
 

 

 

 

 

 

1949 

 

SUPERVISED MACHINE LEARNING FOR GULLY 

MAPPING AND MODELING USING LOW-COST, HIGH-

RESOLUTION SENSORS AND OPEN-SOURCE 

GEOSPATIAL DATA IN A SEMI-ARID ENVIRONMENT 

Thesis for the Degree of Doctor of Philosophy (Ph.D.)  

 

 

Kwanele Phinzi 

Supervisor: Prof. Szilárd Szabó DSc 

 

 

UNIVERSITY OF DEBRECEN 

Doctoral Council of Natural Sciences and Information Technology 

Doctoral School of Earth Sciences 

Debrecen, 2023 



 

  



 

 

 

 

 

 

I hereby declare that I prepared this thesis within the Doctoral Council 

of Natural Sciences and Information Technology, Doctoral School of 

Earth Sciences, University of Debrecen, to obtain a PhD Degree in 

Natural Sciences at Debrecen University. 

The results published in the thesis are not reported in any other PhD 

thesis. 

Debrecen, 22 May 2023 

 

……………………………. 

Signature of the candidate 
 

I hereby confirm that the candidate, Kwanele Phinzi, conducted his 

studies under my supervision in the Department of Physical Geography 

and Geoinformatics, Doctoral School of Earth Sciences, between 2019 

and 2023. The candidate's independent studies and research work 

significantly contributed to the results published in the thesis. 

I also declare that the results published in the thesis are not reported in 

any other thesis. 

I support the acceptance of the thesis. 

Debrecen, 22 May 2023 

……………………………. 

Signature of the supervisor 
 



 

  



SUPERVISED MACHINE LEARNING FOR GULLY MAPPING AND 

MODELING USING LOW-COST, HIGH-RESOLUTION SENSORS 

AND OPEN-SOURCE GEOSPATIAL DATA IN A SEMI-ARID 

ENVIRONMENT 

 

 
Dissertation submitted in partial fulfilment of the requirements for the doctoral (PhD) degree 

in Earth Sciences 

 

 

Written by Kwanele Phinzi certified Geographer (MSc. Environmental Science) 

 

Prepared in the framework of the doctoral school of the University of Debrecen 

(Natural and Anthropogenic Processes of the Lithosphere and the Hydrosphere programme) 

 

Dissertation advisor: Prof. Szabó Szilárd DSc 

 

 

 

 

The official opponents of the dissertation: 

 

  Dr.  .............................................................   .......................  

  Dr.  .............................................................   .......................  

 

 

The evaluation committee: 

 chairperson: Dr.  .............................................................   .......................  

 members: Dr.  .............................................................   .......................  

  Dr.  .............................................................   .......................  

  Dr.  .............................................................   .......................  

  Dr.  .............................................................   .......................  

 

 

 

The date of the dissertation defence: ……………… 20…  

 

 

 

 

 

 

 

 

 
 



 

  



Dedication 

To my late mother, Thandiwe Phinzi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  



TABLE OF CONTENTS 

1. INTRODUCTION .............................................................................................. 11 

2. SIGNIFICANCE AND RATIONALE OF THE STUDY ............................... 13 

3. LITERATURE REVIEW ................................................................................. 16 

3.1. Gully definition ............................................................................................ 16 

3.2. Factors controlling gully erosion ............................................................... 18 

3.3. An overview of machine learning (ML) .................................................... 20 

3.4. Gully mapping using remote sensing ........................................................ 25 

3.5. Gully susceptibility modeling ..................................................................... 27 

3.6. Resampling techniques ............................................................................... 29 

3.7. Evaluation metrics ...................................................................................... 32 

4. METHODS AND MATERIALS ...................................................................... 35 

4.1. Study area description ................................................................................ 35 

4.1.1. Study Area #1 ........................................................................................ 39 

4.1.2. Study Area #2 ........................................................................................ 40 

4.1.3. Study Area #3 ........................................................................................ 41 

4.1.4. Study Area #4 ........................................................................................ 42 

4.2. Data .............................................................................................................. 43 

4.3. Geo-environmental variables ..................................................................... 44 

4.4. Variable selection ........................................................................................ 49 

4.5. Reference data collection for gully mapping and susceptibility modeling

 ............................................................................................................................. 50 

4.6. Machine learning (ML) and hyperparameter tuning .............................. 54 

4.6.1. Random forest (RF) .............................................................................. 55 

4.6.2. Support vector machines (SVM) ........................................................... 55 

4.6.3. Regularized discriminant analysis (RDA) ............................................ 56 

4.6.4. Linear discriminant analysis (LDA) ..................................................... 56 

4.6.5. Maximum likelihood classifier (MLC) ................................................. 57 

4.6.6. K-nearest neighbor (K-NN) .................................................................. 57 

4.6.7. Minimum distance (MD) ....................................................................... 58 



4.6.8. Artificial neural network (ANN) .......................................................... 58 

4.6.9. Partial least squares (PLS) ................................................................... 59 

4.6.10. Stochastic gradient boosting (SGB) .................................................... 59 

4.7. Model performance evaluation .................................................................. 60 

4.8. Statistical analysis ....................................................................................... 62 

5. RESULTS AND DISCUSSION ........................................................................ 63 

5.1. Low-cost, high-resolution sensors for gully mapping .............................. 64 

5.1.1. SPOT-7 multispectral image ................................................................. 64 

5.1.2. PlanetScope multispectral image .......................................................... 69 

5.1.3. Visual range SPOT-7 image ................................................................. 72 

5.2. Quantifying gully classification accuracy across different study areas . 73 

5.2.1. Study Area #1: accuracy and factors biasing model performance at 

class-level ......................................................................................................... 73 

5.2.2. Study Area #2: accuracy as a function of an algorithm, resampling 

technique, and season ..................................................................................... 79 

5.2.3. Study Area #3: efficacy of algorithms based on limited spectral 

information ...................................................................................................... 84 

5.2.4. Visual analysis of gully classification across different study areas .... 86 

5.3. Gully characteristics’ influence on the precise mapping of gullies and 

their density ........................................................................................................ 93 

5.4. Feature selection and multicollinearity analysis ...................................... 95 

5.5. Analyzing algorithms’ performance when using feature sets of varying 

sizes ...................................................................................................................... 98 

5.6. Gully susceptibility and key controlling geo-environmental variables 103 

6. SUMMARY AND CONCLUSIONS .............................................................. 107 

7. ACKNOWLEDGEMENT ............................................................................... 114 

8. APPENDICES .................................................................................................. 116 

9. REFERENCES ................................................................................................. 119 



 

11 
 

1. INTRODUCTION 

Despite ongoing global research and soil conservation efforts, gully 

erosion remains the most significant environmental challenge affecting many 

countries worldwide. It contributes significantly (50-80%) to the sediment 

losses in semi-arid regions (Poesen et al., 2002; Marzolff and Poesen, 2009), 

mainly due to sparse vegetation cover and prolonged dry periods with 

occasionally high-intensity rainfall regimes. The significant extent of gully 

erosion in semi-arid regions is a matter of great apprehension because these 

regions account for nearly 50% of the earth's landmass, supporting a 

significant fraction of global livestock and food production (Bailey, 1998; 

Safriel et al., 2006; Reynolds et al., 2007; Anadón et al., 2014). Due to gully 

erosion reducing the availability and quality of productive lands, many semi-

arid countries with a firm reliance on agriculture are likely to suffer food 

shortages. For example, Africa, where almost half of the population (48%) 

depends on agriculture (NEPAD, 2013), records nearly 9% of annual average 

yield losses from past erosion, leading to severe food shortages (Ashiagbor et 

al., 2013). A semi-arid country, South Africa is among the most erosion-

affected countries on the continent. 

Approximately 85% of the land in South Africa is at risk of erosion 

(Rensburg, 2010; Parwada and Van Tol, 2017), while 70% is already 

considered eroded (Garland, Hoffman and Todd, 2000). Moreover, nearly 6% 

of the population in South Africa relies on agriculture for their sustenance 

(Department of Agriculture, 2007). Consequently, soil erosion in general and 

specifically gully erosion pose a significant hazard to food security in 

numerous rural regions that depend on subsistence farming in the country 

(Phinzi, 2018). Besides, gullies damage infrastructure (buildings and roads), 

increase local flood risks, and considerably reduce dam water quality and 

quantity due to siltation and sedimentation. From the economic standpoint, 
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gully erosion has far-reaching implications, costing the country about R12 

billion ($836 million) a year to purify silted dam water (Hoffman and Ashwell, 

2001). Unless the severity and spatial extent of gully erosion are known, it is 

challenging to implement targeted conservation measures. Therefore, accurate 

gully mapping, though not straightforward, is the most practical approach for 

detecting gullies in remote locations and may aid active gully rehabilitation 

and soil management efforts. 

Although gully erosion research spans over a century (Castillo and 

Gómez, 2016; Liu et al., 2021), gully modeling is still in its infancy compared 

to rill and sheet erosion, with well-established and widely adopted models 

worldwide, including the universal soil loss equation (USLE) (Wischmeier 

and Smith, 1978). In addition, due to their geographic specificity, intricate 

physical mechanisms, and difficulties in acquiring observational data (Roberts 

et al., 2022), existing gully models have not been widely used globally. 

Although traditional field measurements and surveys are commonly used, 

these methods are often expensive and limited to accessible locations, 

hampering a precise understanding and quantification of gullies, especially for 

inaccessible locations (Vrieling, Sterk and de Jong, 2010). Another well-

established approach is the manual digitisation and interpretation of gullies 

based on aerial or satellite images, but it is also time-consuming and 

subjective, which greatly impedes repeatability. An alternative approach 

involves the utilization of machine learning (ML)-based techniques to 

automatically extract and model gullies from satellite images and related open-

source geospatial data.  

The utilization of these data has witnessed a significant surge in 

popularity in recent years (Magliulo et al. 2020; Žížala et al. 2019; Vrieling et 

al. 2007), driven by advancements in computer processing capabilities and the 

augmented availability of such data free of cost. The emergence of high-



 

13 
 

resolution (≤3m) imagery has opened new avenues for extracting narrow 

geomorphic features, such as gullies, in fine spatial detail. In particular, low-

cost multispectral sensors, such as Systeme Pour l’Observation de la Terre 

(SPOT-7) and PlanetScope, offer a reasonably high spatial resolution (1.5-3m) 

for mapping gullies with sufficient detail. Despite these sensors’ low cost or 

free availability, their application in gully mapping utilizing ML has received 

limited attention in severely gullied semi-arid regions such as South Africa.  

Besides gully mapping, in recent years, ML algorithms have been 

increasingly utilized in predicting gully-susceptible areas at the catchment 

level. Several studies (Dewitte et al., 2015; Pourghasemi et al., 2017; 

Arabameri, Chen, et al., 2019; Huang et al., 2022; Lana, Castro and Lana, 

2022; Kulimushi et al., 2023) have applied this approach, which involves the 

identification of areas with varying degrees of gully vulnerability. Rather than 

extracting individual gully features, these studies aim to map areas susceptible 

to gully formation through modeling and analyzing the relationship between 

gully occurrence and multiple geo-environmental covariates. This approach 

identifies spatial variability in gully susceptibility, providing a more 

comprehensive understanding of gully formation processes (Conoscenti and 

Rotigliano, 2020).  

2. SIGNIFICANCE AND RATIONALE OF THE STUDY 

The United Nations (UN) has made a worldwide call to tackle the 

problems of land degradation (Goal No. 15), promote sustainable agriculture, 

and reduce food insecurity (Goal No. 02). As gullies significantly contribute 

to land degradation, which undermines sustainable agriculture and leads to 

food insecurity, it is essential to comprehend their spatial distribution and 

related factors to attain these UN sustainable development goals. Furthermore, 

the Department of Agriculture, Forestry, and Fisheries (DAFF) in South 
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Africa has recognized the necessity to map gully erosion and its severity at a 

national level (Mararakanye and Le Roux 2012), and several scholars in the 

country have responded to the call (Le Roux et al., 2008; Mararakanye and Le 

Roux, 2012; Phinzi and Ngetar, 2017; Ebhuoma et al., 2022).  

Recently, researchers have utilized Machine Learning (ML)-based 

models to identify medium-sized gully features (Makaya et al., 2019), 

generate gully susceptibility maps (Conoscenti et al. 2014; Dewitte et al. 2015; 

Huang et al. 2022; Kulimushi et al. 2023), and identify the factors that trigger 

gully erosion (Amiri et al. 2019; Bernini et al. 2021; Lana et al. 2022; Rahmati 

et al. 2022). Although these studies have demonstrated successful ML 

applications in gully erosion analysis, there is still a vast potential for further 

development, with many possibilities yet to be explored. In addition, the 

procedures are intricate, and various limitations must be investigated from 

multiple perspectives. Currently, it is unclear which combination of factors, 

such as resampling techniques, seasons, class number (binary or multiclass), 

and algorithms, provide the best accuracy, particularly in the context of low-

cost, high-resolution sensors such as SPOT-7 and PlanetScope, which are not 

yet well researched. To date, no study has systematically evaluated the impact 

of different combinations of these factors on gully classification accuracy 

using these sensors. This dissertation proposes the utilization of these sensors 

to map gullies and examine the different combination of factors, including the 

impact of gully characteristics on classification accuracy. 

Furthermore, concerning gully susceptibility modeling, previous 

studies have relied on a fixed set of predictor variables. However, this practice 

limits our comprehension of how various ML algorithms perform regarding 

the accuracy and processing speed when utilizing feature sets of varying sizes. 

Therefore, a comprehensive study on ML applications to gully mapping and 

modeling is crucial, considering various factors influencing accuracy.  More 
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importantly, this dissertation presents cost-effective ML methods centered on 

open-source geospatial data for gully mapping and susceptibility modeling. 

These techniques have the potential to be used in different regions of the 

country to support targeted gully rehabilitation and soil management 

endeavors. Specifically, the objectives of this dissertation are to: 

1. determine if low-cost, high-resolution sensors improve gully mapping 

in semi-arid regions, 

2. quantify gully classification accuracy and analyze factors biasing 

model performance on a class level, 

3. examine how different gully morphological characteristics affect the 

precise mapping of gullies using high-resolution satellite data, 

4. select geo-environmental variables with the greatest predictive power 

to model gully susceptibility, and 

5. analyze algorithms’ performance when using input feature sets of 

varying sizes. 

This dissertation encompasses four interrelated studies conducted in 

various parts of Eastern South Africa. The first study presents a gully mapping 

approach using a pan-sharpened multispectral SPOT-7 image, which was 

based on three algorithms: random forest (RF), support vector machines 

(SVM), and linear discriminant analysis (LDA). The study evaluated two 

different class numbers (binary and multi-class) and six combinations of study 

areas used for training and testing data (Phinzi et al., 2020). The second study 

used a SPOT-7 visual range satellite image and various machine learning 

algorithms, including k-Nearest Neighbor (k-NN), minimum distance (MD), 

maximum likelihood classifier (MLC), and RF, to map gullies based on their 

morphological features, such as shape/appearance, size, depth, and length 

(Phinzi, Holb and Szabó, 2021). The third study applied SVM and RF to 
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examine the impact of bootstrapping and k-fold cross-validation (CV) on the 

accuracy of gully mapping using PlanetScope data in both the dry and wet 

seasons (Phinzi, Abriha and Szabó, 2021). The fourth and last study focuses 

on gully susceptibility and identifies geo-environmental variables with the 

most predictive power for modeling gully susceptibility. Unlike the preceding 

three studies, the findings of the fourth study are not yet published as it is 

currently undergoing a review process for publication. 

3. LITERATURE REVIEW 

This section defines a gully, focusing on mechanisms leading to its 

formation, main characteristics, and types. Next, factors contributing to gully 

erosion are reviewed. Furthermore, the section reviews the role of supervised 

ML in gully mapping and susceptibility modeling, highlighting some of the 

most widely used ML algorithms, resampling techniques, and satellite 

products. Finally, model validation, focusing on various matrices commonly 

used, is reviewed.       

3.1. Gully definition 

Gully is a typical form of surface erosion induced by water. Generally, 

it is defined as a steep-sided (U- or V-shaped) channel resulting from erosion 

due to sporadic water flow, often during and after intensive rainfall (Poesen, 

Vandaele and Wesemael, 1998). Gullies can be either temporary (called 

ephemeral gullies) or permanent (also called classical gullies), depending on 

their morphology, location in the landscape, and dominant erosion 

mechanisms causing them (Poesen, Vandaele and Wesemael, 1998; Poesen et 

al., 2003). Kirkby and Bracken (2009) present a detailed overview of these 

gullies, classifying them based on their internal morphology using two ratios. 

Figure 1 illustrates this internal morphology-based gully classification. The 

first ratio is the side-slope to channel slope, which is high for classical gullies 
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and lower for ephemeral gullies. The second ratio is the gradient of the gully 

channel relative to the surface gradient it dissects. For a gully to extend 

headward, there must be a significant portion of the gully where this ratio is 

less than unity, allowing the depth of the gully to increase upstream (Poesen 

et al., 2002; Kirkby and Bracken, 2009). The ratio of the gully side-slope 

gradient to the initial surface gradient, which defines the channel way, is 

obtained by multiplying these two ratios and must be greater than unity 

(Kirkby and Bracken, 2009). Classical gullies are in the lower right corner, 

while typical valley formation happens with higher valley slopes (Figure 1). 

Badlands can form when valleys are incised into surfaces with slopes nearly 

as steep as the valley itself (Kirkby and Bracken, 2009). Such badlands are 

characterized by regions with a high density of gully systems, typically 

separated by short, steep, and devoid-of-vegetation slopes (Boardman et al., 

2003). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Classification of gullies based on their internal morphology (Kirkby 

and Bracken, 2009).  
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Gullies can also be distinguished based on their depth, duration of 

occurrence, and location. Small concentrated flow channels of 0.5 – 50 cm 

deep that occur over a short period in agricultural fields result in ephemeral 

gullies (Momm et al., 2012). Normal tillage operations can quickly fill 

ephemeral gullies, although they can reform again in the exact location by 

subsequent runoff events (Foster, 2005; Zhang et al., 2007; Bennett and Wells, 

2019). However, when left unabated, ephemeral gullies can become 

permanent and too large to be obliterated by normal tillage operations (Liu et 

al., 2021).  

On the contrary, permanent gullies are long-duration erosional features 

with relatively deep (>50 cm) channels that interfere with farming operations 

(Poesen et al., 2003; Luffman, Nandi and Spiegel, 2015; Bennett and Wells, 

2019). Permanent gully systems often exhibit an inclination to expand and 

become increasingly challenging and expensive to remove (Kirkby and 

Bracken, 2009). Although heavy rainfall and concentrated surface water flow 

are critical in forming and developing gullies, subsurface flow through soil 

pipes or macropores is another crucial mechanism driving gully formation 

(Faulkner, 2006; Wilson, 2009). Details of these factors are presented in the 

following section.  

3.2. Factors controlling gully erosion 

Gully erosion is driven by various natural and anthropogenic factors, 

including rainfall, topography, soil type, land use, and vegetation (Valentin, 

Poesen and Li, 2005; Le Roux and Sumner, 2012). Thus, the success of 

gullying depends on the cumulative and synergistic effects of these natural and 

anthropogenic factors. 

Rainfall is a prerequisite for any water-borne erosion (Phinzi, 2018; 

Phinzi and Njoya Silas Ngetar, 2019) and is responsible for detaching, 

transporting, and depositing soil particles. However, it is worth noting that not 
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all raindrops have the capacity to cause erosion. The erosive properties of 

rainfall, referred to as rainfall erosivity, are determined by factors such as the 

size and duration of raindrops. Larger raindrops tend to dislodge more soil 

particles than smaller raindrops due to their higher velocity and intensity, 

leading to greater rainfall erosivity (Cruse et al., 2000; Parlak and Parlak, 

2010). These rainfall properties play a crucial role in the initial stages of soil 

erosion, known as splash erosion, where the greatest detachment of soil 

particles occurs. However, short-duration rainfall has a limited impact on other 

forms of erosion, especially gully erosion, which requires sustained runoff. 

Gullies are frequently found in mountainous or hilly regions with steep 

slopes (Valentin, Poesen and Li, 2005). Steep slopes are conducive to high 

runoff velocity, which leads to rills and gullies forming. However, under 

certain climatic conditions, these steep slopes may result in lower runoff 

volumes than gentle slopes where soil crusts mainly develop, causing higher 

runoff (Valentin, d’Herbès and Poesen, 1999). Several studies have reported 

gullies in low-elevation areas with gently to nearly flat slopes (Pham et al., 

2020; Chowdhuri et al., 2021; Phinzi, Holb and Szabó, 2021; Huang et al., 

2022). Catchment drainage is pivotal in gully erosion hydrological processes 

(Ebhuoma et al., 2022). According to Valentin et al. (2005), for a given slope 

(S), there must be a critical drainage area (A) in order to generate sufficient 

runoff that can concentrate and initiate gully formation. 

The erodibility of soil, or its ability to be eroded, depends on soil type. 

The vulnerability of different soils to erosion varies based on their 

cohesiveness. Soils with high cohesion, fast infiltration rates, high organic 

matter content, and improved soil structure are more resistant to erosion. 

Additionally, the size of soil particles also plays a crucial role in determining 

soil erodibility, with smaller and non-cohesive particles being more 

susceptible to erosion than larger particles. Soils prone to crusting, as they 
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enhance runoff generation and concentration downslope, are generally subject 

to sheet and gully erosion (Valentin, Poesen and Li, 2005). Due to the limited 

vegetation in arid and semi-arid regions, including South Africa, the soils in 

these areas are prone to crusting, which leads to runoff production and the 

formation of gullies (Kakembo and Rowntree, 2003; Valentin, Poesen and Li, 

2005). Subsurface water flow through soil pipes also gives rise to gullying. 

Soils that have dispersive characteristics and contain sodic layers are 

susceptible to forming pipes, which can progress into gullies when the roofs 

covering them collapse (Beckedahl and de Villiers, 2000; Faulkner et al., 

2004; Faulkner, 2006). 

Human activities, specifically land use, play a significant role in 

affecting erosion. Therefore, the type of human activity determines the 

likelihood of soil erosion in a specific area. For example, certain agricultural 

practices increase the probability of gullying. Indeed, the natural processes of 

gully formation are accelerated by implementing more intensive farming 

systems (Valentin, Poesen and Li, 2005), such as overgrazing, mono-cropping, 

and other unsound farming methods. Usually, natural habitats such as 

grasslands and forests effectively reduce soil erosion due to their high levels 

of vegetative cover. However, according to Le Roux et al. (2008), grasslands 

in South Africa are highly susceptible to erosion. 

3.3. An overview of machine learning (ML) 

Although introduced in the 1990s, the application of machine learning 

(ML) to gully erosion gained popularity only after 2010 (Svoray et al., 2012; 

Lana, Castro and Lana, 2022). Since then, the usage of ML in gully erosion 

has continued to increase, particularly in the past three years. A search 

conducted on Scopus in May 2023 using keywords such as "gully" and 

"machine learning" revealed that 330 research papers had been published on 

the subject between 2012 and 2022, more than 50% of which were released in 
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the last three years (2020-2022). This remarkable surge in the adoption of ML 

for gully erosion can be attributed to the growing availability of open-source 

geospatial data, a critical component for developing predictive ML models.  

A typical ML process entails training a model, also known as an 

algorithm, on a given data (training set) for which we know the outcome and 

applying this algorithm to make a prediction when we do not know the 

outcome (Figure 2). The learning algorithm essentially recognizes patterns 

from data without explicitly being programmed. It can learn the target object’s 

(gully) characteristics from input data and identify them when presented with 

new data (testing set). The success of any ML algorithm lies in its ability to 

generalize well and make an accurate prediction or classification using new 

data (testing/validation data) for which the outcome is unknown.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. A typical ML process for a classification task. 
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ML algorithms can be broadly grouped into supervised and 

unsupervised depending on the amount and type of supervision required 

during the learning phase (Boehmke and Greenwell, 2019). The key difference 

between the two is that unsupervised ML, also known as cluster analysis or 

class discovery, does not require a training set or prior labeled examples/data 

except to specify the number of clusters in advance (Gentleman and Carey, 

2008). Unsupervised ML has been successfully applied in many fields, 

including natural language processing, computer vision, networking (mobile 

and internet), and speech recognition (Usama et al., 2019). A recent literature 

survey indicates that principal component analysis (PCA), k-means, partial 

least squares, and hierarchical clustering are among unsupervised learners 

most commonly used (Alloghani et al., 2020), often in exploratory data 

analysis (Boehmke and Greenwell, 2019). This dissertation focuses on 

supervised ML. Table 1 summarizes some of the most commonly used 

algorithms in gully mapping. While conventional ML algorithms are 

predominantly used in gully mapping, the advent of deep learning (DL), 

although not a focus of this study, cannot be ignored. 

Indeed, interest in DL has been shown in many fields, including remote 

sensing (Chen et al., 2014; Kussul et al., 2017; Vetrivel et al., 2018). DL 

algorithms are considered advantageous over conventional ML algorithms 

mainly because of their high level of automation of feature extractors and their 

ability to adapt to new future challenges, solving highly complex problems 

(Ball, Anderson and Chan, 2017). It has significantly impacted precision 

medicine, speech recognition, cancer diagnosis, predictive forecasting, and 

self-driving cars (Shrestha and Mahmood, 2019). Convolutional neural 

network (CNN), another form of DL architecture, was successfully applied to 

detect and discriminate gullies from other linear types of surface erosion 

(Gafurov and Yermolayev, 2020). Similarly, Liu et al. (2022) successfully 
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employed DL to automatically recognize and detect ephemeral gullies from 

remotely sensed data. Although DL overcomes several limitations of earlier 

generation ML techniques, its predictive performance depends on highly 

optimized algorithms and requires massive training data, which introduces 

computational burdens (L. Zhang et al., 2016; Chen et al., 2018; Ma et al., 

2019). 

For this reason, ML algorithms are still widely applied and preferred 

over DL in many remote sensing applications. Since knowing which algorithm 

will best perform is difficult, applying and evaluating different algorithms is 

common (Boehmke and Greenwell, 2019). Support vector machines (SVM), 

random forest (RF), artificial neural network (ANN), and to some extent, 

boosted regression trees (BRT) are the most frequently used algorithms in 

gully erosion. For example, Lana et al. (2022) employed RF, logistic 

regression (LR), naïve bays (NB), and ANN to model gully susceptibility and 

reported that RF achieved the highest performance. Garosi et al. (2019) 

assessed the performance of four algorithms: SVM, RF, NB, and generalized 

linear models (GLM), and reported the best predictive performance by RF, 

followed by SVM. Similarly, Huang et al. (2022) assessed gully erosion 

susceptibility using RF, SVM, ANN, and GLM and concluded that RF and 

SVM were better than other algorithms. Sahour et al. (2021) compared DL to 

BRT and multiple linear regression and found that BRT was better than DL in 

modeling soil erosion. This dissertation also employs RF and SVM together 

with other algorithms to map gully based on low-cost, high-resolution, 

remotely sensed data. 
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Table 1. A non-exhaustive list of supervised algorithms commonly used in 
gully erosion research.  

Name Abbreviation Brief Description  

k-nearest 

Neighbor 
KNN 

This non-parametric algorithm uses distance functions to 

classify features. The algorithm achieves this by finding 

the closest pixels to unknown pixels (Thanh Noi and 

Kappas, 2017; Phinzi, Holb and Szabó, 2021). 

 

 

Minimum distance 

MD 

The Minimum Distance (MD) classifier, as described by 

Richards and Richards (1999), is a non-parametric 

method used to classify data, wherein each unidentified 

pixel is assigned to a class with the shortest minimum 

distance.  

 

Maximum 

likelihood 

classifier 

MLC 

MLC is a parametric classifier that assumes a normal 

distribution of data. The algorithm assigns each pixel to a 

class with the highest probability of membership (Bolstad 

and Lillesand, 1991).  

 

 

Random forest 

RF 

Introduced by (Breiman, 2001), RF is a popular ML 

method that addresses the shortcomings of decision trees 

by ensembling randomly numerous decision trees to 

improve predictive performance. RF accomplishes this by 

bootstrap or begging aggregation, where multiple 

predictors are generated using classification trees.  

 

 

Support vector 

machines 

SVM 

SVM is a binary classifier in statistical learning theory 

(Vapnik, 1999), capable of solving two-class and multi-

class classification problems. SVM aims to find a 

hyperplane (a decision boundary) that best separates the 

two classes of data points (called support vectors) in a 

feature space using the so-called kernel trick (Unay and 

Gosselin, 2007).  

 

 

Boosting - 

Traditionally developed for classification problems 

(Valiant 1984), boosting is a classification approach 

whereby several weak classifiers are combined to form a 

robust classifier (Kuhn and Johnson, 2013). There are 

many variants of boosting algorithms, including 

AdaBoost, stochastic gradient boosting (SGB), and 

extreme gradient boosting (Xgboost), boosted regression 

trees (BRT). 
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Discriminant 

analysis 

DA 

DA is a generative classification approach that uses 

Bayes’ theorem to model the conditional distribution of 

the predictors X in the response classes Y = 1 (i.e., gully) 

and Y = 0 (i.e., non-gully) (Welch, 1939; Friedman, 1989; 

Gareth et al., 2013). The algorithm uses a linear or 

quadratic function to find one or more linear combinations 

of predictors that best discriminate or separate the 

response classes (Alkarkhi and Alqaraghuli, 2018; Kabir, 

2021).  

 

 

 

Partial Least 

squares 

PLS 

PLS intends to form components that capture most of the 

information in the explanatory variables helpful in 

predicting the response variable (Garthwaite, 1994; Tang 

et al., 2014). It achieves this by constructing linear 

combinations (components) of the original predictors 

from which a set of latent variables with the best 

predictive power is extracted (Abdi, 2003; Chen and Hoo, 

2011), then regressing the response variable on these 

latent variables (Chung and Keles, 2010). 

 

 

 

 

Artificial neural 

network 

ANN 

ANN consists of layers with artificial neurons that mimic 

the biological neurons’ function in the human brain. An 

input layer of neurons (also called nodes or units), one or 

more hidden layers of neurons, and a final layer of output 

neurons define a typical architecture of an ANN. Neurons 

in each layer are connected to other neurons in the next 

layer, and each connection is associated with a specific 

weight (Wang, 2003). These weights determine the 

importance of each predictor in gully extraction, where 

predictors with larger weights contribute considerably to 

gully mapping. 

 

3.4. Gully mapping using remote sensing 

Remote sensing has been defined variously due to its vast applications. 

This dissertation defines it as the science, technology, or art of collecting data 

about material objects without physical contact (Campbell and Wynne, 2011; 

Lillesand, Kiefer and Chipman, 2015). This form of data acquisition is cost-

effective and fast relative to traditional methods. Remotely sensed data are 

collected using various airborne and spaceborne sensors. The former include 
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high spatial resolution aerial photographs collected by aircraft or unmanned 

aerial vehicles (UAV). UAVs represent the most advanced means of data 

acquisition in remote sensing (Alijani, Hasanlou and Azizi, 2018). Armed with 

multispectral sensors, UAVs combined with structure from motion (SfM) 

technology are also capable of producing high spatial resolution multispectral 

images, and LiDAR (light detection and ranging) point clouds from which 

high-quality digital surface models (DSMs), with submeter spatial resolution, 

can be derived. LiDAR data have been exploited to characterize and quantify 

gullies (D’Oleire-Oltmanns et al., 2012; Lannoeye et al., 2016; Wang et al., 

2016; Gong et al., 2019). Recently, Niculiță, Mărgărint, and Tarolli (2020) 

used UAV and liDAR data for monitoring gully geomorphic changes.  

Although accurate and detailed characterization of gullies can be 

achieved with UAV and LiDAR data, the cost of acquiring these data is 

relatively high, restricting their application to small areas. For this reason, 

broadband sensors onboard satellites are commonly used. The most widely 

used spaceborne sensors with global coverage include Landsat, Sentinel, and 

Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER). For example, Landsat data were used to quantify gullies’ spatial 

and temporal extent (Dube et al., 2017). Phinzi and Ngetar (2017) employed 

three Landsat-derived vegetation indices to map gully erosion, of which the 

soil-adjusted vegetation index (SAVI) achieved the highest overall 

classification accuracy (83%). However, they faced obstacles attributable to 

the relatively coarse spatial resolution (15m x 15m) of the Landsat-8 image. 

Consequently, they proposed the fusion and pan-sharpening of Landsat-8 

imagery with higher-resolution counterparts to enhance the identification and 

analysis of erosion features. Orti et al. (2020) and Makaya et al. (2019) 

mapped gullies at the catchment scale using Sentinel data, yielding 60% and 

77% accuracy for gully classification, respectively. Vrieling et al. (2007) 
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employed ASTER imagery to gully mapping and achieved a greater than 90% 

user’s accuracy.  

These sensors are free of charge, which explains their widespread 

applications in gully erosion and other geomorphic features. An essential 

benefit of using these sensors in gully erosion is their broad spatial coverage, 

which permits accessibility of extensive remote gullied locations, a current 

challenge to field surveys. With additional spatial detail, high-resolution 

(<5m) sensors like Ikonos, GeoEye, WorldView, and RapidEye permit 

accurate extraction of even small and narrow gully features at pixel and object 

levels. For instance, Utsumi et al. (2020) extracted gullies from the RapidEye 

image using object-based image analysis. Shruthi et al. (2015) also used 

object-based image analysis to quantify temporal changes in gullied areas 

from Ikonos-2 and GeoEye-1 images. Mararakanye and Nethengwe (2012) 

extracted gully features from SPOT-5 data. The choice of the sensor used 

mainly depends on the characteristics of the gullies to be mapped, the scale of 

the study area (large or small), and image acquisition costs, among other 

factors. High spatial resolution sensors are generally suited for small area 

mapping where narrow geomorphic gully features exist, while broadband 

images are suitable for detecting extensively gullied areas over broad spatial 

coverage. The 3-meter PlanetScope multispectral data and 1.5-meter pan-

sharpened SPOT data, freely available for the study area, offer tremendous 

possibilities for mapping gullies but have yet to be fully exploited in previous 

investigations. 

3.5. Gully susceptibility modeling 

 In order to recommend and execute effective preventive measures for 

reducing the risk of new gullies and impeding or reversing the growth of 

existing ones (Kirkby and Bracken, 2009), it is imperative to have a 
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comprehensive understanding of the susceptibility of different areas to gully 

formation. Besides merely extracting gully features from satellite images, ML 

algorithms can also predict or simulate areas susceptible to gully erosion. This 

is accomplished by establishing a relationship between the factors that 

contribute to the formation of gullies and the actual occurrence of gullies, 

thereby enabling the forecasting or modeling of vulnerable regions.  

Numerous scholars have effectively developed models to predict gully 

susceptibility at catchment scales in different regions across the globe, 

including China (Huang et al., 2022),  Iran (Arabameri, Chen, et al., 2019; 

Hosseinalizadeh et al., 2019a), Democratic Republic of the Congo (Kulimushi 

et al., 2023), Algeria (Dewitte et al., 2015),  India (Roy and Saha, 2021), 

Brazil (Lana, Castro and Lana, 2022), South Africa (Bernini et al., 2021), 

United States of America (Han, Guzman and Chu, 2022), Italy (Conoscenti et 

al., 2014), and Morocco (Hitouri et al., 2022). Researchers use various ML 

methods to assess their performance to identify the most accurate predictive 

model. For instance, Gayen et al. (2019) utilized four ML techniques, 

including multivariate additive regression spline (MARS), flexible 

discriminant analysis (FDA), RF, and SVM, to map gully susceptibility and 

found RF to yield the highest accuracy. Chowdhuri et al. (2021) used ANN, 

CNN, and deep NN (DNN) to predict gully susceptibility and discovered that 

DNN outperformed the other methods. Hosseinalizadeh et al. (2019a) 

employed FT, NBTree, and RF models to forecast gully headcut susceptibility 

and identified RF as the most effective method. Similarly, Huang et al. (2022) 

applied RF, SVM, ANN, and GLM to gully susceptibility, and RF was the 

most accurate model. However, many studies prioritize the accuracy of ML 

models for prediction and tend to overlook computation time, which is also a 

crucial aspect of performance evaluation. Previous research has suggested the 

importance of considering both aspects in performance evaluation (Gislason, 
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Benediktsson and Sveinsson, 2006; Belgiu and Drăgu, 2016). Indeed, it is 

desirable for an ML model to achieve high accuracy while minimizing 

computation time, especially in gully modeling, where several features are 

involved.  

In addition to gully susceptibility modeling, ML-based methods enable 

the assessment of various factors and their interactions, presenting a 

significant potential for identifying the most crucial factors influencing gully 

erosion (Vanmaercke et al., 2021). For instance, Rahmati et al. (2022) 

investigated the factors contributing to the initiation of gully erosion, 

encompassing physical factors such as topography, soil properties, and 

lithology, anthropogenic factors such as land use and distance from roads, and 

other relevant geo-technical and hydrological factors. The authors determined 

that distance from roads was the most influential factor in the onset of gully 

erosion. Similarly, Amiri et al. (2019) utilized the Boruta algorithm to evaluate 

the significance of effective factors in gully erosion and identified land use, 

distance from rivers, and clay percentage as the most critical factors for the 

occurrence of gully erosion in their study. Although progress has been made 

in gully susceptibility modeling, a significant research gap exists in our 

understanding of how various machine learning (ML) models might perform 

with different subsets of predictor variables in terms of accuracy and 

computation time. This gap arises from the common practice in gully 

susceptibility studies of employing a fixed set of predictor variables, which 

hinders our ability to gain insights into the relative performance of ML models 

when using feature sets of varying sizes. 

3.6. Resampling techniques 

It is of utmost importance for the model to generalize well on unseen 

data and one way of ensuring this is to split the data into train-test sets where 

the training set is used to build the model while the testing set is used to 
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evaluate the model’s performance. However, evaluating the model on a single 

test  (or hold-out) set tends to be highly variable and unreliable, especially 

when using a small data set, i.e., n<1000 (Hawkins, Basak and Mills, 2003; 

Molinaro, Simon and Pfeiffer, 2005). Two commonly used resampling 

techniques, including the k-fold cross-validation and bootstrapping, overcome 

this limitation by repeatedly re-fitting a model to parts of the training set and 

evaluating its performance on other parts (Boehmke and Greenwell, 2019).     

K-fold cross-validation (CV) randomly partitions the training data into 

small k groups or folds of nearly equal sizes in which the first fold is used in 

the first iteration as a testing set while the remaining folds are treated as the 

training data (Gareth et al., 2013). Figure 3 illustrates this procedure. In 

subsequent iterations, the training data is reshuffled, a different subset is used 

for model testing, and the rest is considered the training set. This procedure is 

repeated k times with a different group of observations treated as a test set each 

time (Gareth et al., 2013). The generalization error is recorded for all 

iterations, resulting in a k estimate of the generalization error. Thus, the k-fold 

cross-validation is calculated by averaging the k-test errors, approximating the 

expected error when the model is applied to unseen data (Boehmke and 

Greenwell, 2019). Although there is no formal rule regarding the size of k, 5-

fold or 10-fold are typically used in literature (Abdi, 2020; Csatáriné Szabó et 

al., 2020; Phinzi, Abriha and Szabó, 2021; Varga et al., 2021; Saha et al., 

2022). These k values are preferred because they have proven empirically to 

yield reasonable generalization error estimates that do not typically suffer 

from excessively high bias and variance (Gareth et al., 2013). Furthermore, a 

repeated 10-fold CV is often suggested for smaller data sets (n<10000) as it 

improves the accuracy of the estimated generalization error and provides an 

estimate of its variability (Kim, 2009; Boehmke and Greenwell, 2019). 
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Figure 3. A typical k-fold cross-validation procedure (adapted from Boehmke 

and Greenwell 2019). 

Bootstrapping is a widely applied resampling technique that can 

quantify an algorithm’s uncertainty (Gareth et al., 2013) while improving its 

stability and avoiding overfitting. It involves sampling (with replacement) a 

set of observations from the original data randomly, resulting in a bootstrap 

sample of the same size as the original data (Figure 4).  

 

 

 

 

 

 

 

 

 

Figure 4. A typical bootstrapping procedure (adapted from Boehmke and 

Greenwell 2019). 
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Observations in the bootstrap sample are used to build a model, whereas the 

original observations outside a specific bootstrap sample, referred to as out-

of-bag (OOB), validate the model.  

Given that the samples are selected with replacement, each bootstrap 

sample may contain duplicate values, potentially leading to lower variance in 

the error estimate (Efron, 1983; Boehmke and Greenwell, 2019). It is highly 

probable that similar predicted values will result, even if a different set of 

bootstrapped samples are used to construct multiple models (Kuhn and 

Johnson, 2013). While this issue can pose a challenge when utilizing smaller 

datasets, it is frequently insignificant for average to large datasets (Boehmke 

and Greenwell, 2019). 

3.7. Evaluation metrics 

The effectiveness of an algorithm is ultimately determined by its 

ability to perform well on unseen data in the real world. There is no singular, 

precise method for evaluating the performance of a model, but rather a variety 

of accuracy metrics that can be derived from the contingency table, also known 

as the confusion or error matrix (Congalton, 1991). This matrix summarizes 

each possible combination of predicted and actual values resulting in four 

possible outcomes, including true positive (TP), false negative (FN), false 

positive (FP), and true negatives (TN). For example, in the context of an 

algorithm for predicting gully pixels, TP occurs when the algorithm correctly 

identifies a gully pixel. Conversely, TN occurs when the algorithm correctly 

identifies a non-gully pixel, while FP occurs when it mistakenly predicts a 

non-gully pixel as a gully. On the other hand, FN occurs when the algorithm 

fails to predict the presence of a gully when one exists. Several evaluation 

metrics can be computed, including overall accuracy (OA), sensitivity or 

producer’s accuracy (PA), specificity or user’s accuracy (UA), the area under 

the curve (AUC), kappa coefficient, and F1-score. Table 2 summarizes these 
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accuracy metrics. These accuracy metrics highlight distinct quality aspects and 

may necessitate careful analysis (Foody, 2020). A comprehensive explanation 

of each accuracy metric and appropriate examples can be found in Boehmke 

and Greenwell (2019) and Irizarry (2019). 

Table 2. Accuracy metrics commonly used in gully erosion (TP=true positive, 

FN=false negative, FP=false positive, and FN=false negative, Po=observed 

agreement, and Pe=agreement expected by chance). 

Accuracy metric Brief description Formula 

Overall accuracy 

(OA) 

It measures the proportion of correct 

predictions made by the model out 

of all the predictions. 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Sensitivity (recall) Also known as producer’s accuracy 

(PA), this metric measures the 

proportion of positive instances that 

the model correctly identifies. 

 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Specificity Also called user’s accuracy (UA), it 

measures the proportion of negative 

instances that the model correctly 

identifies 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision It calculates the proportion of true 

positive predictions made by the 

model among all the positive 

predictions. 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Kappa  

coefficient 

It is the ratio of the observed 

agreement between the model and 

ground truth to the agreement that 

would be expected by chance. 

𝑃𝑜 − 𝑃𝑒

1 − 𝑃𝑒
 

 

F1-score The F1-score is the harmonic mean 

of precision and recall, providing a 

trade-off between the two metrics. 

2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

The Kappa coefficient and OA have been frequently utilized for 

evaluating the overall classification performance of an algorithm, as noted by 
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Congalton (1991). One primary concern regarding using OA is that it can be 

highly susceptible to fluctuations in class prevalence, meaning that its value 

can be influenced by the relative abundance of different classes (Foody, 2020).  

Consequently, the Kappa coefficient is viewed as a reliable measure of 

agreement, considering the algorithm’s predictions of TP, TN, FP, and FN 

(Congalton, Oderwald and Mead, 1983). In addition, it offers a more nuanced 

understanding of agreement than basic metrics, such as OA, and is particularly 

useful when the distribution of positive and negative instances in the data is 

unbalanced. However, in recent years, the use of Kappa in remote sensing 

classification accuracy has decreased in popularity (Thanh Noi and Kappas, 

2017; Heydari and Mountrakis, 2018). This is because several researchers, 

including Pontius Jr and Millones (2011), Flight and Julious (2015), and 

Delgado and Tibau (2019), have cautioned against relying on Kappa due to its 

limitations. One significant limitation of Kappa is its high sensitivity to the 

distribution of marginal totals, which can result in unreliable outcomes (Flight 

and Julious, 2015).  

In light of the issues associated with OA and the Kappa coefficient, 

scholars have been advised to present both class-level and overall metrics in 

their reports (Olofsson et al., 2014; Congalton and Green, 2019). An ideal 

classifier should possess high sensitivity (true positive rate) and precision, 

meaning it should be able to make accurate predictions regarding the presence 

and absence of an event while minimizing false positives and negatives 

(Boehmke and Greenwell, 2019). The F1-score, a metric derived from the 

harmonic mean of precision and recall, is a reliable indicator of a model’s 

performance per class. However, the performance of individual classes may 

be more effectively measured by the AUC, which represents the area under 

the ROC curve. The ROC curve plots the true positive rate against the false 

positive rate for various classification thresholds. A higher AUC value 
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indicates superior classification performance and better discrimination 

between positive and negative instances. Alternatively, scatter plots depicting 

sensitivity (PA) versus specificity (UA) are frequently utilized, along with a 

predefined accuracy threshold, to assess the performance of a classification 

model at the class level (Phinzi et al., 2020; Likó et al., 2022). 

4. METHODS AND MATERIALS 

4.1. Study area description 

This research was conducted in four rural study areas (#1-#4) in 

Eastern South Africa that suffer from severe soil erosion in the form of 

gullying (Figure 5). Despite differences in physical and geographical features 

(Figures 6 and 7), all four areas share a semi-arid climate with cold, dry 

winters and hot, rainy summers, with the highest rainfall occurring between 

November and January. The study areas experience an average annual rainfall 

of 511-671 mm (Figure 7c), with temperatures ranging from 7 to 30 ○C. The 

study areas span an elevation range of 837-1604 m (Figure 6a), characterized 

by excessively steep slopes exceeding 60% (Figure 6b). The geological 

composition underlying these study areas comprises Clarens, Elliot, Molteno 

(CEM), Suurberg, Drakensberg, Lebombo (SDL), Tarkastad, and Adelaide 

rock formations (Figure 6c). The predominant soil types are Luvisols, with a 

lesser presence of Ferralsols and Planosols (Figure 6d). The Transitional and 

Temperate Forest Scrub Type (TTFST) emerges as the prevailing vegetation 

type throughout all the study areas (Figure 7a). The prevailing climatic 

conditions in the study area facilitate agricultural (i.e., cultivation) pursuits 

that primarily define the land use patterns observed (Figure 7b). The 

subsequent sections provide descriptions of the distinctive characteristics 

defining each study area. 
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Figure 5. Location of four study areas in the Eastern Cape (EC) Province of 

South Africa. 
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Figure 6. Topographic and geo-environmental characteristics of the study 

areas: (a) elevation, (b) slope, (c) geology, and (d) soil type. Note: CEM 

(Clarens, Elliot, Molteno), SDL (Suurberg, Drakensberg, Lebombo). 
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Figure 7. Physical and climatological characteristics of the study areas: (a) 

vegetation types, (b) land use/land cover (LULC), and (c) rainfall. Note: CTFT 

(Coastal Tropical Forest Types), FBT (False Bushveld Types), KKT (Karoo 

and Karroid Types), FKT (False Karoo Types), TTFST (Temperate and 

Transitional Forest and Scrub Types), PGT (Pure Grassveld Types), FGT 

(False Grassveld Types).  
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4.1.1. Study Area #1 

The study area comprises three small sites (1A - 1C), each covering 

1.26 km2, as shown in Figure 8. The area is characterized by extensive erosion 

features, particularly gullies on gentle slopes and rills on steep slopes. Land 

use is mixed, including rural settlements, unpaved roads, and agriculture. The 

topography varies, with elevations ranging from about 1098 m in central areas 

to over 1500 m in hilly northern and eastern regions. The geological setting of 

the area is composed of Adelaide rock formations overlain by Luvisols as a 

dominant soil type. The vegetation in the area is primarily grassland, located 

in elevated and mountainous areas. On the other hand, low-lying areas, where 

human activities like farming and settlement occur, have minimal vegetation 

cover. A pan-sharpened multispectral SPOT-7 image was utilized to map 

gullies in sites 1A - 1C. 

 

 

 

 

 

 

 

 

 

 

Figure 8. The geographical location of the study area showing three gully sites 

(1A, 1B, and 1C). 
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4.1.2. Study Area #2 

The area covers approximately 10 km2 (Figure 9). The primary land 

use types are subsistence agriculture (crop farming and livestock rearing) and 

settlement. The most common vegetation type is grassland, with some forest 

patches in the northwestern part of the study area. The topography ranged from 

1213 m – 1658 m, with the northwestern and southwestern parts being steeper 

than other sections. The area’s geomorphology is characterized by steep 

mountain slopes with gently undulating foot slopes (Le Roux and Sumner 

2012).  

 

 

 

 

 

 

 

 

Figure 9. Location of the study area (PlanetScope false-color images). 

The area is underlain by mudstone and sandstone of the Beaufort 

Group (Hilbich et al., 2007), which includes the lower Adelaide Subgroup . 

Soils derived from these rocks are inherently erodible. Indeed, the extensive 

erosion in the area is potentially due to the prevalence of duplex and dispersive 

soils (van Breda Weaver, 1991; Beckedahl and de Villiers, 2000). The area 

comprises continuous and discontinuous gully networks with various 
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characteristics, including narrow, wide, vegetated, shallow, deep with 

shadows, and so on (Le Roux and Sumner 2012; Phinzi et al. 2021b). Gully 

mapping was conducted using PlaneScope data obtained during the dry and 

wet seasons.  

4.1.3. Study Area #3 

The study area has a surface area of 1.47 km2 and is characterized by 

permanent gullies of varying length, depth, and width (Figure 10). These gully 

characteristics are observable at four locations (sites 3A – 3D) within the study 

area. Gullies in sites 3A and 3D have a similar pattern but differ in depth, 

whereas gullies in sites 3B and 3C are primarily linear and elongated. The 

elevation ranges from 1445 m to 1584 m, with the highest values in the western 

parts and the lowest in the far southeastern parts.  

 

 

 

 

 

 

 

 

 

 

Figure 10. Location of the study area and selected gully sites (3A - 3D). 
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Highland Sourveld Grassland (Acocks, 1988) is the primary 

vegetation, and the area is predominantly used for livestock grazing, making 

it susceptible to gullying. In addition, the predominant geological composition 

of the area consists of mudstone and sandstone derived from the Beaufort 

Group (Hilbich et al. 2007), encompassing the lower Adelaide Subgroup and 

the upper Tarkastad Subgroup. The entire area is characterized by the presence 

of Luvisols throughout. The visual range SPOT-7 image was employed for 

gully mapping. 

4.1.4. Study Area #4 

The study was conducted in a tertiary catchment, covering an area of 

approximately 2145 km2 with an elevation range of 534-1772 m above sea 

level (Figure 11). The area is drained by the Mgwali River, a tributary of the 

Mbhashe River system. Grassland is the dominant natural vegetation type, 

with scattered forest patches. Agriculture, mainly consisting of subsistence 

crops and livestock farming, is the main land use activity, although there are 

a few commercial farms. The underlying geological rock types are Mudstones 

and sandstones of the Tarkastad Formation and Molteno Formation, which are 

prone to erosion due to their easily weathered parent material (DWA, 2010). 

Soils in the area are predominantly Chromic Luvisols, which have a high silt 

content (ISRIC, 2002), covering about 87% of the catchment, while Eutric 

Planosols and Solodic Planasols, commonly found in hilly areas, cover the 

remaining 13%. Planosols are highly unstable soils, making them susceptible 

to gully erosion (Du Plessis et al., 2020). 
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Figure 11. Study area map showing the distribution of gully locations (data 

source: shuttle radar topography mission – SRTM DEM). 

4.2. Data 

The remote sensing data used in this study, comprising cloud-free 

satellite imagery and elevation data, were acquired at no expense. The images 

were obtained from the South African National Space Agency (SANSA), 

including multispectral and visual range SPOT-7 scenes from June 2017. The 

visual range image had a resolution of 1.3 m and consisted of red, green, and 

blue (RGB) bands, while the multispectral image had a resolution of 5.5 m and 

included RGB and near-infrared (NIR) bands, as well as a high-resolution 

panchromatic band of 1.5 m. To correct for atmospheric reflectance, the 

images were converted to top-of-atmosphere reflectance using the 

“atmospheric reflectance function” in ArcGIS 10.4. Additionally, the low 
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geometric resolution of the multispectral image was enhanced using the Gram-

Schmidt pan-sharpening method in ENVI software (Maurer, 2013; Grochala 

and Kedzierski, 2017; Abriha et al., 2018).  

The study also utilized PlanetScope multispectral data, specifically 

Level 3B images for wet (January 2017) and dry (June 2017) seasons. The 

images were obtained from the Planet explorer website 

(https://www.planet.com/explorer, accessed on 30 July 2020), which provides 

orthorectified scenes that had already undergone necessary radiometric and 

geometric corrections and were projected to the Universal Traverse Mercator 

(UTM) projection system based on the world geodetic system (WGS84) 

datum. The PlanetScope image contained four spectral bands, including RGB 

and near-infrared bands, with a spatial resolution of 3m and a temporal 

resolution of 1 day. To obtain a digital elevation model (DEM), a 30 m Shuttle 

Radar Topography Mission (SRTM) was downloaded from the Earth Explorer 

website (https://earthexplorer.usgs.gov/) on 26 January 2021. 

4.3. Geo-environmental variables 

Gully erosion is influenced by various topographic, environmental, 

hydrological, and socio-economic factors, collectively known as geo-

environmental predictors, features, variables, or covariates. For this 

dissertation, 22 geo-environmental predictors were selected based on our 

research objectives, data availability, and relevant literature (Valentin, Poesen 

and Li, 2005; Le Roux and Sumner, 2012; Conoscenti et al., 2014; Phinzi and 

Njoya Silas Ngetar, 2019; Ghaedi and Shojaian, 2020; Ebhuoma et al., 2022) 

(see Table 3). Appendix 1 illustrates the spatial distribution of these geo-

environmental predictors. Elevation data was derived from the void- SRTM 

DEM from which other topographic factors, including slope, aspect, plan 

curvature, profile curvature, slope length and steepness (LS-factor), 

topographic wetness index (TWI), terrain ruggedness index (TRI), stream 
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power index (SPI), distance from rivers, and drainage density, were computed 

using ArcGIS 10.4 software (ESRI, 2022). 

SPI plays a crucial role as a predictor variable in assessing gully 

susceptibility, as it not only quantifies the erosive capacity of surface runoff 

but also identifies areas with a high potential for gully formation. Calculation 

of the SPI was performed using the equation (1) proposed by Moore et al. 

(1991): 

𝑆𝑃𝐼𝑖 = ln (𝐶𝐴𝑖) × tan (𝐺𝑖)                   (1) 

Where i is the grid cell, CAi is the catchment area (m), and Gi is the slope 

gradient at the grid cell. 

TWI is a significant topographic characteristic in evaluating gully 

susceptibility, as it defines regions within a catchment that accumulate high 

amounts of water. Calculation of this topographic attribute was performed 

using the following equation (2): 

𝑇𝑊𝐼 = ln (
𝐶𝐴

𝑡𝑎𝑛𝛽
)                       (2) 

Where  CA is the catchment area, and β is the slope gradient. 

The slope length and steepness, collectively referred to as the LS 

factor, account for the overall effect of topography on soil erosion. The LS 

factor was calculated based on the following empirical equation (Moore and 

Burch, 1986): 

  𝐿𝑆 = (
𝐴

22.13
)𝑚 × (

𝑠𝑖𝑛𝛽

0.0896
)𝑛 𝐴 = (𝐹𝑙𝑜𝑤 𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 × 𝐶𝑒𝑙𝑙 𝑠𝑖𝑧𝑒)    (3) 

Where A is the upslope contributing area per unit cell (m), m (0.4) is a variable 

slope length exponent, β is the slope gradient, and n (1.3) is a slope steepness 

exponent.  
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Soil data consisting of soil physical (organic matter content, sand, silt, 

and clay content) and chemical properties such as cation exchange capacity 

(CEC), calcium carbonate (CaCO3), and pH were obtained from the digital 

soil map of the world (FAO, 2003). The soil erodibility, represented by the K-

factor, was computed in ArcGIS 10.4 using the empirical relation of Williams 

(1995) based on the soil's physical properties (Equation 4):  

             𝐾𝑈𝑆𝐿𝐸 = 𝑓𝑐𝑠𝑎𝑛𝑑 ∗ 𝑓𝑐𝑙−𝑠𝑖 ∗ 𝑓𝑜𝑟𝑔𝑐 ∗ 𝑓ℎ𝑖𝑠𝑎𝑛𝑑     (4) 

𝑓𝑐𝑠𝑎𝑛𝑑 = (0.2 + 0.3 ∗ 𝑒𝑥𝑝 [−0.256 ∗ 𝑚𝑠 ∗ (1 −
𝑚𝑠𝑖𝑙𝑡

100
)])  

       

𝑓𝑐𝑙−𝑠𝑖 = (
𝑚𝑠𝑖𝑙𝑡

𝑚𝑐+𝑚𝑠𝑖𝑙𝑡
)

0.3

      

        

𝑓𝑜𝑟𝑔𝑐 = (1 −
0.0256∗𝑜𝑟𝑔𝐶

𝑜𝑟𝑔𝐶+𝑒𝑥𝑝[3.72−2.95∗𝑜𝑟𝑔𝐶]
)    

       

           𝑓ℎ𝑖𝑠𝑎𝑛𝑑 = (1 −
0.7∗(1−

𝑚𝑠
100

)

(1−
𝑚𝑠
100

)+𝑒𝑥𝑝[−5.5+22.9∗(1−
𝑚𝑠
100

)]
)        

where the 𝑓𝑐𝑠𝑎𝑛𝑑 is a factor that gives low soil erodibility values for 

soils with high coarse sand content and high values for soils with little sand, 

𝑓𝑐𝑙−𝑠𝑖  is a factor that gives low soil erodibility for soils with high clay-to-silt 

ratios, 𝑓𝑜𝑟𝑔𝑐 is a factor that reduces soil erodibility for soils with high organic 

carbon content, 𝑓ℎ𝑖𝑠𝑎𝑛𝑑 is a factor that reduces soil erodibility for soils with 

extremely high sand content, 𝑚𝑠 is the percent sand content (0.05 – 2.0 mm 

diameter particles), 𝑚𝑠𝑖𝑙𝑡 is the percent silt content (0.002 – 0.05 mm diameter 

particles), 𝑚𝑐 is the percent clay content (<0.002 mm diameter), and 𝑜𝑟𝑔𝐶 is 

the percent organic carbon content of the layer (%). 

The normalized difference vegetation index (NDVI) was computed 

from a cloud-free Landsat-9 Operational Land Imager (OLI) acquired on 08 
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February 2022, which we downloaded from the USGS website. The land 

use/land cover (LULC) map for the study area was extracted from the South 

African National Land Cover (SANLC) dataset available on the Department 

of Forestry, Fisheries, and Environment website. The study area comprised 

eight LULC classes, including built-up land, barren land, cultivated land, 

forest, grassland, mines and quarries, water bodies, and wetlands. 

The land type map was prepared from the South African Land Type 

Survey database (Land Type Survey Staff, 1972-2006). The map comprises 

nine broad land types grouped according to the prevailing climate, terrain, and 

dominant soil types found within the land type (Van Zijl, Le Roux and Turner, 

2013; Du Plessis et al., 2020). Distance from roads was computed from the 

roads network data available at https://www.hotosm.org/. Geology for this 

research consisting mainly of Mudstones and sandstones of the Tarkastad 

Formation and Molteno Formation was downloaded from the South African 

National Space Agency (SANSA). Long-term (1981-2021) annual gridded 

rainfall data from the Climate Hazards Group Infrared Precipitation (CHIRPS) 

(Funk et al., 2015) were used. The CHIRPS product provides quasi-global 

rainfall estimates at a spatial resolution of 0.05º and was resampled to 30 m. 

Finally, the 2020 population density dataset was downloaded from the 

WorldPop database (www.worldpop.org) in Geotiff format at a spatial 

resolution of 100 m. 

 

 

 

 

 

https://www.hotosm.org/
http://www.worldpop.org/
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Table 3. Geo-environmental predictors considered for gully susceptibility modeling (SRTM= 

Shuttle Radar Topography Mission, DEM=digital elevation model, TWI=topographic 

wetness index, LS=slope length and steepness, TRI=terrain ruggedness index, 

NDVI=normalized difference vegetation index, LULC=land use/land cover, CEC=cation 

exchange capacity, CaCO3=calcium carbonate, SPI=stream power index). 

 

Predictors Class range Data source 

to
p
o

g
ra

p
h

ic
al

 

Slope  0 – 67.07º 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

Aspect 9 classes 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

Plan curvature -9 – 8 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

Profile curvature -10 – 11 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

LS-factor 0 – 3228.69 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

TWI 2.73 – 24.99 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

Elevation 534 – 1772 m 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

TRI 0.89 – 0.11 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

E
n

v
ir

o
n

m
en

ta
l 

NDVI -0.23 – 0.72 

Landsat-9 

(https://earthexplorer.usgs.gov/) 

LULC 8 classes 

Department of forestry, fisheries and 

environment 

(https://egis.environment.gov.za) 

Land type 9 classes Land Type Survey Staff (1972-2006) 

Distance from roads 0 – 12647.2 m 

Roads shapefile 

(https://www.hotosm.org/)  

K-factor 0.06 – 0.12 FAO world soil database 

Soil pH 6.2 – 6.9 FAO world soil database 

CEC 8.4 – 13.1 cmol/kg FAO world soil database 

CaCO3 0 – 1 FAO world soil database 

Geology 2 classes 

South African National Space Agency  

(http://atlas.sansa.org.za/atlas-

geology.html) 

H
y

d
ro

lo
g

ic
al

 

SPI -13.82 – 13.35 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

Distance from rivers 0 – 3079.5 m 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

Drainage density 0 – 4.51 km/km2 

SRTM DEM 

(https://earthexplorer.usgs.gov/) 

Rainfall 651.94 – 766.19 mm CHIRPS (Funk et al., 2015) 

S
o

ci
o

-

ec
o

n
o

m
ic

 

Population density 

 

 

0 – 85 people/km2 

 

 

WorldPop database 

(www.worldpop.org) 

 

 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://egis.environment.gov.za/
https://www.hotosm.org/
http://atlas.sansa.org.za/atlas-geology.html
http://atlas.sansa.org.za/atlas-geology.html
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.worldpop.org/
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4.4. Variable selection 

Choosing the most suitable predictors for the model is crucial to avoid 

overfitting and multicollinearity, which in turn improves the predictive 

performance of the model. The recursive feature elimination (RFE) algorithm 

executed in R software (R Core Team, 2021) was used to identify and remove 

uninformative predictors from the dataset. This process involves removing one 

predictor at a time through iteration until the optimal subset of predictors is 

achieved (Csatáriné Szabó et al., 2020; Varga et al., 2021). A random forest-

based RFE was used with a 10-fold cross-validation, repeated five times. To 

check for multicollinearity, the correlation matrix, tolerance, and variance 

inflation factor (VIF) were computed. Collinearity was considered present if 

bivariate correlations among predictors exceeded 0.75, tolerance was less than 

0.1, and VIF was greater than 10 (Mason and Perreault Jr, 1991; Gareth et al., 

2013; Kuhn and Johnson, 2013; Vatcheva et al., 2016). If collinearity was 

detected, the variables concerned were removed, resulting in an optimal 

feature set of sixteen predictors. The relative importance of these predictors 

was then ranked using RF-based variable importance. From this optimal 

feature set, three feature sets were generated: a large set with 16 predictors, a 

medium set with 12 predictors, and a small set with 6 predictors. The small 

feature set comprised the top six most important predictors. The medium set 

consisted of the small set and an additional six important predictors, while the 

large set included all sixteen predictors. These feature sets were used to 

examine the performance of the ML models when the number of predictors 

varied. The terms "large," "medium," and "small" sets were used throughout 

the manuscript for convenience. 
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4.5. Reference data collection for gully mapping and susceptibility 

modeling 

The reference data for all study areas were collected based on field 

surveys, satellite images, and Google Earth image interpretation. While the 

main objective of this dissertation was to map gullies, including other land 

cover classes in the classification process was crucial for effectively 

distinguishing gullies from the surrounding land cover. Areas where the land 

cover was identifiable in the field, and the images were delineated in each 

study area. For example, in the case of Study Area #1, seven land cover classes 

were distinguished on pan-sharpened SPOT-7 data, including stressed 

vegetation (SV), bare soil (BS), gully (G), mixed bare soil (MS) (exposed 

rocks, unpaved roads, and bare soils), dense vegetation (DV), roads (R) and, 

settlement (S). The classification process was conducted utilizing RF , SVM, 

and LDA algorithms within the R software. In addition, the two-class 

approach was also investigated, where all non-gully classes were reclassified 

into one class. Throughout this dissertation, the seven-class solution is called 

the ‘multi-class’ (m) approach, while the two-class solution is a ‘binary’ (b) 

approach. A stratified random sampling of the entire dataset was conducted, 

with 20795, 31784, and 22512 pixels collected for sites 1A, 1B, and 1C, 

respectively. A subset of 1000-1000 cases was randomly selected for the 

binary approach, while 350 cases per category were chosen for the multi-class 

approach to avoid autocorrelation. A 10-fold CV with three repeats was 

applied within the R software environment, where the entire dataset (pixels) 

was randomly divided into ten subsamples, of which nine subsamples were 

used for model training while one subsample was used for testing. This 

process was repeated until all subsamples were tested against each other and 

required no separate training or testing database (Brownlee, 2014; Heckel et 

al., 2020). 
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In Study area #2, the identification and classification of gullies from 

the PlanetScope image were carried out using random RF and SVM 

algorithms implemented in the Python software. Prior to this procedure, the 

area was classified into seven different land cover categories for each of the 

two seasons: forest, agriculture, built-up areas, bare soil, gullies, and mixed 

bare soil that consisted of exposed rocks, unpaved roads, and exposed soil, 

primarily in plowed fields. The reflectance values of gullies during two 

different seasons were compared by computing the Normalized Difference 

Vegetation Index (NDVI). A total of 17,757 pixels for the wet season and 

30,597 pixels for the dry season were extracted from the PlanetScope image. 

The 5-fold CV was repeated 20 times, while bootstrapping was repeated 100 

for each season. In the former, the reference data were split into train and test 

sets, with a 50:50 ratio, while in the latter, a sample of the same size as the 

original dataset was obtained by repeatedly drawing random samples (100 

times), with replacement, from the original dataset. 

In Study Area #3, four land cover classes were distinguished: 

grassland, stressed vegetation, gully, and bare soil. Training data for each land 

cover type was obtained by digitizing polygons. Collecting training pixels 

using polygons offers a significant advantage in terms of efficiency and time-

saving. This method allows for the swift collection of pixels falling within a 

designated polygon, as opposed to the laborious process of manually 

collecting individual pixels using points. These training polygons were 

strategically distributed across the study area to ensure each land cover 

category was well represented. Stratified random sampling was employed to 

collect 200 ground truth points for the four land cover classes, with 78 points 

for grassland, 54 for stressed vegetation, 41 for gully, and 27 for bare soil. 

While the Normalized Green Red Difference Index (NGRDI) was not used as 

a feature in the classification process, it was computed separately to provide 
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insights into the distribution of vegetation in gullied areas. The NGRDI was 

calculated in ArcMap using the formula (G − R)/(G + R), where G represents 

the Green and R represents the Red bands. Spectral profiles of the NGRDI for 

gullies were extracted from gully transects ranging from 20 m to 100 m in 

length using ENVI 5.3. The initial land cover map was reclassified into a 

binary map with two classes (gully and non-gully) to generate a gully map. 

The resulting binary map was then clipped into four specific gully sites (sites 

3A-3C) to analyze further the gullies’ morphological characteristics, including 

their shape, size, length, width, and depth. For each of the four selected sites, 

gullies were manually digitized based on high-resolution (0.5 m) aerial 

photography, and digitized polygons were created in ArcMap at a scale of 

1:500. These polygons were then converted into a raster format. The manually 

digitized gullies were then used to assess the accuracy of the automatically 

extracted gullies by comparing the extent of each type. For instance, the 

proportion of the area affected by gullies as identified by an algorithm was 

compared to the proportion manually delineated in each site. Furthermore, the 

accuracy of the automated classification was evaluated through the utilization 

of a confusion matrix (Congalton, 1991; Congalton and Green, 2019). Finally, 

the gully density map of Study Area #3 was created in ArcGIS by applying 

the Line Density tool, which allowed for the visualization of the severity or 

intensity of gullies across the entire area. In addition, the lengths and density 

of gullies per unit area were calculated, with meters selected as the unit of 

measurement for both length and area (gully length in meters per square 

meter). The input data for computing the density map consisted of the gully 

map generated using an algorithm with the highest overall and class-level 

accuracies. 

The reference data for Study Area #4 consisted of 592 gully points that 

were collected from Google Earth. The gullies in this study area are extensive 
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and intricate, with narrow linear and dendritic patterns, and a dense network 

of smaller gullies. Due to the complexity of the gullies, the locations were 

mainly collected at gully heads or in the middle part of long narrow linear 

gullies with limited branching or visible gully heads. Most gullies in the area 

are permanent and display diverse morphological characteristics such as 

lengths ranging from 30-274 meters, depths from 1.22-6.90 meters, and widths 

from 4.66-15 meters. The gullies primarily exhibit V-shaped and U-shaped 

cross-sections (Phinzi, Holb and Szabó, 2021). Despite their complexity, the 

relatively large size and lack of vegetation cover made it easy to locate gullies 

both in the field and on Google Earth. Likewise, a total of 592 non-gully points 

were collected from locations where the land cover was different from that of 

gullies. The resulting gully and non-gully points were then transformed into a 

vector shapefile and exported to R software to extract pixel values of the 16 

geo-environmental predictors. The reference data contained 1184 

observations with the response variable being binary (g = gully and ng = non-

gully) and 16 predictors (large set). Note that the reference data for the small 

and medium feature sets contained six and twelve predictors, respectively. 

After checking for missing values, the reference data were randomly split into 

training (70%) and testing (30%) datasets. This partitioning procedure was 

also applied to the small and medium feature sets.  

A two-step process was followed for gully susceptibility modeling 

using six ML techniques (ANN, PLS, RDA, RF, SGB, and SVM) and a 

bivariate statistical method (frequency ratio). First, the caret package (Kuhn, 

2008) available in R software was utilized to train all ML methods with 10-

fold cross-validation repeated five times, resulting in 50 candidate models for 

each ML method. Following this procedure, a final model with the highest 

accuracy was selected and applied to predict gully erosion at a pixel level, 

resulting in a binary output (g and ng pixels) for each ML method. Second, the 
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frequency ratio (FR) was then used to assign weights to each geo-

environmental predictor and reclassify the binary output of each ML method 

into four gully susceptibility classes (e.g., low, moderate, high, and very high). 

FR is a bivariate statistical technique successfully applied to various natural 

hazards such as flooding (Rahmati, Pourghasemi and Zeinivand, 2016; 

Shafapour Tehrany et al., 2019), landslides (Lee and Sambath, 2006; 

Anbalagan et al., 2015), and, more recently, gully erosion (Roy and Saha, 

2019; Amare et al., 2021; Azedou et al., 2021; Lana, Castro and Lana, 2022). 

It expresses the ratio between the occurrence and non-occurrence of a natural 

hazard (in this case, gully erosion) based on its spatial relationship with 

associated influencing factors (i.e., gully predictors) (Lee and Pradhan, 2007). 

Much like conditional probability, an FR ratio of >1 represents a strong 

relationship, while a ratio of <1 represents a weak relationship between gullies 

and predictor classes (Anbalagan et al., 2015).  

4.6. Machine learning (ML) and hyperparameter tuning 

The accuracy of gully erosion classification depends on numerous 

factors, which encompass the choice of algorithms as well as the specific 

characteristics of the study area and the remote sensing data employed. Thus, 

various algorithms including RF, SVM, PLS, MLC, K-NN, RDA, RDA, 

ANN, SGB, and MD were utilized to identify gully features and model gully 

susceptibility. These algorithms were chosen due to their widespread 

application in gully-related research, rendering them suitable for examining 

various previously untested factors that impact accuracy. In Study Area #1, 

the pan-sharpened SPOT-7 product was classified using RF, SVM, and LDA 

algorithms, while in Study Area #2, only SVM and RF algorithms were 

applied to the PlanetScope data. Python programming language was used to 

execute the algorithms in Study Area #1 and #2. In Study Area #3, RF, ML, 

K-NN, and MD algorithms were used to extract gullies from a visual range 
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SPOT-7 image, and these were run in the Sentinel Application Platform 

(SNAP), an image-processing software developed by the European Space 

Agency (ESA). In Study Area #4, six algorithms (RF, PLS, RDA, SVM, ANN, 

and SGB) were executed in R programming language (R Core Team, 2021). 

Appendix 2 presents the process of hyperparameter tuning and the chosen 

optimal values for the six algorithms across three feature sets of different sizes. 

The following subsections describe each algorithm, including associated 

hyperparameters. 

4.6.1. Random forest (RF) 

RF is an ensemble learning method that combines multiple decision 

trees to create a more accurate and stable model (Breiman, 2001). It constructs 

a forest of decision trees, each trained on a distinct and randomly selected 

subset of the training data and features (Camps-Valls and Bruzzone, 2009). 

The trees are developed independently, and their predictions are aggregated to 

produce a final prediction, which reduces the model’s variance. The algorithm 

has two hyperparameters: a mtry parameter, which specifies the number of 

features randomly selected at each split of the decision tree, and an ntree 

parameter, which defines the number of decision trees included in a forest. A 

grid search was applied to find a mtry value that maximizes accuracy. 

4.6.2. Support vector machines (SVM) 

SVM works by finding the hyperplane that maximizes the margin 

between the classes. The margin is the distance between the hyperplane and 

the closest data points from each class. This hyperplane is the maximum 

margin hyperplane, the optimal decision boundary for the classification 

problem. In cases where the data points are not linearly separable, the SVM 

uses a kernel function to transform them into a higher-dimensional feature 

space where they can be linearly separable (Lantz, 2015; Boehmke and 
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Greenwell, 2019). This study applied SVM using a radial kernel function. The 

algorithm has two crucial parameters that affect its performance. The first 

parameter, cost (C), penalizes the misclassification of training data. The 

second parameter, γ, controls the influence of a single training data point on 

the decision boundary. The process of hyperparameter tuning was conducted 

using the grid search method. 

 4.6.3. Regularized discriminant analysis (RDA) 

Discriminant analysis (DA) is a machine learning method that models 

the conditional distribution of predictors X in predefined response classes Y = 

1 (i.e., gully) and Y = 0 (i.e., non-gully) using Bayes' theorem (Welch, 1939; 

Friedman, 1989; Gareth et al., 2013). DA identifies linear combinations of 

predictors that best discriminate the response classes and makes predictions 

for new observations using linear or quadratic discriminant functions 

(Alkarkhi and Alqaraghuli, 2018). Regularized discriminant analysis (RDA) 

is a regularization method based on linear DA (LDA) and quadratic DA 

(QDA) that incorporates tuning parameters to improve classification 

performance. RDA is advantageous over its predecessors as it has tuning 

parameters that make it a robust classifier. In this dissertation, I fine-tuned the 

RDA parameters using a tune length of 5. The "rda" (Friedman, 1989) method 

in the caret package was employed. Although all discriminant analysis 

methods rely on the assumption of multivariate normal data distribution, RDA 

is expected to perform better than LDA and QDA due to its incorporation of 

tuning parameters (Wu et al., 1996). 

4.6.4. Linear discriminant analysis (LDA) 

LDA seeks to find a linear combination of features that maximizes the 

separation between classes in a dataset. LDA aims to project the original data 

into a lower-dimensional space while preserving class-discriminatory 
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information. It does so by modeling the data distribution in each class and 

computing the mean and covariance matrix for each class. Once the mean and 

covariance matrix are computed for each class, LDA uses these parameters to 

calculate a linear discriminant function to project new data onto a lower-

dimensional space. The linear discriminant function is essentially a weighted 

sum of the input features, where the weights are learned during training to 

optimize the separation between classes. LDA does not have any 

hyperparameters. 

4.6.5. Maximum likelihood classifier (MLC) 

MLC is a probabilistic algorithm that models the probability 

distribution of each class in the input data and uses Bayes’ theorem to calculate 

the probability of a new observation belonging to each class  (Bolstad and 

Lillesand, 1991). The algorithm first estimates the probability distribution of 

each class in the training data by calculating the mean and variance of the data 

for each class. Once the probability distributions are estimated, the algorithm 

can classify new observations by calculating the likelihood of the observation 

belonging to each class. The class with the highest likelihood is then chosen 

as the predicted class for the observation. Minimum and maximum power set 

sizes are two important hyperparameters. After experimentation with different 

power values and observing the resulting classification outcomes, values of 

two (minimum power) and seven (maximum power), which are default vales 

were used.  

4.6.6. K-nearest neighbor (K-NN) 

The k-NN algorithm works by finding the k nearest data points in the 

training set to a new, unseen data point and using the labels of those neighbors 

to predict the label or value of the new data point (Thanh Noi and Kappas, 

2017). The “nearest” data points are determined based on the Euclidean 



 

58 
 

distance or other distance metrics between the new data point and the training 

set. In the case of classification, the k-NN algorithm selects the most common 

class label among the k-nearest neighbors and assigns that label to the new 

data point. The value of the k hyperparameter, which represents the number 

of neighbors, can significantly affect the performance of the k-NN algorithm. 

A k value of five was used after experimentation with several values.  

4.6.7. Minimum distance (MD) 

MD is a simple algorithm that calculates the distance between a new, 

unseen data point and the class centroids (center of each class distribution in 

the feature space) in the training set (Richards and Richards, 1999). The 

algorithm then assigns the class label of the closest centroid to the new data 

point. It assumes that the data points in each class are normally distributed and 

have the same covariance matrix, which allows calculating the Euclidean 

distance between the new data point and the class centroids. Like the MLC, 

the MD classifier involves two hyperparameters: the minimum and maximum 

power set size. A procedure similar to MLC was also followed to determine 

the optimal values for these hyperparameters. Specifically, a value of two was 

selected for the minimum power set size, and a value of seven was chosen for 

the maximum power set size parameter. 

4.6.8. Artificial neural network (ANN) 

Artificial neural networks (ANN) are composed of layers of artificial 

neurons that imitate the function of biological neurons in the human brain. A 

typical ANN architecture includes an input layer of neurons, one or more 

hidden layers of neurons, and a final layer of output neurons. Neurons in each 

layer are linked to other neurons in the next layer through connections with 

specific weights (Wang, 2003). These weights determine the relative 

importance of each geo-environmental predictor in predicting gully 
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occurrence. Predictors with larger weights contribute more significantly to 

gully prediction. ANN was executed with the "nnet" (Venables and Ripley, 

2013) method in the caret package (Kuhn, 2008). To find the best combination 

of hyperparameters that maximizes predictive performance, we conducted a 

grid search of two hyperparameters: the number of neurons in the hidden layer 

(size = 5, 10, 15) and a regularization parameter to prevent over-fitting (decay 

= 0.001, 0.01, 0.1). 

4.6.9. Partial least squares (PLS) 

Initially designed for dimension reduction (Wold, 1966), PLS is 

becoming popular for solving classification problems, including gully 

susceptibility (Pham et al., 2020; Pourghasemi et al., 2020). PLS intends to 

form components that capture most of the information in the explanatory 

variables helpful in predicting the response variable (Garthwaite, 1994). It 

achieves this by constructing linear combinations (components) of the original 

predictors from which a set of latent variables with the best predictive power 

is extracted (Abdi, 2003), then regressing the response variable on these latent 

variables (Chung and Keles, 2010). PLS only has one hyper-parameter, the 

number of components. A tune length of 15 was selected to find the number 

of components with the highest accuracy. PLS was executed with the “pls” 

(Wehrens and Mevik, 2007) method in the caret package. 

4.6.10. Stochastic gradient boosting (SGB) 

Boosting was traditionally developed for classification problems 

(Valiant, 1984) and concerned with combining several weak classifiers to 

form a robust classifier (Kuhn and Johnson, 2013). There are many variants 

of boosting algorithms, and SGB (Friedman, 2002), also known as gradient 

boosting machines (GBM), is among the most recent and popular algorithms. 

Much like RF, SGB uses bagging, a technique where a set of random decision 
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trees are generated, and each tree is trained on a random subset of the training 

data. The main difference is that SGB generates an ensemble of several 

shallow trees sequentially, where each tree learns and improves on the 

previous one, while RF generates an ensemble of deep independent trees 

(Boehmke and Greenwell, 2019). SGB uses a sequential ensemble approach 

in which boosting starts with a weak model and sequentially boosts its 

performance by building a new tree at each iteration from a random subsample 

of the training set, improving the model’s prediction accuracy (Moisen et al., 

2006; Boehmke and Greenwell, 2019). SGB was implemented through the 

caret package using the “gbm” (Ridgeway, 2007) method. Hyper-parameters 

include the depth of each tree (interaction depth = 1, 5, 9), the number of trees 

(n trees = 1500), the learning rate of the algorithm (shrinkage = 0.1), and the 

minimum number of observations in the for the trees terminal node (n 

minobsinode = 20). A grid search method was used to find a combination of 

these parameters with the highest accuracy. 

4.7. Model performance evaluation 

The overall performance of RF, SVM, and LDA in Study Area #1 was 

evaluated with a repeated 10-fold CV procedure. This procedure was repeated 

thrice, generating 30 models and their associated OA measures. Study Area 

#1 comprised three sites (1A-1C), and the model was trained using data 

(pixels) from one site and tested using data (pixels) from another independent 

site. This process was repeated for all possible combinations of the three sites, 

resulting in 36 candidate models. These models were developed using three 

different algorithms (RF, SVM, and LDA), two approaches to class numbers 

(binary and multi-class), and six combinations of study sites as train and test 

sets (1A→1B, 1B→1A, 1B→1C, 1C→1B, 1A→1C, 1C→1A). The 

performance of these models was evaluated by calculating the medians and 

quartiles of their OA. Despite the reliability of CV as a tool, it does not offer 



 

61 
 

insights into the accuracy of specific classes. As a result, the confusion matrix, 

which computes class-level metrics such as PA and UA, was utilized to 

supplement the analysis.  

For Study Area #2, the performance of RF and SVM algorithms was 

assessed using OA, computed using a 5-fold cross-validation and 

bootstrapping. The 5-fold CV was repeated 20 times to increase the reliability 

of the models, resulting in 100 candidate models from which final accuracies 

were computed. The dataset was randomly shuffled in each repetition, creating 

new folds. In the bootstrapping procedure, the models were validated on 

samples outside of the bootstrap sample, and this process was repeated 100 

times, generating 100 models for evaluation. Additional performance metrics, 

including PA, UA, F1-score, commission, and omission errors, were 

calculated. The omission error is the difference between 100% accuracy and 

the PA, which occurs when a pixel is not classified into the appropriate 

category. In contrast, the commission error is the difference between 100% 

accuracy and UA, which arises when a pixel is incorrectly assigned to a 

category to which it does not belong. Moreover, unbiased areal coverages (ha) 

of gullies, along with their standard errors (ha) and associated ± 95% 

confidence intervals (ha), were computed following the “good practice” 

recommendations for accuracy assessment of Olofsson et al. (2014). Six 

models were developed based on a combination of classifiers (SVM and RF), 

seasons (dry and wet), and resampling methods (bootstrapping and cross-

validation), namely rf-d-b, rf-d-cv, rf-w-cv, rf-w-b, svm-d-cv, svm-d-b, svm-

w-cv, and svm-w-b. 

The performance evaluation of RF, ML, K-NN, and MD in Study Area 

#3 was based on accuracy metrics computed from the confusion matrix, such 

as overall accuracy (OA), kappa coefficient, producer’s accuracy (PA), and 

user’s accuracy (UA). The “compute confusion matrix” function in ArcGIS 
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10.4 created a confusion matrix. Similarly, in Study Area #4, the confusion 

matrix computed in R software evaluated the performance of six ML 

algorithms (ANN, PLS, RDA, RF, SGB, and SVM) based on testing data. 

4.8. Statistical analysis 

Statistical analyses were conducted in R 3.6.2 software (R Core Team, 

2020) with WRS2 (Mair and Wilcox, 2019), jamovi 1.2., and GAMLj module 

(Gallucci, 2019). For Study Area #1, the normality assumption of the reference 

data of land cover classes was checked using the Shapiro-Wilk test. The 

Shapiro-Wilk test is a statistical hypothesis test utilized on a sample, where 

the null hypothesis assumes that the sample is drawn from a normal 

distribution (Mohd Razali and Bee Wah, 2011). In the case of this dissertation, 

the null hypothesis was rejected, indicating that the reflectance values of land 

cover classes do not follow a normal distribution. While the reflectance values 

were skewed, the classification accuracy measures (OA, PA, and UA) 

followed a normal distribution. Then, hypothesis testing was applied to 

determine if the land cover classes had identical medians or if they differed 

from one another concerning reflectance values. The Yuen test with a 0.2 trim 

value and 599 times bootstrapping was used for the binary approach, while 

robust ANOVA was used with a post hoc test based on trimmed means for the 

multiclass approach. Effect sizes were calculated for the Yuen test, while 

Dunnett’s test (Tallarida and Murray, 1987) was used to compare gullies with 

other land cover classes based on confidence intervals of differences instead 

of effect sizes. Thus, the number of comparisons and degree of freedom were 

limited, which avoided a complete factorial comparison. This step was 

necessary, given that the objective was to map gullies. General Linear 

Modelling (GLM) was used, with three sites, the number of classes (binary or 

multiclass), and algorithms considered as factors in different combinations to 

evaluate model performance on classification accuracy measures, where the 
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UA and PA were the dependent variables in this analysis. The effect size 

measure used was ω2, which is less biased by low sample size, limited to the 

results of 36 models (Levine and Hullett, 2002). 

In Study Area #2, the NDVI values of the images were compared for 

gullies in the wet and dry seasons using the robust Mann-Whitney test, with 

Monte Carlo p (pMC) and 9999 permutations. The General Linear Model 

(GLM) was used to analyze the effects of spectral bands (four bands: RGB + 

NIR), seasons (wet and dry), and land cover classes (seven classes). The 

statistical interactions were also examined to determine if factorial variables 

had a common effect, such as whether the effects of spectral bands differed by 

land cover classes or differed in the dry or wet seasons. In addition, effect size 

(ω²) was calculated as a standardized measure of the variables’ contribution to 

the model, where higher values indicate an enormous contribution. An effect 

size of ω² > 0.14 was considered a significant effect, as suggested by  Field 

(2013). Finally, the Dunnett test (Lee and Lee, 2018) was used to determine 

whether gullies differed significantly from other land cover types. This test is 

designed to perform multiple comparisons of the factor groups’ means against 

one control group’s mean (i.e., gullies), which can reveal subtle reflectance 

differences while identifying all possible overlaps in reflectance with the 

gullies. This test limited the number of comparisons to six instead of 21 

(complete factorial approach). This approach was taken to identify all possible 

differences in reflectance with the gullies. 

5. RESULTS AND DISCUSSION 

This section presents and discusses the research findings in light of 

existing literature. Subsection 5.1 examines the capabilities of low-cost, high-

resolution satellite imagery for gully mapping. Subsection 5.2 presents the 

accuracy results for gully classification, particularly considering factors that 



 

64 
 

may influence model performance at the class level. In Subsection 5.3, the 

focus shifts towards examining the morphological characteristics of gullies 

and how they influence the accuracy of their mapping and density 

measurement. Finally, Subsections 5.4-5.6 investigate gully susceptibility 

modeling using feature sets of varying sizes and analyze key geo-

environmental variables that explain the distribution of gullies in the study 

area. 

5.1. Low-cost, high-resolution sensors for gully mapping 

5.1.1. SPOT-7 multispectral image  

Results demonstrated that in a binary approach, reflectance values 

were significantly different across all SPOT-7 bands, except for the blue band 

in 1A (Figure 12). However, the effect sizes for blue and green bands were 

small, medium for the red band, and large for the NIR band (Table 4), 

indicating that the NIR band was the most effective in differentiating gullies. 

Subsequently, a multi-class approach was utilized to analyze seven categories 

(Figure 13), and the robust ANOVA test confirmed the significance of the 

models for each combination of bands and study sites (Table 5). 

After the ANOVA analysis, a post hoc test was conducted to identify 

the differences among categories, as the latter only confirms that there is at 

least one significantly different category. Given many possible combinations 

with seven categories, the analysis focused only on comparing gullies with the 

other categories, which was the dissertation's primary objective. Gullies did 

not significantly differ from stressed vegetation and roads in the red, green, 

and blue bands but significantly differed from other categories (Table 6). The 

mean differences of land cover categories were also reported, with confidence 

intervals consistent with the post hoc test, except for 1B, where the robust post 

hoc test revealed significant differences (Figure 14). The confidence intervals  
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Figure 12. Distribution of reflectance values of SPOT-7 image by bands (red, 

green, blue (RGB) and near-infrared (NIR)), study areas (1A–1C), and 

classification categories (NG: non-gully, G: gully). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Distribution of reflectance values of SPOT-7 image by bands 

(RGB+NIR), study sites (1A–1C), and classification categories (DV: dense 

vegetation, SV: stressed vegetation, S: settlement, G: gully, BS: bare soil, MS: 

mixed bare soil, R: road, B1: red, B2: green, B3: blue, B4: NIR). 
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Table 4. Results of robust independent samples t-test performed on SPOT-7 

bands using the binary (gully—non-gully) approach (study areas: 1A–1C, t: 

the value of t-statistic, p: significance, ξ: effect size). 

Bands 
1A 1B 1C 

t p ξ t p ξ t p ξ 

Red 8.3 < 0.001 0.159 9.55 < 0.001 0.14 6.74 < 0.001 0.11 

Green 2.99 0.003 0.062 28.21 < 0.001 0.38 15.98 < 0.001 0.28 

Blue 1.07 0.286 0.02 14.42 < 0.001 0.2 9.56 < 0.001 0.17 

NIR 86.1 < 0.001 0.964 171.7 < 0.001 0.98 113.3 < 0.001 0.98 

 

Table 5. Results of robust ANOVA performed on SPOT-7 bands using the 

multiclass (7-classes) approach (study areas: 1A–1C, F: the value of F-

statistic, p: significance). 

Bands 
1A 1B 1C 

F p F p F p 

Red 10105 < 0.001 25193 < 0.001 12660 < 0.001 

Green 9309 < 0.001 21188 < 0.001 10571 < 0.001 

Blue 9718 < 0.001 25694 < 0.001 13036 < 0.001 

NIR 3590 < 0.001 10905 < 0.001 4317 < 0.001 

Table 6. Results of robust ANOVA performed on SPOT-7 bands using the 

multiclass (7-classes) approach (LC: land cover, study areas: 1A–1C, G: gully, 

DV: dense vegetation, SV: stressed vegetation, S: settlement, BS: bare soil, 

MS: mixed soil, R: road). 

LC 
1A 1B 1C 

Red Green Blue NIR Red Green Blue NIR Red Green Blue NIR 

G-DV <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

G-SV <0.001 0.275 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.281 0.275 0.883 <0.001 

G-S <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

G-BS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

G-MS <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

G-R <0.001 0.528 <0.001 <0.001 0.614 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 

(based on Dunnett's test statistics) indicated non-significance between gullies 

and roads (Figure 14).



 

67 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Mean differences between gullies (G) and other land cover categories (mean ± 95% confidence intervals; 95% 

confidence intervals coinciding with 0 are not significant differences, p > 0.05; DV: dense vegetation, SV: stressed 

vegetation, S: settlement, BS: bare soil, MS: mixed bare soil, R: roads) by SPOT 7 bands (columns) and study areas (rows). 
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Although gullies exhibit spectral heterogeneity, remote sensing data 

can still be used for gully mapping. SPOT-7 multispectral bands were found 

to have spectral differences that were reasonably discernible, despite 

significant variability. While the RGB bands showed only small to moderate 

effect sizes, the NIR band showed a large effect size. While p-values are used 

to determine the significance of differences, effect sizes provide a measure of 

the magnitude of differences, and standardized measures demonstrate the 

relevance of differences with land cover categories. Even though slight 

differences (with effect sizes <0.3) may still be significant, they can lead to 

misclassifications. These findings are consistent with previous research 

(Szabó et al. 2016). 

While effect sizes were not calculated for the land cover pairs in the 

multiclass approach, valuable information on differences was provided by 

confidence intervals (Figure 14). In general, all pairs had significant 

differences, and the confidence intervals were mainly within a small range, 

except for specific land cover categories, such as gullies, stressed vegetation, 

and roads, which showed non-significant differences in RGB bands (primarily 

in red and green bands), but always had significant differences in the NIR 

band. However, the NIR band successfully discriminates between roads and 

gullies, as indicated by the confidence intervals close to the "zero" line, 

indicating non-significance. This was not reflected in the p-values (all of 

which were p < 0.001). However, if confidence intervals and their distance 

from zero as an effect size are used, these cases indicate low values with lower 

efficiency in distinguishing between categories. Despite criticisms of the 

statistical evaluation, considering the results, it can be argued that the 

reference dataset contained reliable data about land cover categories and could 

presumably be used in classification models. 
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5.1.2. PlanetScope multispectral image 

Results showed that NDVI values for the wet season ranged from -0.36 

to 0.81 and were generally higher than those for the dry season, which ranged 

from -0.41 to 0.59 (Figure 15). The distribution of NDVI values for the dry 

season was bimodal, representing non-vegetation pixels in the first mode and 

vegetation pixels in the second mode. Conversely, the wet season had a 

multimodal distribution, with the first mode representing non-vegetation 

pixels and the last two modes indicating vegetated areas, namely, vegetation 

and forest pixels. 

The study also analyzed the determinants of reflectance by examining 

spectral bands, land cover classes, and seasons. Statistical analysis revealed 

that these factors and their interactions significantly influenced reflectance (p 

< 0.001), explaining 92.3% of the variance (Table 7). The difference between 

dry and wet seasons had the most significant effect on reflectance (0.868), 

while the impact of bands and land cover classes was similar but slightly lower 

(~0.6), indicating a substantial effect. Results further showed that reflectance 

varied across bands, land cover classes, and seasons, and the contribution of 

their interactions was significant. The interaction between seasons and land 

cover classes had a smaller effect size than interactions with bands (0.141), 

but it was still substantial. Finally, the interaction of all factors had a 

significant effect, although with a smaller value (0.185). 
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Figure 15. Distribution of NDVI reflectance values in the dry and wet seasons. 

 

Table 7. Results of General Linear Modelling (GLM) performed with 

reflectance as an independent variable (SS: Sum of Squares, df: degree of 

freedom, F: F-statistic, p: significance, ω²p: effect size; p < 0.05: significance 

level). 

Variables SS df F p ω²p 

Model 6.99e0+9 55 860.4 < .001 0.923 

Bands 1.00e0+9 3 2256.1 < .001 0.633 

Season 3.80e0+9 1 25715.0 < .001 0.868 

Class 9.79e0+8 6 1104.2 < .001 0.629 

Bands × Season 4.48e0+8 3 1010.0 < .001 0.436 

Bands × Class 5.30e0+8 18 199.3 < .001 0.477 

Season × Class 9.62e0+7 6 108.5 < .001 0.141 

Bands × Season × Class 1.34e0+8 18 50.3 < .001 0.185 

Residuals 5.70e0+8 3860    

Total 2.96e+10 3916    
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The post hoc test conducted with the Dunnett test showed significant 

differences (p < 0.001) between gullies and other land cover classes in the dry 

season but not in the wet season, except for a few specific cases (Figure 16). 

Furthermore, a variable importance analysis using a RF algorithm in the R 

software was conducted to assess the significance of the original bands in 

discriminating gullies from the surrounding areas. The results revealed that 

NIR and red bands exhibited the highest level of influence in both seasons, 

while the blue band had minimal impact (Table 8). Moreover, the dissertation 

also evaluated the performance of NDVI as a spectral index and found that it 

was less effective in differentiating gullies from other land cover classes than 

the original bands. The NDVI-based gully values did not differ significantly 

from mixed bare soil and vegetation values in the dry season and performed 

better in the wet season but did not differ significantly from the built-up class 

values. 

 

 

 

 

 

 

 

Figure 16. Differences of gullies and other land cover types’ reflectance by 

bands and seasons (G: gully; F: forest; Bu: built-up; BS: bare soil; MBS: 

mixed bare soil; V: vegetation; A: agriculture; mean ± 95% confidence 

intervals; the difference was not significant if confidence range intersects the 

dashed line). 
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Table 8. PlanetScope bands ranking in discriminating gullies against the 

surrounding land cover. 

Dry Season Wet Season 

Band Importance (%) Band Importance (%) 

NIR 31 NIR 35 

Red 26 Red 32 

Green 25 Green 21 

Blue 17 Blue 12 

 

5.1.3. Visual range SPOT-7 image 

Despite having limited spectral information (i.e., only RGB bands), the 

SPOT-7 image effectively discriminated gullies from other land cover types. 

This was due to the high spatial resolution of the image (1.3 m), which enabled 

the detection of most gullies, even without the near-infrared (NIR) band. The 

Normalized Green-Red Difference Index (NGRDI) was used to discriminate 

gullies from vegetation and other surrounding land cover classes, as 

demonstrated by the NGRDI map and the corresponding spectral profiles of 

gullies (Figure 17). In addition, the study sites' spectral profiles revealed the 

gullies' morphology, including the V-shaped gully in site 3C and the dendritic 

network of gullies in sites 3A and 3D. Gullies with these morphological 

characteristics were the most detectable in the study. 
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Figure 17. Gully transects (20–100 m) with Normalized Green Red Difference 

Index (NGRDI)-based spectral profiles of selected gullies. 

5.2. Quantifying gully classification accuracy across different study 

areas 

5.2.1. Study Area #1: accuracy and factors biasing model performance at 

class-level   

The first study area (Study Area #1), which utilized the SPOT-7 

multispectral image, demonstrated that accurate identification of gullies could 

be achieved using either RF or SVM classification algorithms. Both 

approaches produced similar levels of accuracy, with median values ranging 

from 92% to 96% (Figure 18). While the binary approach resulted in better 

OA values, the multiclass (m) classification approach was only marginally less 

accurate, with a difference of 2%. In all study sites (1A-1C), the top three 
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performing models were consistently SVMb, followed by RFb and LDAb in 

the binary approach. However, the multiclass classification approach 

exhibited some variation in fourth place between SVMm and RFm, while 

LDAm consistently underperformed. Although SVMb had a slight advantage 

over RFb in the top two places, RFb had higher lower quartile values, 

suggesting that it may be more reliable overall. Moreover, the multiclass 

approach was generally less effective than the binary approach, with even the 

lowest quartile values for LDAb being higher than the upper quartile values 

for the best-performing multiclass solution, resulting in differences ranging 

from 2% to 8%. 

 

 

 

 

 

 

 

 

 

Figure 18. Classification results of the applied algorithms ranked by overall 

accuracies of 30 models (10-fold cross-validation with three repetitions) by 

study areas (LDA: Linear Discriminant Analysis, RF: Random Forest, SVM: 

Support Vector Machine; b: binary, m: multiclass). 

The evaluation of classifiers on a class-level in Study Area #1 was 

based on only gullies’ accuracy metrics. The results revealed that most 
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classifiers failed to achieve PA and UA values above 80%, as shown in Figure 

19. Notably, the LDA algorithm performed poorly, with UA values below 

30% for multiclass classification, resulting in many commission errors where 

many pixels were classified as gullies that belonged to other categories. 

However, some successful LDA models, such as L-m-1B-1A, were 

comparable to particular RF and SVM models. Out of the best 80-80% quarter, 

seven successful models comprised five RF and two SVM models, including 

two binary and five multiclass types. However, R-b-1C-1B, despite having a 

PA of less than 80%, achieved the highest UA at 86%. On the other hand, the 

highest PA was obtained by the LDA model, L-b-1B-1C, which reached 

99.5% but had a low UA of only 18.5%. According to the results depicted in 

Figure 20, LDA exhibited better performance at a class level when using the 

binary approach, specifically concerning PA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19. Class level accuracy metrics of different classifications of gullies 

by algorithms, number of categories, and study areas (S: SVM, R: RF, L: 

LDA; b: binary, m: multiclass; first number: number of the area where the 

models were applied, second number: number of the area where the model was 

trained; dashes line sections (upper right) indicate >80% accuracy quarter). 
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Figure 20. PA (a) and UA (b) values (median ± quartiles) of gullies by 

classification algorithms (Alg: algorithm; L: LDA, R: RF, S: SVM), number 

of classes (b: binary; m: multiclass) and study areas (1A-1C). 

In addition, a statistical analysis was carried out to identify factors that 

might have influenced the performance of the classification models at a class 

level. GLM indicated that both the study sites and the algorithms used could 

account for the differences in efficiency observed among the classification 

models. The study site had a significant impact on both the PA and UA, while 

the applied algorithm significantly affected only the UA (Tables 9-10). The 

interaction between the algorithms and study sites did not have a significant 

effect on the PA. The effect size (ω²) revealed a substantial influence of the 

study sites on PA and the algorithms on UA. Moreover, there was a significant 

interaction between the applied algorithms and the type of classification 

approach (binary or multiclass), indicating that these algorithms exhibit 

distinct performance based on the number of categories involved.  
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Table 9. Summary of General Linear Modelling (GLM) performed with PA 

as an independent variable (Alg: algorithm, type: binary or multiclass 

approach, stud: Study site; SS: Sum of Squares, df: degree of freedom, F: F-

statistic, p: significance, ω2: effect size; p < 0.05 is highlighted with bold). 

Source SS df F p ω² 

Model 3200.5 17 3.632 0.005 0.554 

Alg 174.9 2 1.687 0.213 0.017 

type 25.5 1 0.493 0.492 0.006 

stud 1431.9 2 13.811 < 0.001 0.317 

Alg × type 946.7 2 9.132 0.002 0.201 

Alg × stud 323 4 1.558 0.228 0.028 

type × stud 99.1 2 0.956 0.403 0.001 

Alg × type × stud 199.4 4 0.962 0.452 0.002 

Residuals 933.1 18    

Total 4133.6 35    

Table 10. Summary of GLM performed with UA as an independent variable 

(Alg: algorithm, type: binary or multiclass approach, stud: Study site; SS: Sum 

of Squares, df: degree of freedom, F: F-statistic, p: significance, ω2: effect 

size; p < 0.05 is highlighted with bold). 

Source SS df F p ω² 

Model 20720.3 17 4.0014 0.003 0.586 

Alg 17390.9 2 28.547 < 0.001 0.633 

type 82.6 1 0.2711 0.609 0.008 

stud 2413.4 2 3.9615 0.038 0.068 

Alg × type 98.6 2 0.1618 0.852 0.019 

Alg × stud 666.8 4 0.5473 0.703 0.021 

type × stud 18.7 2 0.0307 0.97 0.022 

Alg × type × stud 49.4 4 0.0405 0.997 0.044 

Residuals 5482.8 18    

Total 26203.1 35    

 

Concerning classification accuracies, RF and SVM algorithms were 

robust and not affected by data distribution, making them less biased by 

outliers, whereas LDA assumes multivariate normality and a balanced number 

of elements in categories (Belgiu and Drăgu, 2016; Xiong et al., 2020), leading 
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to lower classification accuracy. Consequently, both RF and SVM 

outperformed LDA in our study, but LDAb performed better than RFm and 

SVMm in binary classification. Multiclass classification results showed lower 

OA than binary classification, and it may be more appropriate to use categories 

where possible, such as gully and non-gully categories in this case.  While the 

binary approach generally performed better than the multiclass approach 

(Beygelzimer, Langford and Zadrozny, 2004), the multiclass approach was 

more efficient for gully identification. These results are consistent with 

previous studies that showed the multiclass approach to have better 

performance in identifying gullies (Allwein, Schapire and Singer, 2000). Only 

two binary approach models using RF and SVM classifiers were in the best 

80% quadrant, while LDA's performance varied and provided ambiguous 

results due to its susceptibility to outliers. These results suggest that RF and 

SVM classifiers are more suitable for gully identification in the study areas 

with these reference datasets, as they are less biased by outliers, while outliers 

severely biased LDA models. 

The applied GLM showed the multivariate effects of classification 

algorithms on the classification accuracy of gullies at the class level. The 

number of classes (binary or multiclass) did not significantly affect the 

performance, and the study demonstrated that algorithms applied to space-

borne images like SPOT-7 could detect gullies automatically. Although gullies 

are challenging to detect automatically, this study showed that the spectral 

bands of SPOT-7 and pan-sharpening can contribute to the successful 

extraction of gullies. Visual interpretation of high-resolution images has been 

the preferred method for monitoring gullies over large areas. However, there 

is a need for more reliable methods that can help to automatically identify 

areas affected by gullies for consistent monitoring over time. Appropriate 

algorithms and satellite images seem adequate for these surveys, but digital 
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elevation models (DEMs) should be incorporated where available to discern 

gullies accurately from other land cover categories. The study demonstrated 

that the methodology applied could be adopted for larger areas, although a 

significant limitation was the inability to discriminate unpaved roads from 

bare soil and exposed rocks. To address this issue, the classes were 

consolidated into a single class, and this decision did not impact the 

identification of gullies. 

5.2.2. Study Area #2: accuracy as a function of an algorithm, resampling 

technique, and season   

In Study Area #2, the performance of RF and SVM algorithms were 

examined using two different resampling methods, namely bootstrapping and 

CV, for both the wet and dry season scenes of PlanetScope data. Results 

showed that the CV resampling method consistently produced better OA than 

bootstrapping for both seasons (Figure 21).  

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Accuracy assessment based on overall accuracy (OA) by the 

classification algorithm (RF: random forest, SVM: support vector machine), 

resampling method (boot: bootstrapping, CV: cross-validation), and season 

(wet and dry). 
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Additionally, two key trends emerged from these findings: firstly, RF 

consistently outperformed SVM regardless of the season or resampling 

method used; and secondly, the dry season generally yielded higher OA than 

the wet season, although this did not translate to higher accuracy in gully 

classification at the class level. 

The class-level performance of RF and SVM was evaluated based on 

unbiased UA and PA. All models performed well, with UA values above 70% 

(Figure 22). Among the models, svm-d-b exhibited the best performance with 

a UA of 93.4%, while the worst performance was recorded by the rf-w-b 

model (77%). However, PA was generally lower than UA for most models, 

with only half recording a PA greater than 70%. The svm-w-cv model 

achieved the best PA (89.2%), with the rest falling below 70%, and the svm-

d-b model had the lowest PA (32.5%). 

An unbiased area estimate of gullies (in hectares) was also provided 

(Table 11), where svm-w-cv achieved the most accurate gully areal coverage 

of 57.2 ha with the highest PA (89.2%) and lowest standard error (3.7 ha). On 

the other hand, the rf-w-b model had the highest standard error (11.5 ha) and 

recorded a gully area of 55.2 ± 25 ha. In terms of F1-score ranking, rf-d-b, and 

rf-d-cv algorithms achieved the best results (>0.90), but RF algorithms 

belonging to the wet season had relatively low scores (0.82). However, all 

SVM algorithms (svm-d-cv, svm-d-b, svm-w-cv, and svm-w-b) recorded 

lower F1-scores ranging from 0.85 to 0.88. Both resampling techniques had 

the same omission error (14.9%) but slightly different commission errors, with 

bootstrapping having a 40.8% error of commission compared to a 37.8% error 

for CV (Table 12). 
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Figure 22. Unbiased user’s and producer’s accuracy (rf: random forest, svm: 

support vector machine, w: wet season, d: dry season, cv: cross-validation, b: 

bootstrapping, blue dashed line is 70% accuracy benchmark). 

 

Table 11. Estimated gully area (ha) with associated standard error (ha) at ± 

95% CI (ha) for each algorithm (rf: random forest, svm: support vector 

machine, d: dry, w: wet, b: bootstrapping, cv: cross-validation, CI: confidence 

interval). 

Algorithm Area (ha) Standard Error (ha) ± 95% CI (ha) PA (%) UA (%) F1-score 

rf-d-b 88 6.1 14.4 83.6 90.6 0.92 

rf-d-cv 91.3 7.6 17.1 76.3 89.3 0.91 

rf-w-cv 54.6 11.3 24.3 47.9 77.9 0.82 

rf-w-b 55.2 11.5 25.0 46.8 77 0.82 

svm-d-cv 32.6 10.1 21.1 35.4 92.3 0.86 

svm-d-b 31.1 10.5 21.8 32.5 93.4 0.85 

svm-w-cv 57.2 3.7 18.8 89.2 81 0.88 

svm-w-b 57.4 6.4 19.3 74.1 79.4 0.86 
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Table 12. Summary of average error for resampling techniques, classifier, and 

season (RF: random forest, SVM: support vector machine, CV: cross-

validation). 

 Resampling Technique       Classifier            Season 

Error Bootstrap k-fold CV RF SVM Dry Wet 

Commission (%) 40.8 37.8 36.4 42.2 43.1 35.5 

Omission (%) 14.9 14.9 16.3 13.5 8.6 21.2 

Standard error (ha) 8.6 8.2 9.1 7.7 8.6 8.2 

Incorporating remotely sensed data products can introduce errors, so 

assessing and identifying these errors is critical for data assimilation (Povey 

and Grainger, 2015). In addition, different resampling methods can also 

impact classification accuracy and the final model selection. This dissertation 

explored the influence of bootstrapping and k-fold CV techniques on gully 

classification for different seasons (dry and wet) and classifiers (SVM and 

RF). Results showed that k-fold CV outperformed bootstrapping in terms of 

commission error. Previous research (Kohavi, 1995; Kim, 2009) also found k-

fold CV superior to bootstrapping for accuracy estimation and model 

selection. Furthermore, bootstrapping was found to have bias issues for both 

large and small samples despite its low variance, which implies better 

performance for small samples with k-fold CV. 

While this study generally agrees with previous studies, it is essential 

to note that bootstrapping and k-fold CV performance varied considerably 

with algorithm and season at the class level. Although most studies using these 

resampling techniques do not often use class accuracy metrics, it is crucial to 

consider different accuracy metrics at the class level to increase the reliability 

of the results. However, the different accuracy metrics used in this study, such 

as UA, PA, standard error, and F1-score, sometimes disagreed. For example, 

some algorithms had high PA values but low corresponding UA values or vice 

versa. Based on the F1-score, the best algorithms belonged to RF, but the study 

relied on the standard error as a reliable measure of accuracy due to the 
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disagreement among various accuracy metrics. Therefore, to make sound 

conclusions regarding the performance of the algorithms being studied, it is 

advised to consider various accuracy metrics (Chicco and Jurman, 2020), 

which should be selected based on the specific aims of the research. 

Concerning seasons, the algorithms were found to be more effective in 

identifying gullies on bare soil surfaces during the wet season. These findings 

are consistent with previous studies that found wet season images to be more 

effective (Vrieling et al., 2007). However, the success of gully identification 

depends on various factors such as gully morphological characteristics 

(Phinzi, Holb and Szabó, 2021), sensor type and resolution, and classification 

algorithms (Lu and Weng, 2007). For instance, Sentinel and Landsat images 

have been found to perform better in dry than wet seasons (Sepuru and Dube, 

2018). Despite the successful identification of gullies in the wet season, there 

were instances where gullies were filled with vegetation, which made 

automatic classification impossible. In such cases, high-resolution aerial 

photographs and/or dry-season PlanetScope images were used for visual 

interpretation. 

The appearance of gullies was also an essential factor in the success of 

gully classification, with linear-shaped, continuous gullies being more 

straightforward to detect than areas with high gully density and transitional 

zones to non-gully (Orti et al., 2020). The SVM algorithm combined with CV 

(svm-w-cv) performed the best in the wet season, with the lowest standard 

error (3.7 ha) and the highest PA (89.2%). The RF model (rf-d-b) had a slightly 

different standard error (6.1 ha) and PA (83.6%). However, half of the models 

had a PA below 70%. Despite this variability, the estimated gully areas (in 

hectares) based on area-weighted metrics were unbiased and reliable.  
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5.2.3. Study Area #3: efficacy of algorithms based on limited spectral 

information    

Four classifiers - namely RF, K-NN, MD, and MLC - were evaluated 

based on their performance in extracting gullies from a visual range SPOT-7 

image. All four classifiers generally achieved high accuracy values above 

0.80, with RF recording the highest OA (0.94) and kappa (0.89). K-NN 

followed closely with OA and kappa values of 0.92 and 0.86, respectively 

(Figure 23). Finally, MD obtained an OA of 0.86 and a kappa of 0.76, while 

MLC had the lowest OA (0.83) and kappa (0.72). 

 

 

 

 

 

 

 

 

Figure 23. Overall accuracy (OA) and kappa coefficients (RF: random forest, 

K-NN: K-nearest neighbor, MD: minimum distance, MLC: maximum 

likelihood classifier).  

 

Results showed significant variations in UA and PA across different 

classifiers, as presented in Figure 24. K-NN, MD, and RF performed 

excellently in identifying the BS class, each achieving 1.00 (100%) UA. 

Conversely, the MLC classifier exhibited a relatively low UA of 0.60 but had 

the highest PA (100%) compared to the other classifiers. For the gully (G) 

classification, MD was found to be the most effective classifier with 100% 
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UA, although the corresponding PA was only 0.80. RF achieved the highest 

OA (0.94) but had an 87% UA for gully classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. User’s and producer’s accuracy (dashed black line indicates class 

accuracy benchmark of 0.70; GL: grassland, SV: stressed vegetation, G: gully, 

BS: bare soil). 
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According to Everitt et al. (2008), it is recommended to achieve an 

overall accuracy (OA) rate of at least 0.85 and class-specific accuracies, 

namely producer's accuracy (PA) and user's accuracy (UA), of 0.70 as a 

benchmark for operational purposes. All the applied classifiers except for the 

MLC classifier surpassed the 0.85 benchmarks for OA, with RF (0.94) and 

KNN (0.92) achieving above 0.90 and MD obtaining an OA of 0.86. RF's 

superior performance compared to other methods is unsurprising, as similar 

results have been reported (Khatami, Mountrakis and Stehman, 2016). The 

superior performance of the RF classifier can be attributed to its ability to 

generate improved classification results as an ensemble of classifiers 

compared to its performance as an individual classifier (Rodriguez-Galiano et 

al., 2012). 

Although OA is a widely used and valuable metric with a 

straightforward interpretation (Heydari and Mountrakis, 2018), it has the 

limitation of concealing class-specific performance (He and Garcia, 2009). 

The algorithms could classify gullies with PAs and UAs above the 0.70 

benchmarks. It is also important to note that a relatively large gully area does 

not necessarily result in higher accuracies, particularly concerning the MD 

classifier, which had the smallest proportion of gully area among all the 

classifiers evaluated in all four sites, but achieved no commission error (i.e., 

100% UA) and had 20% omission error. KNN and ML had identical 

commission (19%) and omission (13%) errors, while RF recorded 13% in both 

omission and commission errors. Overall, these errors were relatively low 

compared to previous studies conducted in South Africa (Mararakanye and 

Nethengwe, 2012; Phinzi and Ngetar, 2017; Makaya et al., 2019). 

5.2.4. Visual analysis of gully classification across different study areas 

Gully classification results for Study Area #1 using multiclass and 

binary approaches are presented in Figure 25 and Figure 26, respectively. The 
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performance of SVM and RF were found to be similar, while LDA showed 

different results, particularly in site 1 (1A→1B, 1A→1C), site 1B (1B→1C), 

and site 1C (1C→1B). However, in some instances, such as site 1B (1B→1A) 

and site 1C (1C→1A), LDA produced comparable outcomes to SVM and RF. 

In addition, the multiclass and binary approaches had comparable gully 

extraction outcomes, though their accuracy results varied slightly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Classification results of the multiclass approach (DV: dense 

vegetation, SV: stressed vegetation, S: settlement, G: gully, BS: bare soil, MS: 

mixed bare soil, R: road). 
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Figure 26. Classification results of the binary approach (G: gully, NG: non-

gully). 

In Study Area #2, gullies were effectively distinguished from other 

land cover classes during the dry and wet seasons; however, there were 

noticeable differences in the distribution of extracted gullies between the two 

seasons (Figure 27). The wet season exhibited a higher abundance of gullies 

than the dry season. This contrast was more apparent in Figure 27a, 

corresponding to rf-d-b, and Figure 27b, representing the svm-w-cv model. In 

addition, variations in gully reflectance between the two seasons impacted 



 

89 
 

gully classification. The wet season had more vegetation, leading to greater 

spectral differences (Figure 28). Conversely, in the dry season, most gullies 

shared spectral characteristics with the bare surfaces they intersected, making 

it harder to extract gullies on bare soil surfaces. This result may explain the 

high commission error (43.1%) and standard error (8.6 ha) observed in the dry 

season (Section 4.2.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. Spatial distribution of gullies: (a) rf-d-b and (b) svm-w-cv 

correspond to the best models for gully mapping in the dry and wet seasons, 

respectively (rf: random forest, svm: support vector machine, w: wet season, 

d: dry season, cv: cross-validation, b: bootstrapping). 
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Figure 28. An example of a vegetated gully (dashed yellow ellipse) in the dry 

and wet seasons. 

The first step in Study Area #3 to distinguish gullies from surrounding 

areas involved performing a general land cover classification, which produced 

different results with various algorithms (Figure 29). Grassland (GL) was the 

most common land cover in all classifiers, ranging from 47-57%, followed by 

the stressed vegetation (SV) class, which accounted for 27-31%. The gully (G) 

class was the smallest, ranging from 5-8%, while bare soil (BS) represented 

5% of the MD classifier results. The MLC algorithm had the highest 

proportions of BS (19%) and G (8%), while RF and KNN had the largest 

percentages of GL (57% and 53%, respectively). In contrast, the MD classifier 

had the highest percentage of SV (31%), but the lowest percentage (5%) of G 

and BS. 
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Figure 29. Land cover classification (GL: grassland, SV: stressed vegetation, 

G: gully, BS: bare soil) based on different algorithms (KNN: k-nearest 

neighbor, MD: minimum distance, ML: maximum likelihood, RF: random 

forest). 

The second step involved mapping gullies in different sites within 

Study Area #3. Site 3A generally had the largest proportion of gullied area, 

ranging from 12-19% (9321-10344 m2; Figure 30, Table 13) among different 

classifiers. Sites 3C and 3D had the least gullied areas of 1668 m2 to 3147 m2 

(3-6%) for the latter and 1039 m2 to 1774 m2 (2-3%) for the former. Across 

all selected gully sites, the MD classifier consistently recorded the smallest 

gully area. In four selected sites, other classifiers produced the same results, 

except for site 3A, where the ML classifier had the highest areal extent of gully 
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erosion (19%), followed by RF and KNN, recording 17%, and then MD with 

12%. 

The algorithms produced spatial distribution patterns similar to the 

actual (digitized) gullies. However, there was a noticeable disparity in the 

proportion of areas classified as gullies by different algorithms. Across all 

study sites, the algorithms failed to detect a considerable amount of gullies, 

with the most substantial difference observed at site 3C. For example, KNN, 

ML, and RF algorithms classified 1774 m2 as gullied area, while the MD 

algorithm only classified 1039 m2, considerably less than 8064 m2 (actual 

gully area). 

 

 

 

 

 

 

 

 

 

 

Figure 30. Selected gully sites (3A–3D) showing the spatial distribution of the 

classified gullies by different algorithms (KNN: k-nearest neighbor, MD: 

minimum distance, ML: maximum likelihood, RF: random forest) and actual 

(digitized) gullies. 
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Table 13. Aerial extent (m2) of actual gullies (digitized) and classified gullies 

based on different algorithms (KNN: k-nearest neighbor, MD: minimum 

distance, ML: maximum likelihood, RF: random forest). 

 Site 3A Site 3B Site 3C Site 3D 

Method Pixels  Area (m2) Pixels Area (m2) Pixels Area (m2) Pixels Area (m2) 

KNN 911 9321 547 5601 173 1774 306 3129 

MD 632 6463 393 4026 102 1039 163 1668 

ML 1011 10,344 558 5706 157 1610 302 3088 

RF 898 9193 548 5607 171 1747 308 3147 

Digitized 1750 17,908 1210 12,382 788 8064 556 5690 

 

5.3. Gully characteristics’ influence on the precise mapping of gullies 

and their density 

Gullies’ characteristics strongly influenced their classification. The 

applied algorithms were most efficient in areas where gullies exhibited a 

dendritic pattern, such as site 3A. However, in site 3D, where gullies also 

exhibited a dendritic network, classifiers were less effective in detecting 

gullies, possibly due to their shallower depth than those at site 3A. The most 

comprehensive and deepest gullies were found at site 3B, where the depth was 

more important than the width in discriminating gullies. Shallow and wide 

gullies were more challenging to detect, particularly on bare soil. Gully length 

was not a significant factor in detection efficiency. Site 3C's longest gully had 

shallow walls, resulting in lower classifier efficiency. There was a discrepancy 

between the actual digitized gullies and those derived by the algorithms in all 

sites, possibly due to differences in resolution between the aerial photograph 

used for digitization (0.5 m) and the SPOT imagery used for classification (1.3 

m) or because the classifiers mainly detected gullies with steep-sided walls or 

with shadows. In contrast, digitized gullies were captured in their correct 
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shape with exact boundaries. Similar issues were reported in a previous study 

where the pixel resolution of the input data was not fine enough to capture the 

flat parts of the gullies, resulting in the under-classification of gullies 

(d’Oleire-Oltmanns et al., 2014). Nevertheless, it is worth acknowledging that 

the disparity between digitized and classified gullies is not a significant focus 

of concern in this dissertation. The digitized gullies were employed solely for 

the purpose of validating the accuracy of classified gullies in relation to their 

spatial extents.  

The gully density serves as an indicator of the quantity of gullies, 

considering both their width and length, within a particular area (Li, Xiong 

and Tang, 2019). Results showed that the gully density varied between 0.12 

m/m2 and 0.61 m/m2 (Figure 31) and was influenced by the appearance and 

pattern of the gullies. Site 3A, characterized by a dendritic network of gullies 

and a lack of vegetation cover, exhibited the highest gully density. Linear and 

V-shaped gullies with steep-sided walls in site 3B also had high densities, 

which varied across the study area. Previous research has demonstrated that 

slope steepness plays a significant role in determining gully density. For 

example, Zhang et al. (2016b) reported a positive correlation between slope 

gradient and gully density on hillslopes, while Muñoz-Robles et al. (2010) 

found that most areas with gullies in their study had steep slopes. In contrast, 

the studied gullies in this dissertation were distributed on gently sloping 

agricultural land, indicating that slope was not the primary factor influencing 

gully density, despite hilly areas. These findings align with the research 

conducted by Mararakanye and Le Roux (2012), which also concluded that 

gullies are more prevalent on agriculturally suitable land compared to land 

categorized unsuitable. Kakembo et al. (2009) similarly discovered that gullies 

were more common in areas characterized by gentle slopes. 
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Figure 31. Gully density (m/m2) map of the study area. 

5.4. Feature selection and multicollinearity analysis 

Variables were first ranked in their relative importance in the modeling 

process. This ranking was carried out using RF variable importance analysis 

in the R software. Results indicated that NDVI (importance=100%), elevation 

(26%), TWI (25%), population density (23%), SPI (22%), and LULC (19%) 

had considerable predictive power for gully susceptibility modeling (Figure 

32a). The least essential variables, including aspect (0%), geology (0.20%), 

TRI (0.27%), and distance from roads (3.83%), were removed by the RFE 

algorithm, retaining 18 variables (out of 22). The applied algorithm showed 

no improvement in accuracy after the 18th variable, denoted by a blue-dashed 

line (Figure 32b). Although calcium carbonate (CaCO3) and pH were part of 

the retained predictors, they had a high correlation (r2>0.75) with other 

predictors and hence were also removed, resulting in 16 predictors (Figure 
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32c). These predictors were grouped into three feature sets (small, medium, 

and large sets) based on their relative importance. 

Multicollinearity diagnostic tools, including tolerance and VIF, were 

used to check if multicollinearity exists among predictors in each feature set. 

Almost all predictors had relatively high tolerance  (>0.22) and low VIF (<4.5) 

values which indicate the non-existence of multicollinearity (Table 14). Such 

findings are comparable to previous studies (Arabameri, Chen, et al., 2019; 

Pham et al., 2020; Hitouri et al., 2022; Jaafari et al., 2022), where VIF values 

of ≤5 were reported. On the contrary, elevation yielded the lowest tolerance 

(0.18) and highest VIF (5.65) in a larger set. Nevertheless, these values also 

fall within the acceptable VIF threshold, considering a long-standing rule of 

thumb (i.e., VIF<10) for the non-existence of multicollinearity (Gareth et al., 

2013; Vatcheva et al., 2016). Thus, all geo-environmental predictors in each 

feature set met these criteria and were used in the modeling process. 
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Figure 32. Ranking and selection of important predictors based on: (a) variable 

importance, (b) recursive feature elimination (the blue-dashed line marks the 

eighteenth variable), and (c) correlation matrix. Note: CEC: cation exchange 

capacity, D.density: drainage density, River.dis: distance from rivers, 

Plan.curv: plan curvature, Pop.density: population density, Profile.curv: 

profile curvature, SPI: stream power index, TWI: topographic wetness index.   
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Table 14. Tolerance (Tol) and variance inflation factor (VIF) for geo-

environmental predictors in three feature sets (large, medium, and small sets) 

(TWI: topographic wetness index, LS: slope length, and steepness, NDVI: 

normalized difference vegetation index, LULC: land use/land cover, CEC: 

cation exchange capacity, SPI: stream power index). 

Large set Medium set Small set 

Variables Tol VIF Variables Tol VIF Variables Tol VIF 

Population 

density 0.87 1.16 

Rainfall 0.90 1.2 Population 

density 

0.92 1.09 

Distance from 

rivers 0.75 1.33 

Population 

density 

0.88 1.13 LULC 0.73 1.37 

Profile curvature 0.70 1.42 

Distance from 

rivers 

0.79 1.27 NDVI 0.55 1.80 

LULC 0.67 1.49 LULC 0.68 1.47 SPI 0.52 1.92 

LS factor 0.63 1.59 

Drainage 

density 

0.68 1.47 Elevation 0.48 2.07 

Rainfall 0.63 1.59 LS factor 0.66 1.52 TWI 0.46 2.17 

Drainage density 0.62 1.60 Plan curvature 0.59 1.69    

Land type 0.57 1.76 NDVI 0.52 1.92    

K factor 0.54 1.86 Elevation 0.42 2.37    

NDVI 0.51 1.94 Slope  0.31 3.21    

Plan curvature 0.50 1.98 SPI 0.29 3.50    

CEC 0.32 3.14 TWI 0.25 3.96    

Slope 0.30 3.39       

SPI 0.26 3.86       

TWI 0.23 4.38       

Elevation 0.18 5.65       

 

5.5. Analyzing algorithms’ performance when using feature sets of 

varying sizes 

The performance of six different algorithms was evaluated regarding 

the accuracy and processing time, using three different feature subsets (small, 

medium, and large), as shown in Figure 33. The results showed that SVM was 

the most efficient algorithm with medium and small feature sets, achieving the 
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highest F1-score (0.897), OA (0.898), and specificity (0.908) with the medium 

set and the least computation time (<2 minutes). SGB followed SVM closely 

in most evaluation metrics but was more efficient with larger feature sets and 

took more time (>5 minutes) to compute. RF was the most computationally 

expensive algorithm and performed poorly with small and medium sets but 

consistently yielded high accuracies with a large feature set. PLS and RDA 

were the fastest algorithms, with PLS taking less than a minute to compute, 

and both produced relatively high accuracies with a medium feature set. ANN 

was also sensitive to the number of input features, taking several minutes of 

computation with a larger feature set but consistently achieved relatively high 

accuracies with the small feature set, outperforming PLS and RDA (except in 

sensitivity) across most evaluation metrics. Overall, the performance of each 

algorithm varied depending on the feature set size and the evaluation metric 

used. 

All six algorithms produced similar outputs regarding the 

susceptibility maps and portrayed reasonable gully susceptibility, except 

RDA, which exhibited a different pattern (Figure 34). Class-wise metrics, 

particularly specificity (<0.85), suggest that RDA highly misclassified the 

absence of gully erosion. This misclassification pattern can also be observed 

with a small and medium feature set where RDA produced the worst 

specificity values (≤0.83). Better performance of SVM can be observed in its 

gully susceptibility map. Given the two-class (gully and non-gully) response 

variable, it is not surprising that SVM, a binary classifier, yielded impressive 

results. An additional advantage of SVM over other algorithms is using 

various kernel functions to find an optimal hyperplane that separates data 

points (support vectors) of two classes (gully and non-gully). Specifically, the 

applied radial kernel function ensured perfect separation of the gully and non-

gully support vectors in the feature space. Rahmati et al. (2017) also found 
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SVM with the radial kernel function to be more accurate for predicting gully 

susceptibility than other kernels. Despite these advantages, RF outperformed 

SVM in most gully susceptibility studies (Garosi et al., 2019; Gayen et al., 

2019; Pourghasemi et al., 2020; Hitouri et al., 2022; Huang et al., 2022). 

However, in our case, the advantage of RF was experienced only with the 

larger predictor set, implying more computational time. Similarly, SGB 

required more predictors to reach its maximum accuracy but at the expense of 

computation time, albeit shorter than RF. 

On the contrary, despite using the smallest feature set and hence 

shorter computation time, ANN was efficient and produced high-quality maps 

comparable to those of other algorithms with the best predictive performance. 

Likewise, PLS delivered an impressive gully susceptibility map with the 

shortest possible computation time (e.g., <1 minute). These results 

demonstrate that a fixed set of features for comparison would not provide an 

accurate assessment since specific algorithms, such as ensemble-based ones 

like RF and SGB, require larger input feature sets to achieve their full 

predictive potential. On the other hand, SVM and ANN performed well with 

fewer input features and less computational time.  
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Figure 33. Predictive performance of ML models (ANN: artificial neural 

network, PLS: partial least squares, RDA: regularized discriminant analysis, 

RF: random forest, SGB: stochastic gradient boosting, SVM: support vector 

machines) using smaller, medium, and larger feature sets. 
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Figure 34. Gully susceptibility maps for each algorithm computed with 

smaller (Sf), medium (Mf) or larger (Lf) feature sets (ANN: artificial neural 

network, PLS: partial least squares, RDA: regularized discriminant analysis, 

RF: random forest, SGB: stochastic gradient boosting, SVM: support vector 

machines). 
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5.6. Gully susceptibility and key controlling geo-environmental variables 

All six algorithms indicated that a considerable portion (71-84%) of 

the catchment is of low gully susceptibility, whereas only 0.2-2.6% is under 

high gully susceptibility (Figure 35). Furthermore, ranging from 4.5-6.6%, the 

proportion of very high gully susceptibility was almost the same across all 

algorithms. A very high susceptibility class corresponds to severely gullied 

areas, suggesting these algorithms can detect individual gullies. In particular, 

the SVM-derived map is a good example illustrating areas with varying 

degrees of gully susceptibility (Figure 36). SVM was used to produce this final 

map due to its superior predictive performance.  

 

 

 

 

 

 

 

 

 

 

 

Figure 35. The proportion of area under different levels of gully susceptibility 

(ANN: artificial neural network, PLS: partial least squares, RDA: regularized 

discriminant analysis, RF: random forest, SGB: stochastic gradient boosting, 

SVM: support vector machines). 



 

104 
 

Medium to very high gully susceptibility is primarily confined to low-

lying areas with gentle to flat slopes throughout the catchment (Figure 36c-f), 

although some elevated and hilly parts (i.e., Figure 36a) fall under these gully 

susceptibility classes. Extensive gully systems are remarkable in the central 

(Figure 36c), eastern (Figure 36e), and southeastern (Figure 36f) parts of the 

catchment. On the contrary, the western section of the catchment, particularly 

those areas with commercial farming activity, is predominantly less 

susceptible to gully erosion (Figure 36b). 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Distribution of gully locations across different parts (a-f) of the 

catchment with varying degrees of gully susceptibility 

Among geo-environmental variables, NDVI (importance=100%), 

followed by elevation (importance=26%), TWI (importance=25), population 

density (importance=23%), SPI (importance=22%), and LULC 
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(importance=19%), had the greatest predictive power for gully susceptibility 

modeling. This finding is consistent with previous studies where one or more 

variables were the most critical in predicting gully susceptibility. For example, 

NDVI (Barakat et al., 2022; Jaafari et al., 2022), elevation (Pham et al., 2020; 

Chowdhuri et al., 2021; Huang et al., 2022), TWI (Jiang et al., 2021; Han, 

Guzman and Chu, 2022), SPI (Barakat et al., 2022), and LULC (Roy and Saha, 

2022) were among the top five most important factors contributing to gully 

erosion. It is not surprising that NDVI ranked first in importance (100%) in 

this study because of the unique spectral reflectance of gullies (lower values) 

against vegetation (higher values). In addition, it has been proven helpful for 

extracting gullies and other erosional features (Vaidyanathan et al., 2002; 

Phinzi and Ngetar, 2017). For example, Bernini et al. (2021) found NDVI to 

be the most critical factor influencing gully erosion in the Mkhomanzi 

catchment in South Africa. The authors reported that areas with an NDVI 

range of 0-0.30 were susceptible to gully erosion, while another study by 

Phinzi and Ngetar (2017) reported 0.15-0.25 values. In this study, >96% of 

gully pixels occurred within an NDVI range of -0.23-0.35, whereas <4% of 

gully pixels were within 0.35-0.72 NDVI values (Table 15), suggesting that 

areas with little or no vegetative cover are the most susceptible to gullying. 

Similarly, areas with low elevation (538-765m) were more vulnerable 

to gullying than highly elevated areas (1039-1772m). Due to greater surface 

runoff with higher erosive power, low-lying areas with poor vegetation cover 

are usually predisposed to gully erosion. These low-lying areas had varying 

degrees of water accumulation, as indicated by TWI values ranging from 

<6.13-7.53, with about 80% of gully pixels falling within this range. Low TWI 

values indicate less wetness or water accumulation, and high values indicate 

areas where surface water flow is more likely to accumulate (Sörensen, Zinko 

and Seibert, 2006), making the area vulnerable to gully erosion given higher  
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erosive power (high SPI values). Areas with SPI values of <3 were found to 

be the most susceptible to gully erosion, as over 93% of gully pixels occurred 

within this SPI range. These results are in agreement with related studies 

 

Table 15. Relationship between the six most critical geo-environmental 

predictors and gully erosion. 

Gully factor Class Gully pixels Gully pixels (%) 

  -0.23-0.18 132725 18.068 

  0.18-0.24 196895 26.803 

NDVI 0.24-0.29 167825 22.846 

  0.29-0.35 133145 18.125 

  0.35-0.72 24277 3.305 

  538-765 276441 37.625 

  765-893 342962 46.679 

Elevation (m) 893-1039 24540 3.340 

  1039-1255 10286 1.400 

  1255-1772 748 0.102 

  <6.13 287932 39.189 

  6.13-7.53 295262 40.187 

TWI 7.53-9.36 62294 8.479 

  9.36-11.89 9437 1.284 

  11.89-24.99 52 0.007 

  1 654515 89.143 

Population density 

(people/km2) 1-85 0 0.000 

  <-6.25 156181 21.257 

  -6.25- -1.56 117122 15.941 

SPI -1.56-0.36 166513 22.663 

  0.36-3.23 169113 23.017 

  3.23-13.35 46048 6.267 

  

Forested 

Land 8126 1.106 

  Grassland 318769 43.389 

  Waterbodies 2703 0.368 

  Wetlands 1073 0.146 

LULC Barren Land 58494 7.962 

  Cultivated 239029 32.535 

  Built-up 26123 3.556 

  

Mines & 

Quarries 606 0.082 
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where a considerable proportion (i.e., >60%) of gully pixels fell within TWI 

of <10 and SPI<9 (Arabameri, Cerda, et al., 2019; Gayen et al., 2019; 

Hosseinalizadeh et al., 2019b). 

Concerning LULC, grassland (gully pixels=43.39%) and cultivated 

lands (gully pixels=32.54%) were the most susceptible LULC classes to gully 

erosion. According to Le Roux et al. (2008), grasslands in South Africa are 

highly susceptible to erosion, which is not surprising given the predominantly 

rural character of the catchment and the widespread involvement of the local 

population in subsistence agriculture, including both crop and livestock 

farming. This view is supported by numerous studies in South Africa, which 

have indicated that human activities, including unsound agricultural practices 

and overgrazing, have contributed to soil erosion in rural areas (Beckedahl and 

de Villiers, 2000; Kakembo and Rowntree, 2003; Mhangara, Kakembo and 

Lim, 2012; Phinzi and Njoya S. Ngetar, 2019). For example, a recent study 

showed that 40% of erosion in communal areas is due to overgrazing and cattle 

tracks, while only 8.4% is attributed to population pressure (Olivier, Van De 

Wiel and De Clercq, 2022). The present study revealed that areas with lower 

population densities are more prone to gullying than those with higher 

densities, which is consistent with the rural nature of the catchment, which has 

sparse human settlements and extensive grasslands where gullies commonly 

occur.  

 

6. SUMMARY AND CONCLUSIONS 

Gully erosion poses a significant challenge to sustainable 

agriculture, particularly in semi-arid regions such as South Africa, where 

subsistence agriculture is vital. In order to address this issue effectively, it 

is imperative to accurately identify gullies through satellite imagery and 

model areas susceptible to gully erosion with a high degree of precision. 
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This practical approach is essential for successful gully rehabilitation 

efforts in semi-arid environments. Therefore, the objectives of this 

dissertation were to: 

 

1) Determine if low-cost, high-resolution sensors improve gully mapping 

in semi-arid regions. 

Three low-cost, high-resolution satellite imagery were used, 

comprising two SPOT-7 images and a PlanetScope image. The study 

found that SPOT-7 multispectral bands showed discernible spectral 

differences, with the NIR band having the most significant effect size. 

While p-values indicate significance, effect sizes provide insight into 

the magnitude of differences, and standardized measures demonstrate 

relevance to land cover categories. Specific categories, such as gullies 

and stressed vegetation, showed non-significant differences in RGB 

bands but significant differences in the NIR band.  

However, in Study Area #3, the visual range SPOT-7 image 

without the NIR band effectively discriminated against gullies due to 

its high spatial resolution (1.3 m). NGRDI successfully discriminated 

gullies from vegetation, as seen in their spectral profiles. However, 

vegetation identification during the training phase was challenging due 

to the absence of the NIR band and the dry season. High-resolution 

Google Earth images helped identify vegetation cover during training.  

PlanetScope spectral bands, land cover classes, and seasons 

significantly influenced reflectance, and their interactions explained 

92.3% of the variance. The difference between dry and wet seasons 

had the most significant effect on reflectance, while the impact of 

bands and land cover classes was slightly lower but still substantial. 

NIR and red bands were the most influential in discriminating gullies 
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from surrounding areas, while the blue band had the most negligible 

impact. NDVI was less effective in differentiating gullies from other 

land cover classes than the original bands. Gullies significantly 

differed from other land cover classes in the dry season but not in the 

wet season, except for a few specific cases. 

2) Quantify gully classification accuracy and analyze factors biasing 

model performance on a class level. 

The study shows that accurate identification of gullies can be 

achieved using RF or SVM classification algorithms, with similar 

levels of accuracy ranging from 92% to 96%. The binary approach 

resulted in better overall performance, with RF being more reliable 

than SVM. GLM analysis showed that study sites and algorithms 

significantly influenced classification models' efficiency, explaining 

59.3% of the variance in UA and 56.1% in PA. The type of 

classification approach (binary or multiclass) also had a significant 

impact on algorithm performance. The multiclass classification 

approach resulted in lower overall accuracy than the binary approach 

but was more efficient for gully identification.  

The study evaluated the performance of RF and SVM 

algorithms for gully identification in Study Area #2 using two 

resampling methods (CV and bootstrapping) for both wet and dry 

season scenes of PlanetScope data. RF consistently outperformed 

SVM, and the dry season yielded higher OA than the wet season. UA 

values for all models were above 70%, and PA was generally lower 

than UA for most models. SVM-w-cv achieved the most accurate gully 

areal coverage of 57.2 ha, while the rf-w-b model had the highest 

standard error (11.5 ha). The F1-score ranking showed that RF 
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algorithms achieved better results than SVM algorithms. Both 

resampling techniques had the same omission error (85.1%) but 

slightly different commission errors, with bootstrapping having a 

40.8% error of commission compared to a 37.8% error for CV. 

Four classifiers (RF, K-NN, MD, and MLC) were evaluated for 

extracting gullies from a SPOT-7 image in Study Area #3. All 

classifiers achieved high accuracy values above 0.80, with RF 

recording the highest OA (0.94) and kappa (0.89), followed closely by 

K-NN with OA and kappa values of 0.92 and 0.86, respectively. 

Results showed significant variations in UA and PA across different 

classifiers. K-NN, MD, and RF performed excellently in identifying 

the BS class, each achieving 1.00 UA. MD was found to be the most 

effective classifier with 100% UA for gully classification, although the 

corresponding PA was only 0.80, while RF achieved the highest OA 

(0.94) but had an 87% UA for gully classification. 

3) Examine how different gully morphological characteristics affect the 

precise mapping of gullies using high-resolution satellite data. 

Gully's characteristics strongly influenced their classification 

in Study Area #3. Algorithms were most efficient in areas with 

dendritic pattern gullies but less effective in detecting shallow and 

wide gullies, particularly on bare soil. Gully length was not a 

significant factor in detection efficiency. There was a discrepancy 

between the actual digitized gullies and those derived by the 

algorithms in all sites, possibly due to resolution differences or the 

classifiers' limitations in detecting gullies with shallow walls. The 

gully density varied between 0.12 m/m2 and 0.61 m/m2, influenced by 

the appearance and pattern of the gullies where gullies of dendritic 
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form, linear and V-shaped gullies, had the highest gully density. The 

slope was not the primary factor influencing gully density, as gullies 

commonly occurred in gently sloping areas. 

4) Select geo-environmental variables with the greatest predictive power 

to model gully susceptibility. 

The study found that the most influential geo-environmental 

variables for predicting gully susceptibility were NDVI, elevation, 

TWI, population density, SPI, and LULC. NDVI was the most 

significant factor due to the spectral differences between gullies and 

vegetation. Areas with little or no vegetation cover were the most 

susceptible to gullying, and low-lying areas with poor vegetation were 

particularly vulnerable due to higher surface runoff and erosive power. 

The study also found that areas with low elevation, low TWI values 

indicating less water accumulation, high SPI values indicating areas of 

high surface water flow, and specific land use classes such as 

grasslands and cultivated lands were more susceptible to gully erosion. 

Lower population densities were also associated with higher 

susceptibility to gullying, consistent with the rural nature of the 

catchment area with sparse human settlements and extensive 

grasslands. 

5) Analyze algorithms’ performance when using input feature sets of 

varying sizes. 

This study predicted gully susceptibility and compared six 

algorithms based on accuracy and processing time using small, 

medium, and large feature sets. Results demonstrated that the 

algorithm performance varied with feature set size. SVM was the most 

efficient with medium and small sets, while SGB closely followed 
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SVM, it required a large feature set to reach maximum accuracy. RF 

was computationally expensive but performed well with large sets. 

PLS and RDA were the fastest and achieved acceptable accuracies 

with a medium set. ANN was sensitive to input features but performed 

well with a small set. 

Overall, this dissertation draws the following conclusions and 

recommendations. Low-cost, high-resolution sensors such as SPOT-7 and 

PlanetScope, which were obtained at no cost for the test areas, can map gullies 

in semi-arid regions despite their limited spectral information. The successful 

mapping of gullies depends on various factors such as the algorithm, season 

of image acquisition, gully characteristics, resampling technique, study site, 

and class number approach, all of which were investigated. The multiclass 

approach performed exceptionally well at the class level and is strongly 

suggested for accurate gully identification on SPOT-7 images. RF with 

bootstrapping resampling technique is recommended for mapping gullies in 

the dry season using the PlanetScope image, while SVM with k-fold CV is 

recommended for gully mapping in the wet season.  

Concerning gully susceptibility modeling, NDVI had considerable 

predictive power, followed by elevation, TWI, population density, SPI, and 

LULC. Therefore, it is recommended that these geo-environmental variables, 

available at no cost, be involved in gully susceptibility prediction in semi-arid 

environments with similar environmental conditions as the study area. 

Different algorithms performed differently across feature sets of varying sizes, 

and a fixed set of features would not give an accurate assessment. Therefore, 

ensemble-based algorithms like RF and SGB need larger feature sets for better 

performance. Although this can be computationally expensive, adding high-

predictive features can enhance accuracy. Conversely, SVM and ANN 
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perform well with fewer input features and less computational time, so using 

these algorithms, especially SVM, can improve accuracy and processing 

speed. 
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8. APPENDICES 

Appendix 1. Spatial distribution of geo-environmental covariates (TWI=topographic 

wetness index, LS=slope length and steepness, TRI=terrain ruggedness index, 

NDVI=normalized difference vegetation index, LULC=land use/land cover, 

CEC=cation exchange capacity, CaCO3=calcium carbonate, SPI=stream power 

index). 
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Appendix 1. Continued. 
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Appendix 2. Hyperparameter tuning and the optimal combination of values for the 

final models of six algorithms across three feature sets of different sizes (Sf: small 

feature, Mf: medium feature, and Lf: large feature sets). 
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