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Abstract: Interest in the rapid growth of CO2 emissions, together with the economic performance of 
various countries continues to attract researchers and practitioners’ interest. Alongside, concerns 
regarding global warming and its effects on human and animal health, and thus sustainable 
development, escalate. The present study employs the nonlinear autoregressive distributed lag to 
identify short- and long-run dynamics and the asymmetric nexus between absorptive capacity, and 
CO2 emissions intensity from 1970 to 2018 in the case of the USA and China. In the short-run, an 
increase in technology transfer based on human resources increases CO2 emissions in China. 
Contrarily, the decrease in technology transfer based on infrastructure has an emissions-decreasing 
effect in China. In the long-run, the effects of an increase in absorptive capacity based on innovation 
and infrastructure developments provide positive and significant impetus to mitigate the carbon 
intensity in China and the USA. The results are robust using GHG intensity. Thus, policymakers 
and researchers have to consider the pivotal role of absorptive capacity in facilitating sustainable 
development. 

Keywords: absorptive capacity; carbon intensity; sustainable economic growth; innovation; 
infrastructure developments  

 

1. Background  

The economic growth performances of countries have improved substantially in recent decades. 
This remarkable improvement comes at an immense cost; rapid climate change and environmental 
degradation [1–3]. In recent years, the link between economic growth and environmental pollution 
has continued to be one of the controversial topics in the stream of environment and sustainable 
economics. There is a comprehensive consensus among researchers that the problems of climate 
change and environmental problems have been caused by human activities [4]. Currently, global 
warming and its fallout are among severe threats to sustainable development and life itself [5]. 

Parallel to the quest for economic growth, the mechanisms of the global carbon equilibrium have 
altered [6]. With this, global warming is at the top of most burning environmental issues across the 
world, and the associated effects of carbon dioxide (CO2) emissions are being closely scrutinized [7]. 



Energies 2020, 13, 407 2 of 19 

 

The greenhouse gas emissions produced by industry and power plants are the cause of climate 
change [8]. 

Researchers and stakeholders in different disciplines have recommended a plethora of emission 
reduction strategies to stymie the ensuing adverse impacts climate change brings about. The global 
environmental summit at Cancun, which brought a global consensus to reduce greenhouse gas 
(GHG) emissions is quintessential. The main target of the summit was to maintain a global average 
temperature increase to below 2 °C [9,10].  

Similarly, the Paris environmental summit negotiated with 196 participant bodies to reduce 
global climate change to a level below 2 °C vis-à-vis pre-industrial levels. The agreement calls for zero 
net human-induced GHG emissions to be realized during the second half of the 21st century. The 
Paris Agreement was also focused on transforming the current economic system expeditiously. 
Specifically, it was agreed upon to mitigate the rising global temperature and make the planet fit for 
humans, flora, and fauna. This plan also envisions retooling entirely the world’s energy production 
systems [11].  

It is, therefore, necessary to hasten innovation and include them quickly into policies focused on 
reducing CO2 emissions [12]. Currently, the relationship between the level of economic development 
and the intensity of CO2 emissions (measured by CO2 emissions/gross domestic product) has 
changed. According to the findings by Roberts and Grimes [13], the linear relationship between CO2 
intensity and economic growth in 1692 has changed to be a curvilinear one now. In addition, they 
projected the curvilinear relationship to deepen with continued economic growth. Similarly, 
Antweiler et al. [14] identified economic growth geared by capital intensity to have a tendency to 
increase environmental pollution. 

Regarding the actions of the polluting country, a study made by Fang et al. [15] identified 
China’s commitment to decrease the carbon intensity between 2005 and 2020 [16,17]; however, during 
the period 2002 to 2009 China experienced a 3% surge in carbon intensity, even though the trend 
varied significantly in its 30 provinces. The decomposition analysis of Guan et al. [17] finds that the 
sectoral gains in efficiency were offset by the provinces by the carbon-intensive economic structure 
of the country and by the increase in investments favoring sectors with high carbon intensity. Such 
drivers have made China exceed the USA in CO2 emissions nearly a decade ago. Currently, China 
leads the world in CO2 emissions and energy consumption, consequently facing international 
pressure to control its increasing CO2 emissions [18,19].  

Regarding the USA, a study examined the relationship between energy consumption and carbon 
intensity [20]. Results show that there was no Granger-causality between income and carbon 
emissions in the long term. Contrarily, the energy use of the country is found in Granger-causing 
carbon emissions. Hence, income growth may not by itself be the driver of environmental 
complications in these particular cases [20].  

As to the practicality of the environmental Kuznets curve (EKC), i.e., whether CO2 emission rises 
and then falls as countries attain higher levels of economic development, it has serious implications 
for policymaking and practice. If the evidence supports the “Kuznets curve”, it may suggest that 
current developments are capable and are environmentally benign in the long term [21–24]. The 
challenge will then be to examine how best to fast-track those strategies and processes so that all 
economies could realize economic production with environmental sustainability. Thus, technology 
transfer (absorptive capacity) and innovation have a double-edged advantage of enhancing economic 
growth and transforming the production system to environmental sustainability.  

In some developing countries, the internationalization of capital, particularly foreign direct 
investment [25], has improved radically in the past two decades. Consequently, it has become an 
important substitute source in the development process by providing innovation and ways to 
enhance absorptive capacity [26,27]. Studies ascribe many reasons for the importance of FDI inflows, 
including employment creation, technology transfer, and enhanced competitiveness [28]. With FDI, 
there is a swift technological transfer, particularly if the host country has the capacity to learn and 
adopt foreign knowledge, skills, and innovation (i.e., absorptive capacity).  



Energies 2020, 13, 407 3 of 19 

 

Absorptive capacity (AC) has been defined as the receiving country’s ability to access, learn, 
integrate, and implement innovative technologies from foreign sources with domestic capacities [29]. 
Thus, the interplay between FDI, innovation, and absorptive capacity is determinant for 
environmental sustainability and the future convergence of countries [30,31]. However, some studies 
are skeptical about whether technology and innovation can mitigate CO2 emissions and improve 
energy efficiency, arguing that it might not deliver the ultimate solution to sustainable economic 
growth due to the rebound effect, in which the system of innovations and the processes thereof may 
not provide the expected benign environmental outcomes [12,32]. Nevertheless, recent literature 
identifies technological progress and innovation methods reducing environmental degradation [33]. 
Similarly, Agustin et al. [32] confirmed that the environmental sustainability process benefits 
immensely by energy-related innovation processes and renewable energy sources.  

Several other studies also propose different mechanisms that affect economic growth and the 
wellbeing of the environment. Regarding this, technology and innovation can be critical for emissions 
reduction in the face of increasing income and economic growth [34]. On the one hand, increased 
levels of economic activity may lead to increased energy ingestion into the system that could increase 
emissions. On the other hand, systems or processes of innovation may decrease energy demands and 
consumption, thereby reducing overall pollution [35]. Consequently, economic growth buoyed by 
green technological advancement reduces environmental pollution. The endogenous growth theory 
indeed does predict such ameliorating effects, giving credence to improving production processes by 
increasing productive capacities or by substituting polluting inputs with environmentally friendly 
ones [36]. However, the model is based on a culture dedicated to the environment and a society that 
could invest more resources on environmental protection as its income increases.  

Parallel to this, some studies have pointed out that innovation spillover may come from the 
collaboration between technologies intended at mitigating environmental effect, and other 
technologies that may be part of the combined dynamics between economic activities (motivated by 
yield expansions from innovation) and environmental efficiency (processes naturally measured in 
terms of the pollutant emission intensity of the value-added) [34,37]. Another study also points out 
the improvement in the absorptive capacity of enterprises with capacity building to enhance 
productivity through innovation and learning parallel with environmental efficiency [38]. The way 
innovation influences environmental pollution could, in fact, reflect the interaction that may exist 
between innovative activities, economies’ absorptive capacity, and the spatial dispersion of 
production efficiency, which has appeared as a key issue in regional and national innovation studies.  

The efficiency of innovation in reducing pollution depends on the integration between different 
kinds of innovations and absorptive capacities within a particular economic and sector framework 
[32,38]. Therefore, the false dichotomy between economic growth and the environment can be readily 
resolved by the collective effects of green technological innovations in the near future [39]. The share 
of annual global emissions, both in absolute and relative terms, produced by the USA has decreased 
between 1997 and 2015, as has its GDP during the same timeframe, whereas China’s relative and 
absolute share of emissions and GDP have increased by leaps and bounds. Owing to these dramatic 
changes, the USA and China have pledged to national climate action with a joint declaration in 2014 
[40].  

The Sino-U.S. Joint Statement on the Climate Change Declaration saw the Chinese government 
commit to a peak in CO2 emissions by 2030 and to reduce its CO2 emissions by 60%–65%. Above all, 
these show the synchronization and the significant attention for economic growth and environmental 
management in the countries. Therefore, vivid appraisal of the countries’ innovation and absorptive 
capacity improvements effect on CO2 intensity in China and the USA is a matter of serious concern. 
In addition to this, not only due to the economic power but also due to the political negotiating and 
bargaining power of the economies on the international environmental issues, the result of this study 
may provide paramount significance to unlock the future trajectories related to the issue.  

Therefore, this study hypothesizes that with increasing absorptive capacity and innovation, CO2 
emissions in China and the USA may decrease without necessarily affecting economic growth. As 
per the theory of endogenous economic growth, R&D sectors create and enhance technological 
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innovation with prevailing human capital and knowledge endowments [41]. In relation to the theme 
of the current study, a question that arises is whether expenditures on R&D plays a central role in 
reducing emissions while producing less polluting economic development in the future. In recent 
years, there is a clear understanding that green or eco-friendly innovations and technological 
transformations will take us closer to sustainable economic development. Hence, there is a growing 
interest in green innovation and its promotion and implementation in most economies of the world 
[35,42–45].  

Absorptive capacity act as a moderator between the internal social network and innovation [46]. 
Empirical studies have used the total aggregate level of R&D expenditure as a proxy for innovation 
due to various reasons. First, because of the availability of continuous data; second, they adopt and 
use an economy-wide modeling approach and has the objective of trying to find outcomes that can 
assist policy recommendations; and third, almost all these studies analyze the pollution and energy 
sectors using R&D expenditure as a proxy for innovation [35]. The current study follows a similar 
methodological approach. Consequently, absorptive capacity and innovation might facilitate the 
evolution of low-carbon economies and provide clean and affordable energy needed for sustainable 
economic development.  

The main objective of the current study is therefore to show the long-run relationship between 
R&D and absorptive capacity with the CO2 emission intensity of various countries. Thus, the study 
attempts to examine the ameliorating effects of the absorptive capacities on CO2 emissions intensity 
in two of the largest emitting countries—USA and China, during the years 1970–2018 using a 
nonlinear autoregressive distributed lag (NARDL) model. The findings of the paper offer benefits to 
policymakers in formulating policies to facilitate long-run sustainable development. 

2. Economic Implications of Carbon Intensity 

Beginning in the mid-18th to early 19th century, the ever-increasing consumption of fossil fuels 
has brought about an upsurge in CO2 emissions causing increased global temperatures and what we 
know are the negative effects of global warming. Climate change, especially increasing temperature, 
has had wide-ranging impacts on the environment, humans, agriculture, and animals. Extreme 
weather events (like over flooding, extreme droughts, and seasonal migrations), sea-level increase, 
defects in crop growth, and interrupted hydrological patterns have also increased in frequency and 
intensity [47]. Alongside this, most countries are engaged in increased unsustainable economic 
activities to lift their citizens out of poverty and/or attain a higher standard of living. Energy 
consumption and resource transformation continue unabated, exacerbating the surge in GHGs [48]. 

Retrospectively, what explains the differences between nations in the levels of CO2 emissions 
when their carbon-based economies grow at similar rates? This controversial reality is partially 
elucidated by the variations in the intensity of CO2 emission by different nations. For instance, if we 
begin in 1750 and calculate the amount of CO2 each country has produced to date, the UK comes out 
at the top of the list of the industrial-scale emitter of CO2. Following this, the rest of the European 
economies and North America produce industrial-scale CO2. Other regions, such as Latin America, 
Asia, and Africa, started to contribute to the total CO2 emissions more recently, largely towards the 
end of the 20th century. When it comes to the total accumulation of CO2, the US and Europe dominate; 
however, China’s economic growth and in emissions towards the end of the 20th-century place it 
second in the cumulative polluter table but still contributing less than 50% of the US cumulative [47] 
(see Figures 1 and 2). 

Therefore, in this study CO2 intensity is measured by the quantity of CO2 released per unit of 
GDP (kgCO2 per total GDP 2010 constant $) and, according to Ritchie and Roser [47], this is affected 
by energy efficiency, which is directly related to the levels of technology and technological transfer, 
infrastructure, and carbon efficiency of a country. Studies define energy efficiency as the quantity of 
energy required for one unit of GDP. This relationship is generally influenced by technological 
efficiency and the level of productivity. It is also associated with the type of economic sector and 
activity the underpin the output. Thus, if a nation transforms from primarily manufacturing to 
service-oriented, it ends up using lower amounts of energy per unit of GDP generated. 
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According to Dones, “carbon efficiency is the quantity of CO2 emitted per unit energy (grams of 
CO2 emitted per kilowatt-hour)” [49]. Carbon efficiency has mainly associated the type of energy the 
country uses. An economy that utilizes coal energy will release more CO2 per unit of energy than one 
that relies more on renewable energy. Thus, countries that will increase their use of renewable energy 
will see gains in efficiency as the quantity of CO2 produced per unit of energy declines [47,50]. 

Prior to this volatility being addressed, it is vital that two variables that seemingly are separate 
but are often related, are given a closer look; these being CO2 emissions and GDP. Carbon intensity 
tells us the relative variation between CO2 and GDP. If a country's GDP temporarily falls, it is possible 
to see an increase in intensity, even if CO2 emissions remain the same. This is because GDP has 
dropped relative to CO2 [51]. 

Figures 1 and 2 illustrate the comparative glimpse of CO2 and GHG emission intensity for China 
and the USA. Historically, CO2 intensity for the USA has been much higher than China, the latter 
overtaking the former only in the 21st century. It is also worth noting that there has been an 
exponential increase in China’s CO2 intensity in the timeframe displayed herein. This escalation can 
be directly associated with increased carbon-based economic activities and the subsequent 
modification of energy utilization, a move to coal departing from old-style biomass. If one takes a 
long-run perspective, the increasing trend of CO2 intensity in China has been consistent with other 
countries. However, in relative terms, the USA CO2 intensity trend shows a very minimal increase 
[52]. The GHG intensity trend is very similar to the CO2 intensity trend for both countries.  

 
Figure 1. The CO2 emission intensity of China and the USA. 
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Figure 2. The GHG emission intensity of China and the USA. 

3. Materials and Methods  

Annual data were obtained from WDI, WGI, and IMF for the two highest CO2 emitting 
countries—China and the USA—from 1970 to 2018. In Table 1 a summary of the variables is presented 
along with sources of raw data. Before running the econometrics estimation, the data were 
transformed into natural logarithm forms to allow elasticity.  

Table 1. Variables of the study. 

Variables Abbreviation Descriptions Data 
Sources 

Measurement 
Reference 

Carbon Emissions CO2 CO2 emissions (kt) WDI 
[7,53] Green House 

Gases 
GHG 

Total greenhouse gas emissions (kt of 
CO2 equivalent) 

WDI 

Absorptive 
capacity 

AC1 FDI1*R&D2 WDI 

[54,55] AC2 FDI*HU.C3 WDI 

AC3 FDI*INFR4 WDI 
Gross Fixed 

Capital 
Formations 

GFC 
Gross fixed capital formation (% of 

GDP) 
WDI [56] 

Financial 
Development 

FD 
Composite of Efficiency, Access & 

Financial depth 
IMF [57] 

Term of Trade TOT Term of Trade IMF [56] 

Institutional 
Quality 

IQ 
The average value of the rule of law, 
government effectiveness, regulatory 

quality, corruption 
WGI [57,58] 

GDP per capita GDP_PC GDP per capita (constant 2010 US$) WDI [56,57,59,60] 
1 Foreign direct investment measured by net inflow to the economies. 2 Research and development 
expenditure measured in ratio of total GDP. 3 Human capital measured by school enrollment; a 
tertiary ratio of the gross enrollment. 4 Gross fixed capital formation ratio of the total GDP. *symbol 
indicates the interaction of respective variables. 

Following Tang [54,61,62] and the intuitive definition of absorptive capacity, it is proxied by the 
interaction of FDI with the determinants human capital measured by the tertiary education ratio of 
the gross school enrollment; tertiary ratio of the gross (HU.C), research, and development 
expenditure; ratio of total GDP (R&D) and gross fixed capital formation; and the ratio of total GDP 
(INFR). Despite the substantial pieces of evidence on the importance of absorptive capacity based on 
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R&D expenditure, human resources, and infrastructure development, the idea has received scant 
empirical considerations [45]. The capacity to innovate and adapt units that are efficient in reducing 
emission is the focus here, and such capacities emanate in a variety of ways.  

Regarding this, current attempts to understand, examine, and use knowledge are directly related 
to the existence and extent of prevailing knowledge. At the very minimum, the prevailing knowledge 
and existing human, infrastructure, and technical capacities assure the capability to factor in the 
worth of new information, systems, and technologies, and its adoption and application to different 
uses. Collectively these abilities of the new knowledge are referred to as "absorptive capacity [63]". 
Indeed, research has demonstrated that firms engaged in R&D are better off vis-à-vis those obtaining 
information from external sources. One can surmise from this that investments in R&D are a 
precursor to absorptive capacity.  

Other work also points to the growth of absorptive capacity to be a result of a firm's 
manufacturing operations. In [63] it was also noted that a firm can quickly and simply capture and 
gain from new information related to a product through direct involvement in manufacturing. 
Similarly, firms improve the quality of human capital by providing technical training to their 
employees so as to enhance their absorptive capacity. In support of this, a study on absorptive 
capacity in 69 industrialized countries found that there is higher productivity of inputs when the host 
country has a minimum threshold of absorptive capacity based on the stock of human capital [64].  

According to Tang [54] a country’s capacity to realize benefits from external sources is proxied 
by the government policy, human resource quality, R&D, and infrastructures. Corresponding to this, 
studies associate increasing absorptive capacities with the transfer of innovation and technology that 
can enhance productivity and diminish harmful pollution through replacing outdated productive 
factors and increasing the efficiency as well as alternatives of production systems. The other variables 
used are supported by empirical literature; however, the CO2 intensity variable requires further 
explanations.  

4. Empirical Approach  

The asymmetry between economy-wide variables and incidences has long been documented in 
the economic literature. Keynes [65], in his popular remarks, noted: “The substitution of a downward 
for an upward tendency often takes place suddenly and violently”. Asymmetry refers to both positive 
and negative changes in the variables. Schorderet [66] used this basic notion to define and structure 
the nonlinearity concept. Nonlinearity emerged as a phenomenal extension to linear analysis, 
allowing relationships to be established between variables “hidden” in the linear version. This 
indicates that changes in explanatory variables reflect the different effects of independent variables. 

This study assesses the EKC hypothesis and the implications of the asymmetric impacts of 
GDP_PC absorptive capacity on CO2 emissions in the USA and China using the nonlinear 
autoregressive distributed lag (NARDL) model which is prominent in recent studies [67,68]. 
Considering the factors’ nature and economic growth, and global policies towards the CO2 
emissions–environment policy nexus, the study adopts a nonlinear framework. Therefore, the 
NARDL approach of Shin et al. [69], used to assess the dynamic association between absorptive 
capacity, and per capita, CO2 emissions and GDP in the USA and China is followed herein. The 
NARDL model provides superior advantages to eliminate serial correlation and endogeneity effects 
and is competently able to identify the short- and long-term relationships of the nexus between the 
factors [59,70,71]; thus, one can adopt the NARDL, since it is the non-linear extension of the linear 
ARDL model [72]. 

Therefore, in this study, we examine the hypothesis that there is an improvement in 
environmental sustainability with improvements in absorptive capacity (technology transfer and 
adoptions) and that a country’s intensity of emissions is expected to be appropriately reduced to 
enhance environmental quality as the economy grows in the model. Thus, following Griffith et al. 
[45], the following model is used in this study:  𝐶𝑂 =  𝛽 + 𝛽 𝐺𝐷𝑃_𝑃𝐶 + 𝛽 𝐴𝐶 + 𝛽 𝐼𝑄 + 𝛽 𝐺𝐹𝐶 + 𝛽 𝐹𝐷 + 𝛽 𝑇𝑂𝑇 + 𝐷 + 𝜀  (1) 
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where, 𝛽  explains the fixed country effects, 𝐶O  is the logarithm of the level of per capita 𝐶𝑂  emissions, GDP_PC is GDP per capita, and 𝜀  is the disturbance term. Factors are expressed in 
natural logarithm forms and in the long-run, the model assumes the elasticity of the explanatory 
variables represented. 

The relationship between the variables presented in Equation (1) follows continuous 
developments to reach long-term equilibrium. Thus, representing Equation (1) under the ARDL 
representation it becomes the following: 

∆𝐶𝑜 = 𝛼 + 𝛼 ∆𝐶𝑜 + 𝛼 𝐺𝐷𝑃 + 𝛼 𝐼𝑄
+ 𝛼 𝐺𝐹𝐶 + 𝛼 𝐹𝐷 + 𝛼 + 𝐴𝐶
+ 𝛼 + 𝑇𝑂𝑇 + 𝛼 𝐶𝑜 + 𝛼 𝐺𝐷𝑃𝑃 + 𝛼 𝐴𝐶+ 𝛼 𝐼𝑄 + 𝛼 𝐺𝐶𝐹 + 𝛼 𝐹𝐷 + 𝛼 𝑇𝑂𝑇 + 𝐷 + 𝜀  

(2) 

where Δ indicates the first difference, 𝛼  is a constant of the equation, 𝛼 , (i =1, 2, 3, 4, 5) are the short-
run coefficients, 𝛼  (j = 5 ,6, 7,8, 9, 10, 11,12) represents the long-run coefficients, and 𝜀  represents 
an error term. The ARDL procedure, as described by [70], allows us to identify the long-term nexus 
between the factors. A joint test of significance of the coefficients in a level or a lagged period [73]. To 
decide the appropriate lag order and identify the long-term association of the series (q, r, s, t, u, and 
v), the study chooses the lag order selection test based on the Schwarz information criterion (SIC) and 
the Akaike information criterion (AIC) (see Appendix A Table A4). 

Furthermore, to deal with nonlinear effects and accommodate the asymmetric effects, the study 
deploys the NARDL model developed by [69]. Unlike the linear ARDL model, the NARDL model 
lends itself to identify both the short- and long-term effects of the factors. Considering such relations 
between the variables represented in the ARDL model specification in Equation (2), the study 
proceeds to specify the NARDL model based on the purpose of the study, as follows:  

∆𝐶𝑜 = 𝛼 + 𝛼 ∆𝐶𝑜 + 𝛼 𝐺𝐷𝑃_𝑃𝐶 + 𝛼 𝐼𝑄
+ 𝛼 𝑇𝑂𝑇 + 𝛼 𝐹𝐷 + 𝛼 𝐹𝐷
+ 𝛼 𝐴𝐶 + 𝛼 𝐴𝐶 + 𝛼 𝐶𝑜 + 𝛼 𝐺𝐷𝑃_𝑃𝐶
+ 𝛼 𝐼𝑄 + 𝛼 𝑇𝑂𝑇 + 𝛼 𝐹𝐷 + 𝛼 + 𝐴𝐶
+ 𝛼 + 𝐴𝐶 + 𝐷 + 𝜀 . 

(3) 

Based on the nonlinear model [69] that decomposes the exogenous factor into two partial sums, 
a positive partial sum 𝐴𝐶 , which is expected to seize the positive variations of AC, and a negative 
partial sum 𝐴𝐶 , the negative deviations are accompanied in such a way that 

𝐴𝐶 = ∆𝐴𝐶 =  𝑚𝑎𝑥 ∆𝐴𝐶  , 0  𝑎𝑛𝑑 𝐴𝐶 = ∆𝐴𝐶
=  𝑚𝑖𝑛 ∆𝐴𝐶  , 0 . (4) 

The long-run nonlinear effects are captured by 𝛼  and 𝛼  , whereas the short-run nonlinear 
effects in the model are identified by 𝛼  and 𝛼 .  
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Prior to running these econometric procedures, the study assessed the properties of the series 
by running structural break examinations and unit root tests. For the standard deviation, we 
examined whether there are great deviations in the series. The correlation matrix followed to test the 
multicollinearity and skewness of the series (see Appendix A Tables A1 and A2). Furthermore, we ran 
the variance inflation factor (VIF) to identify the multicollinearity effects of the data (see Appendix A 
Table A3). 

5. Empirical Results and Discussion 

To examine the long-term association between absorptive capacity and CO2 emission intensity, 
the study employed the NARDL model developed by Shin et al. [69].  

Table 2 documents the descriptive statistics pertaining to all the underlying variables for China 
and the USA. The statistics represent the acronym of each variable, the number of observations, the 
mean, standard deviation, and the range, respectively. The overall properties are satisfactory for 
further estimation. 

Table 2. Descriptive statistics (China). 

Variable Obs Mean Std.Dev. Min Max 
GHG 47 15.372 0.591 14.444 16.338 
CO2 47 14.943 0.787 13.556 16.147 
AC1 47 292.877 370.319 2.693 1318.451 
AC2 47 12.828 18.916 0.055 78.158 
AC3 47 20.398 18.968 1.886 61.626 
GFC 47 3.512 0.202 3.176 3.856 
FD 47 4.437 0.408 3.734 5.116 

TOT 47 4.661 0.412 3.67 7.019 
IQ 47 4.191 0.091 3.994 4.325 

GDP_PC 47 7.049 1.142 5.431 8.9 
Descriptive statistics (USA) 

GHG 47 15.664 0.091 15.502 15.796 
CO2 47 15.442 0.101 15.276 15.587 
AC1 47 1832.377 537.33 973.744 2702.633 
AC2 47 73.059 7.103 62.966 85 
AC3 47 60.154 9.935 42.744 75.041 
GFC 47 3.062 0.075 2.889 3.194 
FD 47 4.888 0.308 4.471 5.329 

TOT 47 4.615 0.043 4.543 4.683 
IQ 47 4.041 0.233 3.676 4.317 

GDP_PC 47 10.534 0.261 10.057 10.918 

The study assessed the stationarity of the test using the augmented Dickey and Fuller [74,75] 
and Phillips–Perron (PP) [76] tests. Due to the inefficiency and misleading results a unit root test may 
yield when there are structural breaks, a Zivot [77,78] test was used. In Table 3 the results of the test 
are presented; augmented Dickey-Fuller (ADF) [75], PP, and Zivot–Andrews (ZA) tests. The upper 
half of the table reports the results for China, while the lower half considers the USA.  

In the case of China as per ADF, the result shows that only TOT is stationary at level, and all the 
variables are stationary when transformed to the first difference. The PP results show that all other 
variables are stationary at level expect AC3. ZA considers the structural break in time series, and 
shows that AC1, GFC, and TOT are free from unit-root at level; however, all other variables are 
transformed to the first difference to fulfill the stationarity condition. In the case of the USA, AC1 and 
AC2 are stationary at the level as per ADF, and AC2 contains no unit-root pursuant PP test.  

The remaining variables are significant when transformed to the first difference. Similarly, ZA 
reveals that AC3, GFC, and GDP_PC are free from unit-root at level, and the transformation of the 
rest of the indicators is stationary at the first difference. Further, the test results show a strong 
explanation for the use of a cointegration setting, such as the NARDL model, given that all variables 
are at the 1(1) and 1(0) level, and none is found to be 1(2). 
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Table 3. Unit-root test. 

Variable Augmented Dickey-Fuller Phillips–Perron Zivot–Andrews 
China Level First Level First Level Break First Break 
GHG −2.606 −3.235 ** −9.17 *** - −2.469 2011 −5.34 *** 2007 
CO2 −3.077 −3.415 ** −8.943 *** - −2.602 1978 −4.553 ** 2009 
AC1 −3.404 −6.798 *** −6.167 *** - −6.434 *** 2001 - - 
AC2 −2.342 −5.762 *** −7.462 *** - −2.941 2008 −5.319 *** 2007 
AC3 −0.919 −4.045 ** −0.529 −7.739 *** −3.935 1995 −5.853 *** 2010 
GFC −2.844 −5.204 *** −6.392 *** - −5.28 *** 1991 - - 
FD −2.17 −3.989 ** −6.433 *** - −3.054 1991 −6.275 *** 2008 

TOT −3.965** −5.151 *** −8.319 *** - −6.652 *** 1989 - - 
IQ −2.127 −3.063 ** −9.739 *** - −3.385 2010 −5.897 *** 2004 

GDP_PC −2.963 −3.524 ** −8.715 *** - −2.674 2011 −4.663 ** 2009 
USA         

GHG −0.667 −4.494 *** −2.834 −7.097 *** −2.898 2003 −7.104 *** 1981 
CO2 −2.764 −4.113 ** −2.509 −5.889 *** −3.098 1983 −5.973 *** 1981 
AC1 −2.407 −3.807 ** −3.012 −8.124 *** −3.964 2007 −8.056 *** 2011 
AC2 −3.862** −5.423 *** −4.026 *** - −4.12 * 2011 −7.642 *** 2004 
AC3 −4.222** −4.802 *** −3.191 −5.832 *** −4.737 ** 2001 −5.775 *** 2008 
GFC −2.346 −4.066 ** −2.595 −3.996 ** −4.432 ** 2005 −4.945 *** 2010 
FD −2.46 −4.928 *** −1.819 −6.704 *** −2.461 2007 −7.287 *** 1998 

TOT −2.596 −3.483 ** −2.206 −5.92 *** −3.114 1984 −5.887 *** 1982 
IQ −0.592 −3.821 ** −0.67 −6.259 *** −3.242 1999 −6.762 *** 1989 

GDP_PC −1.283 −4.141 ** −1.771 −5.052 *** −4.56 ** 2005 −5.155 *** 2011 

***, **, and * indicate the level of significance at 1%, 5%, and 10%, respectively. 

Implementation of the NARDL estimation requires that we test the occurrence of long-run 
asymmetric association among the factors. Similarly, the table provides the results of the bound test 
F-statistics for China and the USA, describing long-term cointegration among the variables. 
Therefore, there is sufficient evidence to proceed with the NARDL model estimation.  

In Table 4 the findings of the asymmetric impact of AC on CO2 are presented. Panel-A represents 
the asymmetries translated by the different measures of AC on CO2 in the case of China, whereas 
panel-B estimates the relevant models for the USA. The analysis is broken down into three categories; 
the first part shows the short-run dynamics under the positive and negative impact of the respective 
variables on CO2 for both China and the USA.  

In the first part, the results show that in China only an AC3-related increase in CO2 emissions 
and a decrease in AC2-related emissions exist. The result suggests that in China and in the short-
term, an increase in technology transfer based on human resources increases CO2 emissions and a 
decrease in technology transfer based on infrastructure decreases emissions. The result indicates that 
a decrease in affluence diminishes the CO2 intensity of China. The result supports the finding of van 
Vuuren and Riahi [52] and Zhang et al. [16] that indicate the effect of increasing affluence and that 
predominantly resulted in a shift to coal away from traditional biomass, and brought an increase in 
carbon intensity. All the other controls show a mix of asymmetric impacts on CO2 emissions in both 
economies.  

In the second part, results of long-run dynamics are presented in panel A. A positive change in 
AC1 and AC2 decreases CO2 emissions in China, and a negative change is followed by a mixed effect; 
specifically, AC1 and AC2 increase the CO2 the emissions level of China, while AC3 reduces it. The 
scenario of the USA is even more interesting, as AC1 drives CO2 emissions, and it is surprising that 
both positive and negative changes in AC1 bring an increase in CO2 emissions. However, a positive 
change in AC2 has a negative effect on CO2 emissions. All other controls show a mix of asymmetric 
impacts on CO2 emissions in both economies. This implies that a scheme similar to the Korean 
government’s emissions trading system needs to be strict in order to control high emissions [48].  

The results of the study indicate that absorptive capacity based on innovation and infrastructure 
development reduces the effects of CO2 emissions in both China and the USA, indicating the crucial 
role of a technology transfer in combating climate change and enhancing sustainability in the long 
term. Therefore, the study cements the pivotal role of innovation and affluence technology transfer 
for the sustainable economic growth and environmental stewardship of China and the USA [35,79].  
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Consequently, one can say that in the long-term there is strong evidence that innovation (R&D) 
expenditures and raising the standards of affluence can decrease CO2 emissions supporting the 
finding of [52]. Therefore, it is imperative to transform current carbon-based economic activities so 
as to attain sustainable development while reducing global CO2 leaving standards of living 
unaffected in the long-run [80]. 

The third part consists of diagnostic statistics with respect to all settings. Overall results show 
that all the estimators satisfy the diagnostic properties, such as serial correlation, heteroscedasticity, 
normality, and stability. The cointegration test (t_BBM) carries a significant and negative coefficient, 
which justifies the long-run associations, and likewise, the significant F_PSS test ratifies this 
association. These two tests are vital to acknowledge the presence of a long-run relationship between 
the factors examined herein.  

The NARDL is specifically designed to capture the asymmetries translated by various measures 
of AC, it witnesses the long-run asymmetries in the case of China, while only AC1 has an asymmetric 
long-run impact on CO2 emissions in the USA. The findings imply that depending solely on linear 
modeling may not provide reliable policy inputs in every context; the presence of asymmetries calls 
for the policy agenda to be framed considering the asymmetric dynamics. 

Table 4. Results of asymmetric impact absorptive capacity on CO2. 

Dependent Variable: CO2 
 Panel-A (China) Panel-B (USA) 
 (1) (2) (3) (4) (5) [74] 

VARIABLES AC1 AC2 AC3 AC1 AC2 AC3 
Short-Run Dynamics 

ECMt-1 −0.915 ** −0.750 *** −0.830 *** −1.315 ** −1.621 *** −0.975 * 
∆AC+t-1 0.000 0.006 0.015 * 0.000 −0.001 0.017 
∆AC−t-1 0.197 −0.085 ***  −0.000 −0.006 −0.004 
∆GFC+t-1 −1.207 * 2.826 *** 0.885 * −0.126 0.159 −0.099 
∆GFC−t-1 −2.516 * −0.935 −1.060 * −0.275 0.491 0.787 
∆FD+t-1 1.306 0.078 0.701 0.357 ** 0.173 −0.114 
∆FD− t-1 −3.836 * −1.578 * −2.482 * 0.680 0.842 −0.010 
∆TOT+ t-1 −1.654 ** 0.230 −0.672 * −1.004 −0.514 −1.030 
∆TOT−t-1 −1.890** −0.072 −0.695 ** 2.077 * 1.350 0.703 
∆IQ+t-1 1.023 −2.547 ** −2.132 ** 0.164 0.373 0.387 
∆IQ−t-1 0.939 2.477 ** 2.051 ** −0.969* * −1.545 ** −1.086 ** 

∆GDP_PC+ t-1 −0.888 −0.792 * −0.330 0.018 0.033 0.017 
∆GDP_PC−t-1 −2.713 5.486 ** 0.630 0.015 0.022 0.017 
∆D+t−1 0.307 ** 0.176 −0.060 −0.097 −0.208 −0.000 
∆CO2t−1 0.387 0.002 0.348 0.325 0.341 −0.056 

Long−Run Dynamics 
AC+ −0.443 ** −0.008 *** 0.018 ** −0.002 ** −0.001 ** 0.017 
AC− 0.001 *** 0.113 *** −0.12 *** 0.003 * 0.004 0.005 

GFC+ 2.595 3.769 *** 1.066 *** −0.096 0.098 −0.102 
GFC− 5.828 1.247 ** 1.276 *** 0.209 −0.303 −0.807 
FD+ −0.611 0.104 0.844 0.272 *** 0.107 −0.117 
FD− 1.98 2.105 2.99 −0.517 −0.52 0.01 

TOT+ −1.798 0.307 −0.809 *** −0.763 ** −0.317 −1.056 
TOT− 2.345 * 0.096 0.837 *** −1.579 *** −0.833 *** −0.721 
IQ+ −4.524 −3.398 *** −2.568 *** 0.125 0.23 *** 0.397 
IQ− −0.888 −3.305 *** −2.471 *** 0.737 *** 0.953 *** 1.114 *** 

GDP_PC+ −0.588 −1.057 *** −0.398 0.014 * 0.02 *** 0.018 *** 
GDP_PC− −10.559 −7.318 *** −0.759 −0.012 −0.013 *** −0.018 

D1 −0.694 0.235 −0.073 −0.074 * −0.128 *** 0.230 
Constant 12.392 ** 10.526 *** 11.379 *** 20.105 ** 24.698 *** 14.891 * 

Diagnostic Statistics 
Adj. R2 0.837 0.858 0.716 0.890 0.867 0.760 

F 16.77 *** 17.94 *** 14.13 *** 10.07 *** 18.29 *** 14.54 *** 
T BDM −2.93 *** −6.91 *** −4.45 *** −3.98 *** −4.89 *** −2.38 *** 
F_PSS 6.54 *** 8.59 *** 4.22 *** 5.40 *** 6.50 *** 2.75 *** 
Serial 0.022 0.053 0.451 0.245 0.077 0.027 
Het 0.927 0.939 0.423 0.923 0.422 0.155 
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Normal 0.410 0.013 0.894 0.986 0.948 0.168 
RESET 0.214 0.142 0.094 0.392 0.036 0.104 

LR Asymmetry 3.75*** 23.2*** 5.27*** 2.57*** 0.32 0.51 
SR Asymmetry 0.31 0.59 0.41 0.96 0.15 0.25 

Note: For brevity t-statistics is not reported. *** p < 0.01, ** p < 0.05, * p < 0.1. AC: absorptive capacity, 
Het: Heteroskedasticity, LR: long-run, SR: short-run, D1: dummy variable representing a structural 
break in CO2, the +/− signs indicate positive/negative change in the dependent variable. 

Table 5 incorporates the robustness captured with the alternative measure of dependent 
variables, e.g., GHG. Under the same settings, we replaced CO2 with GHG and found the short- and 
long-run influence of AC on GHG in China and the USA. We also found a comparable short-run 
asymmetric association between AC and CO2 emissions in the reference economies. Like Table 4, the 
long-run positive and negative changes in AC bring asymmetric changes in GHG in both economies. 
Absorptive capacity based on innovation shows significant GHG emissions effects in China.  

However, the result indicates that absorptive capacity based on infrastructure development has 
a long-term diminishing impact on the CO2 and GHG emissions in China and the USA. Thus, we 
infer that there is a need to formulate the long-run policies to control the CO2 emissions in both 
regions, so that the quantum surge of CO2 may gradually be controlled. Whilst energy is “the factor” 
contributing substantially to socioeconomic development, it also the main culprit vis-à-vis excessive 
use of fossil fuels when it comes to increased GHGs in the atmosphere and consequent global 
warming—climate change [81]. 

Interestingly the results are robust under an alternative measure of CO2 emissions in both 
economies and validate the choice of the NARDL estimation as a useful tool for policy reforms. 

Table 5. Robustness with an alternative measure (GHG). 

Dependent Variable: GHG 
 China USA 
 (1) (2) (3) (4) (5) [74] 

VARIABLES AC1 AC2 AC3 AC1 AC2 AC3 
Short-Run Dynamics 

ECMt-1 −0.873 * −1.927 *** −1.272 ** −1.003 *** −1.138 *** −0.891 * 
∆AC+t-1 −0.000 ** 0.011 0.024 ** −0.000 −0.006 ** −0.003 
∆AC−t-1 0.102 −0.075 *** 0.000 0.000 ** −0.007 * 0.004 
∆GFC+t-1 −0.982 1.812 ** 0.460 0.233 0.232 ** 0.349 
∆GFC−t-1 −1.035 −2.761 *** −0.937 0.415 0.052 0.261 
∆FD+ t-1 0.890 2.034 ** 1.531 0.196 0.211 0.213 
∆FD− t-1 −3.809 * −7.330 *** −4.794 ** −0.751 −0.241 0.043 
∆TOT+ t-1 −0.781 −0.493 −0.262 −0.964 −1.178 *** −0.976 *** 
∆TOT− t-1 −1.001 * −0.647 * −0.335 0.769 0.767 0.435 
∆IQ+ t-1 1.313 −4.601 ** −2.148 0.385 * 0.141 0.180 
∆IQ− t-1 0.804 4.348 *** 2.592 −0.652 * −0.810 *** −0.964 * 

∆GDP_PC+ t-1 −0.777 −1.564 ** −0.859 0.019 0.181 0.082 
∆GDP_PC− t-1 −9.041 −4.217 −4.414 0.021 * 1.324 * −0.612 

∆D+t−1 −0.115 0.032 −0.210 −0.040 −0.116 ** −0.020 
∆GHGt−1 −0.212 0.911 ** 0.161 −0.096 −0.010 −0.113 

Long−Run Dynamics 
AC+ −0.001 ** −0.005 *** 0.019 *** 0.005 −0.005 *** −0.004 
AC− 0.117 0.039 *** 0.08 *** 0.006 0.006 *** −0.005 

GFC+ −1.125 ** 0.941 *** 0.362 0.233 0.204 *** 0.392 *** 
GFC− 1.186 ** 1.433 *** 0.736 −0.413 −0.046 −0.293 
FD+ 1.02 *** 1.056 *** 1.203 *** 0.196 *** 0.185 *** 0.239 
FD- 4.364 *** 3.804 *** 3.768 *** 0.748*** 0.212 −0.048 

TOT+ −0.895 *** −0.256 *** −0.206 −0.96 *** −1.035 *** −1.096 *** 
TOT- 1.148 *** 0.336 *** 0.263 -0.766 -0.674 *** -0.489 
IQ+ 1.504 −2.388 *** −1.689 *** 0.383 *** 0.124 *** 0.202 
IQ− −0.921 −2.256 *** −2.037 *** 0.65 *** 0.711 *** 1.083 

GDP_PC+ −0.891 −0.812 *** −0.675 *** 0.018 *** 0.159 0.092 
GDP_PC− 10.36 * 2.189 3.469 −0.02 *** −1.164 *** 0.688 

D2 −0.132 0.017 −0.165 −0.039 ** −0.102 −0.022 
Constant 12.666 * 28.007 *** 18.458 ** 15.537 *** 17.616 *** 13.776 * 
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Diagnostic Statistics 
Adj. R2 0.840 0.860 0.732 0.924 0.992 0.972 

F 16.87 *** 17.88 *** 14.31 *** 14.68 *** 134.2 *** 39.63 *** 
T BDM −2.35 *** −6.42 *** −2.95 *** −4.76 *** −16.94 *** −2.28 *** 
F_PSS 11.92 *** 13.16 *** 7.840 *** 6.346 *** 134.3 *** 23.44 *** 
Serial 0.010 0.7485 0.007 0.051 0.098 0.012 
Het 0.109 0.855 0.781 0.135 0.703 0.828 

Normal 0.301 0.346 0.858 0.950 0.148 0.574 
RESET 0.228 0.423 0.455 0.136 0.662 0.138 

LR Asymmetry 2.77 *** 15.6 *** 3.96 *** 3.05 *** 6.08 *** 0.41 
SR Asymmetry 0.002 1.01 1.97 ** 0.81 0.91 0.25 

Note: For brevity t-statistics is not reported. *** p < 0.01, ** p < 0.05, * p < 0.1. AC: absorptive capacity, 
Het: Heteroskedasticity, LR: long-run, SR: short-run, D2: dummy variable representing a structural 
break in GHG, +/− signs indicate positive/negative change in the independent variable. 

6. Conclusions 

The present study estimates the asymmetric impact of various measures of AC on CO2 emissions 
in two high CO2 emitting economies, China and the USA. The study considers the time series dataset 
from 1970 to 2018 for this purpose. The study accounts for the structural break in the underlying 
series, which has not been given due focus in related literature. We find the presence of structural 
breaks in our variables in both economies, and interestingly, a non-linear setting for further 
estimation is recommended given the mixed order of integration.  

The findings document that there exists an asymmetric short- and long-run association among 
various measures of AC and CO2 emissions. The results suggest an increase in technology transfer 
based on human resources increases CO2 emissions in China in the short run and a decrease in 
technology transfer based on infrastructure decreases emissions in China as well. Our findings also 
show in the long term, along the lines of endogenous growth theory [41], the effects of an increase in 
absorptive capacity based on innovation and infrastructure developments were determined to be 
positive and significant to mitigate carbon intensity in China and the USA.  

The results also are in support of the widely documented empirical reality of technological 
change's nature in decreasing GHG emissions without jeopardizing growth-oriented economic 
activities [43]. Previously, the literature has suggested that countries that have gone past the take-off 
stage when it comes to the use of renewable energy could easily take up further policy measures like 
feed-in tariffs, green certificates for long-run sustainable development and renewable portfolio 
standards [53]. 

Similarly, in the long term, the decrease in absorptive capacity based on innovation was shown 
to be positive and significant in increasing carbon intensity in China and the USA. However, the 
effect of a decrease in absorptive capacity based on infrastructure development is shown to be 
insignificant in the USA. The results of the asymmetric effects are proven to be robust and consistent 
using GHG intensity as an alternative dependent proxy for emissions intensity.  

The findings are very useful for policy inputs and imply that curtailing CO2 emissions regulators 
should prudently take into account and understand the impact of different measures of AC on CO2 
and GHG. The findings offer several directions for policymakers, for instance, and emissions trading 
systems should be given more attention by researchers and policymakers, so efficiency and 
innovation are built into the design and implementation, particularly when considering renewables 
for generating electricity [82]. The reforms in the industrial and transport sector have greatly 
contributed to reducing CO2 in the USA [83], and those firms that are induced to invest in R&D are 
able to cut the carbon costs [84]. Similarly, the changes in regional structure drastically mimic the CO2 
emission [85], while the optimal utilization of innovative technology is subject to the pivotal role of 
the institution [86]. The mixed results pose challenges in the process of formulating the right policies 
to control CO2 emissions because decreasing the AC is not going to decrease CO2 emissions in all 
cases.  

Every case calls for a unique policy agenda; therefore, the findings of the present study raise 
challenging questions to be addressed in CO2 emissions reduction programs in China and the USA. 
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The literature suggests that several other countries are already taking a closer look at developing a 
low-carbon energy mix to reduce the adverse impacts of fossil fuel misuse [48]. Interestingly, the 
results are robust under an alternative measure of CO2 emissions in both economies and validate the 
choice of the NARDL estimation as a useful tool for policy reforms. Aligned with recent literature 
[87–89], we also suggest that the related studies which have taken into account the traditional linear 
specification, such as ARDL, may review and extend the phenomena under a non-linear setting 
introduced in recent literature, for better policy input. 

The present study investigates one dimension of the relationship; there may be nonlinearity 
considerations from other factors that are not accounted for here. Moreover, the study only considers 
two high CO2 emitting countries, China and the USA. Therefore, the findings lack generalizability. 
However, to capture a broader picture there is a need to extend these types of models to other high 
CO2 emitting countries because excessive CO2 generation and its ensuing negative effects on human, 
animal, and plant wellbeing is a grave danger to the planet, let alone sustainable development [5].  
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Appendix A 

Table A1. Matrix of correlations (China). 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 
(1) AC2 1.000 
(2) AC3 0.639 1.000 
(3) AC1 0.559 0.623 1.000 
(4) GFC 0.729 0.471 0.911 1.000 
(5) FD 0.401 0.769 0.882 0.877 1.000 

(6) TOT −0.426 −0.461 −0.506 −0.512 −0.552 1.000 
(7) IQ −0.678 −0.324 −0.656 −0.498 −0.726 0.440 1.000 

(8) GDP_PC 0.681 0.826 0.955 0.726 0.569 −0.541 −0.673 1.000 

Table A2. Matrix of correlations (USA). 

Variables (1) (2) (3) (4) (5) (6) (7) (8) 
(1) AC2 1.000 
(2) AC3 −0.439 1.000 
(3) AC1 0.576 −0.713 1.000 
(4) GCF −0.668 0.589 −0.514 1.000 
(5) FD 0.766 −0.435 0.657 −0.496 1.000 

(6) TOT 0.409 −0.502 0.560 −0.026 0.484 1.000 
(7) IQ 0.591 −0.797 0.751 −0.384 0.871 0.552 1.000 

(8) GDP_PC 0.786 −0.943 0.782 −0.475 0.973 0.579 0.892 1.000 

Table A3. Variance inflation factors for China and USA. 

Variable China USA 
GDP_PC 3.424 2.068 

AC1 1.765 8.931 
FD 4.384 5.492 

AC2 1.871 2.549 
AC3 1.410 7.536 
GFC 0.374 0.084 
IQ 4.291 3.525 

TOT 1.547 2.456 
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Table A4. lag selection criteria of China. 

Variable  China USA 
Lag  AIC SIC AIC SC 

0  13.70279 14.10032 −2.560704 −2.167056 
1  −2.264427 6.121492 −15.56438 −8.812698 
2  −6.201961 *2.108411 * −17.07931 * −11.23425 *

* indicates lag order selected by the criterion. 
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