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A wide range of proteins have been reported to condensate into a
dense liquid phase, forming a reversible droplet state. Failure in
the control of the droplet state can lead to the formation of the
more stable amyloid state, which is often disease-related. These
observations prompt the question of how many proteins can un-
dergo liquid–liquid phase separation. Here, in order to address this
problem, we discuss the biophysical principles underlying the drop-
let state of proteins by analyzing current evidence for droplet-driver
and droplet-client proteins. Based on the concept that the droplet
state is stabilized by the large conformational entropy associated
with nonspecific side-chain interactions, we develop the FuzDrop
method to predict droplet-promoting regions and proteins, which
can spontaneously phase separate. We use this approach to carry
out a proteome-level study to rank proteins according to their pro-
pensity to form the droplet state, spontaneously or via partner in-
teractions. Our results lead to the conclusion that the droplet state
could be, at least transiently, accessible to most proteins under con-
ditions found in the cellular environment.

protein condensates | protein droplets | liquid–liquid phase separation

It has been recently observed that proteins can self-assemble
through a liquid–liquid phase separation (LLPS) process into a

dense liquid phase, while maintaining at least in part their
functional native states (1–4). These liquid-like assemblies of
complex compositions are often referred to as biomolecular
condensates or membraneless organelles (1–4). Here, we refer to
these dynamic and reversible condensates as droplets, in order to
distinguish them from irreversible amyloids. Droplets can con-
centrate cellular components to perform efficiently a variety of
different functions, with an increasing number of biological roles
being discovered (1–4).
In this work, we investigate whether liquid–liquid phase sep-

aration can be expected to be a proteome-wide phenomenon. In
this view, the condensation of proteins from the native state to the
amyloid state may quite generally proceed through an interme-
diate dense liquid phase, which is typically metastable (5) (Fig. 1).
Different proteins may have different propensities to remain in
this metastable phase, depending in particular on the free energy
barrier between the droplet and amyloid states (Fig. 1). This type
of liquid–liquid phase separation is indeed typical of condensation
phenomena (1, 6), and sometimes is referred to as the Ostwald
step rule (7). One may think that for most proteins the free energy
barrier between the droplet and fibrillar states is low, and there-
fore the droplet state cannot be readily observed (Fig. 1). Indeed,
this state may be difficult to detect due to a variety of reasons,
including because experimental methods to probe its formation, in
particular high-throughput ones, are still under development (8).
Furthermore, our current understanding of the interactions that
stabilize the metastable dense liquid phase is still incomplete.
Native and amyloid states are stabilized by specific interactions

including hydrogen bonds, ionic interactions, and van der Waals
contacts typical of ordered states and enthalpic in nature (9, 10). By
contrast, in droplets, transient short-range aromatic cation–π and
π–π, dipole–dipole, and electrostatic and hydrophobic interactions

have been observed, providing low-specificity, weak-affinity con-
tacts characteristic of disordered states (11–16). These observations
have led to a series of prediction methods (11, 13, 17–19), which
focused on specific side-chain interactions. The redundancy and
multivalency of the interacting elements (20) suggest that confor-
mational entropy is a driving force of the condensation (21), also
including main-chain contributions. Indeed, proteins exhibiting
many binding configurations with a specific partner are often ca-
pable of forming droplets (22).
Here, we exploit the observation that many proteins exhibit high

conformational entropy upon binding, which can be predicted
from their amino acid sequences (23). Based on this result, we
develop the FuzDrop method to predict the droplet-promoting
propensity of proteins and their droplet-promoting profiles
based on the conformational entropy of their free states and the
binding entropy. Using this method, we identify a list of “droplet-
driving” proteins, which are predicted to undergo spontaneous
liquid–liquid phase separation under physiological conditions, and
estimate that they comprise about 40% of the human proteome.
In addition, we also predict that about 80% of the proteins are
“droplet clients,” characterized by short droplet-promoting re-
gions in their sequences, which facilitate condensation via inter-
actions with suitable partners. Taken together, our results indicate
that protein phase separation is a proteome-wide phenomenon.

Significance

Liquid–liquid phase separation of proteins results in biomo-
lecular condensates, which contribute to the organization of
cellular matter into membraneless organelles. It is still unclear,
however, whether these condensates represent a common
state of proteins. Here, based on biophysical principles driving
phase separation, we report a proteome-wide ranking of pro-
teins according to their propensity to condensate into a droplet
state. We analyze two mechanisms for droplet formation—
driver proteins can spontaneously phase separate, while client
proteins require additional components. We conclude that the
droplet state, as the native and amyloid states, is a funda-
mental state of proteins, with most proteins expected to be
capable of undergoing liquid–liquid phase separation via either
of these two mechanisms.
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Results
A Framework to Describe the Interactions Stabilizing the Droplet
State. The premise of this work is that the droplet state is char-
acterized by low-specificity interactions and liquid-like conforma-
tional entropy. Thus, we hypothesized that proteins that are
conformationally heterogeneous in their native states and maintain
this property upon binding would be particularly prone to form the
droplet state. In estimating the degree of conformational hetero-
geneity in both the native and bound states, we observe that pro-
teins span a continuum between structural order and disorder (23,
24), which we will express by the probabilities of pD (free state) and
pDD (bound state). We also note that interactions with high con-
formational entropy are realized via many different binding con-
figurations, which can be achieved by both ordered and disordered
domains (25). By contrast, ordered binding modes with low con-
formational entropy are mediated by well-defined interfaces, as
exemplified by rigid docking or templated folding (26).
Ordered and disordered binding modes exhibit characteristic

sequence signatures. Motifs mediating ordered binding modes
have a strong compositional bias as compared with their em-
bedding protein regions. In contrast, motifs mediating disor-
dered binding modes are more similar to their flanking regions,
which can be realized via a variety of sequence patterns and
contact types, as their specificity stems from their distinct char-
acter as compared with their flanking regions (23). We have
previously demonstrated (27) that by identifying such interaction
elements based on compositional bias, it is possible to estimate
structural order or disorder under cellular conditions in excellent
agreement with in vivo proteomic studies (28).

Properties of Proteins That Can Form the Droplet State.
Datasets of proteins representing the droplet state. We have analyzed
three public datasets of proteins reported to undergo liquid–liquid
phase separation (Materials and Methods). The first is the Pha-
SepDB dataset (http://db.phasep.pro/) (29), which assembles data
from three resources (Materials and Methods and Dataset S1): 1)
proteins from the literature with in vivo and in vitro experimental
data on liquid–liquid phase separation (REV, 351 proteins; Ma-
terials and Methods and Dataset S1), 2) proteins from UniProt
associated with known organelles (UNI, 378 proteins; Materials

and Methods and Dataset S1), and 3) proteins identified by high-
throughput experiments of liquid–liquid phase separation (HTS,
2,572 proteins; Materials and Methods and Dataset S1). The sec-
ond dataset is PhaSePro (https://phasepro.elte.hu) (30), which
identifies protein regions associated with liquid–liquid phase
separation (PSP, 121 proteins; Materials and Methods and Dataset
S1). The third dataset is LLPSDB (http://bio-comp.org.cn/llpsdb)
(31), which assembles proteins observed to undergo in vitro
liquid–liquid phase separation with well-defined experimental
conditions and phase diagrams (Materials and Methods and
Dataset S1). LLPSDB distinguishes whether proteins can phase
separate spontaneously as one component (droplet-driving pro-
teins, LPS-D, 133 proteins;Materials and Methods and Dataset S1)
or require a partner to undergo liquid–liquid phase separation
(droplet-client proteins, LPS-C, 41 proteins; Materials and Meth-
ods and Dataset S1). In this dataset, 77 proteins exhibit both
droplet-driving and droplet-client behaviors.
To create a dataset for liquid–liquid phase separation, we merged

the proteins in the REV, PSP, and LPS-D datasets, which we
consider as drivers of droplet formation (453 unique proteins, LLPS
dataset; Materials and Methods and Dataset S1). We generated two
negative control datasets, one with human proteins only and an-
other with a mixture of organisms (Dataset S2). For the human
negative set (hsnLLPS dataset, 18,108 proteins; Materials and
Methods), we excluded from the Swiss-Prot human proteome all
proteins that appeared in any of the liquid–liquid phase separation
datasets (REV, UNI, HTS, PSP, LPS-D, LPS-C) (29–31) (Dataset
S2). For the negative set corresponding to multiple organisms
(nsLLPS; Materials and Methods), we derived the organism distri-
bution from the LLPS dataset. To build a control dataset, we
considered organisms populated more than 1% in the LLPS dataset
and used their proteomes from UniProt (Caenorhabditis elegans,
Chlamydomonas reinhardtii, Drosophila melanogaster,Homo sapiens,
Mus musculus, Rattus norvegicus, Saccharomyces cerevisiae, Schizo-
saccharomyces pombe, Xenopus laevis; Materials and Methods) and
removed all proteins present in the LLPS or HTS datasets. We then
randomly chose sequences according to the frequencies of these
organisms in the LLPS dataset with 10 times enrichment (nsLLPS;
Materials and Methods and Dataset S2).
Analysis of the amino acid compositions of droplet-driving and droplet-client
proteins. Droplet-driving proteins are enriched in disorder-
promoting residues (P, G, S) and depleted in order-promoting (F,
I, V, C, W) residues as compared with non–phase-separating pro-
teins (Fig. 2A). N and Q, which are distinguished in prion-like do-
mains (32), are more abundant in droplet-driving proteins than
those not reported to undergo LLPS. However, droplet-driving
proteins are not significantly enriched in residues that mediate
π–π and cation–π interactions (Y, R), as compared with non–phase-
separating (nsLLPS) proteins (Fig. 2A and Dataset S3). These re-
sults indicate that droplet formation does not depend on a specific
contact type but can rather be realized in many ways by low-
specificity interactions. The composition of droplet-driving pro-
teins is in between that of globular proteins (33) and disordered
proteins in the DisProt database (33), more abundant in order-
promoting residues (W, C, Y, F, I, V) as compared with disor-
dered proteins (SI Appendix, Fig. S1B), and enriched in disorder-
promoting residues (P, D, E) as compared with globular proteins
(34) (SI Appendix, Fig. S1A). Aromatic residues observed in disor-
dered regions, for example in nucleoporins, often mediate low-
affinity interactions (35). These compositional properties reflect
the preference of droplet-driving proteins for the disordered state in
the bound form, which is comparable to protein complexes with
disordered binding modes (23).
As compared with non–phase-separating proteins, droplet-

client proteins are enriched in charged residues (D, K, E) and
disorder-promoting prolines (Fig. 2B and Dataset S3). Droplet-
client proteins exhibit characteristic differences from droplet-
driving proteins, as they are enriched in charged residues (K,

Fig. 1. Liquid–liquid phase separation could be expected to be a proteome-
wide phenomenon. Proteins that undergo condensation convert from the
native state to the amyloid state through a dense liquid state (the droplet
state). The stability of these different states (the minima in the free energy),
as well as the conversion rates between them (the barriers in the free en-
ergy), is different for different proteins. For most proteins under cellular
conditions, the native and droplet states could be expected to be metastable
(56), being kinetically trapped by a free energy barrier (ΔG) between the
droplet and fibrillar states. Proteins that can be observed in the droplet state
tend to have a high free energy barrier (LLPS; green) while the other ones
tend to have a low free energy barrier compared with the thermal energy
(non-LLPS; orange). For certain proteins the droplet state is functional, and it
is stabilized by extrinsic factors, such as RNA and posttranslational
modifications.
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E) and hydrophobic motifs (L, V, I), while being depleted in
amyloid-promoting (N, Q), phosphorylation-promoting (S), and
disorder-promoting (G) residues (Fig. 2C and Dataset S3). The
amino acid composition of droplet clients is thus more similar to
structured than disordered proteins (SI Appendix, Fig. S1B).
Analysis of the conformational entropy of droplet-driving and droplet-client
proteins. We observed that different protein datasets representing
the droplet state have markedly different characteristics in their
conformational entropy in the free state and its change upon
binding. Drivers of droplet formation (LPS-D) have high levels of
disorder in free (pD) and bound states (pDD), while droplet clients
(LPS-C) are mostly ordered in both forms (Fig. 3 A and B).
Proteins in the REV and PSP datasets exhibit disordered binding
modes, which are comparable to droplet-driver proteins, so they
likely phase separate spontaneously. Proteins associated with
known membraneless organelles (UNI) or identified by high-
throughput experiments (HTS) (29) have significantly lower con-
formational entropy in both free and bound states, and thus likely
have components that form droplets via partner interactions.
Comparison of spontaneously phase-separating and non–phase-
separating proteins (Fig. 3 C and D) indicates that a high con-
formational entropy is a characteristic of the droplet state.

Sequence-Based Prediction of Droplet Propensity Profiles of Proteins.
Based on the analysis reported above, in this section, we present
a method of predicting the sequence-based profile of the pro-
pensity of proteins to form spontaneously the droplet state (pDP).
To achieve this result, we define the probability of residue Ai to
be involved in spontaneous phase separation by pDP (Ai) using a
binary logistic model as

pDP(Ai) = expFS(Ai)
1 + expFS(Ai), [1]

where FS(Ai) is the scoring function for the residue

FS(Ai) = λ1pD(Ai) + λ2pDD(Ai) + γ, [2]

where pD(Ai) is the probability for disorder in the free state and
pDD(Ai) is the probability for disordered binding (23). pD(Ai)
contains an estimate of the conformational entropy in the un-
bound form, while pDD(Ai) contains an estimate of the binding
entropy. λ1 and λ2 are the linear coefficients of the predictor
variables and γ is a scalar constant (intercept), which were de-
termined using the binary logistic model (Materials and Methods
and Dataset S4). pD was derived from the disorder score as com-
puted using the ESpritz NMR algorithm (36), with the best per-
formance on disordered protein complexes (23). The pDD values
were predicted by the FuzPred method, which describes binding
modes under cellular conditions (27). The pD and pDD values
capture the balance between enthalpy and entropy that stabilizes
the droplet state, which is associated with the nonspecific nature
of a variety of side-chain interactions.
To train our model, we used a dataset of droplet-promoting

regions, with evidence to mediate spontaneously phase separa-
tion (Materials and Methods and Dataset S1). As a negative set,
we defined regions in non–phase-separating proteins with the
same length distribution as in the positive set (Materials and
Methods). The size of the negative set was 10 times that of the
positive set and we applied stratified sampling in the training.
We found that the linear coefficients were robust over many
random selections of the positive and negative sets, as well as the
training set size (Dataset S4). In the final parameterization, the
linear coefficients of both disorder and binding modes were
positive, reflecting the preference for a disordered bound state in
the droplets. The threshold to mediate droplet formation was
derived from the binary logistic model (pDP ≥ 0.60).
To estimate the performance of the method, we calculated an

area under the curve (AUC) value of 87.0% on the training set
and an AUC value of 85.9% on the test set (Materials and
Methods and Dataset S4). We applied these coefficients to all

Fig. 2. Differential amino acid compositions of droplet-driver and droplet-client proteins. (A) Differences in amino acid compositions (ΔAA) of droplet-driver
proteins in the LLPS dataset and of proteins not reported to phase separate (nsLLPS). (B) Differences in amino acid compositions of droplet-client proteins that
require additional components for phase separation (LPS-C dataset) and of proteins that have not been reported to phase separate (nsLLPS). (C) Differences in
amino acid compositions of droplet-client proteins (LPS-C) and droplet-driver proteins (LLPS). Amino acids grouped as hydrophobic (light green), aromatic
(green), hydrophilic (turquoise), charged (steel blue), and disorder-promoting (dark blue) (34). The SEs and the significances of the differences by
Kolmogorov–Smirnov test are shown in Dataset S3.
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droplet regions and obtained an AUC value of 84.4%. These
results illustrate that the parameters are robust across droplet
regions from different organisms. We also note that droplet-
promoting propensity profiles of proteins that were observed
to form droplets under cellular conditions and those that were
detected only by in vitro experiments are not significantly dif-
ferent (SI Appendix, Fig. S3).
We have thus developed the FuzDrop method to predict

droplet-promoting propensities of residues from the primary se-
quence based on the conformational entropy of disordered bind-
ing modes in droplets.

Droplet-Promoting Propensity Profiles of TDP-43 and α-Synuclein. We
applied the FuzDrop method to predict the droplet-promoting
propensities of two proteins reported to undergo liquid–liquid
phase separation, TDP-43 (37) and α-synuclein (38, 39). Our re-
sults indicate that the low-complexity region of TDP-43 (residues
262 to 414) mediates spontaneous phase separation. We note that
the α-helical segment (residues 320 to 331), which constitutes the
amyloid core in TDP-43 fibrils (40) (Fig. 4A) and is predicted to
undergo disorder-to-order transition upon binding, also has a high
droplet-promoting propensity (Fig. 4A).

In the case of α-synuclein, the highly disordered C-terminal
region (residues 98 to 140), which also remains disordered upon
binding to lipid vesicles (41), is predicted to drive the formation of
the droplet state (Fig. 4B). The central non-amyloid beta com-
ponent (NAC) region has lower pDP propensity to spontaneously
phase separate, but may be involved in droplets via hydrophobic
protein interactions, which are absent from β-synuclein and
γ-synuclein (38).

Sequence-Based Prediction of Droplet-Driving Proteins. In this sec-
tion, we present a method of ranking proteins according to their
propensity to form the droplet state. In order to achieve this
result, we estimate the probability of liquid–liquid phase sepa-
ration (pLLPS) using a binary logistic model (Materials and
Methods) with a scoring function (FLLPS) derived from residue
droplet-promoting propensities and a term for hydrophobic
interactions

FLLPS = λ1 pmedian{pDP(Ai)} + λ2 p nDPR + λ3 pH + γ, [3]

where median{pDP(Ai)} is the median of the residue droplet-
promoting propensities, nDPR is the number of long droplet-
promoting regions (DPRs; ≥25 consecutive residues with pDP ≥ 0.6),

Fig. 3. Conformational properties in different datasets of LLPS proteins in the free and bound states. PhaSepDB literature reviewed (light blue), PhaSepDB
human organelle-associated proteins from UniProt (steel blue), PhaSepDB proteins identified by high-throughput experiments (dark blue), PhaSePro (or-
ange), LLPSDB one-component proteins (droplet drivers; wheat), and two-component (droplet clients; gray) phase-separating proteins. (A) The probability for
the disordered state (pD) in the free form was characterized by the fraction of disordered residues, as computed by the ESpritz NMR program (36). Residues
are classified as disordered if they have an ID score ≥0.3089. The fraction of disordered residues was computed per protein as NID/NAA and these values were
averaged for each dataset. (B) Probability for disordered binding (pDD) was computed by the FuzPred program (23). The median pDD value was determined for
each protein and these values were averaged for each dataset. (C and D) Comparison of pD and pDD in droplet-driving (LLPS; light blue) and non–phase-
separating proteins (nsLLPS; dark blue). Statistical significances were computed by the Mann–Whitney U test using the R program (**P < 10−3, ***P < 10−5,
****P < 10−10).
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and H is a hydrophobic term (≥6-residue hydrophobic motifs
within disordered regions) (Materials and Methods). λ1, λ2, and
λ3 are the linear coefficients of the predictor variables and γ
is a scalar constant (intercept), which we determined on the
LLPStrain and nsLLPStrain datasets (Materials and Methods and
Dataset S5). We found that the linear coefficients were robust
over many random selections of the positive and negative sets,

as well as the training set size (Dataset S5). The threshold to me-
diate spontaneous liquid–liquid phase separation was derived
from the binary logistic model (pLLPS ≥ 0.61). We propose that
the pLLPS value expresses the droplet-driving potential under
physiological conditions, as droplet-promoting propensities of
proteins that form droplets under physiological conditions and
those that were detected to phase separate only in vitro do not
deviate significantly (SI Appendix, Fig. S2). We also note that
using nonphysiological conditions, such as high concentrations
of protein and crowding agents, can induce liquid–liquid phase
separation at pLLPS values below the threshold, especially if
droplet-promoting regions are present.
To estimate the performance of the method, we calculated an

AUC value of 88.3% on the training set (0.75 of the LLPS dataset)
and an AUC value of 90.7% on the test set, using stratified sam-
pling (Materials and Methods and Dataset S5). As an attempt to
further improve performance, we incorporated a π–π term (19) into
the scoring function of the logistic model (Materials and Methods).
Adding this term slightly increased the performance of the model
(AUC 92.2%; Dataset S5) with a moderate contribution to the
scoring function. These results are in accord with the presence of
π–π interactions in many droplet proteins, but also show that these
interactions are not prerequisites for droplet formation.
The performance and robustness of the model (Eq. 3 and

Dataset S5) demonstrate that the droplet state can be predicted
from sequence based on the estimated conformational entropy
of binding and a nonspecific enthalpy term. We also note that
our model by Eq. 3 serves as a general framework for predicting
droplet-driver proteins. Accumulating data collected using more
systematic and uniform experimental approaches (8) will enable
further refinement of the parameters in our model and to predict
the minimum concentration for phase separation, although this
property can be expected to be highly dependent on the cellular
conditions.

Region Specificity of the FuzDrop Method and Experimental
Validation of the Predictions. We note that estimates of the over-
all propensity of a protein to form the droplet state cannot be
readily obtained by a simple average of the values of the profiles
of Eq. 2. This overall propensity is also determined by specific
regions, rather than only by the general properties of the entire
sequence, including in particular droplet-promoting regions and

Fig. 4. Droplet-promoting propensity profiles (pDP) of the TDP-43 low-
complexity (LC) domain and of α-synuclein. (A) The TDP-43 LC domain has
overall high droplet-promoting propensities. The depletion in the droplet
profile corresponds to the α-helical segment (orange), which is involved in
the amyloid core. The N- (lime) and C- (blue) flanking regions are disordered
in the NMR structure of the G335D mutant (PDB ID code 2n4g). (B) The
disordered C-terminal region of α-synuclein (blue) is predicted to drive
droplet formation. The N-terminal region (lime), which folds into an α-helix,
has intermediate pDP values. The ensemble is derived from the Protein En-
semble Database (PED9AAC). The pLLPS threshold is indicated by a bold
gray line.

Fig. 5. Region-specific phase behavior of α-synuclein and β-synuclein. (A) FITC-labeled β-synuclein (pLLPS 0.54), which lacks the characteristic NAC region found
in α-synuclein, does not phase separate at high concentrations (200 μM) and under crowding conditions (10% [weight/volume] PEG), whereas FITC-labeled
α-synuclein (pLLPS 0.62) readily forms droplets under the same conditions. (B) Increasing the experimental temperature by 10 °C does lead to rapid coalescence
of β-synuclein into micrometer-sized droplets. (C) Rapid FRAP of a small area within a droplet (Top) 1 min after phase separation; FRAP 3 min after phase
separation (Bottom); and a nonlinear fit of fractional fluorescence recovery over time (Right). (Scale bars, 10 μm [A and B] and 5 μm [C].)
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short motifs within disordered regions, which are prone to es-
tablish hydrophobic interactions (Eq. 3). This point can be il-
lustrated by distinct behaviors of α-synuclein and β-synuclein
(38). The C-terminal region of both proteins possesses a droplet-
promoting region, with a preference for disordered binding
modes (Fig. 4 and SI Appendix, Fig. S3). In addition, the NAC
region of α-synuclein contains eight hydrophobic residues, biased
for disordered binding, which can exert a nonspecific driving
force (resembling hydrophobic collapse) for droplet formation.
Notably, however, β-synuclein and γ-synuclein, which lack these
residues (SI Appendix, Fig. S3), were not observed to undergo
liquid–liquid phase separation under physiological conditions (38).
The predicted pLLPS values by the FuzDrop method (0.62 for

α-synuclein, 0.54 for β-synuclein, and 0.40 for γ-synuclein) sug-
gest that β-synuclein and γ-synuclein have lower propensity to
adopt the droplet state as compared with α-synuclein. Indeed,
γ-synuclein did not phase separate under any of the experimental
conditions tested (38). To validate the predictions close to the
prediction threshold, we explored β-synuclein phase behavior in
a set of in vitro experiments (Fig. 5). In line with previous ob-
servations (38, 39), we did not observe any droplets after incu-
bating high concentrations of fluorescein 5-isothiocyanate
(FITC)-labeled β-synuclein on a glass surface, whereas we did
observe droplets for FITC-labeled α-synuclein (Fig. 5 A and B).
As hydrophobic effects are important for α-synuclein droplet
formation and considering that β-synuclein lacks the predomi-
nantly hydrophobic segment in the NAC region, we reasoned
that raising the experimental temperature would increase the
strength of residual hydrophobic interactions, allowing the pro-
tein to cross the phase barrier. Indeed, β-synuclein formed
micrometer-sized droplets when the temperature was raised by
10 °C and at high concentrations (Fig. 5C). Droplets formed by
FITC–β-synuclein were initially liquid-like, as evidenced by
fluorescence recovery after photobleaching (FRAP), but showed
rapid conversion to a gel-like state (Fig. 5C). The phase sepa-
ration behavior of β-synuclein illustrates that protein phase
separation is highly dependent on the experimental conditions,
that proteins with a predicted pLLPS below the threshold
(pLLPS ≥ 0.61) require more extreme conditions to adopt the
droplet state, and that the droplet state of these proteins is
generally short-lived.
As an additional test of our predictions, we ranked a set of

proteins associated with Alzheimer’s disease (42) based on their
predicted FuzDrop scores (Dataset S6) and selected one of the
top candidates, complexin-1, to experimentally test our predic-
tions (Fig. 6). To assess whether complexin-1 can form droplets
through liquid–liquid phase separation, we incubated Alexa
488-labeled complexin-1 on a glass surface under crowding
conditions at physiological pH (Materials and Methods). After a
brief lag phase (<1 min), complexin-1 formed micrometer-sized
droplets in suspension (Fig. 6A). The droplets were characteristic

of a liquid phase, as they showed distinct wetting behavior after
prolonged incubation (>10 min) (Fig. 6A) and fused upon making
contact (Fig. 6B). Furthermore, molecules within the droplets
showed local rearrangement, as evidenced by rapid FRAP
(Fig. 6C). We also predicted that the disordered N-terminal region
of complexin-1 drives its liquid–liquid phase separation (SI Ap-
pendix, Fig. S4). This region cooperatively interacts with the
SNARE complex and plasma membrane (43) to facilitate synaptic
vesicle fusion (44). Phase separation may contribute to activation of
complexin-1 by relieving its autoinhibition, which is a common
mechanism by the droplet state (21).

Droplet-Driving and Droplet-Client Proteins in the Human Proteome.
We applied the prediction method to estimate the proteins ca-
pable of undergoing spontaneous liquid–liquid phase separation
(droplet-driving proteins) in the Swiss-Prot human proteome.
We thus ranked the proteins in the human proteome according
to their propensity to form the droplet state (Dataset S7), and
estimated that about 40% of them are capable of spontaneous
droplet formation.
This list contains only about 60% of the human proteins cur-

rently associated with membraneless organelles (UNI). This
fraction is even lower for proteins identified by high-throughput
experiments (HTS), including organelle purification (45, 46),
affinity purification (47, 48), immunofluorescence image-based
screen (49, 50), and proximity labeling (51, 52) (SI Appendix, Fig.
S5). As the FuzDrop approach was developed for proteins that
drive droplet formation, our results indicate that membraneless
organelles contain also proteins that undergo phase separation
by being driven by a partner (droplet-client proteins). We ob-
served that droplet clients have a lower conformational disorder
in both free and bound states (Fig. 3), suggesting the involve-
ment of distinguished, local motifs. Thus, the droplet-client
mechanism can provide a route for structured proteins to be
engaged in condensates via specific droplet-promoting regions.
To investigate the properties underlying the droplet-client

mechanism, we analyzed the presence of long and short
droplet-promoting regions in the droplet-driver (LLPS) and
droplet-client (LPS-C) datasets (Table 1). We found that ∼90%
of droplet-client proteins contain a short droplet-promoting re-
gion (≥10 residues), while only ∼60% have long ones (≥25 res-
idues). The frequency of short and long droplet-promoting
regions in proteins, identified by high-throughput experiments, is
comparable to droplet-client proteins (Table 1), indicating that
they follow a partner-induced client mechanism. In contrast, the
frequency of droplet-promoting regions in proteins associated
with human membraneless organelles is comparable to droplet
drivers (Table 1). Considering their lower droplet-promoting
propensities (Dataset S7), these results indicate that proteins
in membraneless organelles likely follow both driver and client
mechanisms.

Fig. 6. Complexin-1 undergoes liquid–liquid phase separation. (A) Alexa 488-labeled complexin-1 (10 μM) coalesces into micrometer-sized droplets under
crowding conditions (Left). Droplets exhibit a wetting phenotype when encountering a glass surface (Right). (B) Complexin-1 droplets readily fuse when in
close proximity (<1 μm) and relax into a round structure after fusion, as noted by the arrows. (C) Rapid FRAP of a small area within a droplet (Top); nonlinear
fit of fractional fluorescence recovery over time (Bottom). (Scale bars, 5 μm [A] and 1 μm [B and C].)
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Overall, we thus estimate that over 80% of the proteins in the
human proteome contain regions that can mediate droplet forma-
tion. Half of these proteins can condensate spontaneously, while the
other half can do so by interacting with other components (Table 1).
We have also observed that the number of droplet-promoting re-
gions is comparable in proteins observed to form droplets under
physiological conditions or detected by in vitro experiments (SI
Appendix, Fig. S2), corroborating the relevance of the predictions
under cellular conditions. We then extended these results to other
organisms (Dataset S8), leading to the suggestion that the droplet
state is a proteome-wide phenomenon.

Discussion and Conclusions
Increasing evidence indicates that a wide range of proteins un-
related in sequence, native structure, and function can form
biomolecular condensates (1, 2, 4, 53). These observations sug-
gest that the droplet state may have a generic nature and be
accessible to most proteins. This possibility may not be imme-
diately evident from the data currently available because the
condensation of different proteins has been reported for exper-
imental conditions often far from physiological ones. Moreover,
a full understanding of the interactions driving droplet formation
has not been achieved yet, owing to a wide variety of sequence
motifs associated with the droplet state.
In this work, we have exploited that a large fraction of the

proteins in the human proteome have favorable binding entro-
pies by visiting an ensemble of bound states (54, 55), which is
realized via disordered binding modes. We thus hypothesized
that the high conformational entropy associated with nonspecific
side-chain interactions contributes to the stabilization of the
droplet state, and proposed a model to quantify it from its se-
quence. We have shown that droplet-promoting propensities can
be predicted using such a generic model, even without the ex-
plicit incorporation of specific types of interactions. The speci-
ficity of our model originates from local compositional sequence
biases, which are used to estimate the entropy in the bound state
(23). That is, both hydrophobic and hydrophilic motifs can se-
lectively mediate interactions if they are embedded in an envi-
ronment of opposite character, explaining how selectivity can be
achieved via a wide variety of interactions and contact types. We
have shown earlier that this approach is capable of describing
ordered and disordered binding under cellular conditions (27).
Using these general principles, we developed the FuzDrop

method to predict droplet-promoting profiles and propensity of
proteins to drive droplet formation. Applying this prediction
method to different datasets of phase-separating proteins, we
described two mechanisms of droplet formation: 1) the driver
mechanism, which does not require additional components for
phase separation, and depends on the overall conformational
entropy of the protein, and 2) the client mechanism, which is
induced by protein interactions, and is dependent on the presence
of specific droplet-promoting regions in the sequence of the

protein. Our results indicate that proteins may use the driver or the
client mechanisms, or a combination of them, to form droplets.
Our proteome-wide analysis indicates that the presence of

droplet-promoting regions is widespread in the sequences in the
human proteome. Based on this analysis, we conclude that the
droplet state is accessible, even if only transiently, for most
proteins. In ∼40% of the human proteome it is predicted to
occur spontaneously, whereas an approximately equal fraction
may require a variety of cellular components or nonphysiological
conditions. Proteins in known membraneless organelles repre-
sent a combination of these mechanisms, whereas those identi-
fied by high-throughput studies mostly represent droplet clients.
Taken together, these results indicate that the droplet state is

likely to be a fundamental state of proteins, alongside the native
and amyloid states.

Materials and Methods
Datasets of Phase-Separating Proteins. All data in the present study were
downloaded from public datasets without modifications (Dataset S1). The
REV, UNI, and HTS datasets were assembled from the PhaSepDB dataset
(http://db.phasep.pro/) (29). The 351 proteins in the REV dataset were col-
lected based on a curated literature search; the 378 proteins in the UNI
dataset were associated with human organelles in UniProt; and the 2,572
proteins in the HTS dataset were identified in high-throughput experiments.
The PSP dataset contained 121 proteins from the PhaSePro database (https://
phasepro.elte.hu) (30) with regions involved in LLPS identified. The 174
proteins in the LLPSDB dataset (http://bio-comp.org.cn/llpsdb) (31) were
observed to undergo in vitro liquid–liquid phase separation for which the
experimental conditions were also specified. All proteins observed to form
droplets spontaneously were assigned to the LPS-D dataset and only those
whose phase separation was dependent on interactions with a partner were
in the LPS-C dataset. The LLPS dataset contained 453 nonredundant pro-
teins, by merging the REV, PSP, and LPS-D datasets (Dataset S1). The 144
regions identified to mediate droplet formation were assembled from the
PhaSePro dataset (30), and were grouped based on the evidence for spon-
taneous or partner-assisted phase separation in the LLPSDB dataset (31)
(DPR; Dataset S1).

Datasets of Non–Droplet-Forming Proteins. All human proteins included in the
phase separation datasets (LLPS and LPS-C) were removed from the Swiss-
Prot human proteome, resulting in 18,108 sequences (hsnLLPS; Dataset S2).
We also generated a negative set for phase separation (nsLLPS; Dataset S2),
which reflected the composition of the LLPS dataset using organisms rep-
resented >1% in the LLPS dataset (C. elegans, C. reinhardtii, D. mela-
nogaster, H. sapiens, M. musculus, R. norvegicus, S. cerevisiae, S. pombe, X.
laevis). Only Swiss-Prot sequences were used except for X. laevis. Sequences
were randomly chosen from these pools to match their frequency in LLPS.
The size of the nsLLPS dataset was 10 times more than that of the
LLPS dataset.
Analysis of amino acid compositions. The properties of LLPS proteins were
compared with proteins with disordered regions in the DisProt v7 database
(34) and the composition of globular proteins from the Protein Data Bank
(PDB) (33). We used a bootstrap approach to compare the amino acid
compositions in proteins of the LLPS, LPS-C (Dataset S1), and nsLLPS (Dataset
S2) datasets and the statistical significance of the pairwise differences was
determined by a two-sample Kolmogorov–Smirnov test of the R program
(Dataset S3). We also computed the absolute maximum distances between

Table 1. Percentage in different datasets of proteins containing regions predicted to be
droplet promoting

pDPR ≥ 25 residues, % pDPR ≥ 10 residues, %

H. sapiens 62 83
Membraneless organelles 84 94
High-throughput experiments 65 87
Droplet drivers 87 94
Droplet clients 60 88

Droplet-promoting regions were identified with the number of consecutive residues with pDP ≥ 0.6, either ≥25
(column 2) or ≥10 (column 3). The list presented includes membraneless organelles (UNI), high-throughput
experiments (HTS), droplet drivers (LLPS; Dataset S1), and droplet clients (LPS-C; Dataset S1).
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the cumulative distribution functions (Dataset S3). SE was calculated as

SE = SD=√n, where SD represents the SD of the bootstrapped differences
and n represents sample size.
Predicting residue droplet-promoting propensity.

Binary logistic regression model. Droplet-promoting propensity (pDP) was
defined as a probability of a binary response, whether a residue can pro-
mote spontaneous phase separation or not. We used two predictor variables
(Eqs. 1 and 2): 1) The probability of disorder in the free state (pD) was pre-
dicted by the ESpritz NMR program (36), and 2) the probability of disordered
binding (pDD) and was computed by the FuzPred program (23). These two
quantities approximated the conformational entropy in the free state and
its change upon binding.

Training and parameterization. As a positive set, we used 67 droplet-promoting
regions, with evidence for mediating spontaneous phase separation (Dataset S1).
As a negative set, we randomly chose regions from proteins in nine represen-
tative organisms (C. elegans, C. reinhardtii, D. melanogaster, H. sapiens, M.
musculus, R. norvegicus, S. cerevisiae, S. pombe, X. laevis) without evidence to
spontaneously form droplets or serve as droplet clients. Frequencies of proteins
were set according to the droplet dataset (Dataset S1) with a length distribution
matching that of the positive DPR dataset. The size of the negative set was
10 times that of the positive set and we applied stratified sampling.

We used the R program to determine the coefficients of the independent
variables (pD and pDD; Eqs. 1 and 2) on the training set, which were chosen as
0.6 to 0.8 of the positive DPR set. The performance of the different models was
evaluated based on AUC, specificity, sensitivity, and accuracy, which were
computed by the R program (Dataset S4). Owing to the length dependence of
the characteristics of the droplet-promoting regions, we used the coefficients
obtained for regions <200 residues. The threshold for droplet-promoting
propensity (pDP ≥ 0.5994) was determined based on the logistic model, and
was in good agreement for the training and test sets.
Predicting the propensity of proteins to drive droplet formation. A binary logistic model
was used to estimate the probability of a binary response, whether a protein
spontaneously forms droplets or not, based on three predictor variables (Eq. 3):
the median of the residue-based pDP values, the number of droplet-promoting
regions (nDPR ≥ 25 residues), and a factor representing weak hydrophobic in-
teractions. To distinguish between hydrophobic interactions driving structure
formation and those in droplets, we used hydrophobic motifs (≥6 consecutive
residues), which were located in disordered regions. The threshold was set
to −1.3 based on the Kyte–Doolittle hydrophobicity scale, to include S, T, and Y
capable of undergoing phosphorylation. As the data regarding droplet-forming
proteins are rapidly expanding, we aimed to use a general model, which can be
reoptimized if more and more specific information will become available.

Training and parameterization. We divided the positive datasets LLPS and
hsLLPS into training and test sets using various random selections, varying the
training test size between 65 and 85%, and applied stratified sampling for
the negative nsLLPS and hsnLLPS sets (Dataset S2). For parameterization, we
removed “uncharacterized,” “putative” proteins, and “coil-coiled” domains
from the nsLLPS and hsnLLPS datasets. Owing to their repetitive sequences,
coiled-coil domains still present a challenge for disorder predictions. We
used the R program to determine the coefficients for the independent
variables on the LLPStrain and hsLLPStrain datasets (Dataset S5). To decide the
final coefficients, we aimed at high sensitivity, as we expected many false
positives in the negative datasets (proteins not yet reported to form drop-
lets) and we aimed to find coefficients consistent for many datasets.

The performance of the different models was evaluated based on AUC,
specificity, sensitivity, and accuracy, which were computed by the R program
(Dataset S5). The threshold for probability for droplet formation (pLLPS ≥
0.61) was determined based on the logistic model, and was in good agreement

for the training and test sets. The π–π term was evaluated by the scripts given in
ref. 19 using the same training and test sets (Dataset S5).

Predicting the droplet state in different proteomes. The UniProt Swiss-Prot
(reviewed) sequences were downloaded for C. elegans, D. melanogaster,
H. sapiens, M. musculus, R. norvegicus, S. cerevisiae, and S. pombe and
TrEMBL for X. laevis. The degree of disorder was computed by the ESpritz
NMR program (36), and the binding mode (pDD) was predicted for each
residue using the FuzPred program (23). The probability of droplet forma-
tion for each protein was determined based on Eq. 3, with the coefficients
given in Dataset S5. In each organism, we determined the frequency of
proteins (including putative proteins), with pLLPS ≥ 0.6 (Dataset S8).
Observation of α-synuclein and β-synuclein liquid–liquid phase separation. Wild-
type α-synuclein and β-synuclein were purified from Escherichia coli
expressing plasmid pT7-7 encoding for the protein as previously described
(38, 39). Following purification, the protein was concentrated using Amicon
Ultra-15 centrifugal filter units (Merck Millipore) and buffer exchanged into
phosphate-buffered saline (PBS) at pH 8.0. Protein was subsequently labeled
with 10-fold molar excess of fluorescein 5-isothiocyanate (Sigma) for 3 h at
room temperature, followed by an overnight incubation at 4 °C with con-
stant mixing. The excess dye was removed on a Sephadex G-25 desalting
column (Sigma) and used immediately for phase separation experiments.

To induce droplet formation, nonlabeled wild-type α-synuclein and
β-synuclein were mixed with FITC-labeled proteins at a 10:1 molar ratio in
PBS with 50 mM NaCl and 10% polyethylene glycol (PEG) (Thermo Fisher
Scientific). The final mixture was pipetted onto a 35-mm glass-bottom dish
(P35G-1.5-20-C; MatTek Life Sciences) and immediately imaged on a TCS SP5
confocal microscope using a 40×/1.3 HC PL Apo CS oil objective (Leica
Microsystems) with the temperature controlled at either 20 or 30 °C. The
excitation wavelength was 488 nm for all experiments. All images were
processed and analyzed in ImageJ (NIH).
Complexin-1 phase separation. Recombinant human complexin-1 was obtained
from Nkmax Bio (CPX0901). The C-terminal cysteine (C118) was labeled with
a 1.5× molar excess of Alexa Fluor 488 C5 maleimide (A10254; Life Tech-
nologies) overnight at 4 °C. The excess dye was removed on a Sephadex G-25
desalting column (G25150-100G; Sigma) and the protein was buffer ex-
changed into 50 mM Tris·HCl (pH 7.4).

For imaging, 10 μM nonlabeled complexin-1 was mixed with 10% (1 μM)
Alexa Fluor 488-labeled protein in 50 mM Tris·HCl (pH 7.4), 100 mM NaCl,
1 mM dithiothreitol, and 5% PEG (B219555; Thermo Fisher Scientific) at
20 °C. The final mixture was pipetted onto a 35-mm glass-bottom dish (P35G-
1.5-20-C; MatTek Life Sciences) and immediately imaged on a TCS SP5 using
a 40×/1.3 HC PL Apo CS oil objective (Leica Microsystems). The excitation
wavelength was 488 nm for all experiments. All images were analyzed with
ImageJ (NIH).
Fluorescence recovery after photobleaching. FRAP was performed on the setup
described above, under the same experimental conditions. Bleaching was
done using a 488-nm laser at 50% intensity, to obtain ±50 to 60% photo-
bleaching. Images were captured at 600-ms intervals, following a 1.8-s pre-
bleach sequence and 1.2-s bleach. Intensity traces of the bleached area were
background corrected and normalized. A nonlinear function of the recovery
curve was fitted to obtain a relative recovery rate (Prism 8; GraphPad).

Data Availability. All study data are included in the article and supporting
information.
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