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Departamento de Matemática Aplicada, Universidad de Granada, Fuentenueva s/n, 18071 Granada, Spain
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We show that the description of the quantum phase transition in terms of the entropic uncertainty
relation turns out to be more suitable than in terms of the standard variance-based uncertainty
relation. The entropic uncertainty relation detects the quantum phase transition in the Dicke model
and it provides a correct description of the quantum fluctuations or quantum uncertainty of the
system.

Classical phase transitions describe an abrupt modifi-
cation in the physical properties of a system due to the
change of a parameter (normally the temperature), and
the phenomena responsible for them are classical fluctu-
ations (thermal fluctuations in case the temperature was
the parameter). An important extension of this concept
is to quantum systems at zero temperature where there
is an abrupt change in the physical properties induced by
the modification of certain couplings λ which describe the
interaction between the microscopic constituents of the
system (the Hamiltonian is H = H(λ) = H0 + λV with
H0 integrable) and where the so-called quantum fluctua-
tions are responsible for a dramatic change in the prop-
erties of the system. At the critical point λ = λc, there
is an abrupt change in the symmetry of the ground-state
wavefunction [? ].

Quantum phase transitions (QPT) are induced by
quantum uncertainty. The Heisenberg uncertainty prin-
ciple can be expressed in terms of the familiar variance-
based uncertainty relation. Entropic uncertainty relation
[? ? ? ] provides an alternative to express quantitatively
the uncertainty principle in several situations [? ? ? ?

? ? ? ? ? ? ? ].

In this letter we characterize quantum fluctuations in
terms of the entropic uncertainty relation in a quantum
phase transition. We show that the entropic uncertainty
relation [? ] gives a more appropriate description of
the QPT than the usual variance-based uncertainty re-
lation in the Dicke model, providing an excellent marker
of QPT.

We shall consider the Dicke model that describes a
single-mode bosonic field interacting with an ensemble
of N two-level atoms. There is a QPT in the N → ∞
limit. This model is of great importance in quantum
optics [? ? ? ? ? ]. It has also been used to relate QPT
with chaotic [? ? ] or entanglement [? ] properties.
The Dicke model has been realized with a superfluid gas
in an optical cavity [? ] and the spontaneous symmetry

breaking has been observed recently [? ].
The single-mode Dicke Hamiltonian has the form

H = ω0Jz + ωa†a+
λ√
2j

(a† + a)(J+ + J−), (1)

where Jz, J± are the angular momentum operators for a
pseudospin of length j = N/2. The ensemble of two-level
atoms with level-splitting ω0 are considered. a and a†

are the bosonic operators of the field (the bosonic mode
has a frequency ω). In the thermodynamic limit, where
the number of atoms becomes infinite (N, j → ∞), there
is a QPT at a critical value of the atom-field coupling
strength λc = 1

2

√
ωω0. There are two phases: normal

phase (λ < λc) and superradiant phase (λ > λc).
Let us consider the wave functions of the Dicke Hamil-

tonian at finite j in position representation [? ]:

ψ(x, y) =

√
ωω0√
π
e−1/2(ωx2+ω0y

2)
nc
∑

n=0

j
∑

m=−j

c(j)nm

× Hn(
√
ωx)Hj+m(

√
ω0y)

2(n+m+j)/2
√

n!(j +m)!
(2)

where nc is the dimension of the truncated bosonic
Hilbert space and Hn are the Hermite polynomials.

The coefficients c
(j)
nm are determined by numerical

diagonalization which is carried out using the basis
{|n〉 ⊗ |j,m〉} with |n〉 the number states of the field and
|j,m〉 the Dicke states, where the position representation
of the number states |n〉 and |j,m〉 are given by 〈x|n〉 =
e−(1/2)ωx2

Hn(
√
ωx)ω/(

√

2nn!
√
π) and 〈y|j,m〉 =

e−(1/2)ω0y
2

Hj+m(
√
ω0y)ω0/(

√

2(j +m)(j +m)!
√
π),

respectively (see [? ] for details). The momentum space
wavepacket φ(px, py) is the Fourier transform of ψ(x, y).
We shall denote the probability densities in posi-

tion and momentum spaces as ρ(x, y) = |ψ(x, y)|2 and



2

 4.25

 4.3

 4.35

 4.4

 4.45

 4.5

 4.55

 4.6

 4.65

 4.7

 0
.1

 0
.2

 0
.3

 0
.4

 0
.5

 0
.6

 0
.7

 0
.8

 0
.9  1

S
ρ+

S
γ

λ

N=20
N=10
N=6

4.28946

FIG. 1: Shannon entropy sum Sρ + Sγ for the ground state
for N = 6, 10 and 20 and ω0 = ω = 1. Note the value
2(1 + lnπ) ≈ 4.29

γ(px, py) = |φ(px, py)|2, respectively. The uncertainty
relation for the Shannon information entropy [? ] has
the form

Sρ + Sγ ≥ 2(1 + lnπ) (3)

where Sf ≡ −
∫

f(r) ln f(r)dr.
The variance-based Heisenberg uncertainty relation,

on the other hand, is given by

∆x∆px ≥ 1/2 and ∆y∆py ≥ 1/2. (4)

Figs. ?? and ?? present the Shannon entropy sum Sρ+
Sγ (??) and the variance products ∆x∆px and ∆y∆py
(??), respectively, as a function of λ for different values
of N . In all calculations we have taken ω0 = ω = 1,
that is, the Hamiltonian is in a scaled resonance, so λc =
0.5. For values of λ < λc, the Shannon entropy sum has
the value 2(1 + lnπ) and the variance products are 1/2,
approximately. As λ increases for λ > λc, the entropy
sum goes to 4.68 with a step discontinuity as N increases.
However, for any value of λ with λ > λc, the variance
uncertainty products diverge when N goes to infinity.
The ground-state density function (??) is presented for

different values of λ in Fig. ??. In the normal phase it is
a Gaussian-like packet centered at the origin and, as the
strength of the coupling goes around λc, it splits into two
overlapping subpackets. When the coupling is greater
than λc these two overlapping subpackets move away
from each other into different quadrants in the plane.
This behavior is displayed in Fig. ?? for N = 20 and
(from top to bottom) for λ = 0.3, λ = 0.55 and λ = 0.7
(it has also been previously studied in Ref.[? ]). One
can see that the appearance of two different subpackets
is captured by entropic uncertainty relation in (Fig. ??)
where we have a constant finite value when N goes to
infinity and λ > λc. Clearly, this information isn’t pro-
vided by the variance-based uncertainty relation (in Fig.
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FIG. 2: Variance products ∆x∆px and ∆y∆py for the ground
state for N = 6, 10 and 20 and ω0 = ω = 1.

FIG. 3: Ground state density function for different values of
λ (from top to bottom λ = 0.3, λ = 0.55 and λ = 0.7) for
ω0 = ω = 1 and N = 20.
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??) which has a divergence when N goes to infinity. This
important difference is due to the fact that the entropic
uncertainty relation considers the quantum fluctuations
or uncertainty of the subpackets independently of their
relative position, whereas the variance-based uncertainty
relation takes into account not only the quantum fluc-
tuations properly, but also the relative position between
the subpackets.
Now we present analytical expressions for uncer-

tainty relations using trial states expressed in terms
of “symmetry-adapted coherent states” introduced by
Castaños et al. [? ], which turn out to be an excellent ap-
proximation to the exact quantum solution of the ground
(+) and first excited (–) states of the Dicke model. These
variational states are obtained by applying projectors of
even and odd parity to the direct product |α〉 ⊗ |z〉, to
obtain

|α, z〉± = N±(|α〉 ⊗ |z〉 ± | − α〉 ⊗ | − z〉), (5)

where N± is a normalization factor and

|α〉 = e−|α|2/2eαa
† |0〉 = e−|α|2/2 ∑∞

n=0
αn

√
n!
|n〉,

|z〉 = (1 + |z|2)−jezJ+ |j,−j〉 =
(1 + |z|2)−j

∑j
m=−j

(

2j
j+m

)1/2
zj+m|j,m〉,

(6)

are the ordinary (standard) and spin-j coherent states
for the photon and the particle sectors, respectively. The
critical points

α = α0 =







0, ifλ < λc

−√
2j
√

ω0

ω
λ
λc

√

1−
(

λ
λc

)−4

, ifλ ≥ λc

z = z0 =











0, ifλ < λc
√

λ
λc

−( λ
λc
)
−1

λ
λc

+( λ
λc
)
−1 ifλ ≥ λc

(7)
minimize the mean energy 〈H〉+ ≡ +〈α, z|H|α, z〉+, ex-
cept in a close neighborhood around λc which diminishes
as j increases (see [? ]).
In order to compute uncertainty relations for infor-

mation entropies in position and momentum represen-
tations, we shall make use of the Holstein-Primakoff rep-
resentation [? ] of the angular momentum operators J±
in terms of the bosonic operators, [b, b†] = 1, given by:

J+ = b†
√

2j − b†b ≃ √
2j, J− =

√

2j − b†b b
Jz = (b†b− j).

(8)

Redefining β ≡ √
2j z, it can be seen (see e.g. [? ?

]) that spin-j coherent states |z〉 go over to ordinary

coherent states |β〉 ≡ e|β|
2/2eβb

† |0〉 for j >> 1 (when
identifying |j,−j〉 ≡ |0〉). Thus, we shall assume the
approximation:

|z〉 ≃ |β〉, (9)

which turns out to be a quite good estimate even for
relatively small values of j. Introducing position and
momentum operators for the two bosonic modes as usual:

X = 1√
2ω

(a† + a), PX = i
√

ω
2 (a

† − a),

Y = 1√
2ω0

(b† + b), PY = i
√

ω0

2 (b† + b),
(10)

the explicit expression of the ground state wave func-
tion |α0, β0〉+ in position (ψ(x, y) = 〈x, y|α0, β0〉+) and
momentum (φ(px, py) = 〈px, py|α0, β0〉+) representations
can be easily obtained as (see e.g. [? ]):

ψ(x, y) = N+

(

e−
(
√

ω x−
√

2α0)2

2 − (
√

ω0 y−
√

2 β0)2

2

+ e−
(
√

ω x+
√

2α0)2

2 − (
√

ω0 y+
√

2 β0)2

2

)

,

φ(px, py) = 2N+e
− p2x

2ω− p2y
2ω0 cos

(√
2( px√

ω
α0 +

py√
ω0
β0)

)

,

(11)

where N+ =
(

2π
ω0ω

(1 + e−2α2
0−2β2

0 )
)−1/2

is a normaliza-

tion factor. Note that for λ > λc the ground-state den-
sity function ρ(x, y) = |ψ(x, y)|2 splits up into two Gaus-
sian packets centered at antipodal points in the x − y
plane. The packets move away from each other for in-
creasing j. In momentum space, γ(px, py) = |φ(px, py)|2
is a Gaussian modulated by a cosine function which os-
cillates rapidly for high j for λ > λc. This leads to a
Heaviside (step) function behavior of

Sρ + Sγ =

{

Snormal = ln (eπ)2 ≃ 4.29, ifλ < λc
Ssuper = ln ((2π)2e) ≃ 4.68, ifλ ≥ λc

(12)
in the thermodynamic limit (j → ∞). This behavior can
be inferred from Figures ?? and ?? panel (a). In the nor-
mal phase, the inequality (??) saturates (that is, the to-
tal entropy is exactly ln(eπ)2) because the ground state
wave function (??) is a Gaussian in position and mo-
mentum representation. Note that the rise height of the
step from normal to super-radiant is Ssuper − Snormal =
ln (4/e). We can decompose Ssuper = Ssuper

ρ +Ssuper
γ , with

Ssuper
ρ = Snormal

ρ +ln (2) (which can be analytically calcu-
lated taking into account that the wavepacket in position
representation splits into two subpackets with negligible
overlap for λ > λc) and S

super
γ = Snormal

γ + ln (2/e).
We would also like to point out that the Heaviside

(step) function behavior of Sρ+Sγ should also appear in
other quantum systems where a single wavepacket splits
up into several subpackets above a critical value λc of
some parameter λ of the theory. In particular, for M
identical subpackets with negligible overlap, one can see
that the entropy in position representation Sρ increases
by an amount of ln(M).
We can also compute explicit expressions for expecta-

tion values

〈a〉+ = 〈b〉+ = 〈a†〉+ = 〈b†〉+ = 0,
〈a†a〉+ = α2

0(4πN 2
+ − 1),

〈b†b〉+ = β2
0(4πN 2

+ − 1),
(13)
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FIG. 4: Analytical approximation (dashed line) and numeri-
cal results (solid line) for (a) Shannon entropy sum Sρ + Sγ ,
(b) variance products ∆x∆px, and (c) variance products
∆y∆py for the ground-state for j = 10 and ω0 = ω = 1
(λc = 0.5).

and fluctuations

∆x =

√

4πN 2
+α2

0+
1
2

ω , ∆px√
ω

=
√

2α2
0(2πN 2

+ − 1) + 1
2 ,

∆y =

√

4πN 2
+β2

0+
1
2

ω0
,

∆py√
ω0

=
√

2β2
0(2πN 2

+ − 1) + 1
2 .

(14)
These analytical expressions are in agreement with our
numerical calculations, as shown in Figures ?? (panel
(b)) and ?? (panel(c)) .

Summarizing, the Shannon entropy sum can be consid-
ered a measure of fluctuations. In this letter we demon-
strate that it remains constant even in the superradiant
phase. The variance products are divergent in the su-
perradiant phase, therefore entropic uncertainty relation
provides a description of better quality.
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