R, are homogeneous (resp. symmetric) strict
means, then their Gauss composition M ® N is also homogeneous (resp.
symmetric). Furthermore, if K : R%r — R, is a homogeneous strict mean
then K = M ® N, i.e., the invariance equation

K(-x’ 1/) = K(M(-x’ y)’N(-x’ y)) ()C,y € R'F)’
holds if and only if the single-variable function Fx yn : R — R defined by
Fxun@) :=InK (M(e",e™),N(e",e™)) —InK(e",e™) (u € R),

vanishes everywhere on R. In the case when K, M, N are analytic functions,
Fx mn is also analytic and vanishes on R if and only if

(k) —
Feun©0 =0

for all k € N. If, additionally M, N and K are symmetric strict means,
then Fg yy is an even function and Fk yn vanishes on R if and only if the
derivatives above vanish for all even k € N.

If r and s are two different real parameters and y is a Borel probability
measure on [0, 1], the two-variable mean

i =
[ (=) dpa(e)

1
I (y' =) du)
0

Mr,S,y (x,y) =

is a common generalization of both the Gini and the Stolarsky means (for

the complete definition, see Chapter 3). If u is equal to 60;(5‘ (where 6,




72 SUMMARY

stands for the Dirac measure concentrated at x), we get the Gini mean G,
and if p is equal to the Lebesgue measure, we get the Stolarsky mean S ..
This means that each of the six invariance equations can be considered as a
particular case of the equation

Mp,q,K(Ma,b,u(x, Y), Mcg,(x, y)) = Mp,q,K()Q Y) (x,y €Ry),

where each of y, v and « is equal to the Lebesgue measure on [0, 1] or to the
measure @. In view of the lemma, the above invariance equation holds if
and only if, for all u € R,
FMp-q.K’Ma.b-chd,v(u) :=In (Mp,q,K(Ma,b,ﬂ (e, e—u)’ Mc,d,v(eua e_u)))
—In (M, 4.(e",e™)) =0,
ie., forall k € N,
(k) -
FMp,qA,K’Ma,b,usMc,d,v(0) - O

To get a more useful representation of the means M, ,, we introduce

the function L, : R — R, by

© &
L,(2) :=1In [Z %Mk} )

k=0
where y denotes the kth central moment of the measure u. Assuming that
w is symmetric with respect to % it follows that pp;—; = O for all £ € N. With
the help of funcion L,, we can express the main expression of the mean
M, . in the following form:

Lemma. If u be a Borel probability measure on [0, 1] and r, s € R, then
Mr,s,/t(x, Yy) = exp (M;(,x,p(ln x,In y)) (x,y €Ry),
where M, : R2 — R, is defined by

r,8,U
. u+v  L(r(u—v)) = L,(s(u—0v))
M, (u,v) = > + p— .
To simplify the calculations, we consider an approximation of the mean
M, ;. If u is a Borel probability measure and m € N, define the functions

m_k

Lyym(2) :=In [Z %ﬂk) (zeR),

k=0
and, ifr, s € R,

M, s m(x, y) = exp (Mf,w;m(ln x,Iny)) (x,y €RyY),
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where M .., R2 — R, is defined by (suppressing the exceptional case
r=-s)

u+v N L,u;m(r(” - U)) - Lu;m(s(u - U))
2 r—s ’
The following lemma states that instead of the functions M, s, and L,
we can use the truncated functions M, ., and L., to compute the higher-
order derivatives needed in the calculations.

Mr*,w;m(u, v) =

LemMa. Let u be a Borel probability measure. Then, for all m,i € Ny
withi < m,
(@) _(7®
(L (0) = (Lyn(0)).
Furthermore, for all r,s € R and m,i, j € No withi+ j < m,

My, (1,1) = My s (1, 1).

As an immeadiate consequence of the lemma, the computation of the

. . (k)
higher order derivatives F My gse-Mapn Moy at 0 can be replaced by the compu-

tation of the derivatives F 5(;) at 0 provided that k < m.
p.

A,q,K;mstz,b,ygrmMc,d,v;m

COROLLARY. Let a,b,c,d, p,q € R and u, v, k be Borel probability mea-
sures on [0, 1]. Then, for all k,m € Ny with k < m,

(k) _ k)

F 0)=F,,

Mp,q,K sM{l,b,/,l 7Mzr,d,v P.g.Kim> Mll,b,/,l;)?l »Mz:,d,v;m

(0).

This means that it is sufficient to check these easier conditions while
solving the invariance equations. We can consider each equation as the suit-
able special case of the identity

FMp,q,K;k7Ma,b,;1;k sMc,d,v;k (u) =

M;,q,K;k(MZ,b,p;k(u’ —-u), Mz,d’v;k(u, —u)) — M;,q’,(;k(u, -u) =0.

We get solutions for the unknown parameters a, b, ¢, d, p, g by computing
the Taylor coefficients of the function

FMp,q,K;k sM(Lb,/,t;ksMc',zl,v;k

at x = O up to a sufficiently high order, and determining the conditions when
all these coefficients vanish. This function is even due to the symmetry of
the means, thus all coeflicients of odd order are zero. Therefore we have to
differentiate up to 12th order to get sufficiently many conditions for the six
parameters. Our task is to determine the common roots of this system of six
polynomial equations. The Taylor coefficients can be factorized and by ana-
lyzing these factors, we get solutions to the invariance equations. In several
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cases, among these factors we get high-order multivariable polynomials of
the unknowns. We calculate the resultants of these polynomials to check if
they have common roots. We used the computer algebra package Maple V
Release 9 to perform the tedious computations.

In Chapter 3, using the above method, we give the general solutions
of the six invariance equations involving Gini and Stolarsky means. In the
following theorem we describe the solution when all three means are Gini
means with possibly different parameters.

THEOREM. Let a,b,c,d, p,q € R. Then the invariance equation
Gp,q(Ga,b(xe U), GC,d(x7 y)) = Gp,q(xe U) (X, !/ € IR+)

holds if and only if one of the following possibilities holds:

(i)a+b=c+d=p+q =0, ie, all the three means are equal to the
geometric mean;

(ii) {a,b} = {c,d} = {p, q}, i.e., all the three means are equal to each other;

(iii) {a,b} = {-c,—d}and p + q = 0, i.e., G, is the geometric mean and
Gap =G-c-a;

(iv) there exist u,v € R such that {a,b} = {u + v, v}, {c,d} = {u — v, —v}, and
{P,q} = {u,0} (in this case, G, 4 is a power mean);

(v) there exists w € R such that {a,b} = Bw,w}, c+d =0, and {p,q} =
{2w, 0} (in this case, G, 4 is a power mean and G4 is the geometric
mean);

(vi) there exists w € R such that a + b = 0, {c,d} = {(Bw,w}, and {p,q} =
{2w, 0} (in this case, Gp 4 is a power mean and Gy, is the geometric
mean).

The exact Maple code to define the appropriate functions, compute the
Taylor coeflicients and the resultants as well as an application of this theo-
rem is given in Chapter 3.

In the next theorem, we give the general solution of the invariance equa-
tion for Stolarsky means.

THEOREM. Let a, b, c,d, p,q € R. Then the invariance equation
Spa(Sapxy),Sca(x,y) =S pg(x,y)  (x,y €RY)

is valid if and only if one of the following possibilities holds:

(i) a+b=c+d=p+q=0,ie, all the three means are equal to the
geometric mean;
(ii) {a,b} ={c,d} ={p,q}, i.e., all the three means are equal to each other;
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(iii) {a,b} = {-c,~d}and p + q = 0, i.e., S 4 is the geometric mean and
Sa,b = S—c,—d-

The following theorems completely describe the solution sets of the
mixed equations, i.e., when the three means involved are either Gini or Sto-
larsky means.

THEOREM. Let a,b,c,d, p,q € R. Then the invariance equation
Gpg(Sap(y), Gea(x,y) = Gpg(x,y)  (x,y €Ry)

is valid if and only if one of the following possibilities holds:

(i)a+b=c+d=p+q=0,ie., all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {w,2w} and {c,d} = {p,q} =
{0,w}, i.e., all the three means are equal to each other, and they are
also equal to the power mean of exponent w;,

(iii) there exists a w € R such that {a, b} = {w,2w}, {c,d} = {0, —w} and
p+q =0, ie, Gy, is the geometric mean and the two means S 4
and G_._q4 are equal to each other, and are equal to the power mean
of exponent w;

(iv) there exists w € R such thata + b = 0, {c,d} = {(Bw,w}, and {p,q} =
{2w, 0} (in this case, G, 4 is a power mean and S . is the geometric
mean);

(v) there exists a w € R such that {a, b} = {w, 2w}, {c,d} = {-~w, —2w} and
{p.q} =1{0,-w}, i.e., S is the power mean of exponent w and G, 4 is
the power mean of exponent —w.

THEOREM. Let a,b,c,d, p,q € R. Then the invariance equation
Gp,q(Sa’b(]C, U)’ Sc,d(-xa y)) = Gp,q(-x’ y) (x’ !/ € R+)
is valid if and only if one of the following possibilities holds:

(i)a+b=c+d=p+q=0,ie., all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {c,d} = {w,2w} and {p,q} =
{0,w}, i.e., all the three means are equal to each other, and they are
equal to the power mean of exponent w;

(iii) {a,b} = {-c,~d}and p + q = 0, i.e, G4 is the geometric mean and
Sa,h = S—c,—d-

THEOREM. Let a,b,c,d, p,q € R. Then the invariance equation
Sp,q(Ga,b(xa _1/), Gc,d(xa y)) = Sp,q(x, y) (x7 Yy € R+)
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is valid if and only if one of the following possibilities holds:

(i) a+b=c+d=p+q=0,ie., all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {c,d} = {0,w} and {p,q} =
{w, 2w}, i.e., all the three means are equal to each other, and they are
equal to the power mean of exponent w;

(iii) {a,b} = {-c,—d}and p + q = 0, i.e.,, S, is the geometric mean and
Gup =G ¢c—a;

(iv) there exists a w € R such that {a,b} = {w, 3w}, {p,q} = {2w, 4w} and
c+d=0,ie., Gcq4 is the geometric mean and S , 4 is the power mean
of exponent 2w;

(v) there exists a w € R such that {c,d} = {w,3w}, {p,q} = 2w, 4w} and
a+b=0,ie, Gy is the geometric mean and S , 4 is the power mean
of exponent 2w.

THEOREM. Let a, b, c,d, p,q € R. Then the invariance equation
Sp,q(Ga,b(x, y)’ SC,d(x5 y)) = Sp,q(xy y) (-x’ y € R+)
is valid if and only if one of the following possibilities holds:

(i) a+b=c+d=p+q=0,ie., all the three means are equal to the
geometric mean;

(ii) there exists a w € R such that {a,b} = {0,w} and {c,d} = {p,q} =
{w, 2w}, i.e., all the three means are equal to each other, and they are
equal to the power mean of exponent w;

(iii) there exists a w € R such that {a,b} = {0,w}, {—c, —d} = {w, 2w} and
p+q=0,ie,S,, is the geometric mean and the two means G
and S _._q are equal to each other, and are equal to the power mean
of exponent w;

(iv) there exists a w € R such that {a, b} = {w, 3w}, {p,q} = {2w, 4w} and
c+d=0,1ie,S.qisthe geometric mean and S , ; is the power mean
of exponent 2w;

(v) there exists a w € R such that {a, b} = {w, 2w}, {c,d} = {—w, 2w} and
{p.q} = {w,2w)}, i.e, S¢q is the power mean of exponent —w and S p
is the power mean of exponent w.



Osszefoglalas

A Gini és a Stolarsky kozepek egy igen intenziven kutatott teriiletet
alkotnak a kozépértékek elméletén beliil. A legdltaldnosabb esetben (azaz
p # q esetén) az x és y pozitiv valés szdmok Gini kdzepe a

1
_xp+yp ﬁ
x4 + y4 ’

Gp,q(x’ y) = (

valamint (p—q)pg(x—y) # 0 esetén az x és y pozitiv valds szamok Stolarsky
kozepe az
1
g = y")\ 7
swaten == 0)

formulaval értelmezett. A Gini és a Stolarsky kozepek kivételes esetekre
vonatkoz6 alakjai megtaldlhat6k az 1. Fejezetben.

A kvézi-aritmetikai kdzepek szintén nagyon fontos kézéposztilyt alkot-
nak. Ha x és y egy nemiires, nyilt intervallum elemei és ¢ egy szigordan
monoton, folytonos fliggvény, akkor

M, y) = o] (so(x)+¢(y))
e Y) =

2

az x és y (¢ dltal generalt) kvazi-aritmetikai kdzepe.

Ezen kézéposztily egy lehetséges altaldnositdsa a kdvetkezd: Legyenek
@1 és o szigorian monoton, folytonos fiiggvények dgy, hogy az I interval-
lumon a két fliggvény azonos értelemben szigordan monoton, ekkor

Mep(x.y) == (@) + () (x,yeD),
az x és y altalanositott kvazi-aritmetikai kozepe, ahol
¢:=(p1.92),  @i=@r+en

Ha M,N : R? — R, két szigort kozép, akkor a két kozép K = M ® N
Gauss kompoziciéja a

K(xa y) = K(M(X, !/)> N()C, y)) (xay € IR+)
77
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fiiggvényegyenlet, az tn. invariancia egyenlet egyértelm{ olyan K megol-
dédsa, amely maga is szigord kozép. Az 1. Fejezet tartalmazza a Gauss kom-
pozicié részletes definicidjét, az invariancia egyenlet megolddsdnak jellem-
z¢€sét, valamint néhdny példét kdzepek invariancidjara.

A dolgozatban a kvézi-aritmetikai kozepek fenti dltaldnositasara, illetve
a Gini és a Stolarsky kozepekre vonatkozé invariancia egyenleteket tanul-
manyoztuk és oldottuk meg.

A szédmtani kozép két kvazi-aritmetikai kozépre vonatkozd invarian-
cigjat (az Gin. Matkowski—Sutd problémat) el6szor Sutd oldotta meg, majd
Matkowski ugyanazokat a megoldédsokat taldlta gyengébb regularitds mel-
lett. Ennek a problémanak az altaldnos megoldasat regularitasi feltételek
nélkiil Dar6czy és Pales adtdk meg. Ugyancsak megoldottak a kvazi-arit-
metikai kozepekre vonatkozo altalanos invariancia egyenletet. A stlyozott
kvazi-aritmetikai kozepekkel felirt invariancia egyenlet megoldasa Jarczyk
nevéhez fizédik. Mindezen kordbbi eredmények részletes ismertetése meg-
taldlhato a 2. Fejezet els6 két szakaszaban. A harmadik szakaszban a szdm-
tani kozépnek az altalanositott kvazi-aritmetikai kézepekre vonatkozd in-
variancigjaval foglalkozunk, ami szintén egy Matkowski—Sutd tipusd prob-
Iéma. A megfogalmazott tétel dltaldnositja Dardczy és Pdles, valamint Jar-
czyk eredményét abban az esetben, amikor az invariancia egyenletben szere-
plo kiilsé kozép a szdmtani kéz€p, azonban az eredmény igazoldsadhoz sziik-
séges volt a generdl6 fliggvények magasabbrendii regularitasat feltételezni.

TETEL. Legyenek @1, @) és 1, Yo négyszer folytonosan differencidlhato
fiiggvények egy I nemiires, nyilt intervallumon iigy, hogy ¢} (x)¢5(x) > 0 és
YW, (x) > 0 (azaz @1, @2 illetve Yy, Yo azonos értelemben szigorian
monoton) minden x € I esetén. Ekkor a

(@1 + @)™ (@10 + @2) + W1 + )™ (1) + oY) = 2 +y
fiiggvényegyenlet pontosan akkor teljesiil minden x, y € I esetén, ha

(i) vagy léteznek p, a1, ar, c1, c2, by, by, dy, dy valos konstansok, me-
lyekre p # 0, ajay > 0, cica > 0 és ayc1 = ay cp teljesiil tigy, hogy
bdrmely x € I esetén

e1(x) = ay e’ +by, ©2(x) = ap e +by,

Y1(x) =cp e P +dy, Ya(x) = c3 e P  +dy ;

(ii) vagy léteznek a, b, c, dy, dy valos konstansok, melyekre ac # 0 teljesiil
gy, hogy bdarmely x € I esetén

e1(x) +po(x) =ax+b,
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Y1(x) = cpa(x) +dy Ya(x) = cp1(x) + da.

A fenti tétel bizonyitdsdban a sziikségesség igazoldsdhoz azon a médon
nyeriink feltételeket, hogy kiszamoljuk a kézepek parcidlis derivaltjait 7 X [
atl6jan negyedrendig bezardlag. Az elégségesség bizonyitdsa sorédn ez a re-
gularitasi feltétel elhagyhat6, igy egy er6sebb allitds is megfogalmazhato.

A 3. Fejezetben az invariancia egyenlet azon eseteit targyaljuk, melyek-
ben az el6fordul6 kézepek mindegyike Gini vagy Stolarsky kozép. Ez 6ssze-
sen hat egyenletet eredményez. Azaltal, hogy a Gini és a Stolarsky kdzepek
egy kozos altalanositasaval dolgozunk, ezen hat egyenlet mindegyikét egy
altalanosabb egyenlet specidlis eseteként oldhatjuk meg.

El6szor atfogalmazzuk az invariancia egyenlet altaldnos alakjat:

LemmA. Legyenek M,N : R2 — R, homogén (szimmetrikus) szigorii
kozepek. Ekkor ezen két kozép M ® N Gauss kompozicioja szintén homogén
(szimmetrikus). Tovdbbd, ha K : R2 — R, homogén szigorii kozép, akkor
K=M®N - azaz teljesiil a

K(X,y) = K(M(X,y),N(x’!/)) (x’y€R+)
invariancia egyenlet - pontosan akkor, ha az
Fxmnw) :=InK(M(e",e™),N(e",e™)) — In K(e",e™) (u € R)

modon értelmezett Fx yn : R — R egyvdltozos fiiggvény azonosan eltiinik
az egész szdmegyenesen. Abban az esetben, ha K, M, N analitikus fiiggvé-
nyek, akkor Fk yn szintén analitikus és pontosan akkor tiinik el az egész
szdmegyenesen, ha minden k € N esetén

(k) —
F©, 30 =0,

Hamég ezen feliil M, N és K szimmetrikus szigorii kozepek, akkor az Fg pn
fiiggvény pdros, és pontosan akkor tiinik el az egész szdmegyenesen, ha a
fenti derivdltak eltiinnek minden pdros k esetén.

Ha r és s két kiilonb6z6 valds paraméter és u egy Borel valdszinliségi
mérték a [0, 1] intervallumon, akkor az

L
=S

1 I
[ (y") )
Mr,s,,u(x9 .’/) = 01

[ Gy =) du(n)

0



80 OSSZEFOGLALAS

moédon értelmezett kétvéaltozos kozép a Gini és a Stolarsky kozepek kozos
altalanositasa (a kozép teljes definicigjat a 3. Fejezet tartalmazza). Ameny-
nyiben a y mérték megegyezik a @ mértékkel (ahol 6, az x pontba kon-
centrélt Dirac mértéket jeloli), akkor a fenti kozép a G, ; Gini kozepet adja,
illetve ha p a Lebesgue-mérték, akkor pedig az S, ; Stolarsky kozepet kap-
juk. Ez azt jelenti, hogy az éltalunk vizsgélt hat invariancia egyenlet tekint-

het6 az
Mp,q,K(Ma,b,y(x’ .’/)’ MC,d,V(x7 y)) = Mp,q,K(X, y) (x7 .’/ € R-F)

egyenlet hat kiilonbozé specidlis esetének, ahol u, v és « vagy a [0, 1] inter-

vallumon értelmezett Lebesgue mértékkel, vagy a @ mértékkel egyen-

16k. A fenti lemma alapjan az invariancia egyenlet pontosan akkor teljesiil,
ha minden u € R esetén

FMp_q,K,Ma,b_H,M(.,d,V () :==In (Mp,q,K(Ma,b,y (eu’ e—u)’ Mc,d,v(eua e_u)))
—In (M, 4.(",e™)) =0,
azaz

(k) _
FMP,q,K’Ma,h,wMa,d,v (O) - O

minden k € N-re.
Ahhoz, hogy az M, , kdzép egy, a szdmoldsok sordn haszndlhatobb
alakjat megkapjuk, értelmezziik az

L@ =1In| ) o

k=0

fiiggvényt, ahol uy a u mérték k-adik centrdlt momentumat jeloli. Feltéve,
hogy u szimmetrikus az %—re, kapjuk, hogy pok-1 = 0 minden k € N ese-
tén. Az L, fiiggvény segitségével az M, g, kozEp fenti alakja a kovetkezd
forméban is irhato:

LemMA. Legyenek r,s € R és u egy Borel valosziniiségi mérték a [0, 1]
intervallumon. Ekkor

M, . (x,y) = exp (M:W(ln x,Iny)) (x,y €Ry),

ahol My, R2 — R, a kovetkezd modon értelmezett:

u+v  Ly(r(u—v)) - L,(s(u—v))
2 * r—=s ’

Mf,w(u, v) =
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s

Hogy a szdmoldsokat tovabb egyszer(sitsiik, megadjuk az M, , kozép
egy approximécidjit. Ha m € N és u egy Borel valdszintiségi mérték, akkor

legyen
L,u;m(Z) = [Z k ] (zeR),

valamint r, s € R esetén legyen

| N

Mr,s,,u;m(x’ !/) = eXp (M:j,sﬁu;m(ln -x’ ln !/)) (-x’ !J € R+),

ahol My, ., : Rf — R, akovetkez6 médon értelmezett:

" u+v L,u;m(r(u - U)) - Lﬂ;m(s(u - U))
My m(u,0) = > + p— .

Az al4bbi lemma azt éllitja, hogy a magasabbrendi deriviltak szdmoldsa
sordn az M., és L, fiiggvények helyett dolgozhatunk az M, .., €s Ly.p

csonkitott fiiggvényekkel.

LemMA. Legyen u egy Borel valosziniiségi mérték. Ekkor minden olyan
m, i € Ny esetén, melyekre i < m, teljesiil, hogy

(L) = (LD.(0)).

Tovdabbd, minden r,s € R és m,i, j € Ny esetén, melyekre i + j < m, igaz,
hogy
810M, (1, 1) = 805M,. s (1, 1).

A lemma azonnali kdvetkezményeként kapjuk, hogy a szdmitdsainkban

k < m esctén az F derivéltak O-beli értéke helyett hasznal-
M])qk Maby M. ,d,y

hatjuk az F' derivaltak 0-beli értékét.

p g,k Ma,b,/t;nth:,d,v;m

Ko6veTKEZMENY. Legyenek a,b,c,d, p,q € R és u, v,k a [0, 1] interval-
lumon értelmezett Borel valosziniiségi mértékek. Ekkor minden k,m € Ny
esetén, melyekre k < m, teljesiil, hogy

F(k) dv( )_ F(k) (0)

Mp q.K> Ma b.us L p q.K:m > Mu,b,/x;m’Mc,d,v;m

Tehét az invariancia egyenletek megolddsa soran elegendd a fenti felté-
teleket vizsgdlni. Mindegyik egyenlet tekinthetd az

FMp,q,K;k7le,b4,/¢;ksMc,d,v;k (M) =
3k 3 £ ¥ —
Mp,q,K;k(Ma,b,y;k(u’ —u), Mc,d,v;k(u’ _u)) - Mp,q,/(;k(u’ —u) =0
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egyenlet megfelel6 specidlis esetének. Az ismeretlen a, b, ¢, d, p, g paramé-
terek meghatdrozdsidhoz el6szor az

FMp,q,K;k aMa,b,p;k ch,d,v;k

fiiggvény x = 0 pontbeli, elegendéen nagy rendd Taylor egyiitthatdit sza-
moljuk ki, majd meghatdrozzuk azokat a feltételeket, melyek esetén ezen
egylitthatok mindegyike 0. Ez a fiiggvény a kozepek szimmetridja miatt
paros, ezért minden pdratlan rendd egyiitthat6 zérus. Ezért ahhoz, hogy ele-
gendd szamu feltételt kapjunk a hat ismeretlen paraméterre, egészen 12. ren-
dig kell a derivéltakat kiszdmolnunk. A kapott, hat polinomidlis egyenlet-
bdl 4116 egyenletrendszernek kell meghatdroznunk az dsszes kozos gyokét.
A Taylor egyiitthatok faktorizalhatdk, és ezen tényezdk vizsgalatdval kapjuk
az invariancia egyenletek megoldésait. A tényez6k kozott azonban a legtobb
esetben rendre el6fordulnak az ismeretlen paraméterek magas fokd, tobb-
véaltozds polinomjai. Ezen polinomok k6z0s gyokeit rezultdnsok szdmol4sa-
val keressiik. A nagy és hosszadalmas szdmitdsok elvégzéséhez a Maple V
Release 9 komputeralgebra rendszert hasznaltuk.

A 3. Fejezetben a fenti mddszer segitségével megadjuk a Gini illetve
Stolarsky kozepekre vonatkoz6 hat invariancia egyenlet megoldését. A ko-
vetkez§ tétel azt az esetet targyalja, amikor az egyenletben el6fordulé harom
kozép mindegyike Gini kozép, melyeknek paraméterei kiillonbozéek is le-
hetnek.

TETEL. Legyenek a,b,c,d, p,q € R. Ekkor a
Gp.g(Gap(x,9), Gea(x, ) = Gpg(x,y)  (x,y €Ry)

invariancia egyenlet pontosan akkor teljesiil, ha a kovetkezd esetek valame-
lyike fenndll:

(i) a+b =c+d = p+q =0, azaz mindhdrom kozép megegyezik a
geometriai kozéppel;
(ii) {a,b} ={c,d} ={p, q}, azaz a hdrom kozép egyenld;
(iii) {a,b} = {—c,—d} és p+q =0, azaz G, 4 a geometriai kézép és G, =
G_c-d;
(iv) léteznek u,v € R gy, hogy {a,b} = {u + v,v}, {c,d} = {u —v,-v} és
{P.q} = {u,0} (ebben az esetben G, 4 hatvinykozép),
(v) létezik w € R gy, hogy {a,b} = Bw,w}, c+d = 0és {p,q} = {2w, 0}
(ekkor G 4 hatvanykozép és G.q a geometriai kézép);
(vi) létezik w € R 1gy, hogy a+ b =0, {c,d} = 3w, w} és {p, q} = {2w, 0}
(ekkor G4 hatvdnykozép és Gqp, a geometriai kozép).
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A megfelel6 fiiggvények definidldsdhoz és a Taylor egyiitthatok illetve a
rezultdnsok kiszdmoldsdhoz sziikséges Maple parancsokat, valamint a tétel
egy alkalmazasat a 3. Fejezet tartalmazza.

Az al4bbi tételben megadjuk a Stolarsky kdzepekre vonatkoz6 invarian-
cia egyenlet megold4dsat.

TETEL. Legyenek a,b,c,d, p,q € R. Ekkor az
S pa(Sap(x,y),Sca(x,y) =S pg(xy) (X, y €Ry)

invariancia egyenlet pontosan akkor teljesiil, ha a kovetkezd esetek valame-
lyike fenndll:
(i) a+b =c+d = p+q = 0, azaz mindhdrom kozép megegyezik a
geometriai kozéppel;
(ii) {a,b} = {c,d} = {p, q}, azaz a hdrom kozép egyenld;
(iii) {a,b} = {—c,—d} és p+q =0, azaz S , 4, a geometriai kozép és S . =
S _c—d-

pova

A kovetkezd tételekben jellemezziik a vegyes egyenleteket, azaz azokat
az eseteket, amikor a kdzepek Gini és Stolarsky kozepek is lehetnek.

TETEL. Legyenek a,b,c,d, p,q € R. Ekkor a
Gp,q(S a,b(x’ y)9 Gc,d(x7 y)) = Gp,q(x’ U) (x7 y € R-F)

invariancia egyenlet pontosan akkor teljesiil, ha a kovetkezd esetek valame-

lyike fenndll:

(i)a+b =c+d = p+q =0, azaz mindhdrom kozép megegyezik a
geometriai kozéppel;

(ii) létezik w € R dgy, hogy {a, b} = {w, 2w} és {c,d} = {p, q} = {0,w}, azaz
a hdrom kozép egyenld, és megegyeznek a w paraméterii hatvdanykozép-
pel;

(iii) létezik w € R iigy, hogy {a, b} = {w, 2w}, {c,d} = {0,-w} és p+ g =0,
azaz Gp 4 a geometriai kozép és az S ., és G_—q kozepek egyenldk, és
megegyeznek a w paraméterii hatvanykozéppel;

(iv) létezik w € R iigy, hogya+ b = 0, {c,d} = {3w,w} és {p, q} = {2w,0}
(ekkor G, 4 hatvdnykozép és S ., a geometriai kozép);

(v) létezik w € R iigy, hogy {a, b} = {w, 2w}, {c,d} = {—w, 2w} és {p,q} =
{0, —w}, azaz S 4, a w paraméterii hatvdnykézép és G 4 a —w paramé-
terdi hatvdanykozép.

TETEL. Legyenek a,b,c,d, p,q € R. Ekkor a
Gp,q(Sa,b(xe _1/), SC,d(xa y)) = Gp,q(x, y) (x7 Yy € R+)
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invariancia egyenlet pontosan akkor teljesiil, ha a kovetkezd esetke valame-
lyike fenndll:
(i) a+b =c+d = p+q =0, azaz mindhdrom kozép megegyezik a
geometriai kozéppel;

(ii) létezik w € R iigy, hogy {a, b} = {c,d} = {w, 2w} és {p, q} = {0, w}, azaz
a hdrom kozép egyenld, és megegyeznek a w paraméterii hatvdnykozép-
pel;

(iii) {a,b} = {—c,—d} és p+ q = 0, azaz G 4 a geometriai kozép és S . =
S _e—d-

TETEL. Legyenek a,b,c,d, p,q € R. Ekkor az
Spa(Gap(x, ), Gea(x,9)) = Spg(x,y)  (x,y €Ry)

invariancia egyenlet pontosan akkor teljesiil, ha a kovetkezd esetek valame-
lyike fenndll:
(i) a+b =c+d = p+q =0, azaz mindhdrom kozép megegyezik a
geometriai kozéppel;

(ii) létezik w € R 1igy, hogy {a, b} = {c,d} = {0,w} és {p, q} = {w, 2w}, azaz
a hdrom kozép egyenld, és megegyeznek a w paraméterii hatvdnykozép-
pel;

(iii) {a,b} = {—c,—d} és p+q =0, azaz S ;4 a geometriai kézép és G, =
G_c-a;

(iv) létezik w € R gy, hogy {a, b} = {w, 3w}, {p,q} = 2w, 4w} ésc+d =0,
azaz G¢q a geometriai kozép és S , 4 a 2w paraméterii hatvdanykézép;

(v) létezik w € R uigy, hogy {c,d} = {w, 3w}, {p,q} = 2w, 4w} ésa+b =0,
azaz Gup, a geometriai kizép és S , , a 2w paraméterii hatvdnykdzép.

TETEL. Legyenek a,b,c,d, p,q € R. Ekkor az
Sp,q(Ga,h(xa y)7 SC,d(x7 y)) = Sp,q(x’ .’/) (xa Y € R+)

invariancia egyenlet pontosan akkor teljesiil, ha a kovetkezd esetek valame-
lyike fenndll:
(i)a+b =c+d = p+q = 0, azaz mindhdrom kozép megegyezik a
geometriai kozéppel;

(ii) létezik w € R gy, hogy {a, b} = {0,w} és {c,d} = {p, q} = {w, 2w}, azaz
a hdrom kozép egyenld, és megegyeznek a w paraméterii hatvdanykozép-
pel;

(iii) létezik w € R gy, hogy {a, b} = {0, w}, {—c, —d} = {w,2w} és p+q =0,
azaz S p 4 a geometriai kozép és a Guyp, €s S __q kozepek egyenldk és
megegyeznek a w paraméterii hatvanykdozéppel;



(iv) létezik w € R gy, hogy {a, b} = {w, 3w}, {p,q} = 2w, 4w} ésc+d =0,
azaz S cq a geometriai kozép és S , 4 a 2w paraméterii hatvanykdzép;

(v) létezik w € R 1igy, hogy {a, b} = {w, 2w}, {c,d} = {-w, -2w} és {p,q} =
{w, 2w}, azaz S ¢ 4 a —w paraméteri hatvanykozép és S , 4 a w paramé-
terdi hatvdanykozép.
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