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The cluster-cluster aggregation processes of Ising dipolar particles under thermal noise are investigated in
the dilute condition. As the temperature increases, changes in the typical structures of clusters are observed
from chainlike �D�1� to crystalline �D�2� through fractal structures �D�1.45�, where D is the fractal
dimension. By calculating the bending energy of the chainlike structure, it is found that the transition tempera-
ture is associated with the energy gap between the chainlike and crystalline configurations. The aggregation
dynamics changes from being dominated by attraction to diffusion involving changes in the dynamic exponent
z=0.2 to 0.5. In the region of temperature where the fractal clusters grow, different growth rates are observed
between charged and neutral clusters. Using the Smoluchowski equation with a twofold kernel, this hetero-
aggregation process is found to result from two types of dynamics: the diffusive motion of neutral clusters and
the weak attractive motion between charged clusters. The fact that changes in structures and dynamics take
place at the same time suggests that transitions in the structure of clusters involve marked changes in the
dynamics of the aggregation processes.

DOI: 10.1103/PhysRevE.80.021402 PACS number�s�: 61.43.Hv, 45.50.�j, 83.10.Pp

I. INTRODUCTION

The patterns and dynamics of cluster-cluster aggregation
�CCA� have been studied both experimentally and theoreti-
cally �1–7�. The CCA processes of dipolar particle systems
have been attracting particular attention in recent years
�8–11�, because they exhibit various aspects of CCA due to
the long-range and/or anisotropic interaction.

There have been attempts to classify various CCA pro-
cesses using physical values such as the fractal dimension of
the cluster structure or the dynamic exponent of the cluster
evolution �1,2�. In many CCA processes, the time evolution
of the average cluster size s̄�t� is known to exhibit power-law
behavior: s̄�t�� tz �3,4�. In the case of diffusion-limited CCA
�DLCA� where particles only experience short-range interac-
tions and each cluster moves diffusively with a cluster diffu-
sion constant proportional to s� �s: cluster size, the value of
the exponent � is negative for normal diffusion�, the dy-
namic exponent z is analytically described as

z =
1

1 − � + �2 − d�D
, �1�

where d is the spatial dimension and D is the fractal dimen-
sion of the clusters �5�. On the other hand, in the attraction-
limited CCA �ALCA�, where clusters attract each other
through long-range interaction and thermal diffusion is neg-
ligible, the dynamic exponent is

z =
1

1 + �� + 1�/d
�2�

when the attractive force between clusters is proportional to
r−� with intercluster distance r �8�.

CCA in oppositely charged particles such as electrically
charged particles or Ising dipoles �introduced in the follow-
ing paragraph� is more complicated, because of the frustra-
tion of the particle charges �6,7,12�. In such systems, clusters
containing even and odd numbers of particles evolve differ-
ently over time, since the total charge of a even-size cluster
is neutral while an odd-size cluster has a nonzero total
charge. This phenomenon is called hetero aggregation. The
dynamic exponent may also differ from that of monodisperse
systems.

Recently, the CCA process of a binary monolayer of Ising
dipolar particles �IDPs� has been intensively investigated
�12–15�. IDPs are numerical model to simulate some experi-
mental systems of dipolar particles �16,17�, in which the di-
pole orientation of each particle is fixed to upward or down-
ward perpendicular to the plane of motion. The interaction of
particles is isotropic and particles can be regarded as oppo-
sitely charged particles. The structures and dynamics of IDPs
in the zero-temperature environment have been investigated.
Various types of structures are observed for IDP systems, and
the structures are classified on the basis of the relative dipole
moment and relative size of particles �13,14�. Yoshioka et al.
�12� investigated the ALCA dynamics of IDP systems. They
estimated the dynamic exponent to be z�0.2, which is much
smaller than that predicted by Eq. �2�, due to the hetero dy-
namics of IDP. The origin of the value z=0.2 has not yet
been explained theoretically.

In the present article, the structures and dynamics of CCA
of IDPs under small thermal noise is investigated. Structures
observed under the zero-temperature environment are rather
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fragile �14�, i.e., only a small energy barrier must be over-
come to change their shapes. The structures of the clusters,
therefore, may change under finite thermal noise. Such
changes in structures are thought to also involve changes in
their dynamics. Furthermore, investigation of CCA at finite
temperatures is expected to more vividly illustrate the
mechanism of aggregation in this system. The hetero-
aggregation process should be well controlled by tempera-
ture, since the attractive motion is weakened relative to the
diffusive motion as the temperature increases.

The present article is organized as follows: the model and
method are described in Sec. II. The numerical results are
given in Sec. III and the analytical analyses are presented in
Sec. IV. Sections V and VI are devoted to a summary and a
discussion, respectively.

II. MODEL AND METHOD

The system consists of N IDPs in a square box of side L
with a periodic boundary condition. All the particles have
identical mass. Each particle has a spherical elastic volume
of radius R and a pointlike dipole moment at the center. The
dipole moment of each particle is fixed throughout the time
evolution, is perpendicular to the plane of motion and points
either upward or downward. The pair potential between the
ith and the jth particles is

��rij� = �pp�rij� +
�i� j

rij
3 , �3�

with the dipole moments �i and � j of the ith and the jth
particles, respectively, and the interparticle distance rij. The
strength of each dipole moment is either with �1���0� or
�2��−�0�. The relative number of particles with moment �1
to that with moment �2 is unity. The core potential is de-
noted by �pp. To improve the efficiency of the particle dy-
namics simulation, a slight overlap of particles is allowed
and the interaction is assumed to satisfy the Hertzian contact
potential

�pp�rij� = �2

5
kpp�2R − rij�

5
2 �rij � 2R� ,

0 �rij � 2R� ,
	 �4�

with the elasticity constant kpp=25�0
2 / �2R�11/2.

We perform a series of Langevin dynamics simulations.
The difference equation used to update a particle from time t
to t+�t is

v�t + �t� = e−	�tv�t� +
1

m	
�1 − e−	�t�

d�

dr
+ 
vB, �5�

with the particle mass m and the friction coefficient 	, 
vB

��
vx
B,
vy

B� is a random vector sampled from the GAUSSIAN

distribution

exp��
vx
B2

+ 
vy
B2

�/�2�2�� �6�

with the variance

�2 =
2	kBT�t

m
. �7�

We use unity for the values of m and 	. We use the coverage
density �, which is defined as ��N
R2 /L2. The reduced
�dimensionless� temperature T� is given by

T� =
kB

2
�0
2�2R�−3T , �8�

with the binding energy of two particles. Hereafter we use T
as the reduced temperature for the simplicity. In the follow-
ing sections, the unit of time is set to be �4mR5 /�0

2 and the
reduced time t /�4mR5 /�0

2 is denoted as t for simplicity. We
set the cut-off length of the dipolar interaction Rcf depending
on the density to satisfy Rcf� �10 /���R, in order that the
interaction range is much longer than the distance between
neighboring clusters at any stage of time evolution. Most of
the simulations are performed using N=6400 particles.

III. RESULTS

The time evolution is observed for different values of
temperature and density. The initial configuration is set to a
uniform random distribution for each run. We study the
range of temperature from T=0.002 to T=0.04 and density
from �=0.005 to �=0.2. Because we are interested in the
region where particles can aggregate into solid clusters, the
highest temperature considered �T=0.04� is below the solidi-
fication point �Ts=0.059 �18��. We observed the system
within the time range where the sizes of growing clusters are
much smaller than the system size so that the structure and
dynamics are free from the finite-size effect.

Figure 1 shows typical configurations of aggregating clus-
ters at different temperatures. While chainlike structures are
dominant at low temperatures, compact structures appear at
high temperatures. The compact structures contain some mi-
crocrystalline structures with square lattice order. We find
that the size of the crystalline domain �2�2 square, 3�3
square, ¯� tends to increase as the temperature is increased.

To characterize the structures of these clusters, their gy-
ration radii are measured by sampling during the aggregation
process. Here a cluster is defined as follows: two particles

(b)(a)

FIG. 1. �Color online� Typical snapshots of cluster-cluster ag-
gregation in IDP systems at �a� T=0.001 and �b� T=0.02. Small
parts of the system are shown for the clarity, which size is 250R
�250R for each. One can see the chainlike structure for the system
at low temperatures, while the particles form a more compact struc-
ture at high temperatures.
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are defined to be linked if the distance of them is less than
2.2R. A cluster consists of linked particles. The gyration ra-
dius Rg of a cluster with size s is defined as

Rg
2�s� =

1

s�s − 1��i�j

s

rij
2 , �9�

where the number of particles in the cluster is denoted by s.
Figure 2 shows the gyration radius Rg at different tempera-
tures plotted against the cluster size s. The fractal dimension
D is estimated by fitting data with the line denoting the re-
lationship s�Rg

D. The structure of an aggregate markedly
changes between T=0.002 and T=0.006. The fractal dimen-
sion D is approximately 1.0 when T�0.002, reflecting the
chainlike alignment of clusters. Above this temperature, the
profile of Rg exhibits a crossover from D�2.0 at a relatively
small cluster size to D�1.45 at a large cluster size. The
region with D=2.0 corresponds to the existence of square
microcrystalline domains. The crossover size sc from D
=2.0 to D=1.45 at each temperature is estimated. As shown
in Fig. 3, the crossover size tends to diverge as sc�T�
��Tcrystal−T�−3.0 when Tcrystal is set to 0.04. Thus, above T
=0.04, all the clusters are thought to have a normal square
lattice structure. This crossover phenomenon occurring with
changes in the fractal dimension of the cluster is discussed in
the following section.

To investigate the dynamic properties of IDP aggregation,
the time evolution of the average cluster size is observed.
The average cluster size s̄ is defined as

s̄ =
1

N
�

s

s2n�s� , �10�

where n�s� is the number of clusters with size s. Figure 4
shows the time evolution of s̄. For each curve, power-law
growth, s̄�t�� tz with the dynamic exponent z, appears as the

asymptotic behavior. The estimated values of z for different
temperatures and densities are shown in Fig. 5. Although the
dynamic exponent is known to converge to z�0.2 at T=0 in
the dilute limit �→0 �estimated by Yoshioka et al. in �12��,
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FIG. 2. �Color online� The gyration radius Rg versus cluster size
s for the system with �=0.01. As the temperature increases, three
types of structures appear. The dotted lines denote the relationship
s�Rg

D with D=1, D=1.45, and D=2. Decimal logarithms are taken
for both axes.
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FIG. 3. �Color online� The temperature dependence of the cross-
over size sc. The cross over size from D�2.0 to D�1.45 was
estimated. The horizontal axis is Tcrystal−T, with Tcrystal=0.04. Deci-
mal logarithms are taken for both axes. The profile of sc is well
fitted by the dotted line denoting the relationship sc� �Tcrystal

−T�−3.0.
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FIG. 4. �Color online� The time evolution of average cluster size
for �a� �=0.010 and �b� �=0.020. Decimal logarithms are taken for
both axes. The asymptotic behavior of the cluster size obeys a
power law, as fitted by the dotted lines, and the values of the dy-
namic exponent z are obtained from their slope.
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it tends to converge to approximately z=0.45−0.5 at finite
temperatures.

The dynamic exponent z accurately characterized the evo-
lution of the average cluster size, as shown above. In the IDP
system, however, charged and neutral clusters may grow dif-
ferently and such hetero-aggregation dynamics cannot be un-
derstood simply from the analysis of the dynamic exponent.
To determine the behaviors of charged and neutral clusters,
the relative number of neutral to charged clusters,

Nc
rel =

Nc
0

Nc
+ + Nc

− , �11�

is measured, where Nc
++Nc

− and Nc
0 are the numbers of

charged and neutral clusters, respectively. The charge of a
cluster is defined as the total dipole intensity in the cluster.
Clusters are, therefore, classified into the following three
types. For a cluster with size s,

�
i=1

s

�i = ��0 positively charged cluster,

0 neutral cluster,

− �0 negatively charged cluster.
	 �12�

Few clusters with a charge of more than 2�0 are observed in
the simulation, and therefore, a charged cluster consists of an
odd number of particles and a neutral cluster has an even
number of particles.

The time evolution of the relative cluster number is
shown in Fig. 6. Although the exponent z depends very
weakly on T �z�0.5�, the dynamics clearly changes between
T=0.03 and T=0.04. While Nc

rel converges to a constant
value around 0.4 at higher temperatures, it is likely to vanish
as time becomes large at the lower temperatures. In the latter
case �T�0.3�, it appears that the hetero-aggregation effect
remains.

It has already been reported that discrimination between
charged and neutral clusters occurs in hetero aggregation for
relatively small clusters �for example, clusters with fewer

than ten particles� �7,12�; however, in the present study, it is
shown that such discrimination occurs even at a much later
stage of aggregation.

IV. ANALYSIS

A. Structures

The structures of IDP clusters are illustrated in Fig. 7.
Although chainlike structures �D�1.0� grow at very low
temperatures, once microcrystalline structures with a square
lattice appear at the temperature of around T=0.002–0.006,
each cluster begins to form a fractal structure with D
�1.45.

To understand how thermal noise destroys a chainlike
cluster and causes the formation of a more compact configu-
ration, the analysis by Varga and Kun �14� is very useful.
According to their analysis, when a chain with N particles is
bent with bending angle �, its energy is
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FIG. 5. �Color online� The dynamic exponent z for each tem-
perature and density. The dotted line represents the value of z at
T=0 in �12�. The value of z at finite temperatures converges to the
value of about 0.45 to 0.5 in the dilute limit.
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FIG. 6. �Color online� The time evolution of the relative cluster
number Nc

rel for �=0.010. Decimal logarithms are taken for both
axes. The curves at T�0.03 tend to vanish, while that at T=0.04
converges to a constant value.
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FIG. 7. �Color online� A schematic diagram of the fractal struc-
tures of IDP corresponding to Fig. 2. Chainlike clusters �D=1.0�
appear at low temperatures, while a crossover phenomenon from
D=2 to D=1.45 is observed at higher temperatures.
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Ech_N��� =
�0

2 sin3��/2N�
�2R�3 
�

k=1

N−1

�− 1�k N − k

sin3�k�/2N�� .

�13�

Figure 8 shows the curve of Ech_4���. The straight chain
alignment ��=0� is metastable and the ground-state configu-
ration is tetragonal ��=2
�. Between them, there is an en-
ergy barrier to the bending of the straight chain. The value of
the energy barrier is �E=0.00587. Thus, straight chains be-
gin to fold by thermal motion at a temperature higher than
0.006. This is consistent with the simulation result.

B. Dynamic exponent

The dynamic exponent z estimated in the simulation was
z=0.45−0.5 in the dilute limit. The theoretical value of the
dynamic exponent for DLCA is compared with our result.
Under Langevin noise, the amplitude of the diffusive motion
of a cluster with size s can be estimated as

��
i=1

s

vi

s
�

2

�
1

s2�
i=1

s

vi
2 �

skBT

ms2 � s−1; �14�

thus, �=−1 is substituted into Eq. �1�. Then z=0.5 is ob-
tained, which agrees well with our result. Thus the CCA
dynamics at finite temperatures �0.0002�T� can be assumed
to be that of normal DLCA from the viewpoint of the dy-
namic exponent.

C. Smoluchowski equation analysis

The characteristics of hetero-aggregation dynamics is dis-
cussed here, focusing on the behavior of Nc

rel. The curves for
T�0.04 in Fig. 6 have a similar profile and they are likely to
be fitted by a single curve upon suitably rescaling the hori-
zontal axis. Taking into consideration the fact that the rate of
growth of clusters at different temperatures is almost identi-
cal �s̄� tz� and that the prefactor of tz depends on the tem-
perature �see Fig. 4�, Nc

rel is replotted against s̄ instead of t in

Fig. 9. This time, the profiles of Nc
rel�s̄� for T�0.04 almost

lie on a single curve.
To theoretically investigate this behavior of Nc

rel, a rate
equation analysis is performed. Puertas et al. �7� introduced a
set of equations generalizing the Smoluchowski equation to
apply it to hetero aggregation; its form is

d

dt
ns

+ = �
i+j=s

Kij
0 ni

+nj
0 − ns

+�
k=1

�

�Ksk
1 nk

− + Ksk
0 nk

0�

d

dt
ns

− = �
i+j=s

Kij
0 ni

−nj
0 − ns

−�
k=1

�

�Ksk
1 nk

+ + Ksk
0 nk

0�

d

dt
ns

0 = �
i+j=s

�1

2
Kij

0 ni
0nj

0 + Kij
1 ni

+nj
−� − ns

0�
k=1

�

Ksk
0 �nk

+ + nk
0 + nk

−� ,

�15�

where ni
+, ni

−, and ni
0 are the densities of positive, negative,

and neutral clusters with size i, respectively. The kernels Kij
0

and Kij
1 indicate the collision rates between clusters of size i

and size j. Equation �15� describes the following situation:
�i� a pair of oppositely charged clusters of sizes i and j
merges through K1 to form a neutral cluster with of i+ j, �ii�
pairs of charged-neutral and neutral-neutral clusters merge
through K0 to form larger charged and neutral clusters, re-
spectively, �iii� clusters with like charges do not merge with
each other.

Puertas et al. �7� employed kernels with identical expo-
nents of the form

Kij
0 = k0�i + j��,

Kij
2 = k1�i + j��. �16�

By changing the ratio between the constant prefactors k0 and
k1, the segregation of dynamics between relatively small odd
and even clusters is reproduced. However, we found that the
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FIG. 8. �Color online� The energy of a four-particle chain as a
function of bending angle �. There is a small energy barrier to the
formation of the tetragonal configuration.
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FIG. 9. �Color online� The time evolution of the relative number
of neutral to charged clusters Nc

rel against the average cluster size s̄.
Plots represent the simulation result and curves represent analytical
values of the hetero-DLCA Smoluchowski equation for ��0 ,�1�=
�−1,−1� and ��0 ,�1�= �−1,−1.44�.
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segregating phenomenon for a long time cannot be repre-
sented with those kernels and that Nc

rel monotonically con-
verge into a constant value.

Since it is known that the dynamics of normal DLCA is
well described by the original Smoluchowski equation using
a single kernel �19�

Kij = �i� + j�� , �17�

we employ kernels with the form

Kij
0 = �i�0 + j�0� ,

Kij
1 = �i�1 + j�1� . �18�

The exponents �0 and �1 are used as control parameters.
The time evolution of Eq. �15� is calculated numerically

from the initial conditions

n1
+ = n1

− = 0.5,

ni
+ = ni

− = 0 �i � 1� ,

ni
0 = 0 �for all i� . �19�

First, we take the values

�0 = �1 = − 1, �20�

since the exponent for the normal DLCA is �=−1. The time
evolution of Nc

rel for the values given in Eq. �20� is shown in
Fig. 9 and is indicated as �1=−1.0. The curve agrees well
with the simulation result at T=0.04. Therefore, the CCA
dynamics at temperatures higher than 0.04 can be regarded
as that of normal DLCA.

Next, the situation for 0.006�T�0.04 is considered. It is
assumed that, in this temperature range, neutral clusters
move purely by thermal diffusion, and that weak attractive
interaction remains only between charged-charged clusters.
To describe this situation, the value of �0 is fixed to −1 and
�1 is varied as the fitting parameter. As shown in Fig. 9, the
analytical curve closely reproduces the simulation result
when the exponents are set to

�0 = − 1, �1 = − 1.44. �21�

Thus, it can be concluded that the hetero-aggregation dynam-
ics in the range of 0.006�T�0.03 is caused by the diffusive
motion of each cluster and the weak attraction between op-
positely charged cluster pairs.

V. SUMMARY

The cluster-cluster aggregation processes of Ising dipolar
particles under thermal noise were investigated numerically
and theoretically. As the temperature increases, the typical
cluster structure changes from chainlike configurations �D
�1� to fractal clusters �D�1.45� consisting of small crys-
talline domains �with D�2.0� at approximately T=0.006.
The crossover size from D=2.0 to D=1.45 increases as the
temperature increases and diverges at T=0.04. Therefore, all
clusters form the crystalline structure at a temperature higher
than T=0.04. The transition from chains to fractal clusters
can be well explained theoretically by considering the energy
barrier to a chain being bent into a tetragonal configuration.
Once the thermal motion overcomes the energy barrier, mi-
crocrystalline clusters are constructed at the smallest scale,
then these clusters grow by merging with each other to form
fractal structures.

The dynamic exponent for the average cluster size z is
estimated to be approximately 0.5 at finite temperatures,
which differs from the value of about 0.2 at T=0. The value
of 0.5 is identical with the theoretical value for normal
DLCA. Although it was not shown in the previous section,
we also observed another dynamic exponent z�, which cor-
responds to the time evolution of the total cluster number Nc

as Nc�t�� t−z�. The value of z� was also estimated to be ap-
proximately 0.5 at finite temperatures.

Within the temperature range where z=0.5 is observed,
another change occurs in the relative dynamics between
charged and neutral clusters. While the ratio of neutral clus-
ters to charged clusters Nc

rel converge into a constant value at
0.04�T, it tends to vanish at lower temperatures as the long-
time behavior. This vanishing behavior of Nc

rel�t� was con-
vincingly explained on the basis of mean field analysis. Us-
ing the Smoluchowski eq. with a twofold kernel, the curve of
Nc

rel is closely reproduced by setting the kernel for charged
cluster pairs to have �1=−1.44, which suggests that the mo-
tion of clusters is nearly diffusive but there is weak attraction
among charged clusters. On the other hand, the time evolu-
tion of Nc

rel at 0.04�T is closely reproduced by the Smolu-
chowski equation using the kernels for normal diffusion
��0=�1=−1�.

The structures and dynamics of the aggregation process
are summarized in the Table I. As it shows, the transitions of
structures and changes in aggregation dynamics occur at ap-
proximately the same time.

TABLE I. A summary of the structures and dynamics of the IDP aggregation process.

Structures Dynamic exponent Hetero-aggregation dynamics

T�0.006 Straight chains z�0.2 Hetero-ALCA

�D�1.0�
0.006�T�0.04 Crossover from D�2.0 Diffusive aggregation with weak attraction

to D�1.45. z�0.5 between charged-charged cluster pairs

The crossover size increases with T. �Smoluchowski eq.: �0=−1.0, �1=−1.45�
0.04�T Normal square lattice �D�2.0� z�0.5 Normal DLCA

��0=�1=−1.0�

SUZUKI, KUN, AND ITO PHYSICAL REVIEW E 80, 021402 �2009�

021402-6



VI. DISCUSSION

As mentioned above, the changes in the cluster structure
involve a change in aggregation dynamics. This finding is to
be expected, because the intensity of attraction between
charged clusters depends on the cluster shape. For example,
while the attractive field near each end of a chain is strong
and its intensity is almost the same as that of an isolated �0
or −�1 particle, the attraction of a cluster with a more com-
pact structure becomes relatively weak because the charge of
a particle is shielded by the opposite charges of neighboring
particles. In particular, the charge in a tetragonal crystalline
cluster is almost negligible, and such a cluster moves purely
as a result of the thermal noise, as our results show.

As described in the previous section, the long-time evo-
lution of the relative cluster number Nc

rel cannot be explained
by the kernels in Eq. �16� which use identical exponents for
charged and neutral clusters, but it is well explained by the
kernels with different exponents given in Eq. �18�. This dif-
ference in exponents corresponds to the different motion of
charged and neutral clusters. The fact that the exponent of
the kernel for charged-charged cluster pairs differs from the
value for normal diffusion ��1�−1� is clearly due to the
attractive force between these clusters. The origin of the
value �1=−1.44 will be clarified in further studies.

It is also worth noting that the dynamic exponent z has the
same value 0.5 even if �1 changes from −1 to −1.44. Addi-
tionally, �0 is fixed at −1 for both cases. This suggests that
only the exponent �0 affects the rate of growth of the average
cluster size regardless of �1.

The behavior of Nc
rel in the temperature region T�0.002

was not discussed in previous sections. We observed in the
simulation that Nc

rel�t� also decreases as with time; however,
the profile is slightly different from that in 0.006�T�0.04.
Although this behavior was not reproduced using Eq. �15�
with the set of kernels in Eq. �18�, it is expected to be un-
derstood by analysis using the Smoluchowski equation with
a different set of kernels. The reason why the dynamic expo-
nent z in the low-temperature region �and at T=0� is 0.2, is
also not yet revealed. At such a low temperature, there may
even be attraction between a neutral-neutral cluster pair. Fur-
ther investigation is needed to understand the hetero-ALCA
dynamics at extremely low temperatures. Investigation of the
dynamics at extremely low temperatures is important since it
corresponds to the environment of experiments in �16,7�, in
which the motion of dipolar particles is highly dissipative
and thermal noise is negligible.
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