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CHAPTER 1

Introduction

The theory of functional equations is one of the classical fields of
mathematics. Functional equation problems arose in different areas from
the ancient times both in theory and in applications. In 1966 J. Aczél
published his book “Lectures on functional equations and their applica-
tions” (see |1]), which is considered the bible of this theory. There are
other important contributions by J. Aczél and J. Dhombres in “Func-
tional Equations Containing Several Variables” and also a basic refer-
ence book is due to M. Kuczma [13|. A pioneer work of A. Jarai (see [9])
led to the observation that the strong algebraic character of a functional
equation implies important consequences for the analytic behaviour of
the solutions. An other stream started in the 90’s with the monograph
of Laszlo Székelyhidi (see [25]) emphasizing and introducing the funda-
mental role of spectral analysis and spectral synthesis in the theory of a
special type of functional equations. In the monograph [25] the author
offers a general method for the solution of convolution type systems of
functional equations. The essence of the method is that first the “basic
building blocks” of the solution space of the functional equation should
be found — these are the so-called “exponential monomials” — and then
— in case of spectral synthesis — the linear combinations of these basic
solutions will form a dense set in the solution space that is, they charac-
terize the solution space. It happens the exponential monomial solutions
play a very special and important role in the solution process.

It turns out that several ideas of this type can be adopted to a
more exciting situation: to the situation of hypergroups. The concept
of DJS-hypergroup which we shall use here (according to the initials
of C. F. Dunkl, R. I. Jewett and R. Spector) is due to R. Lasser (see
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e.g. [5], [10], [23]). One can realize a hypergroup like the convolution
structure of some measure algebra over a group, but the group structure
has been neglected. One can introduce translation operators on hyper-
groups, which makes it possible to set up a theory of harmonic analysis.
Using translation operators on hypergroups a wide range of machinery
can be adopted from the group-case. Nevertheless, the classical group-
methods can be applied only restrictively: the special situation does not
make it possible to “copy” the well-known classical methods. However,
there are some function classes, like additive functions, exponential func-
tions and generalized moment functions (or generalized moment function
sequences), which play a central role on hypergroups.

Now, we present the heuristic meaning of the concept of hypergroup.
This is the following: suppose that a locally compact topological group
is given. We consider all complex Radon-measures defined on this topo-
logical group. These measures form a x-algebra with the convolution as
multiplication. Since this mapping is obviously injective, the group can
be embedded into the measure algebra as a sub-semigroup. We get the
concept of hypergroup in the way that at this time we “forget about”
the group, we “throw away” the group from the measure-algebra and
“forget” that convolution of measures is defined by the multiplication
defined on the group. Only the basic properties of the convolution re-
main and the fact that the measures are defined on a locally compact
Haussdorff-space. When we collect these facts in the form of axioms we
arrive at the definition of the hypergroup. The theory of hypergroups
has interesting and useful several fields of mathematics. Such areas are
harmonic analysis, probability theory, orthogonal polynomials, differen-
tial equations and boundary value problems. The detailed definition of
hypergroups can be found in [4].

The appearance of translation operators enables us to utilize an effec-
tive method of studying functional equations and systems of functional
equations on hypergroups. Namely, it turns out that some of the meth-
ods of spectral analysis and spectral synthesis can be adopted and used
in the hypergroup-situation.



In the second and third chapter we present the notation, termino-
logy, the definition of hypergroups and basic properties, together with
some examples which are in the focus of this PhD dissertation.

In the fourth chapter we present the general form of exponentials
and additive functions on some hypergroups. These characterization
problems will be presented on the SU(2)-hypergroup by a detailed in-
vestigation (see [31]).

In the fifth chapter we introduce the generalized moment function
sequences and prove that on any commutative hypergroup the genera-
lized moment functions are linearly independent. Moreover we present
the form of these funcions on the SU(2)-hypergroup (see [35] and [31]).

The sixth chapter contains a detailed investigation related to the
linear independence and the translation property of exponential mono-
mials on the Sturm-Liouville hypergroups (see [36]).

In the seventh chapter we formulate the problem of spectral analysis
on commutative hypergroups and solve it for finite dimensional varieties.
This investigation is followed by a useful tool, namely spectral analysis
using moment functions (see [33| and [35]).

The last two chapters contain particular applications. We formulate
the uniqueness of a moment problem in the cases of polynomial and
Sturm—Liouville hypergroups. Last, but not least, we solve some con-
ditional functional equations and use these results to give the general
form of exponentials and additive functions on some two-point support
hypergroups (see [34] and [32]).

The results presented in this PhD dissertation are based on the pa-
pers [36], [33], [37], [34], [35], [31] and [32] which have been prepared
in collaboration with my supervisor, professor Laszloé Székelyhidi.



CHAPTER 2

Notation and terminology

In this chapter we present the basic notations and concepts, the
definition of hypergroups and some elements of harmonic analysis which
can be applied on hypergroups.

1. Terminology

Let X be a locally compact Hausdorff-space and let C(X) be the set
of all complex valued continuous function on X. Let C.(X) be the set
of compactly supported functions from C(X). The space C.(X) is the
union of subspaces

Ce(X, K) ={f € Ce(X)|supp f C K},

where K is a compact subset of X. If we equip these spaces with the
uniform convergence topology on compact sets, we get a locally convex
topology on C.(X), which is the inductive limit of the topologies on
the spaces C.(X). We say that p is a Radon measure on X if it is a
continuous linear functional of the space C.(X). We use the notation

/f ) du(e /fdu,

where f is an element of C.(X). We denote the set of all complex Radon-
measures on X by M(X) and if p is an element of M(X), then

[pll = sup{ [u(f)] [f € Ce(X), |[flloc <1}

The measure p in M(X) is a bounded measure, if ||p|| is finite; fur-
thermore p is a probability measure if p > 0 and ||u|| = 1. The set
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The measure algebra of hypergroups )

of all bounded and probability measures on X are denoted by M®(X),
MI(X), respectively.

The measure 9§, defined by
0:(f) = flx)  (f €Ce(X))

for each fin C(X) and z in X is called the Dirac measure, or point mass
corresponding to x.

Let K(X) be the set of all nonvoid compact subsets of X and
KaB)={KeK(X)|[KNA#0 and K C B} (A,B C X).

If we equip the space K(X) with the Michael-topology [15], which has
the subbase
{Ka(B)| A, B open subsets of X},

then the space K(X) will be a locally compact Hausdorff space. This
topology has the property that if the set X is compact, then the space
K(X) is compact, and if the space (X, p) is a metric space, then the
Michael-topology and the Hausdorff-topology are equivalent [12], the
latter being generated by the metric

p(A,B) =inf{r | ACV,(B) and B CV,(A)},

where

Vi(A)={ye X |Tx e Ad: plx,y) <r}.

2. The measure algebra of hypergroups

Let K be a locally compact Hausdorff space and we suppose the
following;:

H; There is a binary operation * on the vector space M°(K), with
the property that (MP(K), +, %) is an algebra (convolution).

Hj If z,y are in K, then &,  d, is in M (K) and supp (6, * &) is
compact.

H3 The mapping (x,y) — Jd;*d, is continuous, where the topology
of M(K) is the weak topology induced by C.(K).
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H4 The mapping (x,y) — supp (d, * dy) is continuous, where the
topology of K(K) is the Michael-topology.

Hs There exists a unique element e in K that . %, = 0, % de = 0,
holds for any =z in K (identity).

Hg There exists a homeomorphism ¥ : K — K, such that (zV)¥ =z
holds for any z in K and for x,y in K the element e is in
supp (0, * ) if and only if x = y¥ (involution).

H; For any z,y in K, the property (d, * (5y)v = 0yv * 0zv holds,
where 1V is defined by

/f )y ( /f Ydu(z)  (f € C(K)),

whenever y is in M®(K).

We say that the quadruple (K, *,Y , e) is a hypergroup, the operation
* is the convolution and the operation v is the involution. Sometimes we
use the notation (K, x*), or simply K for hypergroups. It is important to
note that K has no algebraical structure, all properties come from the
measure algebra in the way that we identify the members of K by the
appropriate Dirac measures.

The set of all boundedly supported measures is dense in the space
MP(K), hence by the continuity of convolution for every p, v in M?(K)
the convolution of y and v is defined by

wenin= [ [ ( [ e, *6y><z>) dp(z)dv(y),

which means that the convolution of Dirac measures determines the
whole hypergroup.
For instance, let K be a locally compact topological group, zV =
Land 6, * 6y = 4y, then (K,*,) is a hypergroup. Indeed, by the
associativity of the group operation, the axiom H;p holds, the identity
of the group K is the identity of the hypergroup (K,*," ), and e is in
supp (8 x &) = {xy} if and only if z = y~1, furthermore
=4

(82 % 6,)" = 6 -

zy)—1 1p—-1 = (5yv % OV .
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This observation shows that the concept of hypergroup can be consi-
dered as a generalization of locally compact topological groups, where
the convolution structure of bounded measures is similar to the Banach
algebra of measures defined on groups.

The hypergroup K is commutative if (MP(K), +, %) is a commutative
algebra. The hypergroup K is Hermitian if the involution on it is the
identity. Clearly, any Hermitian hypergroup is commutative, since

Oz % 6y = (87 % 6,)" = Oyv * Opv = Oy * Oy
If K is a discrete Hermitian hypergroup, then the axiom systems of
K is the following:

HY There is a binary operation * on the vector space MP(K), with
the property that (MP(K), +, %) is an algebra.
H; If x,y is in K, then &, * 6, is in M!(K).
H3 There exists uniquely such an element e in K that
O *0p = Op % 0o = O

holds for any = in K.
H} supp (0, * 0y) is finite for any x,y belongs to K.
H? For x,y in K, the property e is in supp (d, * 6,) holds, if and
only if z = y.
With the help of convolution we can introduce the notion of trans-
lation. For f in C(K) and x,y in K the left (right) translate of f by y
is defined by

i /f (6,5 6,)(),  Thf( /f A8, * 5.)(1),

respectively. We shall use the following suggestive notation for the trans-
lation operator T:

flaxy) =7, f(z /f A6, + 8,)(1)

Let f in C(K) and g in M®(K), then the convolution of f and p is
defined by

(f % w)(a /fa:*y dny) (e K),
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and
(o f)() = /K f@V e x) du(y)  (x € K).

We say that the positive measure w is a left tnvariant measure or, in
other words, left invariant Haar measure, if

[ i@ asw) = [ 1@ dute) e,
K K

holds for any f in C.(K), which means that w(dy * f) = w(f) for any y
in K. The right invariant (Haar) measures can be defined in a similar
way.

There is no existence result for (left) invariant measures on hyper-
groups, but in some special important cases, the existence of these mea-
sures has been proved. If there exist Haar measures on a hypergroup,
then they are unique up to a constant factor [10]. For every commu-
tative hypergroup there exists Haar measure [23]. There exists Haar
measure on every commutative and on every compact hypergroup [10].

On discrete hypergroups there exist left and right invariant mea-
sures [10], but in contrast with the case of groups not every discrete
hypergroup is unimodular [11] that is, they are not necessarily identi-
cal. Adetailed investigation of invariant measures can be found in [4].

If there exists an invariant measure w on a hypergroup, we can define
the convolution of w-integrable functions f and g, where f, g are in C(K),
with the formula

(f*9)(y) = /K ry F@)g(@") do(z) (€ K).

We say that the function y in C(K) is a semi-character on the hy-
pergroup (K, *,"), if it is not identically zero and

x(@xy) =x(@)x@), x@=z')=x(@) (v,y€K)

hold. The set of all bounded semi-charecters of the hypergroup K is
denoted by K. The members of K" are the characters.
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The Fourier-transform of the measure pu from Mpy(K) is the function
ﬁ : K — C for which

A -
00 = [ X duta),
where x is in K” is an arbitrary character. The property

(p* ) () = HOOV(xX) (v € KV
holds for any p, v in My(K).

In the case of compactly supported measures the Fourier-transfor-
mation can be extended to the set of semi-characters, this is the Fourier—
Laplace-transformation.

Let the function f be integrable with respect to the Haar measure w.

A
The Fourier transform of the function f is f : K — C, where

f00 = [ FeR@dae) (e KO
furthermore, if the functions f and g are w-integrable, then
(F*0) 00 = T (x € K.

The generalization of harmonic analysis to hypergroups can be found
in [10] and [4].



CHAPTER 3

Hypergroups and examples

1. Polynomial hypergroups

An important special class of Hermitian hypergroups is closely re-
lated to polynomials.

Let (an)nen, (bp)nen and (¢p)nen be real sequences with the follow-
ing properties: ¢, > 0, by, > 0, ap+1 > 0 for all n in N, moreover ag = 0,
and a,+b,+c, = 1 for all n in N. We define the sequence of polynomials
(Pp)nen by Py(x) =1, Pi(x) = x, and by the recursive formula

xPn(iL‘) = anpnfl($> + ann(x) + CnPn+1(x)

for all n > 1 and x in R. The following theorem holds.

THEOREM 3.1. If the sequence of polynomials (P, )nen satisfies the

conditions above, then there exist constants c¢(n,m,k) for all n,m,k in
N such that

n+m
PuPpn= Y c(n,m, k)P,

k=|n—m)|
holds for all n,m in N.
PROOF. By the theorem of Favard (see [6]) the conditions on the

sequence of polynomials (P,),ecn imply that there exists a probability
measure p on [—1,1] such that (P,)nen forms an orthogonal system on

10



Polynomial hypergroups 11

[—1,1] with respect to u. As P, has degree n, we have

n+m
P,P, = Z c(n,m, k) Py
k=0
for all n,m in N, where
c(n,m, k) = T—
Jo Pidu

holds for all n,m, k in N. The orthogonality of (P,)nen with respect to
w implies ¢(n,m,k) =0 for k >n+morn >m-+korm>n+k.
Hence our statement is proved. [l

The formula in the theorem is called linearization formula, and the
coefficients ¢(n, m, k) are called linearization coefficients. The recursive
formula for the sequence (P, )nen implies P,(1) =1 for all n in N, hence

we have
n+m

Z c(n,m, k) =1
k=|n—m)|
for all n in N. It may or may not happen that c¢(n,m,k) > 0 for all
n,m, k in N. If it happens, then we can define a hypergroup structure
on N by the following rule:

n+m
Op * Oy = Z c(n,m, k)
k=|n—m)|
for all n,m in N, with involution as the identity mapping and with

e as 0. The resulting discrete Hermitian (hence commutative) hyper-
group is called the polynomial hypergroup associated with the sequence

(Pn)neN (See [17])'

As an example we consider the hypergroup associated with the Le-
gendre-polynomials. The corresponding recurrence relation is
_n+1
C2n+1

z Py () Poga(z) + Poa(2)

n
2n+1
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for all n > 1 and = in R. It can be seen easily that the linearization
coefficients are nonnegative, and the resulting hypergroup associated
with the Legendre-polynomials is the Legendre-hypergroup.

2. Sturm—Liouville hypergroups

Sturm—Liouville hypergroups represent another important class of
hypergroups, which arise from Sturm-Liouville boundary value prob-
lems on nonnegative reals. In order to build up the Sturm-Liouville
operator basic to the construction of hypergroups, one introduces the
Sturm-Liouville functions. Let Ry = [0, +-o0].

The continuous function A : Ry — R is called a Sturm-Liouville
function, if it is positive and continuously differentiable on the positive
reals. For a given Sturm-Liouville function A one defines the Sturm—
Liouville operator L by

A/
Laf=-1"=51,

where f is a twice continuously differentiable real function on the positive
reals. Using L4 one introduces the differential operator [ by

Hul(z,y) = (La)eu(z, y) — (La)yu(z, y) =
A'(x) A'(y)

A(x) Aly)
where u is twice continuously differentiable on positive reals.

= —O%U(ZL‘, y) - 81U(ZL’, y) + 8%’&(1‘, y) + 82’&(1', y)7

A hypergroup on Ry is called Sturm—Liouville hypergroup, if there
exists a Sturm—Liouville function A such that given any real-valued C°°-
function f on Rg the function uy defined by

up(z,y) = fzxy) = A fd(6q * 5y)

for all positive x,y is twice continuously differentiable and satisfies the
partial differential equation

llufg] =0
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with Oyuys(x,0) = 0 for all positive z. Hence uy is a solution of the
Cauchy-problem

A'(z)
A(z)

Oru(e.) = Bute, ) + 5 dwute),

Fu(r,y) +

82uf (x, 0) =0
for all positive z,y. In other words, uy is the unique solution of the
boundary value problem

A'(z) A'y)

FRup(z,y) + e Oruy(z,y) = up(z,y) + Aly) A (x,y),

O1us(0,y) =0, Oguyf(x,0) =0,
Uf(l’,O):f(l’), Uf(O,y) :f(y)a

for all positive x,y. As this boundary value problem uniquely defines u

for any f, we may consider it the boundary value problem defining the
Sturm-Liouville hypergroup (see [4] and [29]).

3. The SU(2)-hypergroup

In this section we present the definion of the SU(2)-hypergroup
which is related to the set of continuous unitary irreducible representa-
tions of the group G = SU(2), the special linear group in two dimensions.
The definition of the underlying hypergroup is taken from [4].

If G is a compact topological group, then its dual object G consists of
equivalence classes of continuous irreducible representations of G. For
any two classes U,V of this type their tensor product can be decom-

posed into its irreducible components Uy, Us, . .., U, with the respective
multiplicities my, ma, ..., my. We define convolution on G by
n
oy * oy = — 0y, 3.1
vEov ; dU)d(v) V" (3.1)

where d(U) denotes the dimension of U and dy is the Dirac measure
concentrated at U. Then G with this convolution and with the discrete
topology is a commutative hypergroup.
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In the special case of G = SU(2) the dual object G can be identified
with the set N of natural numbers as it is indicated in [4]: the set of
equivalence classes of continuous unitary irreducible representations of
SU(2) is given by {7, 7™M 7(R)  } where T has dimension n+1,
and we identify this set with N.

For every m,n in N the tensor product of 7(™ and T(" is unitary

equivalent to
7(Im=nl) @T(\m—nm) @ . @T<m+n> ) (3.2)

The convolution is given by

m+n
k1
D DL s S 3.3
i o D (3:3)

where the dash denotes that every second term appears in the sum,
only. With this convolution N becomes a discrete commutative hyper-
group, and since all the T are self-conjugate, the hypergroup is in fact
Hermitian. We call this hypergroup the SU(2)-hypergroup.

4. Two-point support hypergroups

Here we present some other examples for hypergroups.

4.1. TuE K; = (][0, 1], %) HYPERGROUP.

Let K; be the hypergroup on the interval [0, 1] with the convolution

defined by
1

1
Oz * Oy = §5ar+y + §5Iw—y|'

This is a one-dimensional compact hypergroup (see [4], Example 3.4.6
on p.191.).
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4.2. THE K3 = ([0, 400[, *) HYPERGROUP.

The hypergroup K is defined on the nonnegative reals [0, +oo[ and
the convolution is defined by

1 1
This hypergroup is a noncompact one-dimensional hypergroup (see [4],
Example 3.4.5 on p. 191.).

4.3. THE cosh-HYPERGROUP.

Using the function cosh, we can build up a Sturm—Liouville hyper-
group on the nonnegative reals, called the cosh-hypergroup. In this case
the Sturm-Liouville function will be the function z + cosh?(z).

Another way to introduce the cosh-hypergroup is the following. We
consider the nonnegative reals as a base set and we introduce the con-
volution with the formula

cosh(z + y) cosh(|z — y|)

Op %0y = —————->—§ ol -
* 2coshz coshy Y + 2coshz coshy 1*7Y!

This hypergroup is also a special two-point support hypergroup, which
is actually identical with the cosh-hypergroup (see [4]). We denote this

hypergroup by K3 = (Ro, *, cosh).



CHAPTER 4

Exponential and additive functions on
hypergroups

In the case of commutative groups exponential polynomials play a
fundamental role in several problems concerning functional equations.
As exponential polynomials are built up from additive and exponential
functions, which are closely related to translation operators, the presence
of translation operators on hypergroups makes it possible to define these
basic functions on hypergroups too.

Let K be a hypergroup with convolution *, involution ¥ and identitye.
For any y in K let 7, denote the right translation operator on the space
of all complex valued functions on K which are integrable with respect
to 0, x 0, for any =,y in K. In particular, any continuous complex valued
function belongs to this class. We call the continuous complex valued
function a on K additive, if it satisfies

7y a(z) = a(z) + a(y)
for all z,y in K. In more details this means that

/ a(t) d(6,  8,)(1) = a() + ay)
K

holds for any z,y in K. The continuous complex valued function m on
K is called an exponential, if it is not identically zero, and

7y m(x) = m(z)m(y)
holds for all z,y in K. In other words m satisfies the functional equation
[ mle) 68,0 = mia)m(w).

16
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It is obvious that any linear combination of additive functions is addi-
tive again. However, in contrast with the case of groups, the product
of exponentials is not necessarily an exponential. The bounded expo-
nential m is called a character, if m(xz") = m(x) holds for any x in K.
Obviously a(e) = 0 for any additive function a, and m(e) = 1 for any

exponential m.

An exponential monomial on a locally compact Abelian group G is
a function of in the form

x +— Play(z),a2(x),...,an(z)m(z),

where n is a nonnegative integer, ai,as,...,a, : G — C are additive
functions, m is an exponential and P is a complex polynomial. In the
case n = 0 we consider this function to be identically equal to m. A
linear combination of exponential monomials is called an exponential
polynomial. A product of additive functions is called a monomial, and a
product of monomials we call a polynomial.

If we want to introduce these concepts on commutative or arbitrary
hypergroups, we have to remember the fact that product of exponentials
is not necessarily an exponential. On the other hand, in case of com-
mutative groups exponential polynomials can be characterized by the
fact that the linear space of functions spanned by the translates is finite
dimensional. This property is of fundamental importance from the point
of view of spectral synthesis. Hence it seems to be reasonable to define
exponential polynomials by this property, even on arbitrary - not nec-
essarily commutative - hypergroups. Anyway, additive and exponential
functions on hypergroups obviously have this property and it seems to
be interesting to describe these function classes on different hypergroups.

In what follows, we present the general form of exponentials and
additive functions on polynomial hypergroups in a single variable and
on Sturm-Liouville hypergroups.
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1. The case of polynomial hypergroups

Let K = (N, P,) be the polynomial hypergroup associated with the
sequence of polynomials (P,),en. Now we describe all exponential func-
tions defined on K (see also [4]).

THEOREM 4.1. Let K = (N, P,)) be the polynomial hypergroup associ-
ated with the sequence of polynomials (Py)nen. The function ¢ : N — C
is an exponential on K if and only if there exists a compler number A
such that

p(n) = Pa(X) (4.1)
holds for all n in N.

Next theorem describes exponentials on the hypergroup K = (N, P,).

THEOREM 4.2. Let K = (N, P,)) be the polynomial hypergroup associ-
ated with the sequence of polynomials (Pp)nen. The function a : N — C
is an additive function on K if and only if there exists a complex number
c such that

a(n) = cP) (1) (4.2)

holds for all n in N.

2. The case of Sturm—Liouville hypergroups

Let K = (Rp, A) be a Sturm-Liouville hypergroup. Now we describe
all exponentials and additive functions defined on K (see also [29]).

THEOREM 4.3. Let K be the Sturm—Liouville hypergroup correspond-
ing to the Sturm—Liouville function A. Then the continuous function
m : Ry — C is an exponential on K if and only if it is C*° and there
exists a complexr number A such that

m” (x) + il((j)) m/(x) = Am(x), m(0) =1, m'(0)=0, (4.3)

holds for any positive x.
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Hence any exponential function on a Sturm—Liouville hypergroup is
an eigenfunction of the Sturm-Liouville operator corresponding to the
given hypergroup. Each complex number is an eigenvalue and there is a
one-to-one correspondence between complex numbers and exponentials.
For any fixed complex A\ we shall denote by x — ¢(z,\) the unique
solution of the boundary value problem. Then the function

p:RyxC—-C
represents a one-parameter family of exponentials of the Sturm-Liouville

hypergroup K, which is called exponential family of K. We obviously
have

Repla, ) + ’jfj)) o1 ol A) = No(, )

(0,A) =1, 91 ¢(0,A)=0
that holds for each positive x.

For instance, the complex number A = 0 corresponds to the eigen-
value problem
A'(x)
" /
m” (x m (x) =
@)+ Gy ™)
which obviously has the unique solution m = 1, hence ¢(x,0) = 1 for
each z in Ry.
The next theorem describes additive functions on Sturm-Liouville
hypergroups.

THEOREM 4.4. Let K be the Sturm—Liouville hypergroup correspond-
ing to the Sturm—Liouville function A. Then the continuous function
a: Ry — C is an additive function on K if and only if it is C* and
there exists a complex number \ such that

A'(z)
"
a’(x) + A2)

holds for any positive x.

a(x) =M, a(0) =0, m'(0) =0, (4.4)

We get easily that the unique solution ay of the boundary value
problem (4.4) is Aaj, where a; is the uniqe solution of (4.4) with A = 1.
This implies that all additive functions of a Sturm—Liouville hypergroup
are constant multiples of a fixed nonzero additive function. The function
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aq is called the generating additive function of the given Sturm-Liouville
hypergroup. The next theorem shows that the boundary value problem
(4.4) can be solved explicitely.

THEOREM 4.5. Let K be the Sturm—Liouville hypergroup correspond-
ing to the Sturm—Liowville function A. Then the generating additive
function of the hypergroup K is given by

A V)
ai(x) _/0 /0 AW) dt dy (4.5)

for each nonnegative x. Hence any additive function of the hypergroup

K is given by
[T A
ax(z) = )\/O /0 AW) dt dy (4.6)

for each nonnegative x, where A is an arbitrary complex number.

3. The case of the SU(2)-hypergroup

In this section we describe the exponential and additive functions on
the SU(2)-hypergroup. We recall that the function M : N — C is an
exponential if and only if it satisfies

m—+n

M(m)M(n) = M(mx*n) = Z ’( bl

CESICES) M (k) (4.7)

k=|m—n|
for all natural numbers m,n. Here and everywhere “dash” means that
each second term appears in the sum, only.

THEOREM 4.6. The function M : N — C is an exponential on the
SU(2)-hypergroup if and only if there exists a complex number \ such
that
sinh[(n + 1)A]
(n+1)sinh A
holds for each natural number n. (Here X\ = 0 corresponds to the expo-
nential M = 1.)

M(n) = (4.8)
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PROOF. Let M : N — C be a solution of (4.7) and let
f(n) = (n+1)M(n)

for each n in N. Then we have
m—+n
fm)fn)=">_ "f(k)
k=|m—n)|

for each m,n in N. With m = 1 it follows that f satisfies the following
second order homogeneous linear difference equation

fin+2) = f()f(n+ 1)+ f(n) =0 (4.9)
for each » in N with f(0) = 1.

Suppose that f(1) = 2. Then from (4.9) we infer that f(n) =n+1
and M = 1 which corresponds to the case A = 1 in (4.8). Otherwise
f(1) # 2 and let A # 0 be a complex number with f(1) = 2cosh A. Then
we have that

f(n) = ae™ + B~
holds for any n in N with some complex numbers «, g satisfying o + 5 = 1.
It is easy to see that in this case
sinh[(n + 1)A]

fn) = sinh A
holds for each n in N. Finally, we have
sinh[(n + 1)A]
(n+1)sinh A

Conversely, it is easy to check that any function M of the given form is an
exponential on the SU(2)-hypergroup, hence the theorem is proved. [

M(n) =

Now we describe the additive functions on the SU(2)-hypergroup.
We recall that the function A : N — C is an additive function if and
only if it satisfies

m+n

A(m) + A(n) = A(mxn) = Z /( k+1

DD AW @10

k=|m—n|

for all natural numbers m, n.
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THEOREM 4.7. The function A : N — C is an additive function on
the SU(2)-hypergroup if and only if there exists a complex number ¢ such
that

A(n) = %n(n +2) (4.11)

holds for each natural number n.
PROOF. Let A: N — C be a solution of (4.10) and
f(n) = (n+1)A(n)

for each n in N. Then we have

m—+n
(n+1)f(m)+m+1)f(n)= > 'f(k)
k=|m—n|
for each m,n in N. With m = 1 it follows that f satisfies the following
second order homogeneous linear difference equation

f(n+2)=2f(n+1)+ f(n) =2c(n+2)

for each n in N with f(0) = 0 and f(1) = 2¢. As the second difference of
f is linear it follows that f is a cubic polynomial and simple computation
gives that A has the desired form.

Conversely, it is easy to check that any function A of the given form
is an additive function on the SU(2)-hypergroup, hence the theorem is
proved. O



CHAPTER 5

Generalized moment function sequences

After the classical function classes the next important class of func-
tions is the class of moment functions. For any nonnegative integer n
the complex valued continuous function ¢ on the hypergroup K is called
a generalized moment function of order n, if there are complex valued
continuous functions ¢ : K — C for £k = 0,1,...,n such that pg # 0,
pn = @ and

7

k
pr(zxy) =) <k> wi(@)pr—i(y) (5.1)

=0
holds for k = 0,1,...,n and for all z,y in K. In this case we say that
the functions i (K = 0,1,...,n) form a generalized moment function

sequence of order n. For more about generalized moment function se-
quences see [38], [17], [16], [18].

For instance, if 9 = 1, then the moment functions of order 1 are
the additive functions.

In the following subsection we show that nonzero generalized mo-

ment functions are linearly independent on any commutative hyper-
groups.

23
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1. Linear independence of generalized moment functions

THEOREM 5.1. Let K be a commutative hypergroup, n > 1 an integer
and (r)r_y o sequence of generalized moment functions with ¢1 # 0.
Then the generalized moment function o, is not the linear combination
of the generalized moment functions ©g, 1, .- ., Pn—1-

PrOOF. We prove our statement by induction on n. Let first n =1
and suppose that ¢; = Ao with some nonzero complex A. Then, by
(5.1), it follows

Po(@)po(y) = polwy) = 5 or(y) =

1 1

" ©1(x)po(y) + " wo(z)p1(y) = 2 po(z)po(y) ,

a contradiction.

Now let n > 2 be any integer and suppose that we have proved our
statement for all integers not greater than n. For n 4+ 1 we suppose the
contrary that is, that there are complex numbers ¢; (i = 0,1,...,n) such
that

(pn-i-l T * y Z Cz‘Pz T * Z/ (5'2)

holds for each z,y in K. By (5.1) we have
n+1

> <n;r1><pj(a:)son+1 — ZZC( > D)pi—i(y)  (53)

j=0 =0 j=0

for each z,y from K. Using (5.1), (5.2) and reordering the sum on the
right hand side after simplification we get

n n .
n+1 ]
S (" ernssm et -3 o)) ensw]estn) =0 6.
0 J — J
Jj= i=j
By our assumption, the coefficient of ,, must be zero for each y in K
that is

which is impossible. The theorem is proved. U
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This result has the following consequence.

THEOREM 5.2. Let K be a commutative hypergroup, n > 1 an integer
and (pr)r_y o sequence of generalized moment functions with p1 # 0.
Then the functions g, Y1, ---,en are linearly independent. In particu-
lar, none of them is identically zero.

2. Generalized moment functions on the SU(2)-hypergroup

Here we describe the generalized moment functions on the SU(2)-
hypergroup. Let N be a nonnegative integer. Making use of the results
in Section 3 we introduce the function

sinh[(n + 1)A]

d(n )= ——————
(m,2) (n 4 1)sinh A

for each n in N and A # 0 in C, while ®(n,0) = 1 for each n in N.

The function ® : N x C — C is an ezponential family for the SU(2)-
hypergroup: each exponential on this hypergroup has the form

n— ®(n,\)

(5.5)

with some unique A in C, and, conversely, the function n — ®(n,\) is
an exponential on the SU(2)-hypergroup for every complex A.

THEOREM 5.3. Let K denote the SU(2)-hypergroup and ® the ex-
ponential family given by (5.5). The functions @o,¢1,...,on8 : K — C
form a generalized moment sequence of order N on K if and only if there

exist complex numbers cj for j =1,2,..., N such that
dk
prln) = (0, £(2)(0) (56)
holds for each n in N and for k=0,1,..., N, where
N .
fO =3 =t
=07

for each t in C.
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PRrROOF. First we note that, by (3.3), we have for n > 1

n+1

kE+1 n n+2
— / — —_—
On % 01 = k:znl 2(n + 1)5k - 2(n+ 1)57%1 * 2(n + 1)57”rl . (67)

hence, by 3.2.1 Proposition in [4]|, K is a polynomial hypergroup that
is, there exists a sequence (P, )nen of polynomials such that deg P, =n
for n = 0,1,..., there exists an zy in R such that P,(zg) = 1 for
n=20,1,..., and
o0
Po(z)Pr(x) = c(m,n, k) Py(z) (5.8)
k=0
holds for each z in R and m,n in N with some nonnegative numbers
c¢(m,n, k), further we have
[e.e]
O % O = Z c(m,n, k)oy (5.9)
k=0
for each m, n in N. Here we shall determine this sequence of polynomials.
Our basic observation is that the function A — ®(n, A) is a polyno-
mial of cosh A of degree n for each n in N. We prove by induction. For
n =0 and n = 1 we have by (5.5)

sinh A
®(0,\) = =1
(0,4) sinh \ ’
_sinh(2))
(1L, N) = Ssmhy = cosh \.

Suppose that for £ = 0,1,...,n there exists a polynomial P of degree
k such that

®(k,\) = Pi(cosh \) (5.10)
holds. Clearly Py(z) = 1 and Pj(x) = x. Then, by equation (5.7), we
have

n n+2
P,(cosh\)coshA = ———P,_ hA)+ ——-+® 1,A),
(cosh \) cos 2 1) 1(cosh \) + 1) (n+1,X)
(5.11)
that is,
~ 2(n+1) n
d(n+1,A) = TPn(cosh A) cosh A mPn_l(cosh A), (5.12)
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and here the right hand side is a polynomial of degree n + 1 in cosh A:

2(n+1) n
Prale) = =g oble) =0y

Pn,1($) )
hence
®(n+1,\) = Pyyi1(cosh \),
which was to be proved.
Finally, we have for all m,n in N and A in C
P, (cosh \) P, (cosh A) = @(n, \)®(m,\) = ®(nxm,\) =

m+n m+n

k+1 k41

= e ®(k,\) = Ty & h\A),
k:%:m CEDCE e k:%;nl CESCESI Rk
which implies
m+n
k+1
P, (x)Ppy(z) = e Pi()
() Em() k%:_n (m+1)(n+1)

for each  in R and m,n in N. This means that K is the polynomial
hypergroup associated to the sequence of polynomials (P, )nen. Then,
by Theorem 4. in [17], our statement follows. O

Actually, we have proved the important fact that the SU(2)-hypergroup
can be transformed into a polynomial hypergroup.



CHAPTER 6

Exponential monomials on Sturm—Liouville
hypergroups

Here we define exponential monomials on Sturm—Liouville hyper-
groups and we prove a special linear independence property of them.

Let K = (R, A) be a Sturm—Liouville hypergroup. We recall that
the continuous function m : Rg — C is an exponential on K if and only
if it is C*° on the positive reals and there exists a complex number A
such that
A'(x)
"
m(x)+
holds for any positive z. Exponential functions satisfy Cauchy’s func-
tional equation

m/(z) = Am(x), m(0) =1, m'(0)=0 (6.1)

m(z xy) = m(z)m(y) (6.2)
for all x,y in K. It is obvious that we can define an exponential family
¢ : Ry x C — C with the property that the function z — ¢(x,\) is
an exponential of K for each complex A, and for each exponential m of
K there exists a unique complex A such that m(x) = ¢(z, \) holds for
every x in Rg. Hence the exponential family satisfies

Bt o(x, A) + p(x)Bip(e, N) = Ap(x, A), (6.3)

©(0,\) =1, 01p(0,\) =0
for each x in Ry and complex number A, where p(z) = %. Actually,
(6.3) characterizes the exponential family. Clearly ¢ is C*° on Ry in x

and entire in A.

28
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Using the exponential family we define exponential monomials on
K as functions of the form = — P(02)p(z, A), where P is a complex
polynomial and A is a complex number. The meaning of P(0s) is obvious.
In particular, if P = 1, then we have that any exponential function is an
exponential monomial. Observe that this is an analoguous concept to the
“exponential monomial” on polynomial hypergroups in several variables
in [27] and [30]. Sums of exponential monomials are called ezponential
polynomials.

1. Linear independence of exponential monomials

A particular subclass of exponential monomials is formed by the
functions of the type x — 8§¢($, A), where k is a nonnegative integer
and A is a complex number. Here we note that if A = 0, then ¢(z,0) =1
for each x in Ry, hence the corresponding function = — 95p(z,0) is
identically 1 for k£ = 0, and it is identically 0 for £ > 0. For the sake of
simplicity we will call the functions x 8§¢(z, A) special exponential
monomials if k is a nonnegative integer and A is a complex number,
supposing that if A = 0, then £ = 0. Our aim is to show that different
special exponential monomials are linearly independent.

First we show that different exponential functions are linearly inde-
pendent.

THEOREM 6.1. On any hypergroup different exponentials are linearly
independent.

PROOF. Let my, mo,...,m, be different exponentials on the hyper-
group K. We prove by induction on n. For n = 1 the statement is
trivial. Suppose that n > 1 and

camy(t) + cama(t) + -+ + cp1mp—1(t) + comy,(t) =0 (6.4)

holds for each t in K. Let x,y be arbitrary in K and we integrate both
sides of equation (6.4) with respect to the measure ¢, * dy:

cami(zxy)+como(zxy)+- -+ cpn_1mp—1(x*xy)+cpmy(xxy) = 0. (6.5)
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Using the exponential properties of the m's we have
cimy(z)mi(y)+- -+ en—1mn—1(2)mp-1(y) +cnmn(z)mn(y) = 0. (6.6)

Now we write ¢ = x in (6.4) and multiply the equation obtained by
mp(y):

cimi(z)mn(y) + - + cnm1mn—1(2)Ma(y) + comn(z)mn(y) = 0. (6.7)
We subtract (6.7) from (6.6) to get
cima(@)[ma(y) = ma(Y)] + -+ + cnrmn1 (2) mn-1(y) — ma(y)] = 0.

(6.8)

By assumption the exponentials mi,ma, ..., my—1 are linearly indepen-
dent, hence

cifmi(y) —mn(y)] =0 (6.9)

fori=1,2,...,n—1. As m, # my we can choose a y in K such that

mn(y) # mi(y); it follows that ¢; = 0. Continuing this argument we get

¢ =0fori=1,2,...,n— 1, which also implies ¢, = 0. The proof is

complete. 0

We shall also need the following result in the sequel.

THEOREM 6.2. Let K be a Sturm—Liouville hypergroup with the ex-
ponential family ¢ : Ry x C — C, n a nonnegative integer and Ao # 0 a
complex number. Then the special exponential monomials

x— @(x, o), x — O2p(x, Ao), ...,z — Iyp(z, o) (6.10)
are linearly independent.

PRrROOF. We prove the statement by induction on n, which is obvi-
ously true for n = 0. Suppose that we have proved it for n, and we prove
it for n+ 1, where n is some nonnegative integer. Proving our statement

by contradiction we suppose that the function z — 83“@(30,)\0) is a
linear combination of the functions

xb—>8§g0(:c,)\0) k=0,1,...,n,
that is there are complex numbers ¢; for £k = 0,1,...,n such that

05 oz, o) = Y k5ol Ao) (6.11)
k=0
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holds for each z in K. By the definition of the exponential family we
have

OFp(x, A) + p(x)d1p(x, A) = Ap(z, A) (6.12)
for each x > 0 and X in C. We differentiate both sides k times with
respect to A for £k =0,1,...,n+ 1. We obtain

k
k . .
020k (. N) + p(x) () = 3 ( j)w oo, N), (6.13)

j=0
or, equivalently
PR p(x, \) + p(x)0105 (2, \) = NS o(x, \) + koS Lp(x, ) (6.14)
for each x > 0 and A in C and for £k =0,1,...,n+ 1.

Here 0, '¢p(2, \) = 0. We shall use this equation several times in the
sequel.

Differentiating equation (6.11) two times with respect to x we have
the equations

0105 (@, Ao) = Z%&%@(% Ao) (6.15)
k=0
and
070y o(w, o) = > 07 05p(x, Mo) (6.16)
k=0

for each > 0. From these equations by (6.14), we have
> 075 o(x, o) + Y cp(2)01050(x, Ao) =
k=0 k=0
= M8 " o(a, M) + (n+1)05 (. Ao) =

k=0
We can reorder the terms in this equation to obtain

> ck[07050(x, o) + p(2)0105 0(x, Ao) — Xod5ep(, Ao)] =
k=0
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or, equivalently, using again (6.14)

> kerds (o) — (n+ 1)05p(w, M) = 0. (6.17)
k=1

But this is a contradiction, because equation (6.17) presents a nontrivial
linear combination of linearly independent functions, which has the value
zero. Hence the proof is complete. [l

Now we are in the position to prove linear independence of the special
exponential monomials.

THEOREM 6.3. On any Sturm—Liouville hypergroup different special
exponential monomials are linearly independent.

PROOF. We have to show that any finite set of special exponential
monomials is linearly independent. First we suppose that this set does
not include the special exponential monomial 1. We may suppose that
this set consists of special exponential monomials of the form

T — 65(70(56, Aj)

for I = 0,1,...,n and j = 1,2,...,k with some restrictions on the
nonnegative integer n and the positive integer k. Actually, we shall
consider two cases: in the first case we suppose that we have proved the
linear independence of the functions

T ﬁégp(:n, Aj)
for il =0,1,...,nand 7 =1,2,...,k, where n is a nonnegative integer
and k is a positive integer, and we show that the function
x> 0y o(x, Ap)

is not a linear combination of them, and in the second case we suppose
that we have proved the linear independence of the functions

z— ooz, \y), 83“@(3;, At)
forl = 0,1,...,n, s = 1,2,....,kand t = 1,2,...,7, where n is a
nonnegative integer, k > 2 is a positive integer and j is a positive integer
with j < k — 1, and we show that the function x +— 95 (2, A\j11) is
not a linear combination of them. It is easy to see that any other case
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can be reduced to these two cases (eventually, by renumbering the \’s).
We apply induction again: in the first case the statement is clearly true
for n = 0 and £ = 1. Also, if n = 0 and k is arbitrary, then the
statement follows from Theorem 6.1, and if & = 1 and n is arbitrary,
then the statement follows from Theorem 6.2. Hence we can consider
the first case and prove by contradiction: suppose that the function
x> 0y o(x, A1) is a linear combination of the functions

z > Oho(z, \))

for i =0,1,...,nand 7 =1,2,...,k, where n is a nonnegative integer
and k is a positive integer. This means that there are complex numbers
¢y forl=0,1,...,nand j =1,2,...,k such that

o o(x, M) ZZCU%QD x, \j) (6.18)

=0 j=1
holds for each = > 0. Differentiating two times with respect to x we get
the equations

n

0105 p(x, M) chljalag(/?($ Aj) (6.19)
=0 j=1
and
0705 p(w, M) 2261]818290 2, \)) (6.20)
=0 j=1

for each > 0. From these equations by (6.14) we have

n

22013818%030 Aj) "’ZZCUP )0105p(x, Aj) =

=03 =0 5=1
= M85 (A1) + (n 4+ DY p(, 1) =

n k
Z Z ArcrOhe(x, Aj) + (n+ 1)85o(x, A1) .
1=0 j=1
We can reorder the terms in this equation to obtain
n k
YD aldtdhe(z, \j) + p(x)0ie(, Aj) — Mdse(e, )] =
1=0 j=1
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or, equivalently, using again (6.14)

n k
Z Zlcldﬁé_lgp(w, Aj) — (n+1)05¢(x, A1) =0. (6.21)
=1 j=1
But this is a contradiction, because equation (6.21) presents a nontrivial
linear combination of linearly independent functions, which has the value
zero. Hence the proof of our statement in the first case is complete.

Now we consider the second case and we prove again by contradic-
tion: we suppose that we have proved the linear independence of the
functions

T = aé@(xa )‘8)7:l7 = 3;L+1(’D($7 )‘t)
forl = 0,1,...,n, s = 1,2,....,kand t = 1,2,...,7, where n is a
nonnegative integer, k > 2 is a positive integer and j is a positive integer
with j < k — 1, and we show that the function z — 95 o (x, \j11) is a
linear combination of them. This means that there are complex numbers
cs,dg for il =0,1,...,nand s =1,2,...,k,t=1,2,...,7 such that

j
oo, i) ZZC;S(?Q@ T, As) Zdtag”rlgo(x,)\t) (6.22)
t=1

=0 s=1

holds for each x > 0. Differentiating two times with respect to x we get
the equations

8163+ (@, Aj+1) chlsalaQSO z, Ag) Zdtala’”‘* T, \t)

=0 s=1
(6.23)
and
n k
ROy o, A1) = DY s 070ho(x, As +Zdt818”+1 (2, \e)
=0 s=1 t=1
(6.24)

for each z > 0. From these equations by (6.14), we have

n

Z ch 581 aZQD z, A + Zdtalé)"“ (x7 >\t)+

=0 s=1 t=1
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n k J
D> asp(@)01050(x, As) + Y dip(x)0105 o, ) =

=0 s=1 t=1

= \j+105o(z, /\j+1) + (n+1)05e(z, Ajr1) =

M:

Z Aj11,s050(x, As)+

l

Il
o

J
+ 3 didj1 05 o, ) + (n+ DR, Aj)
t=1

We can reorder the terms in this equation to obtain

n

k
D> asldidhe(x, As) + p(a)010he(x, As) — Aj110hp(w, Ao+
=0 s=1

J
+ Z 0705 p(x, \e) + p(2) 195 p(x, M) — Nj105 T hp(m, \)] =
=1
= (n+1)05p(r, A\j11),

or, equivalently, using again (6.14)

ZZZ%GZ Yo, As) + Zdt<n+1)aa‘so(x,kt>+

=1 s=1 t=1

+ZZCZS — Aj1)0hep(x, As) +Zdt = A1) o, Ae)—
=0 s=1 t=1
—(n+1)05¢(x, A\j11) =0. (6.25)
The term containing 95 ¢(z, Aj+1) does not appear in the first two sums,
it appears with zero coefficient in the third sum, it does not appear in
the fourth sum, hence its coefficient on the left hand side is —(n+1) # 0.

This is a contradiction and the proof of our statement also in the second
case is complete.

To finish the proof we have to consider the case where the special
exponential monomial 1 is in the set of the exponential monomials. We
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prove by contradiction again: suppose that there are nonzero complex

numbers Ay, Ao, ..., A\; and there is a nonnegative integer n such that
n k
=D bl ) (6.26)
1=0 j=1

holds for each x > 0. Differentiating equation two times with respect to
x we obtain

n k
0= chl,jalaé(p(:t,)\j) (6.27)

1=0 j=1
and
n k
0=> > a,;didhe(x ;) (6.28)
1=0 j=1
for each x > 0. Adding equations (6.27) and (6.28) we get
n k
=3 (0050 (x, A) + p(a) 015l Ag)] = (6.29)
=0 j=1
n k

Z Li [N O (m, ) + 105 p(a);)]

for each = > 0. On the rlght hand side we have a linear combination of
linearly independent functions. The coefficient of 03¢(x, A;) is ¢y jA;,

which must be zero, hence ¢, ; = 0 for j = 1,2,..., k. Continuing re-
cursively we get that c¢,—1; =cp—2;=---=coj=0for j =1,2,...,k,
which contradicts to equation (6.26). Now the proof of the theorem is
complete. O

2. Translates of exponential monomials

The main result of this section is that the translates of exponential
monomials have the characteristic property of moment functions. This
means that there is a close connection between exponential monomials



Translates of exponential monomials 37

and moment functions. The idea of the proof is based on the exchange-
ability of translation and derivation. We give the details in the following.

Let us turn to describe what we get if we consider the equation of
the N*" monomial and substitute x % y for z. We easily get on one hand
the following equation

DROND(x x y, \) + Ala) oY ®(x*y,\) =
1%2 ) A({L’) 2 P
= NOY'®(x xy,\) + X 0N ®(z %y, ). (6.30)
On the other hand, if we use the multiplicative property of the exponen-

tial function, then we have that equation

A'(z)

NPz *xy,\) =X P(xxy,\) = AP(z, \)P(y, \)

(6.31)
holds. If we differentiate equation (6.31) N-times with respect to A, then
we have

!
D20V ®(xxy, \)+ A'lz) N D(zxy,\) = 0 (AD(2, \)®(y, \)), (6.32)

A(z)
where 02 clearly stands for (g\—NN. We introduce the function
[ Ro xC—C

of the form v(z, A\) = 1- XA = A so in the equation (6.32) the second order
partial derivate can be written in the form
N (A (z, \)®(y, \)) = 0% [v(z,\) D(z*y,N)]. (6.33)
From equation (6.30), (6.32) and (6.33) we get
NOY ' ®(z*xy,\) + X 05 @(x xy, \) = 0 [v(x,\) ®(z*y,\)]. (6.34)

This makes the connection between exponential monomials and their
translates clear. The following theorem presents the exact form of the
N derivatives of the function (z,\) + v(z, A) ®(x %y, \) with respect
to A.

THEOREM 6.4. Let K = (Rg, A) be a Sturm-Liouville hypergroup, X
a fired complex number, N a nonnegative integer, y an arbitrary non-
negtive real number, ® : Ry x C — C an exponential function and
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v:RyxC — C a function with the the property v(z,\) = 1-A = X. Then
the second order partial derivatives of the function v(x,\) ®(x*xy, \) can
be written in the form

Oy [(x, ) @(x xy, \)] = A5 @(2, \)@(y, \)+
N-1
+ ) (M) (A (7) N d(y, \) + N(NZ,_ 1) N D(y, \)).
=0

ProoOF. We use induction by N, first we consider the case N = 1.

We get
d d
=0z, )Py, A) + A 2®(z, \)D(y, A) + A (2, 0)02®(y, A) =
= 2 a0, Ny, A) + D, \) (A DaB(y, A) + D(y, \)),

which shows that the theorem holds for N = 1. Let us suppose that the
formula is true for IV, and we will show that it is valid for N + 1. First
we differentiate the equation with respect to A. We get the following:

N w(a,\) @z xy,\)] =
= D (2, ) B(y, \) + X N T1D (2, \)B(y, A) + A ON D (2, \)Da®(y, \)+

N-1 ' N , N_1 '
+ %, A)(A< ; )35_“1)(% A) + N< . >8§V"—1<1>(y, A))+
=0

N-1

+ Z 059 (x, A)(( ; >85V’<I>(y, A) + )x( ; >8§V’+1<I>(y, )\))+
=0
N-1 N1 ‘
+ > 05d(x, A)(N( . >8év_2<1>(y, ).
=0
In the next step we will focus on the index range of the sums
BéV-H [y(a:, A) O(z *y, )\)] =
= 0y Oz, ) (y, \) + A 01 D(2, \) B (y, A) + A 85 D(x, \) 2B (y, A)+
+09® (2, A\) (A NO2D(y, \) + NO(y, \))+

N-2 N | N1 |
+) e (a, A)(A< ) )35_“1)(?;, A) + N< Z. >8§V"—1<1>(y, A)+
=0
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1
+ Z ob®(z,\) (7) N Ry, \)+ (2, \) (NS 1D (y, \)+N O D(y, \))+

= N A N -1 .
- Z A (x, A)(A( ) )a;V—Z“cb(y, A) + N( . )a;v—@(y, ).
To chlarige the index range of the first sum we apply a substitution
8@”1 [1/(:1:, A) D(x xy, )\)] =
= 09 ®(2, \)®(y, \) + A 0N 1@ (2, \)D(y, \) + X 95 D(x, \)Do®(y, A)+
+05'®(z,A) (A NO2D(y, \) + NO(y, \))+

+Za;<pr ( )aN Hlp(y )\)+N<N_1)8N D (y,\))+

+ Z oD (xz,\) <]j> O T B (y, \)+®(2, \) (A TP (y, \)+ NI @ (y, \)) +

0
N-1

; N , N -1 ,
+) 0 95®(x, \) (A( ) >8§V’+1<I>(y, N+ N( . >8§VZ<I>(y, N).
i=1
We simplify the expression

Bév+1[u(w,/\) O(x *y,)\)] =
= 0N D (z, \)P(y )\) + X VLD (2, \)D(y, \) + A 03 ®(x, \)Da® (y, \)+

+ Z < ) Ny " 0 (y, M)+
+<N> OB (z, \) (A Noud(y, \) + N (y, )+
Fannl([) (ot o
232 e[+ (7))o e+



Translates of exponential monomials 40

and using the identity for binomial coefficients, we have
9 w(x, \) @z xy,N)] =
= 0N ®(x, \)D(y )\) + AN R(2, \)®(y, A) + A Y B (2, \)Da®(y, \)+

+ Z < ) (z, \)OY '@ (y, )+

+< >a§vq>(x, N (A NO22(y, A) + NO(y, )+

N+1
+252 @Y o e

N-1
> 05®(z, \) (N <]j> O B (y, )+
=1

+ (JS[) D (2, \) (00T @(y, A) + NOY ®(y, \)).
All this can be written as
oy [v(z,\) ®(z*y,\)] =
=X OB (2, \) D (y, \)+

+Z< ) (2, \)OY 1D (y, \)+
+NZ( ) (2, \)OY 1D (y, \)+

e ot (Ve )
=0

It is easy to see that the previous and the following equations are equal
0yt [v(w, ) Dz xy,N)] =

=\ OB (2, \) D (y, \)+
N

+ N+ (JD DD (x, )05 ' ®(y, \)+

=0
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N
L0(z, A) (A oy, N)).
This final step completes the proof of the expected formula
05 [p(, \) @y, N)] =2 07 @ (w, Ay, A+

N
, N+1 i N —
+ Y aiee (Vo e )+ v+ (T ) en)
=0

which means that the statement holds and the theorem is true. ]
Now we will show that the translates of exponential monomials can

be written in a compact form. The previous theorem will be utilized to

prove the statement.

THEOREM 6.5. Let K = (Rg, A) be a Sturm-Liouville hypergroup, X
a complex number, N a nonnegative integer and the function

z = 0N ®(x, \)

s a special exponential monomial. Then
N

Ty 05 Oz, A) =) <N ) (2, \)05 ' d(y, \) (6.35)

=0 L
for any y in Ry.

PROOF. The proof is based on induction by N. In the first step, if
N =1 on one hand we get t