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Abstract: Is there any relationship between plant nutrition and human health? The overall response
to this question is very positive, and a strong relationship between the nutrition of plants and
humans has been reported in the literature. The nutritional status of edible plants consumed by
humans can have a negative or positive impact on human health. This review was designed to assess
the importance of plant bioactive compounds for human health under the umbrella of sustainable
agriculture. With respect to the first research question, it was found that plant bioactives (e.g.,
alkaloids, carotenoids, flavonoids, phenolics, and terpenoids) have a crucial role in human health due
to their therapeutic benefits, and their potentiality depends on several factors, including botanical,
environmental, and clinical attributes. Plant bioactives could be produced using plant tissue culture
tools (as a kind of agro-biotechnological method), especially in cases of underexploited or endangered
plants. Bioactive production of plants depends on many factors, especially climate change (heat
stress, drought, UV radiation, ozone, and elevated CO2), environmental pollution, and problematic
soils (degraded, saline/alkaline, waterlogged, etc.). Under the previously mentioned stresses, in
reviewing the literature, a positive or negative association was found depending on the kinds of
stress or bioactives and their attributes. The observed correlation between plant bioactives and
stress (or growth factors) might explain the importance of these bioactives for human health. Their
accumulation in stressed plants can increase their tolerance to stress and their therapeutic roles. The
results of this study are in keeping with previous observational studies, which confirmed that the
human nutrition might start from edible plants and their bioactive contents, which are consumed
by humans. This review is the first report that analyzes this previously observed relationship using
pictorial presentation.

Sustainability 2022, 14, 8329. https://doi.org/10.3390/su14148329 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14148329
https://doi.org/10.3390/su14148329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-1113-726X
https://orcid.org/0000-0002-9090-3400
https://orcid.org/0000-0002-0375-0531
https://orcid.org/0000-0003-3847-1281
https://orcid.org/0000-0001-5622-7501
https://orcid.org/0000-0001-9512-6826
https://orcid.org/0000-0002-7245-6483
https://orcid.org/0000-0002-0296-2647
https://orcid.org/0000-0002-6665-4838
https://doi.org/10.3390/su14148329
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14148329?type=check_update&version=1


Sustainability 2022, 14, 8329 2 of 43

Keywords: climate change; salinity; drought; biofortified crop; nutrients; degraded soil; plant
secondary metabolites; elevated CO2

1. Introduction

The agroecosystem includes soil, cultivated plants, and other compartments [1]. This
system has basic ecological and nutritional functions for human health, including fluxes of
nutrients and energy and their interactions among different species, which control global
food production [1]. The world’s population is expected to exceed 10 billion by 2050, and
the world’s food production needs to increase more and more [2]. This food production is
primarily dependent on crop productivity, and it is primarily controlled by the molecular–
physiological functions of plant mineral nutrients and their deficiency [3]. Plant-derived
nutrients are crucial for human nutrition and maintenance of human health [4]. There is no
human nutrition without crop production, which itself must be supported by proper and
sufficient plant nutrients [5]. These plant nutrients can play a crucial role in sustainably
promoting agricultural production on cultivated lands, facilitating soil carbon sequestration,
and taking pressure off global peatlands and forests [6]. Recently, several studies have
reported on plant nutrition and its impact on human health, with topics such as the role
of plants in human health with a focus on greening biotechnology [7], responsible plant
nutrition [8], and the relationship between plant nutrition and food security under climate
change [9]. It is also worth mentioning recent studies on the potential of aromatic, rare, and
endemic wild species found in extensively controlled agroecosystems that have never used
by humans [10,11], including crop wild relatives [12].

There is increased concern about the concept of medicinal plants for human health
and their importance for general well-being, rather than solely for consumption as human
foods [7]. These plant foods represent the main source for most mineral macro- and micro-
nutrients, which are essential elements for human nutrition, as well as a range of bioactive
ingredients, which can support preventing many chronic diseases such as Alzheimer’s,
cataracts, cancer, cardiovascular disease, diabetes, and age-related functional decline [4,7].
Therefore, vegetable and fruit plants are important parts of the human diet, which can
contain proteins, carbohydrates, amino acids, fatty acids, lipids, and vitamins (i.e., A, B
complex, C, E, and K). Edible plants could be applied in the field of phytomedicine because
of their nutritional value, which mainly is due to the high contents of the previously
mentioned compounds, in addition to many bioactive ingredients for overcoming several
human diseases [13–17]. Several current reports have been published that investigate the
role of agro-techniques (different agricultural technologies) in producing plant bioactives
by using plant tissue culture tools [18,19] or agro-wastes such as banana peels [20], olive
mill pomace [21], and coffee leaves [22].

Therefore, this photographic review is an attempt to highlight the field of plant
nutrition and its importance for human health. This review will focus on edible plants
as vital components of the human diet, which contain essential mineral nutrients, several
bioactive compounds, and vitamins to prevent several human diseases. Plant nutrition
management for human health will also be discussed, including many case studies, such as
plant nutrition management under salt-affected and contaminated soils.

2. Methodology of the Review

Photographic reviews are generally rare in various published sources, because it is
difficult to find suitable photos in each section of the MS of a suggested or edited review.
A photographic review can provide a “complete story” on a particular topic. Therefore,
the main idea of this review emerged from the importance of plant nutrients and their
role in many human diseases. This photographic review focuses on plant nutrition, which
includes some important sections on human health, based on the common association
of “good plant nutrition for good human health”. After searching the main websites of
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major publishers, several published materials (i.e., reviews, mini-reviews, original articles,
chapters, etc.) were collected and sorted to build the sections of this review. Therefore, the
table of contents (TOC) was very flexible at the first stage of writing the review and by the
time some changes were needed. The main sections in the TOC depended mainly on the
field of plant nutrition and its relationship to human health from different points of view
such as “plant nutrition and sustainable agriculture”, “plant nutrients uptake and their
physiological functions”, “the medicinal plants and bioactive compounds”, “plant nutrition
management for human health”, “plant nutrition under climate change”, “plant nutrition
under pollution”, and “plant nutrition and stressful soil”. After organizing the TOC, the
main ideas started to be written down through collecting the required materials from
main sources, published mainly during the last 5 years (2018–2022), such as ScienceDirect,
SpringerLink, PubMed, MDPI, and Frontiers. Because this review is a photographic study,
many photographs and drawing figures (in cases of absence or unavailability of relevant
photos) were inserted in this study, because these figures are informative and summarized.

3. Plant Nutrition and Sustainable Agriculture

Plant nutrition deals with nutrient uptake, intravascular motility, nutrients’ roles
in plant growth and development, and the physiological and biochemical functions of
nutrients in plants. The field of plant nutrition in general is illustrated in Figure 1. This
science also includes the main methods for applying fertilizers or nutrients, the relationship
between plant nutrition and human health as expressed in phytomedicine, and manage-
ment of different cases of plant nutrients, particularly under environmental stresses in
in vivo (Figure 2A,B) or in vitro studies (Figure 3). There are many methods that can be
used to carry out studies on plant nutrition, including in vivo (in the field, greenhouses,
pots, etc.) and in vitro (in the lab) methods, and they may use soilless culture, hydroponics,
or micro-farm systems. These methods have different classifications, such as controlled
and noncontrolled experiments [23,24], in vitro and in vivo studies, and quotative and
qualitative studies [25].
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from open field and greenhouse (the upper photos of cucumber and lettuce) and different hydro-
ponic systems (the 4 middle photos of lettuce and tomato), whereas the lower photos (citrus plants) 
represent the soil application of mineral (super phosphate) and organic fertilizers (organic manure). 
These agricultural systems are found in the experimental farm at Kafrelsheikh University. (B) More 
studies on plant nutrition could be investigated within open field (the upper photo left), forest (the 
upper photo right), and greenhouse using different growing systems (the middle photos), whereas 
the lower photos represent the micro-farm system using growing media or without growing media. 
All photos by El-Ramady. 

The world’s population is constantly increasing. Therefore, food security in the 21st 
century is a serious concern [5]. A total of 17 Sustainable Development Goals (SDGs) were 
adopted as part of a new 15-year sustainable development strategy. Ending hunger, 
achieving food security and improving nutrition, and promoting sustainable agriculture 
are among the 17 aims. The four most relevant time-sensitive goals are as follows: 
1. By 2030, ending hunger; 
2. By 2030, ending all malnutrition forms; 
3. By 2030, doubling agricultural productivity; 
4. By 2030, ensuring sustainable food production systems [27]. 

Figure 2. (A) Some photos of in vivo studies for plant nutrition investigations. The upper photos
are from open field and greenhouse (the upper photos of cucumber and lettuce) and different
hydroponic systems (the 4 middle photos of lettuce and tomato), whereas the lower photos (citrus
plants) represent the soil application of mineral (super phosphate) and organic fertilizers (organic
manure). These agricultural systems are found in the experimental farm at Kafrelsheikh University.
(B) More studies on plant nutrition could be investigated within open field (the upper photo left),
forest (the upper photo right), and greenhouse using different growing systems (the middle photos),
whereas the lower photos represent the micro-farm system using growing media or without growing
media. All photos by El-Ramady.

The world’s population is constantly increasing. Therefore, food security in the 21st
century is a serious concern [5]. A total of 17 Sustainable Development Goals (SDGs)
were adopted as part of a new 15-year sustainable development strategy. Ending hunger,
achieving food security and improving nutrition, and promoting sustainable agriculture
are among the 17 aims. The four most relevant time-sensitive goals are as follows:

1. By 2030, ending hunger;
2. By 2030, ending all malnutrition forms;
3. By 2030, doubling agricultural productivity;
4. By 2030, ensuring sustainable food production systems [27].
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embryogenesis of strawberry tree (Arbutus unedo L.), where photos (A,B) are of embryogenic callus; 
(C) different stages of embryo (globular, heart, and torpedo); (D) torpedo stage of embryo; (E) cot-
yledonary stage of embryo; (F) plantlets initiated from somatic embryos. Group (2): Indirect prop-
agation of strawberry tree, where photo (A) is of callus induction; (B) callus differentiation; (C) shoot 
formed from callus; (D) shoot rooted; (E) acclimatized plants. All photos by El-Mahrouk. 

Agriculture confronts several obstacles worldwide, making it extremely difficult to 
meet its primary goal of supplying food and nutrition security to an increasing population 

Figure 3. A case study for plants in vitro as a promising tool for plant nutrition. Group (1): So-
matic embryogenesis of strawberry tree (Arbutus unedo L.), where photos (A,B) are of embryogenic
callus; (C) different stages of embryo (globular, heart, and torpedo); (D) torpedo stage of embryo;
(E) cotyledonary stage of embryo; (F) plantlets initiated from somatic embryos. Group (2): Indirect
propagation of strawberry tree, where photo (A) is of callus induction; (B) callus differentiation;
(C) shoot formed from callus; (D) shoot rooted; (E) acclimatized plants. All photos by El-Mahrouk.
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Agriculture confronts several obstacles worldwide, making it extremely difficult to
meet its primary goal of supplying food and nutrition security to an increasing popula-
tion [28,29]. Figure 4A,B presents some essential obstacles that face agriculture and farming
livelihoods. These obstacles affect the energy for agro-practices, animal farming, intercrop-
ping, irrigation and drainage water and their efficacy, wastes from agriculture and domestic
life, and seedlings and their preparing. Poor soil fertility, low levels of available mineral
nutrients in the soil, improper nutrient management, and a lack of vegetation genotypes
with higher tolerance to nutrient deficiency or toxicity are currently main limitations associ-
ated with food insecurity, malnourishment (i.e., micronutrient deficiencies), and ecological
degradation in many developing countries [5]. Research in plant nutrition removes these
restrictions and, as a result, provides important knowledge that is extremely beneficial
in ensuring sustainable food security and well-being for humans without harming the
environment [5]. To achieve the desired crop yield, chemical fertilizers are overused [30];
however, chemical fertilizers have been used for centuries and have greatly enhanced agri-
cultural yields [31]. The overuse of chemical fertilizers has resulted in soil, environmental,
and aquatic pollution, particularly soil mineral imbalances, degraded soil structure and
soil fertility, soil quality deterioration, eutrophication, and ground water and air pollution,
all of which are severe long-term barriers. Furthermore, the uncontrolled use of chemi-
cal fertilizers boosts production costs while decreasing farmer profit. To keep intensive
agriculture productive while decreasing negative environmental consequences, systematic
measures to restore natural resources are essential [30,31]. It has also been observed that
traditional agricultural techniques are related to excessive usage of agrochemicals. As a
result, the agricultural sector requires modification in order to achieve self-sufficiency in
food production and provide healthy and safe food in the face of climate change difficulties.
One such solution that solves agricultural problems may be the practice of sustainable
agriculture [29].

Bioenergy or biorefinery crops are mainly the plants that are compatible with sus-
tainable agriculture such as Jerusalem artichoke (Helianthus tuberosus L.), alfalfa (Medicago
sativa L.), fruits, vegetables, grains, and other food and fiber crops [32]. These several plants
and their biodiversity can promote sustainable agriculture [33]. Especially in the context of
plant nutrition and agricultural sustainability, to address the dilemma of chemical fertilizer
overuse, it is necessary to create smart materials that can deliver nutrients to specific places
while still contributing to a clean environment. According to recent research, graphene is a
promising material that might be used as a transporter for plant nutrients. It is capable of
delayed and regulated nutrient release for the benefit of the plants, resulting in increased
agricultural yield with minimal environmental effect [31]. Because nanoparticles have
unique physicochemical properties, such as high surface area, high reactivity, their pore
size distribution, and their particle shape, nanotechnology opens up a wide range of novel
applications in the fields of plant nutrition required to meet the future demands of the
growing population. The management of optimal nutrients for sustainable crop production
is a priority topic in agricultural research. In this respect, nanonutrition has proven to be
the most intriguing field of research, focusing on the provision of nano-sized nutrients for
sustainable crop development [34]. These nanofertilizers and/or nano-amendments could
apply to different common problematic soil cases such as saline/alkaline, waterlogged,
or compacted heavy-clay-content soils, which should be managed through cultivation of
the right selected crop that can be tolerant against such previously mentioned obstacles,
particularly under arid and semi-arid conditions (Figure 5).
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Figure 4. (A) Some creative technologies that boost agricultural output while protecting environ-
mental quality, which may include saving the required energy for different agricultural practices
(the upper photos), saving proper and sufficient feeds of farm animals (the 3rd and 4th photos),
intercropping using horticultural crops (the 5th and 6th photos), domestic wastes and their sort-
ing/collecting in certain containers (the 7th and 8th photos of horticultural plants), and irrigation
canals and drainers and their efficiency (the 9th and 10th photos). All previous agro-practices need
to be sustained. All photos by El-Ramady. (B) The production of seedlings in agricultural nurseries
is very important, using different materials for growing media to supply the agriculture in field or
greenhouse with healthy seedlings. All previous agro-practices need to be sustained. All photos of
horticultural seedlings (such as pepper and tomato) by El-Ramady.

Thus, agriculture may achieve sustainability by using creative technologies that boost
agricultural output while protecting environmental quality. Damage to agricultural soil
constitute a serious problem in developing countries, which lead to a decrease in arable
lands due to urbanization and human activities, especially industrialization (Figure 6). At
this point, the usage of nanohybrid constructs such as nanofertilizers (NFs) has gained
prominence [30]. Nanofertilizers are nano-enabled bulk materials that are applied to in-
crease plant nutrition. Furthermore, they have been described as next-generation fertilizers
that may enable us to ensure global food security, continue improving the nutritional value
of food through Fe and Zn agronomic fortification (ZnO, Fe3O4), maintain balanced nutri-
tion to alleviate biotic and abiotic stresses, and decrease ecological footprint, resulting in
lower agrochemical use and nutrient losses [35]. Nanofertilizers can also improve nutrient
availability and uptake efficiency (by more than 20%) compared to conventional fertilizers,
increasing plant production and nutritional value in specific crops [35]. The nanoparticles
may not be stimulated quickly to be taken up by plants, but a series of processes such as
oxidation and recombination may occur to give the plants the necessary micronutrients.
Because the nutrients are of nanoscale size, fortifying the plant with such nanonutrients
appears to be an appealing choice. Plants not only develop but also accumulate such
nutrients, bridging the nutritional deficit gap. Furthermore, nanofertilizers might be de-
signed to target specific nutritional deficiencies in plants. This is feasible because the atoms
on the surfaces of nanomaterials may be arranged to have distinctively diverse charac-
teristics [31]. In addition, NFs boost plant nutritional efficiency while, simultaneously,
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reducing the toxicity of chemical fertilizers. As a result, they assist developing nations,
particularly in building sustainable agricultural initiatives [36]. NFs also have the following
advantages: nutrient-delivered control can be interlinked to soil nutrient balance, plant
growth phase, and environmental factors using nanosensors [35]. One of the environmental
factors that impacts the efficiency of NP application is the agricultural system (in open field,
greenhouse, pots, in vitro, etc.). Thus, plant production under greenhouse conditions is
very important in addressing one of the great challenges that face developing countries,
particularly those under the stress of arid and semi-arid conditions. Greenhouses have
many benefits in winter as protected houses for crop production; however, due to a lack
of facilities in developing countries, a range of troubles may face this production method
related to soil salinization, indoor temperature and aeration, control of the soil moisture
content, etc. (Figure 7).
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Figure 5. Cultivation in saline/alkaline, waterlogged, and compacted heavy-clay-content soil needs
to manage the right crop that can be tolerant against certain obstacles, particularly under arid and
semi-arid conditions. These problems include accumulation of salts on the soil surface, growing the
salinity-loving grasses, waterlogged soil (the upper photos of grasses), salinity/alkalinity stress (the
middle photos of maize), sodium appearance in dispersion of soil particles on the soil surface (lower
photos of common purslane and lettuce), etc. All photos by El-Ramady.
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which may face a range of troubles with lack of facilities, aeration (the upper left photo), control of
the soil moisture content (the middle and lower photos of cucumber and pepper), etc. All photos
by El-Ramady.
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In addition to using nanofertilizers for providing sufficient nutrients and avoiding
many problems, many modern approaches have been adopted to achieve these targets in
sustainable ways. Recently, scientists around the world have been looking at the potential
function of nanoparticles in biotechnology because of their ability to transfer DNA and
other substances to plant cells. In this regard, introducing C nanotubes into chloroplasts
has resulted in a success for plants’ enhanced capacity to capture more light energy. Fur-
thermore, these tubes might be used as artificial antennae for catching light wavelengths
that are outside of their regular range, such as ultraviolet, green, and near-infrared [34].
DNA-based biosensors (genosensors) have recently been extensively developed for toxins
detection [37]. The use of material identification to integrate nanomaterials with biosensors
increases electron flow between electrodes. Electrochemical nanobiosensors have several
advantages, including low cost, high sensitivity, and low identification threshold. Such
sensors are extensively used in labs due to their ease of use and measurement [38]. Sensors
made using nanoscience and nanomaterials have a wide range of applications in the present
day. For example, using enzyme-based NSs is one of the most useful analytical techniques
for finding toxins in biological materials [39]. Such approaches (i.e., nanosensors and DNA
nanosensors) play a vital role in monitoring toxicity and deficiency in plant nutrients, en-
hancing the ability to face such challenges as limitations to plant growth and development.
In this context, Podar and Maathuis [40] reported that plants evolved sophisticated systems
to enhance nutrient usage efficiency, because nutrients are scarce and important resources.
Monitoring external and internal nutrient levels is critical for adjusting processes including
absorption, redistribution, and cellular compartmentation. Primary sensors, which often
include transceptors or transcription factors, are used to measure nutrient levels. Plants’
primary receptors for some nutrients are just now being recognized. There is considerable
knowledge about how members of the nitrate transporter 1 family sense the external nitrate
state. Potential sensors for additional macronutrients such as potassium and salt have
recently been found, while transcription-factor-type sensors for micronutrients such as zinc
and iron have been described [40].

4. Plant Nutrients Uptake and Their Physiological Functions

Cultivated plants need nutrients for their growth and development, including es-
sential (e.g., N, P, K, Ca, Mg, Mn, Fe, B, Zn) and beneficial nutrients (e.g., Se, Si, Na).
When the cultivated plants can uptake all required nutrients, this will be reflected in the
productivity, which will be higher. Plants contribute significantly to the global food chain
by providing elements such as carbohydrates, proteins, edible oils, dietary fibers, vitamins,
and minerals in forms such as vegetables, fruits and grains [41,42]. They also supply us
with medication, clothing, construction materials, biofuels, pulp, and other products. As a
result, improved plant growth and health would directly benefit nations’ economies and
development [43]. Plant nutrition is concerned with the relationship between soil nutrients
and plant development [44]. Plants require at least 14 mineral elements in addition to O2,
CO2, and H2O for optimal nutrition. Plant development and agricultural production are
reduced when any of these minerals are deficient. Six mineral elements are required in
large quantities, these being N, P, K, Ca, Mg, and S, whereas Cl, B, Fe, Mn, Cu, Zn, Ni, and
Mo are required in small quantities [45]. The uptake of nutrients for plant growth under
different environmental conditions may be influenced by the soil conditions, especially
degraded soils such as salt-affected soils. The main problem that faces cultivated plants
under salt-affected-soil conditions is salinity and/or alkalinity stress, which may lead to
deficiency of some nutrients and/or some physiological disorder in the leaves of these
cultivated plants (Figure 8A,B).
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which may lead to deficiency of some nutrients. These photos represent some nutrient deficiency
and/or some physiological disorder in the leaves of some cultivated horticultural crops. All photos of
guava, apricots, pears, and peaches were taken from the experimental farm at Kafrelsheikh University
by El-Ramady. (B) More photos of the obstacles facing cultivated plants under degraded conditions
in particular salt-affected soils. The main problem that faces cultivated plants under salt-affected-soil
conditions is salinity and/or alkalinity stress, which may lead to deficiency of some nutrients. These
photos represent some nutrient deficiency and/or some physiological disorder in the leaves of some
cultivated horticultural crops. All photos of citrus, pears, and guava plants were taken from the
experimental farm at Kafrelsheikh University by El-Ramady.

Mineral nutrients play an essential function in plant metabolism. A lack of any mineral
nutrient inhibits plant growth, which has a direct relationship with the plant’s production
potential (Table 1). Mineral nutrients are involved in the creation of vital organic molecules
such as amino acids and proteins, and nutritional imbalance can affect a variety of biological
processes [46]. Nutrient deficiency and toxicity adversely affect crop health, resulting in the
emergence of strange visual symptoms and decreased crop yields [44]. To increase yields
in locations with limited phytoavailability, important mineral elements are applied to the
soil as fertilizers. Furthermore, fertilizers with critical minerals for human nutrition are
periodically applied to crops in order to boost their concentrations in edible parts for the
benefit of human health [45].

Table 1. A list of nutrient biological functions in plants and suggested deficiency symptoms.

Nutrient Element Nutrient Symbol Uptake Form Nutrient Biological Functions in
Plants [Ref.]

Deficiency Symptoms of
Nutrients [Ref.]

Nitrogen N NH4
+ and NO3

−
Constituent of amides, amino

acids, proteins,
nucleic acids, nucleotides,

coenzymes, chlorophyll, etc. [47]

Inhibits plant growth; yellowing or
chlorosis of leaves due to a collapse

in chloroplasts [48]

Phosphorus P H2PO4
−; HPO4

2− Constituent of nucleic acids and
lipid membranes, ATP, etc. [49]

Dark greenish-purple leaves, with
necrotic spots and malformed [49]

Potassium K K+
Controls more than 60 enzymes,

mainly of
photosynthesis and respiration [50]

Chlorosis of older leaves; shorter
internodes in stems; inhibiting

protein synthesis [49]

Calcium Ca Ca2+

Ca-pectate is main constituent of cell
wall; controls elongation and

division of cells; activates many
enzymes [47]

Small and younger leaves; deformed
and chlorotic, bitter pit (apple); black

heart (celery) [50]

Magnesium Mg Mg2+
Component of chlorophyll and

polyribosomes;
enzyme cofactor [51]

Chlorosis of intervein and streaked
or patchy effects on leaves [50]

Sulfur S SO4
2−

Component of amino acids (i.e.,
cysteine, cystine, and methionine),

CoA and vitamins
(biotin; thiamine), and glucosides in

onions [44]

Interveinal chlorosis. S-deficiency
chlorosis in all leaves at the same

time; yellowish-green [49]

Boron B H2BO3
−

Involved in many processes:
proteins synthesis,

respiration, sugars transport
metabolism of RNA, plant hormones,

and carbohydrate [52]

Mainly appears on younger leaves;
malformed and bluish-green;
retaining flowers, forming of

pollen [47]

Copper Cu Cu2+

Essential respiration and
photosynthesis of

mitochondria; component of major
enzymes Cu-Zn-SOD [52]

Necrosis, spots at tips of younger
leaves, white tips, die back, and

reclamation disease [49]

Chlorine Cl Cl−
Essential for osmoregulation and

photosynthesis; increases resistance
to plant diseases

(rice; barely; corn) [53]

Leaf chlorosis, curling of leaves,
plant wilting, and restricted

branching in root system [52]
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Table 1. Cont.

Nutrient Element Nutrient Symbol Uptake Form Nutrient Biological Functions in
Plants [Ref.]

Deficiency Symptoms of
Nutrients [Ref.]

Iron Fe Fe2+

Essential for respiration; assimilation
of N, mitochondria, photosynthesis;
hormones biosynthesis; cytochromes;
Fe-containing proteins (haem) [52]

Interveinal chlorosis from younger
leaves; leaf margins and veins

remain green; stunted growth in
palms leads to meristem death [54]

Nickel Ni Ni+2

Essential for prokaryotic enzymes
such as hydrogenases,

dehydrogenases; component in
urease enzyme [55]

Leaf-tip necrosis; nitrate in leaves
accumulation; Ni deficiency in pecan

called mouse-ear leaves [55]

Manganese Mn Mn2+
Exists in several plant cell enzymes;
involves many enzymes (i.e., lyases,
hydrolases); proteins Mn-SOD [56]

Interveinal chlorosis in dicots;
smallest leaf veins remain green;

speckled yellow in sugar beet [47]

Molybdenum Mo MoO4
−

Essential for N-assimilation,
phytohormone

biosynthesis S-metabolism; controls
N-assimilation enzymes [52]

In young plants: dwarfed plants,
mottling, grey tinting, cupping and

flaccid leaves [44]

Zinc Zn Zn2+
Component of synthesis protein

enzymes; essential catalytic for more
than 300 enzymes, Zn-Cu-SOD [47]

Interveinal chlorosis; internodes
short, younger shoots; smaller leaves;

malformed, rosetted [50]

Plants absorb necessary components from the soil via their roots and from the air via
their leaves (mostly N and O) [46,57]. Cation exchange, in which root hairs pump H+ into
the soil via proton pumps, is responsible for nutrient uptake in the soil. These H+ displace
cations linked to negatively charged soil particles, making them accessible for root absorp-
tion. Stomata open in the leaves to take in CO2 and exhale O2. In photosynthesis, CO2
molecules serve as a C supply. The root, particularly the root hair, is a vital organ for nutri-
ent intake. The root’s morphology and architecture can influence nutrient absorption [46].
The nutrients required by plants are supplemented by fertilizers with the belief that they are
mainly absorbed by plants. Micronutrient deficiency is shown by irregular development
of plant tissues; nevertheless, this may not mean the soil is insufficient for micronutrients;
rather, the root may be unable to absorb and translocate the nutrients due to limited root
pore size. To fulfill the demands for food of the rising population, it is consequently critical
to investigate techniques for boosting crop quality and key nutrients [31].

Plant growth and development are strongly influenced by the combination and con-
centration of available mineral nutrients in the soil. Because of their relative immobility,
plants frequently encounter considerable challenges in receiving an appropriate supply
of essential nutrients to fulfill the demands of basic cellular functions. A lack of any of
the required elements may result in reduced plant production and/or fertility. Nutrient
deficiencies can induce stunted growth, plant tissue death, or leaves yellowing due to a
decrease in the production of chlorophyll, a pigment required for photosynthesis. A lack of
nutrients can have a substantial influence on agriculture, resulting in lower crop yield or
plant quality. The nutrient deficit can also limit overall biodiversity, because plants are the
producers that support the majority of food webs [58]. By 2100, the world population is
expected to reach 11.0 billion. As a result, existing food production must be increased by
60–70% to fulfill the calorie demands of the rising population. Global future food demand
can only be met by improving resource usage efficiency without reducing agricultural
yields by advancing current science and technology. Chemical fertilizers have increased
agricultural productivity in developing countries by 50–55%. However, the usage effi-
ciency of supplied nutrients via fertilizers remains relatively low (N: 30–40%, P: 15–20%,
K: 50–55%, and micronutrients: 2–5%). This results in excessive soil nutrients mining, result-
ing in a net negative soil nutrient balance of about 10 million tons and hence deteriorating
soil health [30].
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5. Medicinal Plants and Their Bioactive Compounds

Medicinal plants are defined as plants that have a wide variety of bioactive compounds
exhibiting several biological activities and beneficial properties, including antioxidant,
antiviral, antimicrobial, anticancer, anti-inflammatory, anti-aging, antihypertensive, and
neuroprotective attributes [59]. Medicinal plants are of great potential all over the world,
due to their healthy consumption and/or their application as extract supplementation for
traditional medication (Figure 9). A remarkable number of studies can be found on the
therapeutic attributes of medicinal plants combined with a growing concern for their use as
natural products (e.g. [60–63]). Medicinal plants represent 25–50% of the current production
of drugs that are used in the sector of healthcare from various sources [62]. It is expected
that the medicinal plant field will continue supporting new medicine derived from natural
products during the coming decades [61]. The mode of action of these medicinal plants
mainly depends on the extracted/used parts, including flowers, leaves, fruits, roots, seeds,
and stems, which are considered rich sources of bioactive compounds [64].

It is well known that medicinal plants can be consumed as fresh foods or applied as
extracts to foods or pharmaceutical products. For selecting medicinal plants, there are
different strategies that can be used, as reported by [26] in Figure 10. Concerning plant
functional traits and their potential for human health, there are several general themes such
as antimicrobial plants [65,66], plant secondary metabolites [67], nutraceuticals for human
health [68], plant leaf protein concentrates [69], biofortified plants for human health [70],
plant-based diets for human diseases [17,71], and herbal bioactive-based products for dif-
ferent applications such as cosmetics [72,73]. Plant-based diets have important benefits
for human health, which prevent or decrease many human diseases such as cardiovascu-
lar, dermatological, endocrinological, gastrointestinal, ophthalmological, genitourinary,
otolaryngological, musculoskeletal, neurological, and respiratory diseases [65].Sustainability 2022, 14, x FOR PEER REVIEW 18 of 48 
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antimicrobial secondary metabolites and their potentials, nutraceuticals for human health, plant leaf
protein contrate, and plant-based diets. GHGs, greenhouse gasses emissions. Sources: for group
(1) [67], (2) [68,74], (3) [75–77], (4) [78–80].
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All plant species can form primary metabolites in cells, but secondary metabolites
vary by plant species and can be produced through metabolic pathways derived from the
primary metabolic pathways. Both primary (e.g., chlorophyll, carbohydrates, fats, proteins,
lipids, and nucleic acids) and secondary metabolites are active compounds in plants that
have a variety of functions. Plant secondary metabolites could be defined as organic
compounds that are produced by plants but are not directly involved in plant biological
processes, including growth, development, and reproduction [82]. These metabolites
have numerous functions in plants, including plant growth and development processes,
innate immunity, defense response signaling, and response to environmental stresses [83]
as well as root microbiomes [84] (Figure 11). Secondary metabolites can also be used
as food additives, pharmaceuticals, and cosmetics ingredients [85]. Enormous plants,
mainly medicinal plants, that can produce bioactive secondary metabolites include Chinese
medicinal herbs, as reported by El-Ramady et al. [86] and in Tables 2 and 3. The production
of bioactive plant secondary metabolites is common using in vitro technologies [87,88].
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Figure 11. The major groups of plant secondary metabolites could in general be classified into many
large molecular families such as alkaloids, flavonoids, phenolics, terpenes, and steroids as well as by
their therapeutic effects on human health.

On the other hand, nutraceuticals have great potential for human health. They can help
and support the absorption of vitamins and minerals, preventing their deficiency. They can
also inhibit harmful biochemical reactions, detoxify cells, facilitate the growth of beneficial
microbiota, and excrete out wastes [89]. Nutraceuticals have some medical properties
such as anti-aging, antioxidant, and anti-cancerous attributes, which can enhance different
biochemical processes and structures [89]. These attributes also may augment phagocytosis,
induce immunomodulatory effects, enhance immune response, prevent hypersensitivity,
and reduce auto-immune response [90]. Nutraceuticals can help prevent and cure many
diseases related to cancer, diabetes, neurodegeneration, and hypertension [68].

The world suffers from chronic undernourishment, especially in Africa and Asia.
Therefore, different natural sources for human nutrition are very important, including
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animal sources and traditional or underutilized plants. Consumption of plants is important,
whether they are consumed as a fresh source for human nutrition or as extracts added to
foods or to drugs due to their high contents of bioactive compounds. Therefore, several
traditional, wild, or underutilized plants, including many vegetables and legumes, could
be consumed by humans to improve human health (Table 2). These plants contain certain
bioactive compounds or phytochemicals (e.g., alkaloids, lectins, glucosinolates, organic
acids, polyphenols, terpenes, and volatiles), which have important roles in preventing
several chronic human diseases such as diabetes, cancer, and diseases of the heart, through
many biological activities such as anticancer, antioxidant, antihypertensive, antimicrobial,
anti-inflammatory, and hepatoprotective attributes [91].

Table 2. List of some underexploited or underutilized plants, their used part, their common use, and
their bioactive compounds as medicinal plants. All scientific names according to Plants of the World
Online (https://powo.science.kew.org/, accessed on 25 June 2022).

Common Name(s) Scientific Name Plant Family Commonly Used
Plant Part(s) Common Uses Refs.

Adzuki bean Vigna angularis (Willd.)
Ohwi and H. Ohash Fabaceae Seeds Seeds for cooking

with rice [92]

Andean lupin, pearl lupin Lupinus mutabilis
Sweet Fabaceae Seeds Seeds for culinary use [93]

African yam bean Sphenostylis stenocarpa
Hochst ex. A. Rich. Harms Fabaceae Seeds, tubers Seeds for culinary use [94]

Bambara nut or
groundnut Vigna stenocarpa L. Verdc Fabaceae Seeds Seeds for foods

and beverages [95]

Deer-eye beans,
donkey-eye bean Mucuna spp. Fabaceae Seeds Seeds for culinary use [96]

Jack beans, sword bean Canavalia spp. Fabaceae Pods and seeds Pods as vegetable;
seeds for culinary use [97]

Ground bean, Hausa
groundnut

Macrotyloma geocarpum
(Harms.)

Maréchal and Baudet
Fabaceae Seeds like peanuts Seeds for culinary use [98]

Hyacinth bean, lablab bean Lablab purpureus L. Fabaceae Leaves, seeds Seeds used culinarily [99]

Horse gram Macrotyloma uniflorum
(Lam.) Verdc. Fabaceae Seeds Seeds for culinary use [100]

Peavines, vetchlings Lathyrus spp. Fabaceae Pods, seeds Seeds for culinary use [101]

Moth bean Vigna aconitifolia
(Jacq.) Marechal Fabaceae Pods, seeds Seeds for culinary use [102]

Stinky bean Parkia speciosa Hassk. Fabaceae Pods, seeds Pods and seeds for
culinary use [103]

Rattlepods Crotalaria spp. Fabaceae Leaves, flowers,
pods, seeds

Leafy vegetable; seeds
for culinary use [104]

Rice bean Vigna umbellata (Thunb.)
Ohwi and H. Ohashi Fabaceae Seeds Seeds for culinary use [105]

White lead tree, subabul Leucaena leucocephala
(Lam.) de Wit Fabaceae Pods Young pods used

as vegetable [106]

Winged bean Psophocarpus tetragonolobus
(L.) D.C. Fabaceae Leaves, seeds, bean

pods, roots
Entire winged been

plant is edible [91]

Amaranth Amaranthus spp. Amaranthaceae Leaves, seeds Leafy vegetable,
oil, pigments [107]

Black nightshade Solanum nigrum L. Solanaceae Leaves, fruits
(berries)

Leaves and berries as
food prepared by

cooking
[108]

Common purslane Portulaca oleracea L. Portulacaceae Leaves, stem Leafy vegetable [109]

Curcuma Curcuma spp. Zingiberaceae Rhizomes, roots,
leaves

Roots edible,
rhizomes culinary [110]

Bitter melon, spiny gourd Momordica spp. Cucurbitaceae Fruits Fruits as vegetable [91]

Indian poke Phytolacca acinose Roxb. Phytolaccaceae Leaves Leafy vegetable [91]

https://powo.science.kew.org/
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Table 2. Cont.

Common Name(s) Scientific Name Plant Family Commonly Used
Plant Part(s) Common Uses Refs.

Mallow leaves Corchorus spp. Malvaceae Leaves Leafy vegetable [91]

Parsnip Pastinaca sativa L. Apiaceae Roots Root vegetable
like carrot [91]

Prickly pear Opuntia spp. Cactaceae Leaves or cladodes Leaves cooked as
a vegetable [96]

Squash, pumpkin Cucurbita spp. Cucurbitaceae Leaves, fruits, seeds Fruits for culinary [111]

Sea kale Crambe spp. Brassicaceae Leaves Leafy vegetable [91]

Tassel hyacinth Leopoldia comosa (L.) Parl. Asparagaceae Bulbs Bulbs as vegetable [112]

Tomatillo Physalis philadelphica Lam. Solanaceae Fruits Green fruits as
vegetable [91]

Yellow cresses Rorippa indica (L.) Hiern Brassicaceae Tender shoots, leaves Leafy vegetable [91]

Water spinach Ipomoea aquatica Forssk. Convolvulaceae Leaves Leafy vegetable [113]

Water leaf, Ceylon spinach Talinum triangulare
(Jacq.) Willd. Talinaceae Leaves Leafy vegetable [114]

On the other hand, several bioactives derived from plants have been used in thera-
peutic applications. Before these applications, certain strategies are required to identify
these bioactive compounds in plant extracts through a guide for identification of bioactive
compounds. These strategies depend on the plant extract, its bioactivity pattern, and the
facility of isolation. In general, the main strategies that can be used in the identification
of bioactive compounds from plant extracts may include bioactivity-guided fractionation,
synergy-directed fractionation, a metabolic profiling approach, a metabolism-directed ap-
proach, and direct phytochemical isolation [81]. However, more research on this topic needs
to be undertaken before the association between plant bioactives and therapeutic activities
is more clearly understood. Recently, a great concern for plant bioactives and therapeutic
agents has been reported in the literature (e.g. [81,85,115]), as reported in Table 3.

Table 3. List of some important medicinal plants and their bioactive compounds and their therapeutic
applications or medicinal effects. All scientific names according to Plants of the World Online
(https://powo.science.kew.org/, accessed on 25 June 2022).

Plant Species Therapeutic Agent Target Disease Ref.

Artemisia annua L. Artemisinin Malignant treatment [116]
Artemisia obtusiloba Ledeb. Arglabin Cancer chemotherapy [81]

Amorpha fruticose L. Monoterpene and sesquiterpene Antibacterial, insecticidal, and cytotoxic effects [85]
Calophyllum lanigerum Miq. Calanolide A Type-1 HIV [85]

Capsicum annum L. Capsaicin Postherpetic neuralgia treatment [81]
Cannabis sativa L. Dronabinol; Cannabidol Chronic neuropathic pain [81]

Caragana sinica (Buc’hoz) Rehder Collagen and aggrecan Preventing degradation of cartilages [117]
Carthamus tinctorius L. Serotonin/N-feruloyl serotonin Preventing degradation of cartilages [118]

Cephalotaxus harringtonia (Knight ex
J.Forbes) K.Koch Homo-harringtonine Oncology treatment [81]

Colchicum spp. Colchicine Gout disease [81]
Conium macularum L. Coniine Poisonous, neurotoxin [119]

Cinchona succirubra Pav. ex Klotzsch Quinine Antimalarial [120]
Dalbergia sissoo Roxb. ex DC. Flavonoids (Tectorigenin) Anti-degradation of cartilage proteins [121]

Euphorbia peplus L. Ingenol mebutate Actinic keratosis treatment [81]
Galanthus woronowii Losinsk. Galantamine Alzheimer’s disease [122]

Galega officinalis L. Metformin Anti-diabetic [85]
Larrea tridentata (DC.) Coville Masoprocol Cancer chemotherapy [81]

Nigella sativa L. Thymoquinone Osteoarthritis treatment [115]
Oroxylum indicum (L.) Kurz Oroxylin A Anti-degrading markers of cartilages [123]

Papaver somniferum L. Morphine Acute pulmonary disease and breath shortness [124]
Papaver somniferum L. Codeine Analgesic and anti-diarrheal properties [125]

Papaver bracteatum Lindl. Thebaine (paramorphine) Analgesic [126]
Phyla nodiflora (L.) Greene Nepetin Osteoarthritis treatment [127]

Rhus succedanea L. Rhoifolin Preventing degradation of cartilages [128]
Pueraria lobata (Willd.) Ohwi Puerarin Against cartilage degradation [129]

https://powo.science.kew.org/
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Table 3. Cont.

Plant Species Therapeutic Agent Target Disease Ref.

Sarcotheca griffithii (Planch.) Hallier f. Crude extract Cough [130]
Solanum spp. Nicotine Anti-inflammatory and stimulant [131]

Solanum tuberosum L. Solanine Anticarcinogenic [132]
Solanum lycopersicum L. Tomatine Anticancer and immune effects [133]

Talinum triangulare (Jacq.) Willd. Acrylamide and phaeophytin Cuts, wound, scabies, and peptic ulcer [134]
Taxus brevifolia Nutt. Paclitaxel Antimitotic agent for various cancers [81]

6. Plant Nutrition Management for Human Health

Mineral malnutrition is unfortunately a common problem in both developing and
industrialized countries, with estimates suggesting that up to two-thirds of the world’s
population may be at risk of deficiency in one or more critical mineral elements [135,136].
Nutrient deficiency is considered one of humanity’s most severe concerns, from which
millions of people suffer. According to Brevik et al. [137], at least 25 mineral elements are
likely to be required for human health, and plants are the main providers of the majority of
these nutrients. Iron (Fe), Zn, I, Se, Ca, Mg, and Cu are the most deficient mineral elements
in the human diet [138]. For a variety of reasons, edible plants may not contain enough
mineral elements for human nutrition. These reasons may include the genetics of plant
species with low content of certain mineral elements, differences between crops in their
mineral phytoavailability (such as for Cu, Fe, and Zn in alkaline or calcareous soils), and
plant anatomy, including restricted phloem mobility of elements in edible portions such
as seeds, fruits, and tubers at low concentrations [45]. Therefore, there is an urgent need
to produce edible plants with sufficient and proper nutrients for human nutrition, which
could be achieved using many strategies, especially biofortification approaches [139]. The
application of nutrients to cultivated plants is called biofortification, which can be achieved
by agronomic and genetic biofortification and nanobiofortification (Figure 12).

The biofortification process is effective in enriching many crops, mainly staples, with
nutrients such as Fe, Cu, Mn, Ca, Zn in addition to folate and vitamins [140–143]. The
enrichment of food with essential or required nutrients is called fortification. The main
reason for biofortification is fighting hidden hunger, which results from consumed foods
not having enough nutrients (essential vitamins and micronutrients such as Fe, Cu and
Zn), especially in sub-Saharan Africa and South Asia [144]. Thus, a long history of food
fortification all over the world is known, including margarine, butter, and sugar using vita-
min A, salt (fluoride and iodine), and milk using vitamins [144]. The historical background
of biofortification may include conceptualization (1950–1990), realization using research
(1990–2000), and producing of biofortified crops (2001–2020) [144].

Plant nutrition management is one of the most important global challenges that faces
human life, and it must be managed with a holistic approach through responsible plant
nutrition [145]. The future of plant nutrition and its challenges can be highlighted using
this approach as a new paradigm that depends mainly on the food system and circular
economy to achieve multiple environmental, socioeconomic, and health objectives. This
new paradigm for managing plant nutrients could be presented through the following
questions, as suggested by Dobermann et al. [145]:

1. How can the world increase crop productivity to double its current amount, especially
under the global nutrient imbalance?

2. How can the world guarantee this production to double or triple, particularly in devel-
oping countries such as African nations under unbalanced inputs of human nutrition?

3. What is the role of precision or smart farming in accelerating the adoption by farmers
of more solutions for precise nutrient management?

4. What are the sustainable solutions for decreasing the losses of nutrients, such that
their wastes along the whole agri-food chain are halved?

5. To what extent can the nutrient cycles in the farming of crops and livestock be
made closed?
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6. What are the key measures to improve and sustain soil health?
7. What is the main role of mineral nutrition of different crops and its changes in a

changing climate?
8. To what extent can applied fertilizers reduce greenhouse gas emissions?
9. What is the main role of cropping systems in producing high crop quality and more

nutritious foods?
10. To what extent can we monitor nutrients for implementation of 4R nutrient stewardship?
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Therefore, the sound management of plant nutrition can be achieved when this man-
agement overcomes the main problems that face plant nutrition through the following
objectives: (1) improving nutrient efficiency, crop productivity, and then farmer income,
(2) increasing the recovery of nutrients and their recycling from wastes, (3) improving and
sustaining soil health and its quality, (4) enhancing human health with tailored nutritious
crops, and (5) minimizing greenhouse gas emissions, nutrient pollution, and biodiversity
loss [145]. In the following sub-sections, it is shown that some challenges facing plant nu-
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trition can be managed in some selected case studies, including climate change conditions,
pollution, and problematic soil, with focus on plant bioactive compounds.

6.1. Plant Nutrition under Climate Change

Climate change affects all of human life, especially the agricultural sector, in addition
to the fields of environment, ecosystems, socio-economics, and socio-politics [146]. Climate
change has threatened the sufficient supply of food and its production due to irreversible
weather fluctuations [147]. Due to several shifts in optimum temperature ranges of many
plant species, climate change has influenced the survival of many species, thereby ac-
celerating the loss rate in their biodiversity and changing the ecosystem structure [147].
Plants are undergoing considerable environmental change as a result of human activities,
such as climate change caused by increases in atmospheric CO2 and other greenhouse
gasses, which is raising average and severe high temperatures and changing precipitation
patterns (Table 4; [6,148]). Climate change, as a crucial component of global ecosystems,
has had a profound impact on human, plant, and animal cycles and processes. For optimal
growth and development, the plants need some mineral nutrients, which are significant
components of a variety of macromolecules (i.e., nucleic acids, phospholipids, amino
acids, and co-enzymes). These molecules play a role in plant cellular metabolism, and it
is reflected positively in physiological properties of the plant (i.e., chlorophyll synthesis,
redox reactions, plasma membrane integrity, and cell osmotic potential), as reported by
Soares et al. [149]. Furthermore, these climatic changes are significantly related to water-use
efficiency, drought sensitivity, and high geographic variability in soil nutrients, which pro-
vide a complex environment that influences soil microbial activity and nutrient availability.
The impact of climate change on plant nutrition, including nutrients and their availability
to cultivated plants, has reported by Elbasiouny et al. [6], and more details on climate
change, its impacts, and mitigation are presented in Figure 13.

Table 4. The current changes in greenhouse gas emissions of main gasses during different periods.

Period Studied CO2 (µmol mol−1) CH4 (ppb Volume) N2O (ppb Volume)

1800 280.0 0.80 288
2017 405.0 1.72 325
2022 420.23 1.90 334

Sources: Cracknell and Varotsos [150], https://www.co2.earth/ (accessed on 21 May 2022).

To understand how plants respond and adapt to these climatic changes, several studies
have looked into the problem from various angles, such as the effects of N and increased
CO2 or N and water stress on various elements of plant structure and function, as well as
the impacts of CO2 on the quality of plant as food and nutrient translocation within plants.
Three homologous pairs of species common in semi-arid environments in California have
been studied using serpentine soils (usually high in Mg and low in Ca and N) and non-
serpentine soil [151]. The authors showed that non-serpentine species were more tolerant
for a wider range of nutrients and water, owing to their rapid growth and greater capacity
to adapt than serpentine species. Furthermore, they expected that high water availability
and nutrients would benefit all species more than low water availability and nutrients. In
addition, they measured plant growth responses in the context of functional traits (e.g.,
relative growth rate, root mass ratio, and photosynthetic nitrogen-use efficiency) in a
greenhouse study, and one of their key findings was that functional traits based on nutrient
use and allocation explained more response variability than other traits. Furthermore, they
discovered that, contrary to expectations, species responded best to a mix of low water and
high nutrients, regardless of their origin. Under elevated CO2 concentrations from 400 to
800 ppm, the accumulation of nutrients, especially K and Mg, was significantly increased,
whereas phosphorus was decreased in leaves, stems, and roots of Asparagus racemosus [152].

https://www.co2.earth/
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Ayi et al. [157] showed that alternanthera philoxeroides, or alligator-weed, is a com-
mon and often invasive plant that is invasive near waterways and tolerant of flooding.
They measured plant growth and root anatomical change in response to varying oxygen or
nutrient concentrations in independent hydroponic trials. Results showed root efficiency
declined as plants allocated more biomass to roots in response to decreased nutrients,
primarily by developing longer, thinner roots, resulting in increased root surface area.
Plant responses to lower oxygen concentrations were unexpected; for example, root ef-
ficiency was highest at the lowest oxygen concentration. Under low N conditions, Xu
et al. [158] found that one rice cultivar, Takanari, maintained its high yielding advantage
over other cultivars at increased CO2. According to the research, this cultivar could be a
helpful genetic resource for enhancing N-use efficiency under increased CO2. In addition,
Li et al. [159] investigated the impacts of increased CO2 on the nutritious content of soybean
seeds, while Dong et al. [160] described the findings of a meta-analysis to quantify the
effects of increased CO2 on the nutrient content of other vegetables. Several reports have
been published on the role of global climate change in the decline of crop productivity and
soil fertility due to the exposure of these soils to many frequent features of climate change
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such as higher temperatures, droughts, floods, desertification, and salinization resulting
from extreme weather events (e.g., [154,161,162]).

Potential climate change and plant bioactive compounds were discussed in a survey,
which included some published studies (e.g. [163,164]). The production of plant secondary
metabolites (as bioactives) may also depend on climate change, which represents both high
temperatures and elevated CO2 [165]. The expected impact of climate change on plant
bioactive compounds is generally negative and may return to the crucial effect of climate on
plant productivity as abiotic stress. A high-heat-mediated increase in many plant bioactives
(e.g., alkaloids, flavones, and terpenes) has been found in various plant species such as
Catheranthus roseus, Quercus rubra, and Brassica oleracea [165]. Recently, a study on the effect
of elevated concentrations of CO2 on the secondary metabolites or bioactive compounds
content of different plant species was reported by Lupitu et al. [166]. They found that the
contents of total flavonoids and polyphenols were decreased under elevated CO2 (up to
1200 ppm or µmol mol−1), whereas the emission of monoterpenes increased for the studied
Brassicaceae plants. This response to elevated CO2 depends on the studied plant species, as
presented in Table 5.

Table 5. Some published studies about effects of changed climatic elements on plant bioactive
compounds. All scientific names according to Plants of the World Online (https://powo.science.kew.
org/, accessed on 25 June 2022).

Studied Plant Climate Change Factor Plant Bioactive Compound and Its Response Ref.

Purple rice (Oryza sativa L.) Low light intensity Shading increased total anthocyanin and total
phenol compounds [167]

Catharanthus roseus (L.) G. Don Ultraviolet-B (UV-B) irradiation for 5 min Increased alkaloids (catharanthine, vindoline) [168]

Fagopyrum esculentum Moench Three treatments of UV-B Increased phenolics (quercetin, catechi, rutin) [169]

Gnaphalium luteoalbum L. Two different levels of irradiance UV-B Increased phenolics (flavonoids: calycopterin and
3′-methoxycalycopterin) [170]

Camptotheca acuminata Decne. Heat stress (from 34 to 46 ◦C at
2 ◦C intervals) Increased alkaloids (10-hydroxycamptothecin) [171]

Daucus carota L. Heat stress (incubated at 44 ◦C) Decreased terpenoids (α-terpinolene) [172]

Quercus rubra L. Heat stress (at 20/14 and 32/24 ◦C) Increased terpenoids (isoprene,
2-methyl-1,3-butadiene) [173]

Daucus carota L. Heat stress (18 and 21 ◦C) Decreased terpinolene (α-terpinolene with
increasing growth temperature) [174]

Dropwort
(Oenanthe stolonifera L.) Elevated CO2 at 600 and 1000 µmol mol−1 Total phenolics/cyanidin/antioxidant capacity of

plantlets increased by high eCO2
[175]

Asparagus racemosus Willd. Elevated CO2 400, 600, and
800 µmol mol−1

Elevated CO2 increased the content of total sugars
and proteins in leaves and roots [152]

Summer savory
(Satureja hortensis L.) Elevated CO2 (620 µmol mol−1)

Nutrients (K, Ca, P, Mg) and polyphenols were
enhanced by eCO2 under drought stress [176]

Caraway (Carum carvi L.) Elevated CO2 at 400 and 620 µmol mol−1 Higher CO2 enhanced content of phenolic
compounds and flavonoids [177]

Barley (Hordeum vulgare L.) and
maize (Zea mays L.) eCO2 level (620 µmol mol−1)

Barley accumulated anthocyanins, but total
phenolics and flavonoids accumulated in maize

under As2O3-NP stress and elevated CO2

[178]

Two species of lemon-grass Elevated CO2 (620 µmol mol−1)
eCO2 increased level of primary and secondary
metabolites such as amino acids and phenolics [179]

Paris polyphylla var. yunnanensis Elevated CO2 (800 µmol mol−1)
A high-CO2 environment increased the diosgenin

content and thus total saponin [180]

Glehnia littoralis Fr. Schmidt
ex Miquel

Elevated CO2 (500, 1500 µmol·mol−1)
under 3 light intensities

Higher light intensities (300) induced higher
content of total saponin and chlorogenic acid,

whereas no significant effect from eCO2

[181]

Tea (Camellia sinensis L.) Elevated CO2 at 406 and 770 µmol mol−1 Elevated CO2 significantly increased the
polyphenols and theanine in tea seedlings [182]

Gynostemma pentaphyllum
(Thunb.) Makino Elevated CO2 at 360 and 720 µmol mol−1 Elevated CO2 led to decreased accumulation of

total phenolics and flavonoids in leaves [183]

https://powo.science.kew.org/
https://powo.science.kew.org/
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6.2. Plant Nutrition under Pollution

Pollution is considered a global problem facing all countries in the world due to its
potential impacts on human health and entire ecosystems (Figure 14). This pollution creates
an urgent need for green lungs in different urban parks and general gardens, especially in
cities (Figure 15).
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Figure 14. Pollution is considered one of the most important problems facing the entire world even
in developed or developing countries, especially pollution resulting from human activities such as
domestic wastes (sewage sludges), plastic wastes, sludges disposed of into irrigation canals, and
other wastes. All photos of different irrigation canals and urban areas from Egypt by El-Ramady.

Pollution does not only affect cultivated plants or human health but also affects the
health of the complete ecosystem depending on the kind of pollution, such as microplastic,
sewage sludge, electronic wastes, mining wastes, and human wastes [184]. The problems
that face plant nutrition under pollution stress may depend on the type of pollutants, their
concentration, the medium of pollution (soil, air, water, etc.), and plant species. Cultivated
plants in polluted soils are thought to be the primary source of highly hazardous element
accumulators, which are classified as accumulator plants, hyper-accumulator plants, and
excluder plants based on the content of hazardous materials they absorb. Toxic components
could potentially accumulate and spread from soil to plant, water to plant, and air to
plant [185]. Therefore, hazardous elements in the polluted environment have a negative
impact on plant growth, even at low or high metal concentrations. Toxic elements can
harm the photosynthetic process, slow the growth of plants, and cause oxidative stress,
and at high concentrations, they can stymie plant growth by interfering with the pho-
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tosynthetic process and altering the coordination of vital elements and their functional
mechanisms [186]. Human activities are the main source for environmental pollution
in the context of urbanization and industrialization, which may include pollution from
polycyclic aromatic hydrocarbons, heavy metals, polychlorinated biphenyls, pesticides,
dioxins, ultrafine particles, etc. [187]. Several studies have shown that almost all biolog-
ical plant processes impacted by pollution and its criteria, such as photosynthetic rate,
plant leaf respiration, protein synthesis, plant metabolic processes, and crop growth, were
significantly impacted and destroyed in polluted soils [129,188,189].
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Figure 15. Fighting pollution in cities or urban areas may require establishing public gardens and
parks as presented in these photos, which represent new lungs for the city to generate the necessary
O2 and remove the CO2 in the atmosphere. The first and second photos from the top row are from
Vienna (Austria), the 3rd and 4th photos are from Debrecen (Hungary), the 5th and 6th photos are
from Cairo (Al-Azhar-park, Egypt), and the 7th and 8th photos are from München, left, and Halle
Saale, right (Germany). All photos by El-Ramady.

According to previous studies, several cultivated plants are negatively influenced by
pollutants such as toxic elements, especially the plants’ bioactive compounds (Table 6). It
is reported that Cd toxicity (120 mg kg−1) reduced the growth parameters, physiological
modifications, antioxidant enzymes, and yield of lettuce plants [190]. More recent studies
were published to focus on many human diseases (e.g., the impairment of gonadal devel-
opment and male fertility) resulting from a polluted human diet. At the global level, there
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is an urgent need to establish an ideal dietary profile, including different diet patterns, to
improve health status and reduce the mortality from different human diseases [187].

The cultivation of plants in soil polluted with heavy metals (HMs) is considered
to result in abiotic stress, which forces plants to generate oxygen-free radical species
(ROS), causing damage in plants in the following forms: (1) disruption of cell homeosta-
sis, (2) DNA-strand breakage, (3) protein defragmentation, (4) damage in pigments, and
(5) plant cell death [191]. Therefore, the accumulation of HMs in plants restricts their
growth, impairs their structure, and damages their biochemical and physiological activities
as well as bioactive compounds, depending on the kind of HMs, their toxicity, and whether
it is chronic. This may lead to permanent damage to many human organs, such as the lungs,
brain, kidney, and liver [191]. The growing of plants, particularly medicinal plants, in soil
polluted with HMs may impact the biosynthesis of secondary metabolites/bioactives, caus-
ing significant changes in the quality and quantity of these bioactive compounds [192,193].

Table 6. Some published studies on abiotic stress, including pollution and its impacts on plant
bioactive compounds. All scientific names according to Plants of the World Online (https://powo.
science.kew.org/, accessed on 25 June 2022).

Studied Plant Abiotic Stress Details Plant Bioactive Compound and Its Response Ref.

Robinia pseudoacacia L. Applied Cd at 0.45 and 4.5 mg Cd kg−1 Elevated CO2 (up to 750 ppm) may promote
synthesis of total flavonoids under Cd stress [194]

Potato
(Solanum tuberosum L.)

Drought stress by discontinued irrigation for
6 weeks after 88 days planting

No significant effect of drought on phenolic
compounds, anthocyanins, or

antioxidant activity
[195]

Feverfew (Tanacetum
parthenium (L.) Sch. Bip.)

Drought stress (irrigation intervals 4, 8, and
12 days as control,

moderate, extreme)

Under drought stress, the yield of essential oils
decreased by 30%, and phenols and nano-silicon

increased plant drought tolerance
[196]

Cistus clusii Dunal Drought stress (days of drought 15, 30, 50) Increase phenolics (flavonols,
epigallocatechin gallate) [197]

Crataegus laevigata (Poir.) DC. Drought (water deficit for 10 days vs.
watering daily)

Increase phenolics (chlorogenic acid,
(-)-epicatechin) [198]

Glycine max (L.) Merr. Drought stress
(non-irrigated field) Increased alkaloids (trigonelline) [199]

Hypericum brasiliense Choisy Drought stress (water stress
(waterlogging and drought)) Increased terpenoids (betulinic acid) [200]

Pepper (Capsicum annuum L.) In vitro, supplemented MS with
200 µM CdCl2

ZnO-NPs induced mitigation of Cd-toxicity by
increased activity of enzymatic antioxidants [201]

Giant Juncao
(Pennisetum giganteum Ten.

ex Steud.)
Salt stress (250, 500 mM NaCl)

Salicylic acid mitigated the adverse impacts of
salt stress, which decreased flavonoids by
enhancing the content of chlorogenic acid

[202]

Brassica nigra L. Salt stress (100 and 150 mM NaCl) Salinity enhanced forming of many bioactives
e.g., phytosterols, and tocopherols [203]

Faba bean: Vicia faba L. Salt stress at 150 mM NaCl Salinity induced accumulation of flavonoids,
phenols, and tannins, in response to ZnO-NPs [204]

Calotropis procera (Aiton) Salt stress in 3 experiments up to 320 mM
NaCl using Petri dishes and hydropriming

Seed priming with thiourea and ascorbic acid
increased tolerance to salinity up to 120 mM by

increasing phenolic acids (gallic, caffeic,
p–coumaric, p–benzoic, and sinapic acid)

[205]

Wheat
(Triticum aestivum L.) Salt stress (150 mM) Priming with 0.12% Cu-chitosan-NP induced an

increase in β-carotenoids, total carotenoids [206]

Catharanthus roseus (L.) G. Don Cold stress (4 ◦C) in growth chamber Decreased alkaloids (vindoline) [207]

Glycine max (L.) Merr. Cold stress (10 ◦C) Increased phenolics (genistein, daidzein) [208]

Solanum Lycopersicon L. Cold stress (6 and 3 ◦C) Increased terpenoids (δ-elemene, α-humulene,
and β-caryophyllene) [209]

Withania somnifera (L.) Dunal Cold stress (4 ◦C) under controlled
environment

Increased terpenoids (withanolide A;
withferin A) [210]

Zea mays L. Cold stress (10 ◦C) Increased phenolics (pelargonidin) [211]

https://powo.science.kew.org/
https://powo.science.kew.org/
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6.3. Plant Nutrition under Stressful Soil

The relationship between soil and plant is very close due to soil generally being the
main growing medium for the plant. The soil and its properties are the main controlling
factor in plant growth and development. Any stress on the soil will be also a stress
on the cultivated plants that are grown in this soil. The ideal conditions for growing
plants in soil include sufficient and proper nutrients for soil fertility, soil aeration, soil
health, suitable water irrigation, etc. Stressful soil is soil that has a problem, stress, or
obstacle restricting productivity. A problematic soil could be defined as a soil that has a
reason for a restriction on its economical cultivation, but it requires a suitable management.
These soils may include greenhouse soil in arid regions, saline/alkaline soil, acidic soil,
sandy soil, waterlogged soil, calcareous soil, compacted soil, infertile soil, and eroded
soil (Figure 16A,B).
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Figure 16. (A) Desert soils have different problems, which include eroded soil (upper photos), very
low vegetation due to stresses (middle photos), and salinization due to very high evaporation rate
(lower photos). Different photos from different places in Egypt (Shalateen, Matrouh, and Siwa) are all
by El-Ramady. (B) Desert soils have different handling compared to the soils of Delta in Egypt. The
upper photos express on salinity and waterlogging problems, whereas the same problems in soils of
Delta in Egypt could be noticed in the middle and lower photos, due to the salinization under high
soil water table. Different photos from different places in Egypt (Siwa in upper 2 photos and Kafr
El-Sheikh in the rest) are all by El-Ramady.

Abiotic and biotic stressors have a significant impact on the production of major crops
all over the world. Extreme abiotic conditions such as high and low temperatures, drought,
salinity, osmotic stress, extremes of pH, heavy rains, floods, various pathogens, and frost
damage all pose serious hazards to plant growth and crop production [212]. Under these
environmental stresses, plants generate higher quantities of the plant hormone ethylene or
other bioactives (e.g., melatonin) in response to certain environmental challenges, which
largely inhibits plant growth and proliferation until the stress is alleviated by lowering
ethylene levels [213]. The role of plant bioactives is distinguished under stressful condi-
tions such as carotenoids, ascorbic acid, and flavonoids, which are considered important
antioxidants for scavenging reactive oxygen species (ROS).
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Among abiotic stresses, drought and salinity can cause serious damage to global
food production. Global soil salinity is one of the most serious environmental stresses in
agriculture around the world, converting agronomically useful fields into unproductive
areas by 1–2% every year in arid and semi-arid zones. Soil salinization has rendered around
7% of the world’s land and 20% of its arable land uninhabitable [214]. Salinity has long
been known to hinder the growth and development of most plants, resulting in lower
yields. Furthermore, salinity causes significant changes in plant growth and metabolism,
i.e., physiological, morphological, and biochemical alterations [215]. Drought is another
important abiotic stress that has a negative impact on the development and production
of most cultivated agricultural crops, particularly in arid and semi-arid areas. Drought
stress, along with climate change, which causes more severe and frequent droughts, is
anticipated to produce serious plant growth issues for more than half of arable areas by
2050 [216]. Furthermore, drought stress affects water relations, photosynthetic assimilation,
and nutrient uptake in essential field crops, causing severe effects on plant development
and metabolic activities. The nutritional imbalance of minerals limits plant growth and
development in poor soils rich in nutrients [217].

Soil salinization, competitive ion uptake, and transport or partitioning of ions within
the plant are some of the negative consequences of nutritional imbalances, which can
occur when a nutrient’s physiological role is deactivated, resulting in an increase in the
internal plant requirement for that particular essential element [214]. A considerable
amount of nutrients are unavailable to plants due to soil binding organic and mineral
components and the production of insoluble precipitates. Plant fitness can be harmed by
essential element imbalances due to their impacts on plant nutrition and water absorption,
as well as their toxic effects on plant cells [218]. Management of stressful soil could
be achieved through different approaches such as soil conservation (biological methods
including manures, green manure, water hyacinth, and selecting salt-tolerant varieties) and
agronomic approaches such as tillage and improving irrigation, drainage, and fertilizers
(Figure 17), as reported by [219].
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deciduous trees during the autumn to make compost as an important organic fertilizer; and at the
bottom, cultivation of paddy rice under soil salinity as an important strategy to reclaim this soil
salinity. All photos from Debrecen (Hungary), Göttingen (Germany), and Kafr El-Sheikh (Egypt) by
El-Ramady.

Concerning the impact of abiotic stresses on plant bioactives, many stresses have been
presented in Table 6, such as drought, salinity, element toxicity, and cold stress. In general,
there is no one trend for this relationship, but some stresses increase the content of the
bioactives, whereas others do the opposite. For example, some stressful plants tend to
increase plant content of bioactives under drought, such as Cistus clusii (increased phenolics
or flavonols), Tanacetum parthenium (decreased phenols), Crataegus laevigata Glycine max),
and Hypericum brasiliense, which increased the previous content of phenolics, alkaloids, and
terpenoids under drought, respectively. More problematic soils and bioactive compounds
and more details on the plant bioactives cultivated as a response to abiotic stress are
explained in Table 6.

7. General Discussion

The chemistry of bioactive compounds is an important field, which includes those
chemical compounds derived from microbes and plant sources. It is well known that
microbes and plants are the main sources of natural bioactives, which are used for nu-
merous applications in different disciplines such as plant biotechnology, pharmacology,
and phytomedicine. The most important issue in the field of bioactive compounds may
be its potential to discover of several potent drugs that combat both plant and human
diseases [193]. The main groups of plant bioactives may include alkaloids, flavonoids,
saponins, tannins, and glycosides, which differ from one plant species to another. The
most interesting finding is that plant secondary metabolites or bioactives have the ability to
protect plants, and stressful plants can generate these bioactives as a response to different
abiotic stresses. Furthermore, these bioactives simultaneously have great potential for
pharmaceutical products for human health [220].

The present review was designed to study the bioactive compounds in plants as
among the main plant components for human health, their main groups, and the impacts
of different stresses on their forming in plants. This section discusses the major groups of
plant bioactives, the main role (mechanism) of these bioactives in plants under stress, and
their medicinal attributes. It is reported that globally, more than 200,000 plant secondary
metabolites (bioactives) have been identified, from more than 391,000 well-known plant
species [220]. Plant bioactives have certain biochemical and physiological functions in
plants, which support plant growth and development, especially under stressful conditions,
as well as clinical attributes for human health. Plant bioactives could be classified into three
main groups, based on their chemical structure and biosynthetic pathway: (1) phenolic
compounds (flavonoids, coumarins, phenolic acids, lignans, lignin, stilbenes, and tannins),
(2) N-containing compounds (alkaloids, cyanogenic glycosides, and glucosinolates), and
(3) terpenoids (carotenoids, glycosides, sterols, saponins, and plant volatiles) [221–223].
Plants are different in their content of bioactives due to their genetic variability, but their
contents are influenced by several factors, including environmental growth conditions as
well as climate change (e.g., drought, heat stress, O3, and UV radiation), pathogens, and
herbivore attacks [220].

Concerning the group of terpenoids, it could be classified into monoterpenoids (e.g.,
linalool), sesquiterpenoids (β-caryophyllene), diterpenoids (abietic acid), sesterterpenoids
(ophiobolin A), triterpenoids (ganoderic acid), tetraterpenoids (α-carotene), and polyter-
penoids (trans-1,4-polyisoprene). This group is characterized as plant hormones (such as
gibberellins), photosynthetic pigments (such as carotenoids), and carriers (such as plasto-
quinone and ubiquinone) in the electron chain transport systems [220]. The mechanism
of terpenoids in protecting after plants are attacked by pathogens may include directly
releasing phytoalexins or acting indirectly by producing volatile organic compounds to
attract herbivores [186]. Several terpenoids have antioxidant activities against biotic/abiotic
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stresses in plants, in addition to their pharmacological effects in several folk medicinal
plants due to their antimicrobial activity [224].

Regarding phenolic compounds from plants, more than 8000 compounds are well-
reported, where more than half of them are flavonoids. Phenolics could be divided, based
on their diverse structures, into (1) aromatic rings (e.g., caffeic acid, ferulic acid, gentisic
acid, and vanillin) and (2) complex polymeric structures such as coumarins (such as scopo-
letin), flavonoids, phenolic quinones (juglone), lignins (coniferyl alcohol), and tannins
(ellagic acid) [225]. Under extreme cold or heat, flavonoids trend towards increasing their
accumulation in plants. Chandran et al. [18] reported on the bioactives in 39 medici-
nal plants and their applications in therapeutic activities. They mentioned that certain
phenols (alkaloids, flavonoids, saponins, steroids, tannins, and triterpenoids) could be
found in Chlorophytum borivilianum plants as effective agents of aphrodisiac, pro-erectile,
immunomodulatory, spermatogenic, anti-stress, and anti-oxidant activities. Carthamus
tinctorius has many bioactives such as alkaloids, flavonoids, phenolics, lignans, steroids,
and polysaccharides, which could be applied for therapeutic activities such as treating
cardiovascular, cerebrovascular, and gynecological diseases, as well as antioxidant and
anticoagulant effects [18].

There are more than 20,000 alkaloids that have been isolated, among which about 600
are well-known to be bioactives, but the exact metabolic or physiological role of alkaloids
in plants still needs to be understood [226]. Alkaloids are considered a main group of plant
molecules for defense, which might occur in about 20% of plant species and have N-atom(s)
derived from the decarboxylation of amino acid [220]. Based on therapeutical activities,
alkaloids are well-known as cardioprotective, anesthetics, and anti-inflammatory agents, as
well as for their use in clinical settings such as ephedrine, morphine, quinine, strychnine,
and nicotine [227].

Plant tissue culture is considered a promising tool and a perpetual source for producing
plant bioactive compounds, as reported by several studies, such as Espinosa-Leal et al. [228],
Chandran et al. [18], Arora et al. [229], Fazili et al. [88], and Mishra et al. [230]. Many
methods could be employed for producing plant bioactives on a large scale, such as using
plant in vitro tissue culture through organogenesis (including both micropropagation and
hairy root culture) or cell suspension culture using callogenesis [228]. This technique
remains a feasible strategy for the production of plant bioactives and high-value natural
materials and micropropagation of underexploited, endangered, low-yielding, or slow-
growing plants. Many significant advantages of this technique have been reported for
producing plant bioactives and pharmaceuticals, such as rapid production, reduced costs,
low burden of human pathogens, and scalability [228]. The composition of used medium
and kinds of elicitors can control the production of plant bioactives in vitro (Table 7).

Table 7. List of some published studies on the production of plant bioactives using the in vitro plant
tissue culture technique.

Studied Plant Bioactive Product(s) The Most Important Finding in the Study Ref.

Nothapodytes nimmoniana
(J. Graham) Mabb. Camptothecin (CPT)

Cell suspension culture using 5 biotic elicitors (i.e.,
chitin, chitosan, glutathione, pullulan, and jasmonic

acid); the best was chitin (11.48-fold)
[231]

Taxus × media Rehder Paclitaxel (PTX) Cell culture: using coronatine and calix [8]-arenes as
an elicitor to produce PTX as an anticancer agent [232]

Chinaberry (Melia Azedarach L.) Limonoid Cell suspension culture for production of bioactive
was highest by 141.7 µg/ml [233]

Neem (Azadirachta indica A. Juss.) Azadirachtin, squalene,
and mevalonic acid

Cell suspension culture using chitosan and yeast
extract as

elicitors; bioactives depended on the used elicitor
[234]
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Table 7. Cont.

Studied Plant Bioactive Product(s) The Most Important Finding in the Study Ref.

Neem (Azadirachta indica A. Juss.) Azadirachtin, squalene,
and mevalonic acid

Cell suspension culture: bioactives depended on
response surface methodology (i.e., central

composite design and Box–Behnken design)
[235]

Salvia leriifolia Benth. Phenolic acids: cafeic and
salvianolic acid B

Cell cultures for max. production of cafeic and
salvianolic acid B at the 15th day of the

cultivation cycle
[236]

Neem (Azadirachta indica A. Juss.) Azadirachtin and squalene Callus culture: PGRs (TDZ and 2,4-D) promoted
accumulation and the color of bioactives [237]

Taxus baccata L. Taxanes (paclitaxel and
10-deacetyl baccatin III)

Callus culture: under drought stress (PEG 6000 1, 2,
3, 4, 6%), highest contents of 10-deacetyl baccatin III

and taxol at 2 and 3% PEG, resp.
[238]

Withania somnifera L. Dunal Withaferin-A Hairy root culture using A. rhizogenes and natural
polysaccharides (as elicitors) [239]

Brassica rapa subsp. pekinensis
(Lour.) Kitam.

Glucosinolates (GLS) and
carotenoid (CAR)

Hairy root culture: total GSL, CAR content was
2.7–57.88 µmol/g DW and

467.66 mg kg−1 DW, respectively
[240]

Hyoscyamus reticulatus L
Tropane alkaloids:
(hyoscyamine and

scopolamine)

Hairy root culture using A. rhizogenes and elicited by
Fe3O4-NPs at different doses (0.45, 0.9, 1.8, and

3.6 g L−1)
[241]

Flax (Linum usitatissimum L.)
Lignan (e.g.,

secoiso-lariciresinol
diglucoside)

Hairy root culture using A. rhizogenes, which had an
inhibition effect on the proliferation of human breast

cancer under cell line
[242]

Concerning the photographic approach, many pictorial published articles have re-
cently been issued on different topics, including management of salt-affected soils [243],
soil and humans [244], the soil–water–plant–human nexus [245], and a from-farm-to-fork
approach using nanofarming of vegetables [246].

8. Conclusions

This study has discussed the relationship between plant nutrition and human health.
This work set out to review in detail the available information on plant nutrition through
plants’ bioactive compounds and human health under the umbrella of sustainable agricul-
ture. This is a pictorial review, as a first report, which was established using the available
photos or drawn illustrated figures, to follow different factors affecting the production
of plant bioactives, including climate change (elevated CO2, drought, heat stress, etc.)
and environmental factors (e.g., polluted, degraded, and problematic soils). The main
groups of plant bioactives that were reported in this work included phenolic compounds,
N-containing compounds (alkaloids, cyanogenic glycosides, and glucosinolates), and ter-
penoids. The plant content of these bioactives may increase under stressful conditions as a
defense system in plants. Plant tissue culture is considered a promising tool in producing
several plant bioactives, especially in cases of underexploited or endangered plants. The
observed increase in plant bioactives could be attributed to the existence of some findings
under in vitro conditions. These findings have significant implications for the understand-
ing of how to produce huge amounts of plant bioactives successfully, especially in cases
of normal medicinal or endangered plants. Agricultural technology (agro-technics) has
several applications or techniques that could be used to manage and improve almost all
agricultural practices, such as fertilization, irrigation, harvesting, and plant tissue culture.
These findings also raise important global issues that have a bearing on the importance
of edible and medicinal plants for human health and their therapeutical activities. Due to
the huge number of plant bioactives and their broad potential for human health, further
investigation into and experimentation with plant bioactives are strongly recommended.
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