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Abstract
Diophantine equations can often be reduced to various types of

classical Thue equations [20], [1]. These equations usually have only
very small solutions, on the other hand to compute all solutions (i.e.
to prove the non-existence of large solutions) is a time consuming
procedure. Therefore it is very practical to have a fast algorithm to
calculate the ”small” solutions, especially if ”small” means less than
e.g. 10100. Such an algorithm was constructed by A.Pethő [17] in 1987
based on continued fractions.

In the present paper we construct a similar type of fast algorithm
to calculate ”small” solutions of relative Thue equations. Our method
is based on the LLL reduction algorithm. We illustrate the method
with explicit examples. The algorithm has several applications.
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1 Introduction

Let F ∈ Z[x, y] be a binary form of degree ≥ 3, irreducible over Q. There is
an extensive literature (cf. [20], [1], [7]) on Thue equations of the type

F (x, y) = m in x, y ∈ Z. (1)

Various types of diophantine equations, among others index form equations
(cf. [4], [8]) can be reduced to Thue equations. Using the effective method of
A.Baker [1] and reduction methods (for a survey see [7]) there is an algorithm
for solving Thue equations completely. However, this procedure is rather time
consuming while our experience shows that such equations only have small
solutions. Hence the efforts are invested in the proof of the nonexistence of
large solutions, not in the calculation of the solutions.

Therefore in many applications and practical methods the fast algorithm
of A.Pethő [17], giving only the solutions with |y| < C was useful, especially
because it remains fast also for e.g. C = 10100. (In [13] we calculated ”small”
solutions of thousands of index form equations in pure cubic fields, in [12]
we calculated ”small” solutions of binomial Thue equations x4 −my4 = ±1
for 0 ≤ m ≤ 107.)

Note that if F has leading coefficient 1 (which can be assumed without
restricting the generality), α is a root of F (x, 1) = 0 and K = Q(α), then
equation (1) can be written in the form

NK/Q(x− αy) = m in x, y ∈ Z. (2)

Let M be an algebraic number field with ring of integers ZM . Let α be an
algebraic integer over M and set K = M(α). Let 0 6= µ ∈ ZM and consider
the relative Thue equation

NK/M(X − αY ) = µ in X, Y ∈ ZM . (3)

This equation is a direct analogue of (2).
Diophantine problems often lead also to relative Thue equations. The

index form equations of sextic fields with a quadratic subfield [5], [9], of
nonic fields with a cubic subfield [6], of quartic relative extensions [10], all
lead to relative Thue equations.

There is an algorithm for the complete resolution of relative Thue equa-
tions by I.Gaál and M.Pohst [11]. This involves Baker’s method, a reduction
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procedure using LLL and an enumeration method (see also [7]). The execu-
tion time takes some hours. As initial data the method needs the fundamen-
tal units of the number field involved and calculation of all non-associated
elements of given relative norm. Note that often the main difficulty is to
calculate these basic data in a higher degree field (of degree ≥ 10), requiring
again considerable CPU time. For fields of degree ≥ 15 these procedures
often fail.

It is therefore useful to have a faster algorithm calculating the ”small”
solutions of relative Thue equations that does not require initial data (e.g.
fundamental units, elements of given relative norm) of the number field and
is applicable also for higher degree relative Thue equations. In this paper
our purpose is to construct such an algorithm.

As we shall see our new algorithm works efficiently even for higher degree
relative Thue equations that cannot be attacted by the methods of [11]. It is
very efficient over quadratic number fields M but usable also over cubic and
quartic fields.

2 Elementary estimates for relative Thue equa-

tions

Let m = [M : Q] and (1, ω2, . . . , ωm) be an integral basis of the ring of
integers of M . Denote by γ(j), (j = 1, . . . ,m) the conjugates of any γ ∈ M .

Denote by n the degree of α over M and by f(x) its relative defining
polynomial over M . Denote by α(jk), (k = 1, . . . , n) the relative conjugates
of α over M (j), that is the roots of the j-th conjugate of f(x). We also denote
by γ(jk) the conjugates of any γ ∈ K corresponding to α(jk).

We assume that n > m if K is not totally real and n > 2m if K is totally
real. This condition ensures that our reduction procedure in Section 3 is
efficient.

Our purpose is to determine all solutions of (3) with |Y | < C, where C
is a large given constant, say 10100 or 10500. (For any algebraic number γ
we denote by |γ| the size of γ, that is the maximum absolute value of its
conjugates.)

We represent X and Y in the form

X = x1 + ω2x2 + . . . + ωmxm, Y = y1 + ω2y2 + . . . + ωmym,

with xi, yi ∈ Z (1 ≤ i ≤ m). We set A = max(max |xi|, max |yi|).
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Our algorithm is based on the well known fact that for any fixed solution
X, Y ∈ ZM of equation (3) there is a conjugate of β = X −αY which is very
small, assumed that Y is not very small.

To formulate the main result we need the following notation.
Let

chji =
1

2

∣∣(α(hj) − α(hi))
∣∣ , for 1 ≤ h ≤ m, 1 ≤ i, j ≤ n, i 6= j,

chi =
|µ(h)|∏

1≤j≤n,j 6=i chji

, for 1 ≤ h ≤ m, 1 ≤ i ≤ n,

c1 = max
h,j,i

n
√
|µ(h)|
chji

,

where the maximum is taken for 1 ≤ h ≤ m, 1 ≤ i, j ≤ n, i 6= j.
Let S be the m×m matrix with entries 1, ω

(j)
2 , . . . , ω

(j)
m in the j-th row.

Denote by c2 the row norm of S−1 that is the maximum sum of the absolute
values of the elements in its rows.

Let

c3 =

n

√
|µ|

|α|
,

c4 = max(c1, c3),

c5 = 2c2|α|

and
dhi = chic

n−1
5 for 1 ≤ h ≤ m, 1 ≤ i ≤ n.

Finally, let C be a given constant.

Theorem 1. If (X,Y ) ∈ Z2
M is a solution of equation (3) with |Y | > c3,

then
A ≤ c5 · |Y |. (4)

Proof of Theorem 1.
Set β = X −αY . For any k let ` be the index with |β(k`)| = min1≤j≤n |β(kj)|.
Equation (3) implies

β(k1) . . . β(kn) = µ(k).

4



Therefore |β(k`)| ≤ n
√
|µ(k)| whence we have

|X(k)| ≤ |β(k`)|+ |α(k`)| · |Y (k)| ≤ n

√
|µ|+ |α| · |Y |

whence using |Y | > c3 we obtain

|X| ≤ 2 |α| · |Y |. (5)

By  y1
...

yn

 = S−1

 Y (1)

...
Y (m)


we obtain max |yj| ≤ c2|Y |. Similarly we have max |xj| ≤ c2|X|, whence by
(5) we get the assertion (4). 2

Theorem 2. If (X,Y ) ∈ Z2
M is a solution of equation (3) with |Y | > c4,

then there exist h, i (1 ≤ h ≤ m, 1 ≤ i ≤ n), such that

|β(hi)| ≤ dhiA
1−n. (6)

Proof of Theorem 2.
Let Y (h) be the conjugate of Y with |Y | = |Y (h)| and let i be determined by

|β(hi)| = min
1≤j≤n

|β(hj)|.

Obviously

|β(hi)| ≤ n

√
|µ(h)| (7)

and for any j 6= i (1 ≤ j ≤ n) using |Y | > c1 we have

|β(hj)| ≥ |β(hj)−β(hi)|−|β(hi)| ≥ |(α(hj)−α(hi))Y (h)|− n

√
|µ(h)| ≥ chji|Y | (8)

By equation (3) we have now

β(h1) . . . β(hn) = µ(h)
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therefore
|β(hi)| ≤ chi · |Y |

1−n
(9)

By |Y | > c3 Theorem 1 applies, therefore (4) is satisfied, whence |Y |
−1

≤
c5 A−1, that is

|Y |
1−n

≤ cn−1
5 A1−n. (10)

Therefore by inequality (9) we obtain the assertion (6). 2

3 Reducing the bound for A

In this section we develop a reduction procedure for A. More exactly we apply
the extension of M.Pohst [18] of the standard LLL algorithm of A.K.Lenstra,
H.W.Lenstra Jr. and L.Lovász [16].

Let H be a large constant to be given later, let i, h be given indices with
1 ≤ h ≤ m, 1 ≤ i ≤ n such that inequality (6) is satisfied, that is

|x1 + ω
(h)
2 x2 + . . . + ω(h)

m xm − α(hi)y1 − α(hi)ω
(h)
2 y2 − . . .− α(hi)ω(h)

m ym| ≤

≤ dhiA
1−n. (11)

Consider now the lattice L generated by the columns of the matrix

L =



1 0 . . . 0 0 0 . . . 0
0 1 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . 0 0 0 . . . 1
H HRe(ω(h)

2 ) . . . HRe(ω(h)
m ) HRe(α(hi)) HRe(α(hi)ω

(h)
2 ) . . . HRe(α(hi)ω

(h)
m )

H HIm(ω(h)
2 ) . . . HIm(ω(h)

m ) HIm(α(hi)) HIm(α(hi)ω
(h)
2 ) . . . HIm(α(hi)ω

(h)
m )


In the totally real case we may omit the last row. Denote by b1 the first

vector of an LLL-reduced basis of the lattice L.
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Theorem 3. Assume that x1, . . . , xm, y1, . . . , ym are integers with A = max(max |xi|, max |yi|),
such that (11) is satisfied. If A ≤ A0 for some constant A0 and for the first
vector b1 of the LLL reduced basis of L we have

|b1| ≥
√

(2m + 1)22m−1 · A0,

then

A ≤
(

dhiH

A0

) 1
n−1

(12)

Proof of Theorem 3.
The proof is almost the same as in [7]. Denote by l0 the shortest vector in
the lattice L. Assume that the vector l is a linear combination of the lattice
vectors with integer coefficients x1, . . . , xm, y1, . . . , ym, respectively. Observe
that the last two components of l are the real and imaginary parts of β(hi).

Using the inequalities of [18] we have |b1|2 ≤ 22m−1|l0|2. Obviously |l0| ≤
|l|. The first 2m components of l are in absolute value ≤ A0, for the last 2
components (11) is satisfied. Hence we obtain

(2m + 1)A2
0 = 21−2m

(
(2m + 1) · 22m−1A2

0

)
≤ 21−2m|b1|2 ≤ |l0|2 ≤ |l|2 ≤ 2m · A2

0 + H2d2
hiA

2−2n,

whence
A0 ≤ dhiHA1−n ,

which implies the assertion. 2

Remark 1
We made several tests to figure out how one can suitably choose H, for
which m and n the procedure is applicable and what is the magnitude of the
reduced bound. We summarize our experiences in the following table:

complex case totally real case
appropriate value for H H = Am

0 H = A2m
0

the procedure is efficient for n > m n > 2m

the reduced bound is of magnitude A
m−1
n−1

0 A
2m−1
n−1

0

This phenomenon can be detected in our examples, as well.

7



We start with an initial bound A0 for A (obtained from Theorem 1 and
|Y | < C) and perform the reduction. In the following steps A0 is the bound
obtained in the previous reduction step. In the first reduction steps the new
bound is drastically smaller than the original one. Applying Theorem 3 in
several steps (usually 5-10 steps) the procedure stops by giving (almost) the
same bound like the previous one. This reduced bound AR is usually between
10 and 500.
Remark 2
As it is seen we use the same lattice and our following reduction Theorem 3
is almost the same as in [9], [11] (see also [7]). However the approach and
the way of application is completely different and just that is our main goal.

In the above cited papers, following the standard arguments of [11] we
write X − αY as a product of an element of relative norm µ and a power
product of fundamental units. Using Siegel’s identity, elementary estimates
and Baker’s method we arrive at a linear form in the logarithms of algebraic
numbers, which is small. The coefficients of this linear form in the logarithms
of algebraic numbers appear in the last rows of the matrix used instead of
our matrix above to define the lattice. The variables are the exponents of
the fundamental units in the representation of X − αY .

In our setting the variables are the xj, yj and their coefficients in (11)
show up in the last rows of our matrix. This yields a much more direct way
without calculating fundamental units, elements of given relative norm and
without applying Baker’s method.

4 Enumerating the tiny values

As we saw in the previous section, in our statements we assume that |Y | is
not very small, which is equivalent to A being large enough. The reduction
process of the previous section produces a small bound for A. Hence the small
values of x1, . . . , xm, y1, . . . , ym must be tested separately. The purpose of this
section is to develop an efficient algorithm for testing all x1, . . . , xm, y1, . . . , ym

with absolute values less that a prescribed bound AR.
For a given m the number of xi, yi (1 ≤ i ≤ m) with A ≤ AR is (2AR+1)2m

which can still be a huge number for m ≥ 3. We show how to overcome this
difficulty. (Remember that in [11] we had to use a relatively complicated
ellipsoid method to deal with the small exponenets of the fundamental units.)
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4.1 A direct procedure

The original equation (3) implies

n∏
j=1

(X(h) − α(hj)Y (h)) = µ(h) (13)

for h = 1, . . . ,m. We let y1, . . . , ym run between −AR and AR (for even
n it is sufficient to take nonnegative y1). For each y1, . . . , ym we calculate

Y (h) = y1 + ω
(h)
2 y2 + . . . + ω

(h)
m ym and calculate the roots X(h1), . . . , X(hn)

of polynomial equation (13) in X(h). Since we can not know which root
corresponds to which conjugate, to get all solutions, we have to solve the
system of equations

x1 + ω
(1)
2 x2 + . . . + ω(1)

m xm = X(1 i1)

...

x1 + ω
(m)
2 x2 + . . . + ω(m)

m xm = X(m im)

for all possible permutations (i1, . . . , im) of (1, . . . ,m) and check whether the
solution vector (x1, . . . , xm) has integer components.

For totally real M we exclude complex values of X(hj).
This procedure yields (2 ·AR + 1)m nm tests. This can be used for m = 2

but not in this simple form for m ≥ 3.

4.2 The case m ≥ 3

For m ≥ 3 we proceed as follows. We take a rather small initial value AI

(say 10 or 20) such that the above direct procedure of subsection 4.1 can be
performed to test y1, . . . , ym with absolute values ≤ AI within feasible CPU
time. Then we only have to consider values of y1, . . . , ym with max |yj| > AI

yielding A = max(max |xj|, max |yj|) > AI .
In some steps we construct intervals [As, AS] the union of which covers

the whole interval [AI , AR]. This means that in the first step we take As = AI

and an AS with As ≤ AS ≤ AR. In the following step we set As to be the
former AS and take a new AS, etc.
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We describe now an efficient method to enumerate the variables with
As ≤ A ≤ AS. For a given h and i specified in the reduction procedure
(1 ≤ h ≤ m, 1 ≤ i ≤ n) by (11) we have

|x1 + ω
(h)
2 x2 + . . . + ω(h)

m xm − α(hi)y1 − α(hi)ω
(h)
2 y2 − . . .− α(hi)ω(h)

m ym| ≤

≤ dhiA
1−n ≤ dhiA

1−n
s .

We take H = AS · An−1
s /dhi, then

H · |x1 + ω
(h)
2 x2 + . . . + ω(h)

m xm − α(hi)y1 − α(hi)ω
(h)
2 y2 − . . .− α(hi)ω(h)

m ym| ≤

≤ AS (14)

Denote by e1, . . . , em, f1, . . . , fm the colums of the matrix defining the
lattice L in the preceeding section. Using the above H implies that all
coordinates of x1e1 + . . . + xmem + y1f1 + · · ·+m fm are less than or equal to
AS yielding

|x1e1 + . . . + xmem + y1f1 + · · ·+ ymfm|2 ≤ (n + 1)A2
S. (15)

(In the totally real case we omit the last row.)
This defines an ellipsoid. The integer points can be enumerated by using

the Cholesky decomposition (see M.Pohst [18], M.Pohst and H.Zassenhaus
[19]). This means to construct an upper triangular matrix R = (rij) with pos-
itive diagonal entries, such that the symmetric matrix of the above quadratic
form is written as RT R, that is (denoting here y1, . . . , ym by xm+1, . . . , x2m,
for simplicity) (15) gets the form

2m∑
i=1

(
riixi +

2m∑
j=i+1

rijxj

)2

≤ (n + 1)A2
S.

By enumerating x2m, x2m−1, . . . etc. we also use that fact that

−AS ≤ xi ≤ AS (1 ≤ i ≤ 2m).

Note that the Cholesky decomposition can be improved by using the Fincke-
Pohst method [3] (see also M.Pohst [18], M.Pohst and H.Zassenhaus [19]),
involving LLL reduction, but then we loose the above bounds for the xi.

10



5 The complete algorithm

In this section we construct the algorithm using the components of the pre-
ceeding sections.
Problem. Determine all solutions X,Y ∈ ZM with |Y | < C of the equation

NK/M(X − αY ) = µ.

We assume that n > m if K is not totally real and n > 2m if K is totally
real.

Step 1. Calculate the constants chji, chi (1 ≤ h ≤ m, 1 ≤ i, j ≤ n, i 6= j) and
c1, c2, c3, c4, c5 and dhi (1 ≤ h ≤ m, 1 ≤ i ≤ n) of Section 2.

Step 2. Set AB = c5 ·max(C, c4). (This is the initial upper bound for A.)

Step 3. For h ∈ {1, . . . ,m} and i ∈ {1, . . . , n} perform the reduction
procedure of Section 3.
In the first step take A0 = AB, choose a suitable H, perform the LLL basis
reduction and calculate the reduced bound A1 by (12). In the next step take
A0 = A1 and perform the reduction again. Continue until the reduced bound
is not any more considerably less then the previous bound. Denote by AR,h,i

the final reduced bound.

Step 4. Set AR = maxh,i AR,h,i.

Step 5. If c5c4 > AR then set AR = c5c4. (Our arguments are only valid for
|Y | > c4 that is A > c5c4).

Step 6. Enumerate the tiny values of x1, . . . , xm, y1, . . . , ym with A ≤ AR

using the procedure described in Section 4. Test all possible vectors by
substituting it into the equation.

6 Computational aspects

All our algorithms were developed in Maple [2] under Linux and the execution
times of our examples refer to a middle category laptop. However, especially
at the final enumeration, to find appropriate values As, AS we made several
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test runs on the supercomputer located in Debrecen, Hungary. The HPC
running times were 20-50 percent shorter even on a single node.

7 Examples

In this section we demonstrate our method with four explicit examples. To
have a comparison, the complete resolution of a quartic Thue equation over
a quadratic field in [11] took about one hour. Here we calculate ”small”
solutions of relative Thue equations of degrees 6, 9, 21, over quadratic fields
within a few minutes. Our last example is a sextic relative Thue equation
over a cubic field which could hardly be dealt with using the methods of [11]
(the underlying number field is of degree 18).

7.1 Example 1

Let M = Q(i) with integral basis {1, i}. Let α be a root of f(x) = x6 +x+1
and let K = M(α). Determine all X,Y ∈ ZM with |Y | < 10500 satisfying

NK/M(X − αY ) = X6 + XY 5 + Y 6 = 1. (16)

We get A ≤ 0.2252 · 10501 = AB. The reduction process ran as follows:

step A0 H ||b1|| ≥ Digits newA0 CPU time
1. 0.2252 · 10501 101003 0.1424 · 10501 1150 0.9637 · 10101 150sec
2. 0.9637 · 10101 10205 0.6095 · 10102 250 0.1809 · 1022 7sec
3. 0.1809 · 1022 1045 0.1144 · 1023 70 159562 2sec
4. 159562 1013 0.1009 · 107 30 103 1sec
5. 103 106 651.4291 20 17 1sec
6. 17 105 107.5174 20 16 1sec

The direct method of subsection (4.1) to enumerate the variables with ab-
solute values ≤ AR = 16 took 10 seconds. Finally all solutions (up to sign)
are

(x1, x2, y1, y2) = (1, 0, 0, 0), (1, 0,−1, 0), (0, 0, 1, 0).
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7.2 Example 2

Let M = Q(i
√

2) with integral basis {1, i
√

2}. Let α be a root of f(x) =
x21 − x − 1 and let K = M(α). Determine all X,Y ∈ ZM with |Y | < 10500

satisfying
NK/M(X − αY ) = X21 −XY 20 − Y 21 = 1. (17)

We get A ≤ 0.2068 · 10501 = AB. The reduction process ran as follows:

step A0 H ||b1|| ≥ Digits newA0 CPU time
1. 0.2068 · 10501 101005 0.1307 · 10502 1200 0.5897 · 1026 420sec
2. 0.5897 · 1026 1055 0.3730 · 1027 80 99 5sec
3. 99 107 626.1309 20 6 2sec

For a larger n the reduction is very efficient. In this example |Y | > c4

implies that the main arguments are only valid for |Y | > 9.9271, that is
the variables with A ≤ 20 must be considered separately. Therefore we let
the direct method of subsection (4.1) run for AR = 20. This took about 5
minutes and resulted the solutions
(x1, x2, y1, y2) = (1, 0, 0, 0), (1, 0,−1, 0), (0, 0,−1, 0), (−1, 0,−1, 0).

7.3 Example 3

This is an example for the totally real case. Let M = Q(
√

2) with integral
basis {1,

√
2}. Let α be a root of f(x) = x9 +3x8−5x7 +17x6 +7x5−30x4−

x3 +16x2− 2x− 1. This totally real nonic polynomial is taken from J.Voight
[21]. Let K = M(α). Determie all X, Y ∈ ZM with |Y | < 10500 satisfying

NK/M(X − αY ) = X9 + 3X8Y − 5X7Y 2 + 17X6Y 3 + 7X5Y 4

−30X4Y 5 −X3Y 6 + 16X2Y 7 − 2XY 8 − Y 9 = 1 (18)

We get A ≤ 0.5379 · 10501 = AB. The reduction process ran as follows:
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step A0 H ||b1|| ≥ Digits newA0 CPU time
1. 0.5379 · 10501 102007 0.3402 · 10502 2200 0.8862 · 10189 840sec
2. 0.8862 · 10189 10800 0.5604 · 10190 900 0.1110 · 1078 120sec
3. 0.1110 · 1078 10313 0.7022 · 1078 400 0.1439 · 1031 60sec
4. 0.1439 · 1031 10125 0.9103 · 1031 200 0.3304 · 1013 30sec
5. 0.3304 · 1013 1055 0.2089 · 1014 80 941870 30sec
6. 941870 1028 0.5956 · 107 80 2612 30sec
7. 2612 1018 16519.5940 80 306 30sec
8. 306 1014 1935.2970 80 126 30sec

The direct method of subsection (4.1) with AR = 126 executed 21 minutes.
The solutions are
(x1, x2, y1, y2) = (1, 0, 0, 0), (1, 0,−1, 0), (0,−1,−1, 0), (0, 0,−1, 0),
(−1, 0,−1, 0), (0, 1,−1, 0).

7.4 Example 4

Our last example demonstrates an equation with a cubic base field, m = 3.
Let M = Q(ρ), where ρ is defined by the (totally real) polynomial x3 − x2 −
3x + 1. The field M has integral basis {1, ρ, ρ2}. Let α be a root of the
(totally complex) polynomial f(x) = x6 + 2x5 + 3x4 + 21. Let K = M(α).
Determine all X, Y ∈ ZM with |Y | < 10500 satisfying

NK/M(X − αY ) = X6 + 2X5Y + 3X4Y 2 + 21Y 6 = 1. (19)

We get A ≤ 0.4268 · 10501 = AB. In this example we used the constants chi

and dhi calculated for the given case h, i (while in all other examples we used
values valid for all cases). This resulted a better reduction, giving a reduced
bound about 15 procent sharper.

The reduction process ran as follows:

14



step A0 H ||b1|| ≥ Digits newA0 CPU time
1. 0.4268 · 10501 101513 0.1277 · 10503 1700 0.9649 · 10203 600sec
2. 0.9649 · 10203 10615 0.2888 · 10205 800 0.8196 · 1083 160sec
3. 0.8196 · 1083 10255 0.2453 · 1085 350 0.8465 · 1035 60sec
4. 0.8465 · 1035 10111 0.2534 · 1037 200 0.5308 · 1016 30sec
5. 0.5308 · 1016 1053 0.1589 · 1018 100 0.9237 · 108 20sec
6. 0.9237 · 108 1029 0.2764 · 1010 60 52170 20sec
7. 52170 1019 0.1561 · 107 50 2328 20sec
8. 2328 5 · 1014 69684.4896 50 598 20sec
9. 598 8 · 1012 17900.0536 50 343 20sec
10. 343 4 · 1012 10267.0876 50 334 20sec

Note that in our example the direct method of Subsection 4.1 with AR =
334 yields to test

(2 · AR + 1)mnm = (2 · 334 + 1)3 · 63 = 64.674.354.744

cases which is completely impossible.
We executed the direct method of Subsection 4.1 with AI = 10 taking 7

minutes. To cover the interval [10,334] we applied the algorithm of Subsection
4.2 in several steps using 200 digits accuracy. It is worthy to choose As and AS

with a relatively large difference so that H also becomes large and inequality
(14) becomes an efficient filter. We performed four steps of the algorithm of
subsection 4.2:

step As AS CPU time
1. 10 50 3 min
2. 50 100 4 min
3. 100 150 10 min
4. 100 334 40 min

We had several test runs showing an optimal segmentation of the interval
[10,334]. It turned out that the running time for the last step with AS = 334
is not significantly different with As = 100, 150, 200, 250. Therefore it was
not worthy to split this interval into further parts.

The only solution (up to sign) of equation (19) is (x1, x2, y1, y2) = (1, 0, 0, 0).
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