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In a series of papers Mauduit and Sárközy (partly with coauthors) studied finite pseudorandom
binary sequences and they constructed sequences with strong pseudorandom properties. In these
constructions fields with prime order were used. In this paper a new construction is presented,
which is based on finite fields of order 2k.
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1. INTRODUCTION

Mauduit and Sárközy studied pseudorandom binary sequences of

EN = {e1, . . . , eN} ∈ {−1,+1}N

and introduced the following measures of pseudorandomness of binary sequences
[Mauduit and Sárközy 1997]:

Definition 1. The well-distribution measure of EN is defined as

W (EN ) = max
a,b,t
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where the maximum is taken over all a, b, t with a, b, t ∈ N, 1 ≤ a + b ≤ a + tb ≤ N .

Definition 2. The correlation measure of order k of EN is:

Ck(EN ) = max
M,D
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where the maximum is taken over all D = (d1, . . . , dk) (d1 < . . . < dk are non-
negative integers) and M ∈ N with M + dk ≤ N .

Definition 3. Combined (well-distribution-correlation) PR-measure of order k
EN is defined as:

Qk(EN ) = max
a,b,t,D

|Z(a, b, t,D)|
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where

Z(a, b, t,D) =
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. (1.1)

Definition 4. Combined PR-measure of EN :

Q(EN ) = max
k≤log N

Qk(EN ).

A pseudo-random sequence is considered good if both W (EN ) and Ck(EN ) (at
least for small k) are small in terms of N : both of them are o(N) as N → ∞. Later
Cassaigne, Mauduit and Sárközy [Cassaigne et al. 2002] showed that this terminol-
ogy is justified since for almost all EN ∈ {−1,+1}N , both W (EN ) and Ck(EN )
are less than N1/2(log N)c. Moreover, in [Mauduit and Sárközy 1997] was shown

that
{(

n
p

)}

, 0 < n < p, where
(

n
p

)

is the Legendre symbol, forms a good pseu-

dorandom sequence. Later in [Goubin et al. 2004] and [Gyarmati et al. 2005] this
construction was extended to a large family of good pseudorandom sequences. The
later construction and its pseudorandom measures are described in the following
theorem (proved in [Gyarmati et al. 2005]):

Theorem 1. Let p be an odd prime, λ ∈ F∗
p be of multiplicative order T and

f(x) ∈ Fp[x] be of degree k and not of the form cxα(g(x))2 with c ∈ Fp, α ∈
N, g(x) ∈ Fp[x]. Define the sequence ET = {e1, . . . , eT } by

en =

{ (

f(λn)
p

)

if p ∤ f(λn),

1 if p | f(λn).

Then we have

W (ET ) < 5kp1/2 log p

Moreover, assume that also l ∈ N, T is a prime, and either min{(4k)l, (4l)k} ≤ T
or 2 is a primitive root modulo T . Then we also have

Cl(ET ) ≤ 5klp1/2 log p.

There were further good sequences constructed in [Sárközy 2001]. These se-
quences are based on the notion of index and multiplicative characters play a cru-
cial role in the proofs. Many other sequences were studied, but the upper bounds
obtained for W (EN ) and Cl(EN ) were much weaker, than for the constructions
mentioned. One of these weaker constructions is still of particular interest: in
[Mauduit et al. 2004] in the proof the properties of additive characters were uti-
lized.The construction and its properties are summarized in the following theorem:

Theorem 2. Let p an odd prime, f(x) ∈ Fp[x] of degree d, and define Ep =
{e1, . . . , ep} by

en =

{

+1 if 0 ≤ rp(f(n)) < p/2,
−1 if p/2 ≤ rp(f(n)) < p
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where rp(n) denotes the unique r ∈ {0, . . . , p − 1} such that n ≡ r (mod p). Then

we have

W (Ep) ≪ dp1/2(log p)2.

For 2 ≤ l ≤ d − 1 we also have

Cl(Ep) ≪ dp1/2(log p)l+1.

All the above mentioned constructions are using prime fields of odd character-
istic. It is natural idea to try to give further good sequences by using fields with
characteristic 2. The application of fields of characteristic 2 enables one to use
additive characters in a more direct way than in Theorem 2.

The generator presented in [Goubin et al. 2004] not only has good pseudorandom
measures, but also possesses the strict avalanche property [Tóth 2007]. There are
results about its family complexity [Ahlswede et al. 2003], the computational com-
plexity of the best known attacks and an extremly fast implementation [Hoffstein
and Lieman 2001]. Furthermore the bound on its higher order correlation measure
enables one to estimate its linear complexity profile [Brandstätter and Winterhof
2006]. Although its security cannot be proven by reduction, the above enumerated
arguments make the generator a good candidate for cryptographic use. The main
result of this paper and the first step in a search for pseudorandom sequence fami-
lies of similar good quality as the above mentioned construction is to consider the
pseudorandom measures of binary sequences based on additive characters over Fq.

2. THE PSEUDORANDOMNESS OF THE TRACE

In this paper a new pseudorandom sequence generator is proposed, whose pseudo-
random measures are better than of the top quality constructions (like in Theorem
1).

Theorem 3. Let Fq be a finite field of characteristic two and its multiplicative

group of prime order. Let χ be a non principal additive character, and α a primitive

element of Fq and let f(x) ∈ Fq[x] of odd degree d and let I be the set of exponents

in the terms with nonzero coefficient in f(x). For the minimal polynomial of αi

over F2 write mi(x). Let

Eq−1 = {χ(f(α1)), χ(f(α2)), . . . , χ(f(αq−1))} ∈ {−1,+1}q−1,

Let D′ ⊆ {1, . . . , q−1} such that
∏

i∈I mi(x) does not divide the polynomial d(x) =
∑

di∈D′ xdi ,then

max
a,b,t,D′

|Z(a, b, t,D′)| ≤ 9dq1/2 log q. (2.1)

Let D ⊆ {1, . . . , q−1} such that
∏

i∈I mi(x) divides the polynomial d(x) =
∑

di∈D xdi ,then

max
a,b,t,D

|Z(a, b, t,D)| = max
D

(q − 1 − max
di∈D

di). (2.2)

Remark 1. In the D = {1, . . . , k} case, with |I| > k the divisibility property of
the first part and (2.1) hold.
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Theorem 4. Let Fq be a finite field of characteristic two and its multiplicative

group of prime order. Let χ be a non principal additive character, and α a primitive

element of Fq and let f(x) ∈ Fq[x] of odd degree d ≥ log q and let the coefficients

of its terms be zero if and only if the term has an even exponent. If

Eq−1 = {χ(f(α1)), χ(f(α2)), . . . , χ(f(αq−1))} ∈ {−1,+1}q−1,

then :

Q(EN ) ≤ 9dq1/2 log q. (2.3)

Corollary 1. Obviously we have:

W (EN ) ≤ 9dq1/2 log q

furthermore for l ≤ d + 1

Cl(EN ) ≤ 9dq1/2 log q.

3. CHARACTER SUMS

To give an upper bound for incomplete character sums we will use the following
inequality:

Lemma 1. If m ∈ N, the function g(x) : Z → C is periodic with period m, and

X, Y are real numbers with Y > 0 then
∣
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Proof. This is implicit in [Vinogradov 2003], and it is presented in this explicit
form in [Tietäväinen 1988] and [Friedlander and Iwaniec 1993] and it is also related
to the Erdős-Turán inequality.

To complete the proof we will also have to give an upper bound for the following
character sum:

Lemma 2. Let χ be a non-principal additive character and α a primitive element

of Fq. Let h ∈ Z, h 6≡ 0 mod (q − 1) and let f(x) ∈ Fq[x] with its degree d being

odd. Then
∣

∣

∣

∣

q−1
∑

n=1

χ(f(αn))e

(

hn

q − 1

)∣

∣

∣

∣

≤ dq1/2.

Proof. This is an immediate consequence of Theorem 2G in [Schmidt 1976].

Lemma 3. Suppose that χ is a non-principal additive character and α a primitive

element in Fq, furthermore let f(x) ∈ Fq[x] be of odd degree d. Let X, Y be real

numbers with 0 ≤ X < X + Y ≤ q − 1. Then
∣
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∑
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χ(f(αn))
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< 9dq1/2 log q.
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Proof. Applying Lemma 1 with m = q − 1 and g(x) = χ(f(αx)):
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By applying Lemma 2 and Weil’s theorem (Theorem 5.38 in [Lidl and Niederreiter
1997]) we obtain:

∣

∣

∣
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∑

X<n≤X+Y

χ(f(αn))

∣

∣

∣

∣

< 2dq1/2 + 2
∑

1≤h≤ q−1

2

|h|
−1

dq1/2

< 2dq1/2(1 + (1 + log

(

q − 1

2

)

)) < 2dq1/2(2 + log q)

≤ 2dq1/2

(

log q

log 2
+ log q

)

< 9dq1/2 log q

and this completes the proof.

4. PROOF OF THEOREM 3

Let Z(a, b, t,D) defined by (1.1), for k < q − 1 we have

|Z(a, b, t,D)| =

∣
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∑

n=0

χ(f(αa+nb+d1))χ(f(αa+nb+d2)) . . . χ(f(αa+nb+dk))
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for all a, b, t,D = (d1, . . . , dk) such that

a + nb + dl ∈ {1, . . . , q − 1} for n = 0, 1, . . . , t and l = 1, . . . , k. (4.1)

Suppose that f(x) =
∑d

i=0 aix
i. Write aij = aiα

i(a+dj) and fj(x) =
∑d

i=0 aijx
i.

Then

|Z(a, b, t,D)| =

∣
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nb)) . . . χ(fk(αnb))
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∣
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where f̃(x) =
∑d

i=0 a′
ix

i, a′
i =

∑k
j=0 aij =

∑k
j=0 ai(α

i)a+dj . Let d̃(x) = xad(x) =
∑k

j=0 xa+dj now a′
i = aid̃(αi). d̃(x) can be treated as a polynomial over F2 and

so follows, that d̃(αi) is zero if and only if the minimal polynomial mi(x) of αi

divides d̃(x). Since mi(x) 6= x and is irreducible it divides d̃(x) if and only if it

also divides d(x) =
∑k

j=0 xdj . Consequently f̃(x) is zero polynomial if and only if
∏

i:ai 6=0 mi(x) divides d(x). In this case we obtain

|Z(a, b, t,D)| =
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∑
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χ(f̃(αnb))

∣
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= t

and since (4.1) t ≤ q − 1 − max1≤l≤k dl this proves (2.2).
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If
∏

i:ai 6=0 mi(x) does not divide d(x), then with the notation β = αb we obtain:

|Z(a, b, t,D)| =

∣

∣
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n=0

χ(f̃(βn))

∣
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∣

∣

.

Since F∗
q is of prime order, β is a primitive element of Fq if and only if b 6= q − 1.

If b = q − 1 then b = 1, a = d1 = 0, thus |Z(a, b, t,D)| = |χ(f(αa+nb+d1))| = 1 and
the theorem is proved. Otherwise we can apply Lemma 3, which implies

|Z(a, b, t,D)| =

∣

∣

∣

∣

t
∑

n=0

χ(f̃(βn))

∣

∣

∣

∣

≤ 9dq1/2 log q

and this proves (2.1) and completes the proof of Theorem 3.

5. PROOF OF THEOREM 4

Put g(x) = l.c.m.{m1(x),m3(x), . . . ,md(x)}. Then g(x) is a generator polynomial
of a BCH code C over Fq. Then by the BCH bound (Theorem 8 on page 201 in
[MacWilliams and Sloane 1977]) the minimum distance of C is at least d + 1. Let

M(x) =
∏

d−1

2

i=0 m2i+1(x). Since g(x)|M(x), M(x) divides d(x) ∈ F2[x] only if d(x)
is a codeword. It follows that M(x) can only divide polynomials whose weight is
greater than d. Now applying Theorem 3 completes the proof.

Remark 2. The proof can be applied with a slightly modified constrains on
f(x) =

∑d
i=0 aix

i. If there is an integer a such that for each j = a, . . . , a+log q− 1
exists a αcj conjugate of αj such that acj

6= 0 then (2.3) continues to hold.

6. PARAMETER SELECTION

The selection of the field is very restricted by Theorem 3: q−1 must be a Mersenne-
prime. This means only a few candidates to a practical application: we know
presently 44 Mersenne primes ([Me ]). Therefore by this pseudorandom generator
construction one should take a fixed field, best fitting to the application, and define
the sequence family by the other parameters. There are three basic approaches to
accomplish this:

(1) Variable χ with fixed α and f(x)

(2) Variable α with fixed χ and f(x)

(3) Variable f(x) with fixed α and χ

In the first two cases presently one should use field size corresponding to the 12th
Mersenne prime (k = 127) or greater (k = 521 and k = 607 are the other two
reasonable candidates) to resist brute force attacks. The third case offers much
more versatility and a possibility to study the properties of the pseudorandom
sequence family with more sophisticated methods. This question will be considered
in a subsequent paper.

7. CONCLUSIONS

These sequences can be computed fast: using normal basis representation and
the algorithm described in [Reyhani-Masoleh and Hasan 2003] this construction
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is asymptotically faster than the previous constructions mentioned in the Intro-
duction. Although the pseudorandom measures of the generator are even better
than of the previous top quality generators, it has the same drawback as the other
additive character based generator ([Mauduit et al. 2004]). This means that the
correlations of large order can be large (remind that even by the other constructions
mentioned, the upper bound to the correlation measure becomes trivial above order
q1/2

c log q ). This generator is a reasonable option for situations where computation time
is more important than the control over the large order correlations.
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of the Quadratic Symbol in Function Fields and a Faster Mathematical Stream Cipher, 59–68.

Lidl, R. and Niederreiter, H. 1997. Finite Fields. Encyclopedia of Mathematics, vol. 20.
Cambridge University Press.

MacWilliams, F. J. C. and Sloane, N. J. A. 1977. The Theory of Error-Correcting Codes.
North-Holland Mathematical Library, vol. 16. North-Holland Publishing Company.
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