
LATTICE OF GENERALIZED NEIGHBOURHOODSEQUENCES IN nD AND 1DAttila Fazekas1, Andr�as Hajdu2 and Lajos Hajdu3Abstract. In this paper we generalize the concept of neighbourhood sequencesintroduced by Das et al. [2]. We extend the natural ordering relation given in [2]to the set of generalized nD-neighbourhood sequences, and investigate the structureobtained. As we do not always get nice properties, another ordering relation isintroduced which behaves better. We also involve the abstract digital plane Z1into our analysis, and extend our results to this case. Our investigations generalizeprevious results of Das [1] and Fazekas [4] in 2D and 3D, respectively.1. INTRODUCTIONRosenfeld and Pfaltz gave two types of motions in two-dimensional digital ge-ometry (see [7]). The cityblock motion is restricted to horizontal and verticalmovements only. That is, two points on the digital plane Z2 are neighbours, ifone of their coordinate values coincide, while the others di�er at most by 1. Thechessboard motion beside horizontal and vertical steps, also allows diagonal move-ments. In this case two points of Z2 are neighbours when both of their coordinatevalues di�er at most by 1. The so called octagonal distance can be obtained by thealternating use of these motions. (The exact concept of distance will be given inthe following chapter.) More detailed description about these and other conceptsof digital topology can be found in [6] and [8].Das, Chakrabarti and Chatterji (see [2]) extended the de�nition of the ordinaryoctagonal distance, allowing arbitrarily long periodic sequences of cityblock andchessboard motions, called neighbourhood sequences. Moreover, they establisheda formula for calculating the distance of two points in the nD digital space, deter-mined by such a neighbourhood sequence. Using this formula, Das in [1] showedthat on the set of periodic 2D-neighbourhood sequences a natural partial orderingrelation can be introduced. Furthermore, he investigated the structure of this setand some of its subsets with respect to this ordering. More precisely, he provedthat under this ordering, the set of l-periodic 2D-neighbourhood sequences forms a1Research was supported in part by the Universitas Foundation of the Kereskedelmi �es Hitel-bank Rt.2Research was supported in part by grant T032361 of the Hungarian National Foundation forScienti�c Research.3Research was supported in part by the Netherlands Organization for Scienti�c Research(NWO), by the Hungarian Academy of Sciences, by the J�anos Bolyai Research Fellowship, bygrants F034981 and T029330 of the Hungarian National Foundation for Scienti�c Research andby the FKFP grant 3272-13/066/2001. Typeset by AMS-TEX1



2 A. FAZEKAS, A. HAJDU AND L. HAJDUdistributive lattice. Das also claimed the same for the set of sequences with a periodat most l (see Theorem 4 of [1]), and that the set of the periodic 2D-neighbourhoodsequences forms a complete compact distributive lattice with respect to the rela-tion mentioned above (cf. Corollary 1 of [1]). However, these two results of Das[1] are false. This follows from our Propositions 3.8 and 3.7, respectively. Re-cently, Fazekas proved that a similar partial ordering can also be introduced forneighbourhood sequences in 3D (see [4]).In this paper we generalize the concept of neighbourhood sequences, allowing notperiodic sequences only. We show that the results of Das [1] and Fazekas [4] aboutordering the set of periodic neighbourhood sequences, can be extended to arbitrarydimension, even in case of generalized neighbourhood sequences. We also provethat in 2D the set of such sequences forms a complete distributive lattice underthis relation. Moreover, we extend our investigations to 1D, which is the mostinteresting case theoretically. We give a formula for the calculation of the distanceof two points in Z1 with respect to a generalized neighbourhood sequence. Bythe help of this result we generalize the natural ordering relation to 1D. Thelattice obtained in1D under this ordering relation, in a certain sense is the closureof the union of the �nite dimensional lattices; this shows the signi�cance of suchinvestigations.We also study the structure of some subsets of the generalized neighbourhoodsequences in nD and 1D under the ordering mentioned. We involve into ourinvestigations all types of subsets which were studied by Das [1] in the periodiccase. Unfortunately, in several cases we obtain negative results: some of the studiedstructures do not have nice properties. Thus we consider another relation, which isin close connection with the original one. More precisely, the natural ordering is are�nement of the relation introduced here. We show that under this new ordering,the examined sets (with one exception) form lattices, with certain further propertiesin some cases.Finally, to support our investigations we note that neighbourhood sequencesmay have many applications not only in 2D, but also from 3D on. In 3D one canthink of three-dimensional pictures, for instance in medical applications (see e.g.[3] and the references given there). Interestingly, even in 2D higher dimensionalneighbourhood sequences can be useful. For example, in case of colour images(when three additional colour parameters appear), or during tracking motion (whentime can be consdiered as a third dimension). The motivation and theoreticalbackground of such investigations can be found e.g. in [5].2. BASIC CONCEPTSIn order to reach the aims formulated in the introduction we would like to givethe basic de�nitions and notation in this chapter. From now on, n will denote anarbitrary positive integer.De�nition 2.1. Let p and q be two points in Zn. The ith coordinate of the pointp is indicated by Pri(p). Let N be an integer with 0 � N � n. The points p and qare N -neighbours, if the following two conditions hold:� jPri(p)� Pri(q)j � 1 for 1 � i � n,



LATTICE OF GENERALIZED NEIGHBOURHOOD SEQUENCES IN nD AND1D 3� Pni=1 jPri(p)� Pri(q)j � N .De�nition 2.2. The in�nite sequence B = fb(i) : i 2 N and b(i) 2 f1; 2; : : : ; nggis called a generalized nD-neighbourhood sequence. If for some l 2 N, b(i) = b(i+ l)holds for every i 2 N, then B is called periodic, with a period l, or simply l-periodic.In this case we will use the abbreviation B = fb(1); : : : ; b(l)g.Remark 2.3. We note that the above concept of the generalized nD-neighbour-hood sequences is actually a generalization of the notion of neighbourhood se-quences introduced in [2]. The authors in [1], [2] and [4] dealt only with periodicsequences.The simple distances introduced by Rosenfeld and Pfaltz [7] can also be givenby (periodic) neighbourhood sequences. Namely, the cytiblock-, chessboard- andoctagonal distances can be generated by the sequences f1g, f2g and f1; 2g, respec-tively.De�nition 2.4. Let p and q be two points in Zn and B = fb(i) : i 2 Ng ageneralized nD-neighbourhood sequence. The point sequence �(p; q;B) { havingthe form p = p0; p1; : : : ; pm = q, where pi�1 and pi are b(i)-neighbours for 1 � i � m{ is called a path from p to q determined by B. The length j�(p; q;B)j of the path�(p; q;B) is m. Clearly, there always exist paths from p to q, determined by B.The distance between p and q is de�ned as the length of a shortest path, and isdenoted by d(p; q;B).Using the above distance we cannot obtain a metric in Zn for every nD-neigh-bourhood sequence. In order to prove this, consider the following simple example.Let B = f2; 1g, n = 2, p = (0; 0), q = (1; 1) and r = (2; 2). In this case d(p; q;B) =1, d(q; r;B) = 1, but d(p; r;B) = 3.We have the following natural question: knowing B, how can we decide whetherthe distance function related to B is a metric on the n-dimensional digital plane,or not? The answer in the periodic case can be found in [2].For later use we need to introduce some further notation.Notation 2.5. Let p and q be two points in Zn, and B = fb(i) : i 2 Ng ageneralized nD-neighbourhood sequence. Letx = (x(1); x(2); : : : ; x(n));where x is the nonincreasing ordering of jPri(p) � Pri(q)j, that is, x(i) � x(j) ifi < j. For k = 1; : : : ; n, and i 2 N putak = n�k+1Xj=1 x(j);bk(i) =� b(i); if b(i) < n� k + 2;n� k + 1; otherwise,fk(i) = iXj=1 bk(j):Furthermore, set fk(0) = 0.The following result of Das et al. (cf. [2]) provides an algorithm for the calcula-tion of the distance d(p; q;B), de�ned in De�nition 2.4.



4 A. FAZEKAS, A. HAJDU AND L. HAJDUTheorem 2.6. (see [2]). Let p and q be two points in Zn, and B = fb(i) : i 2 Nga periodic nD-neighbourhood sequence with period l. Using the above notation,for i = 1; : : : ; n put gk(i) = fk(l)� fk(i� 1)� 1; 1 � i � l:The length of the shortest paths from p to q determined by B is given by thefollowing formula: d(p; q;B) = nmaxk=1 dk(p; q);where dk(p; q) = lXi=1 �ak + gk(i)fk(l) � :Now we recall some de�nitions and remarks from lattice theory that we need toanalyze the lattices of the generalized neighbourhood sequences.As usual, let (P;�) denote a partially ordered set. An element a 2 P is theleast upper bound (greatest lower bound) of a subset S � P if for all x 2 S,a � x (a � x), and b � a (b � a) for every upper bound (lower bound) b of S.Moreover, if every pair of elements f(x; y) : x; y 2 Pg has a least upper boundx _ y and a greatest lower bound x ^ y then (P;�) is called a lattice. The lattice(P;�) is distributive if for all x; y; z 2 Px ^ (y _ z) = (x ^ y) _ (x ^ z):Clearly, (P;�) is distributive if and only ifx _ (y ^ z) = (x _ y) ^ (x _ z):The lattice (P;�) is complete if its every subset S � P has a least upper boundWS and a greatest lower bound VS. Let (P;�) be a complete lattice and S � P .The set Sc = fx 2 P : x � WSg is called the closure of S.Remark 2.7. It is well known that (P;�) is complete if its every subset has aleast upper bound.3. NEIGHBOURHOOD SEQUENCES IN nDIt is a natural question that what kind of relation exists between the distancefunctions generated by two given neighbourhood sequences B1 and B2. The com-plexity of the problem can be characterized by the following 2D periodic examplefrom [1]. Let B1 = f1; 1; 2g, B2 = f1; 1; 1; 2; 2; 2g. Choose the points o = (0; 0), p =(3; 1) and q = (6; 3). In this case we obtain that d(o; p;B1) = 3 < 4 = d(o; p;B2),but d(o; q;B1) = 7 > 6 = d(o; q;B2). So the distances generated by B1 and B2cannot be compared.In [1] it is shown that using the functions fk(i) de�ned in Notation 2.5, a niceordering relation can be established for periodic neighbourhood sequences in 2D. Asimilar result was proved by Fazekas in 3D (see [4]). Now we extend these resultsto nD with arbitrary n 2 N, to generalized nD-neighbourhood sequences. Clearly,this case also includes the periodic one. Especially, we note that our result is neweven for n = 2 and 3.First we need the following simple lemma, which is, however of great importance,because it shows that Theorem 2.6 can be used to compute the distance of twopoints concerning an arbitrary generalized nD-neighbourhood sequence.



LATTICE OF GENERALIZED NEIGHBOURHOOD SEQUENCES IN nD AND1D 5Lemma 3.1. Let p and q be two points in Zn withPni=1 jPri(p)�Pri(q)j = c. LetA = fa(i) : i 2 Ng and B = fb(i) : i 2 Ng be two generalized nD-neighbourhoodsequences, with a(i) = b(i) for i � c. Then d(p; q;A) = d(p; q;B).Proof. First, it is clear that d(p; q;A) � c. Let d(p; q;A) = h, and let p =p0; p1; : : : ; ph = q be a path from p to q determined by A in Zn. However, byh � c and a(i) = b(i) for 1 � i � c, we obtain that pi�1 and pi are b(i)-neighboursfor i = 1; : : : ; h, hence d(p; q;B) � h = d(p; q;A). The opposite inequality can beproved in a similar way, and the lemma follows. �Theorem 3.2. Using the notation introduced in 2.5, for any generalized nD-neigh-bourhood sequences B1 = fb(1)(i) : i 2 Ng and B2 = fb(2)(i) : i 2 Ngd(p; q;B1) � d(p; q;B2); for all p; q 2 Znif and only if f (1)k (i) � f (2)k (i); for all i 2 N, k 2 f1; : : : ; ng;where f (1)k (i) and f (2)k (i) correspond to B1 and B2, respectively.Proof. First we prove that if d(p; q;B1) � d(p; q;B2) for any p; q, then f (1)k (i) �f (2)k (i) for every i 2 N, k 2 f1; : : : ; ng. The proof is indirect. Assume that thereare such i 2 N and k 2 f1; : : : ; ng for which f (1)k (i) < f (2)k (i) holds. Putuj = � jfb(2)(t) : 1 � t � i; b(2)(t) = jgj; for 1 � j < k;jfb(2)(t) : 1 � t � i; b(2)(t) � jgj; for j = k;let p = (0; 0; : : : ; 0) and Prh(q) = ( Phj=1 uj ; for h � k;0; for h > k.Using the de�nition of d(p; q;B), it is clear that d(p; q;B2) is equal to i. On theother hand, by the assumption f (2)k (i) > f (1)k (i), and by the de�nition of p and q,we have d(p; q;B1) > i, which is a contradiction.Conversely, suppose that f (1)k (i) � f (2)k (i) for every i 2 N, k 2 f1; : : : ; ng. Letp and q be two points in Zn, and put c = Pnh=1 jPrh(p) � Prh(q)j. Without lossof generality we may assume that c � 1. To derive d(p; q;B1) � d(p; q;B2), byTheorem 2.6 and Lemma 3.1, it is suÆcient to show that for k 2 f1; : : : ; ngd(1)k (p; q) = cXj=1 $ak + g(1)k (j)f (1)k (c) % � cXj=1 $ak + g(2)k (j)f (2)k (c) % = d(2)k (p; q)holds. For this we prove that for any �xed k with k 2 f1; : : : ; ng$ak + g(1)k (j)f (1)k (c) % � $ak + g(2)k (j)f (2)k (c) % for 1 � j � c:



6 A. FAZEKAS, A. HAJDU AND L. HAJDUUsing the de�nition of gk(j), the above inequalities are equivalent to the followingones:$ak + f (1)k (c)� f (1)k (j � 1)� 1f (1)k (c) % � $ak + f (2)k (c)� f (2)k (j � 1)� 1f (2)k (c) % ; 1 � j � c;which is the same as1 + $ (ak � 1)� f (1)k (j � 1)f (1)k (c) % � 1 + $ (ak � 1)� f (2)k (j � 1)f (2)k (c) % ; 1 � j � c:If (ak � 1)� f (2)k (j � 1) � 0, then we even have(ak � 1)� f (1)k (j � 1)f (1)k (c) � (ak � 1)� f (2)k (j � 1)f (2)k (c) :Indeed, this inequality is equivalent tof (2)k (c)(ak � 1� f (1)k (j � 1)) � f (1)k (c)(ak � 1� f (2)k (j � 1));which clearly holds because of our assumption f (2)k (i) � f (1)k (i), i 2 N.In the case of (ak � 1) � f (2)k (j � 1) < 0, by the de�nitions of fk and ak, weobviously have $ (ak � 1)� f (2)k (j � 1)f (2)k (c) % = �1:However, using again f (2)k (i) � f (1)k (i), i 2 N, now the equality$ (ak � 1)� f (1)k (j � 1)f (1)k (c) % = �1also holds, which completes the proof of the theorem. �De�nition 3.3. Let Sn, S0n, S0n(l�) and S0n(l) be the sets of generalized, periodic,at most l-periodic and l-periodic (l 2 N) nD-neighbourhood sequences, respectively.For any B1; B2 2 Sn we de�ne the relation w� in the following way:B1 w� B2 , f (1)k (i) � f (2)k (i)for all i 2 N and k 2 f1; : : : ; ng.Remark 3.4. Using the previous theorem, it is evident thatw� is a partial orderingrelation in Sn, hence also all in its subsets. Moreover, this relation w� in 2D and3D, is clearly identical to those introduced by Das [1] and Fazekas [4], respectively.Beside Sn, we investigate the structure of all those sets which were studied byDas [1] in the periodic case, like S0n, S0n(l�) and S0n(l) under w�. Unfortunately,in most cases the above sets with respect to this relation does not form a nicestructure. Although some of the forthcoming results are very easy to prove, theyare of certain importance because provide some information about the di�erencesof the sets involved. Our only "positive" result in this direction is the following.



LATTICE OF GENERALIZED NEIGHBOURHOOD SEQUENCES IN nD AND1D 7Theorem 3.5. (S2;w�) is a complete distributive lattice.Proof. Let S � S2, and for every C 2 S2, for k 2 f1; 2g denote by f (C)k (i) thecorresponding functions de�ned in Notation 2.5. Put b(1) = maxA2S �f (A)2 (1)� andinductively, for i 2 N, i � 2 let b(i) be the minimum of those j 2 f1; 2g forwhich iPh=1 b(h) � f (A)2 (i) holds for all A 2 S, and let B = fb(i) : i 2 Ng. ByTheorem 3.2, and by the de�nition of B we have B w� A for every A 2 S. (Clearly,f (B)1 (i) = f (A)1 (i) = i for i 2 N.) Let B0 be an arbitrary upper bound of S, and letj 2 N be arbitrary, but �xed. The de�nition of B implies that f (B)2 (j) = f (A)2 (j) forsome A 2 S. Hence, as B0 is an upper bound of S, f (B0)2 (j) � f (A)2 (j) � f (B)2 (j),which proves the minimality of B. Now, by Remark 2.7 we have that (S2;w�) is acomplete lattice.Let A1; A2; A3 be arbitrary elements of S2 and i 2 N. Nowf (A1^(A2_A3))2 (i) = min �f (A1)2 (i);max�f (A2)2 (i); f (A3)2 (i)�� =max�min�f (A1)2 (i); f (A2)2 (i)� ;min�f (A1)2 (i); f (A3)2 (i)�� = f ((A1^A2)_(A1^A3))2 (i);which proves the distributive property of the lattice (S2;w�). The proof of thetheorem is complete. �Now we show that the above Theorem does not hold in higher dimensions.Roughly speaking, the reason of this phenomenon is that from 3D on, we haveto deal with n� 1 � 2 "non-trivial" fk(i), when k > 1.Proposition 3.6. (Sn;w�) is not a lattice for n � 3.Proof. Put A1 = f3; 1g, A2 = f2g, B1 = f2; 1; 3; 1; 3; 1; 3; 1; 3; : : :g and B2 =f1; 3; 1; 1; 1; 1; : : :g. Clearly, A1 w� B1 and A2 w� B1. On the other hand, ifB3 2 Sn then A1 w� B3 and A2 w� B3 implies B3 6w� B1. Indeed, the �rstelement of B3 can be at most 2. Suppose that the �rst i elements of B1 andB3 are identical, but the (i + 1)th elements are di�erent. Now B3 w� B1 wouldyield that b(3)(i + 1) > b(1)(i + 1), where these numbers are the correspondingelements of B3 and B1, respectively. If b(1)(i + 1) = 1 then b(3)(i + 1) � 2, whichimplies f (B3)2 (i+ 1) > f (A1)2 (i+ 1), contradicting A1 w� B3. (Here for C 2 Sn andi 2 f1; : : : ; ng, f (C)k (i) denotes the functions de�ned in Notation 2.5.) Otherwise,when b(1)(i+1) = 3 then b(3)(i+1) � 4, whence f (B3)4 (i+1) > f (A2)4 (i+1), whichcontradicts A2 w� B3. (The latter case can occur only when n � 4.) On the otherhand, it is clear that A1 w� B2; A2 w� B2, but B1 6w� B2. Hence, A1 and A2 haveno greatest lower bound, thus Sn is not a lattice for n � 3. �Concerning some special sets of periodic sequences, we show that similar unpleas-ant properties of w� also occur. In what follows we list these "negative" results. Wenote that Propositions 3.7 (case n = 2) and 3.8 disprove Corollary 1 and Theorem4 of Das [1], respectively.



8 A. FAZEKAS, A. HAJDU AND L. HAJDUProposition 3.7. (S0n;w�) is not a lattice for n � 2.Proof. Let A1 = f2; 1; 1g and A2 = f1; 2; 2g. The least upper bound of thesesequences in (Sn;w�) is obviously B = f2; 1; 2; 1; 2; 2; 1; 2; 2; 1; 2; 2; : : :g, which isclearly not in S0n. Suppose that B0 = fb0(1); : : : ; b0(l)g, and B0 = A1 _ A2 in S0n.However, in this case B0 w� B in Sn, but B0 6= B, hence for some i 2 N, b0(i) > b(i)must hold; suppose that i is the least number with this property. Now puttingb00(j) = b(j) for 1 � j � 3i and B00 = fb00(1); : : : ; b00(3i)g, we have B00 w� A1; A2,but B00 6w� B0, which contradicts B0 = A1 _A2 in S0n. The proof of the propositionis complete. �Proposition 3.8. (S02(l�);w�) is not a lattice for any l � 5.Proof. First let A1 = f1; 2; 2g and A2 = f1; 2; 2; 2; 1g. One can readily verify thatA1 and A2 have no least upper bound in S02(5�), thus the statement holds for l = 5.Let now l � 6, and choose any even number k with l6 < k � l3 . Put X =fx1; : : : ; xkg = f1; 2; 2; 1; 2; 1; 2; 1; : : : ; 2; 1g and Y = fy1; : : : ; ykg = f2; 1; 1; 2; 2; 1;2; 1; 2; 1; : : : ; 2; 1g, i.e. x1 = 1; x2 = 2 and xi = (i mod 2) + 1 for 3 � i � kwhile y1 = 2; y2 = 1; y3 = 1; y4 = 2 and yi = (i mod 2) + 1 for 5 � i � k. LetA1 = fX;Y g be the sequence of period 2k, obtained by writing Y after X , i.e. theelements of the 2k long period of A1 with odd indices equal to 2 and with evenindices equal to 1, except for a(1)(1) = 1; a(1)(2) = 2; a(1)(k + 3) = 1; a(1)(k + 4) =2. Similarly, let A2 = fX;Y;Xg be a sequence of period 3k. Furthermore, setB1 = f2; 1g and B2 = f1; 2; 2g. Observe that in S2 we have A1 _ A2 = A =fX;Y;X; 2; 1; 2; 1; : : : ; 2; 1g of length 6k and B1^B2 = B = f1; 2; 2; 1; 2; 1; 2; 1; : : :g,which is not periodic. We claim that A1 _ A2 does not exist in S02(l�). Indeed, ifsuch a C = fc(i) : i 2 Ng 2 S02(l�) exists, then in S2, A v� C v� B must hold.However, every period of C should be even, moreover, c(2i� 1) + c(2i) = 3 shouldhold for every i 2 N. Furthermore, c(1) = 1 should also be valid, which in view ofl < 6k and A v� C is impossible, and the Proposition is proved. �Remark 3.9. It is easy to check that (S02(l�);w�) is a distributive lattice if 1 �l � 4. Hence the statement of Theorem 4 of Das [1] is valid in these special casesonly.Proposition 3.10. (S0n(l�);w�) is not a lattice for any l � 2, n � 3.Proof. Let l � 5. It is clear that the sequences A1 and A2, de�ned in the proof ofthe previous Proposition, have no least upper bound in S0n(l�).Let now 2 � l � 4, and let A1 = fa(1)(1); : : : ; a(1)(l)g and A2 = f2g, where A1 isde�ned in the following way: a(1)(1); : : : ; a(1)(l) is the �rst l elements of f3; 1; 3; 1g.It is easy to check that these sequences have no least upper bound in S0n(l�), whichcompletes the proof. �As we mentioned above, S02(l) is a distributive lattice for every l 2 N (see [1]).The following result shows that this statement cannot be generalized to nD withn � 3.Proposition 3.11. (S0n(l);w�) is not a lattice for any l � 2, n � 3.Proof. Let l � 2 and n � 3 be arbitrary, but �xed integers. We use the samesequences as in Proposition 3.6. Namely, in Sn choose the following sequences:



LATTICE OF GENERALIZED NEIGHBOURHOOD SEQUENCES IN nD AND1D 9A1 = f3; 1g, A2 = f2g, B1 = f2; 1; 3; 1; 3; 1; 3; 1; 3; : : :g andB2 = f1; 3; 1; 1; 1; 1; : : :g.De�ne A0j = fa(j)0(1); : : : ; a(j)0(l)g, and B0j = fb(j)0(1); : : : ; b(j)0(l)g for j = 1; 2 inS0n(l) in the following way: a(j)0(i) = a(j)(i), b(j)0(i) = b(j)(i), i = 1; : : : ; l. Just asin the proof of Proposition 3.6, it is easy to show that if A01^A02 exists in S0n(l), thenit must be B01. However, clearly B02 v� A01; A02, but B02 6v� B01, which completes theproof. �The above results show that under the relation w� we cannot obtain a nicestructure neither in Sn, nor in various subsets of it. Now we introduce a newordering relation, which is in close connection with w�. Moreover, Sn and itssubsets considered above, will form much nicer structures under this new relation.De�nition 3.12. For any B1 = fb(1)(i) : i 2 Ng, B2 = fb(2)(i) : i 2 Ng 2 Sn wede�ne the relation w in the following way:B1 w B2 , b(1)(i) � b(2)(i); for every i 2 N:Remark 3.13. It is clear that w� is a proper re�nement of w in Sn, S0n, S0n(l�)and S0n(l).We examine the structure of Sn, S0n, S0n(l�) and S0n(l) with respect to w. As wewill see, the structures we get will be much nicer than in the case of w�.Proposition 3.14. (Sn;w) is a complete distributive lattice with greatest lowerbound VSn = f1g and least upper bound WSn = fng.Proof. From the de�nition of w it follows that this relation is re
exive, antisym-metric and transitive on Sn. Thus (Sn;w) is a partially ordered set.It is clear that for every B1; B2 2 Sn, B1 ^ B2 and B1 _ B2 exist in Sn, and wehave B1 ^ B2 = fmin(b(1)(i); b(2)(i)) : i 2 Ng;B1 _ B2 = fmax(b(1)(i); b(2)(i)) : i 2 Ng:Thus (Sn;w) is a lattice. Let now S = fB
 : B
 2 Sn; 
 2 �g with some index set�, and put b(i) = max
2� �b(
)(i)�, where b(
)(i) is the ith element of B
 . Clearly,B = fb(i) : i 2 Ng is the least upper bound of S, hence by Remark 2.7 (Sn;w) isa complete lattice.The statements that this lattice is distributive and VSn = f1g, WSn = fng aretrivial. �Proposition 3.15. (S0n;w) is a distributive lattice with greatest lower bound VS0n= f1g and least upper bound WS0n = fng.Proof. It is clear that if B1; B2 2 S0n, then B1^B2 and B1_B2 { given in the proofof the previous Proposition { are also in S0n. Thus, as S0n � Sn and f1g; fng 2 S0n,we immediately obtain the statement. �However, the ordering relation w has worse properties in S0n than in Sn. This isshown by the following "negative" result.



10 A. FAZEKAS, A. HAJDU AND L. HAJDUProposition 3.16. For n � 2, (S0n;w) is not a complete lattice.Proof. To prove the statement, we give a counterexample. To �nd such an example,we construct a monotonously increasing and a monotonously decreasing sequence inS0n, such that their "limit" sequence is the same, however, this "limit" is in Sn nS0n.This will show that (S0n;w) is not complete.For the precise formulation of the above idea we need some notation. If A 2S0n is l-periodic for some l 2 N, i.e. A = fa(1); : : : ; a(l)g, then put A2(l) =fa(1); : : : ; a(l); a(1); : : : ; a(l)g. (That is, we write A into a 2l-periodic form). More-over, if A 2 S02 and A is l-periodic, A = fa(1); : : : ; a(l)g, then for i 2 f1; : : : ; lg letAhii(l) = fa0(1); : : : ; a0(l)g such that a0(j) = a(j) for j 6= i and a0(i) = 3 � a(i).(That is, all the elements of A remains the same, except for the ith which ischanged.) Finally, let uk and vk be integer sequences de�ned by u0 = v0 = 0,uk = uk�1 + k, vk = vk�1 + k + 1 for k � 1. Clearly, the length of the closedinterval It = [ut; vt] is t, and these intervals for t � 0 provide a partition of N[f0g.Now let A�1 = f1g, B�1 = f2g, and de�ne the sequences Ak and Bk inS0n in the following way. If k 2 It where t is even, then let Ak = A2k�1(2k),Bk = �B2k�1(2k)�h2ki(2k+1), and if t is odd then put Ak = �A2k�1(2k)�h2ki(2k+1),Bk = B2k�1(2k). (That is, to obtain Ak and Bk, we write the 2k long periodsof Ak�1 and Bk�1 after Ak�1 and Bk�1, respectively, and then we change ex-actly one of the 2k+1th long periods obtained, at the 2kth place; the parity oft determines which period is to be modi�ed. For the �rst few values of k weget A�1 = f1g, A0 = f1; 1g, A1 = f1; 2; 1; 1g, A2 = f1; 2; 1; 2; 1; 2; 1; 1g, A3 =f1; 2; 1; 2; 1; 2; 1; 1; 1; 2; 1; 2; 1; 2; 1; 1g and B�1 = f2g, B0 = f1; 2g, B1 = f1; 2; 1; 2g,B2 = f1; 2; 1; 2; 1; 2; 1; 2g, B3 = f1; 2; 1; 2; 1; 2; 1; 1; 1; 2; 1; 2; 1; 2; 1; 2g.) From thede�nition of the sequences Ak and Bk immediately follows that Ak�1 v Ak andBk�1 w Bk for every k 2 N[f0g, with strict inequalities in both sequences in�nitelyoften. Moreover, observe that for every k 2 N [ f0;�1g for the 2k+1 long periodsfa(k)(1); : : : ; a(k)(2k+1)g and fb(k)(1); : : : ; b(k)(2k+1)g of Ak and Bk, respectively,we have a(k)(i) = b(k)(i) for 1 � i < 2k+1 and a(k)(2k+1) < b(k)(2k+1); this factis just a straightforward consequence of the shape of A�1 and B�1, and of thede�nition of the sequences. Now for every i 2 N choose a k 2 N with 2k+1 > i, andput c(i) = a(k)(i) and C = fc(i) : i 2 Ng. By the above mentioned property of Akand Bk, C is well-de�ned. We show that C 2 Sn n S0n. Indeed, from the de�nitionof Ak and Bk it follows that for every t 2 N [ f0g we have c(i) = c(i +ms) with1 � i � 2ut , s = 2ut and 0 � m � 2vt�ut+1 � 1, but c(2ut) 6= c(2vt+1) = c(2ut+1).However, it is impossible for any periodic sequence to have this property.Let now S = fAk : k 2 N [ f0;�1gg, and suppose that B = WS in S0n forsome B = fb(1); : : : ; b(l)g. However, then in Sn B w C, but B 6= C, hence for somei 2 N, b(i) > c(i). But this implies Bk 6w B in S0n, if 2k+1 > i, which by Bk w Aj ,j 2 N [ f0;�1g, contradicts B = WS in S0n. Hence S has no least upper bound inS0n, which proves that (S0n;w) is not complete. �The forthcoming Proposition shows that S0n(l�) is not a "good" subset of Sn, inthe sense that it does not form a nice structure even under w. Of course, it is notsurprising in view of the following observation: if A1 and A2 are in S0n(l�), thenA1 _ A2 and A1 ^ A2 de�ned in Sn, does not belong to S0n(l�) in general.



LATTICE OF GENERALIZED NEIGHBOURHOOD SEQUENCES IN nD AND1D 11Proposition 3.17. (S0n(l�);w) is not a lattice for n; l 2 N with n � 2 and l � 6.Proof. Let n � 2 be arbitrary. First observe that f1; 1; 2; 1g and f1; 2; 1; 2; 1; 1g for6 � l � 11, and f1; 1; 1; 1; 1; 1; 2; 1g and f1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 1g for 12 � l � 14have no least upper bound in S0n(l�).Let now l � 15, and choose a prime p with maxf3; l6g < p � l3 . (By Bertrand'spostulate, for l � 18 such a prime always exists, and for l < 18 we may take p = 5.)Put A1 = f1; 2g and A2 = f1; 1; 1; : : : ; 1; 1; 1; 2g, where the period of A2 is 3p(i.e. the �rst 3p� 1 elements of the 3p long period of A2 equal to 1, and the lastelement is 2). Moreover, let B1 = f1; 2; 2; 2; 1; 2g and B2 = fb(2)(1); : : : ; b(2)(2p)gwith b(2)(i) = 1 if i is odd but i 6= p and b(2)(i) = 2 otherwise (that is when i iseven or i = p). Now it is easy to check that A1; A2; B1; B2 2 S0n(l�), A1; A2 v B1,A1; A2 v B2, but B1 and B2 cannot be compared. Moreover, in Sn we haveA1_A2 = B1^B2. However, as A1_A2 is of period 6p (but not of shorter period),it is not in S0n(l�), hence A1 and A2 cannot have a least upper bound in S0n(l�),which completes the proof of the Proposition. �Remark 3.18. We note that (S0n(l�);w) is a distributive lattice if 1 � l � 5, forevery n 2 N. We omit the trivial proof of this statement.Proposition 3.19. (S0n(l);w) is a distributive lattice for every n; l 2 N.Proof. As for any A1; A2 2 S0n(l) the sequences A1 _ A2 and A1 ^ A2 de�ned inSn are also in S0n(l), the statement is an immediate consequence of Proposition3.14. � 4. NEIGHBOURHOOD SEQUENCES IN 1DThroughout this chapter we denote the set of in�nite integer sequences by Z1,i.e. Z1 = f(zi)1i=1 : zi 2 Zg. We shall refer to the elements of Z1 as points.Our purpose is to extend the result of the previous chapter, concerning Zn, tothis general case. Moreover, we will extend Theorem 2.6, due to Das et. al. [2]to Z1, too. First we give some de�nitions that are natural generalizations of theconcepts in Chapter 2.De�nition 4.1. Let p and q be two points in Z1. The ith coordinate of the pointp is indicated by Pri(p). The points p, q in Z1 are called N -neighbours for someN 2 N [ f1g, if� 8i 2 N : jPri(p)� Pri(q)j � 1;� P1i=1 jPri(p)� Pri(q)j � N:De�nition 4.2. An in�nite sequence B = fb(i) : i 2 N and b(i) 2 N [ f1gg iscalled an 1D-neighbourhood sequence. If for some l 2 N, b(i) = b(i+ l) holds forevery i 2 N, then B is called periodic, with a period l, or simply l-periodic. In thiscase we will use the abbreviation B = fb(1); : : : ; b(l)g.De�nition 4.3. Let p and q be two points in Z1 and let B be an 1D-neighbour-hood sequence. The point sequence�(p; q;B) { having the form p = p0; p1; : : : ; pm =q, where pi�1 and pi are b(i)-neighbours for 1 � i � m { is called a path of lengthm from p to q determined by B. If such a path exists, then the distance of p and



12 A. FAZEKAS, A. HAJDU AND L. HAJDUq (determined by B) is de�ned as the common length of the shortest paths from pto q determined by B. It will be denoted by d(p; q;B). If there is no path from pto q determined by B, then we put d(p; q;B) =1.Remark 4.4. Observe that the following two statements are equivalent:� d(p; q;B) =1 for every 1D-neighbourhood sequence B,� the set fjPri(p)� Pri(q)j : i 2 Ng is unbounded.To prove our main results concerning 1D-neighbourhood sequences, we needthree lemmas. The following result shows that for any 1D neighbourhood se-quence B, the function d(p; q;B) has some "symmetry" properties. We note thatby Theorem 2.6, the same is also true in nD for every n 2 N.Lemma 4.5. Let B = fb(i) : i 2 Ng be an 1D-neighbourhood sequence, andp; q 2 Z1. The distance value d(p; q;B) depends only on the di�erences of thecoordinates of the points, i.e. on the numbers jPri(p)�Pri(q)j, i 2 N. Especially, forany 1D-neighbourhood sequence B and p; q 2 Z1 we have d(p; q;B) = d(q; p;B).Proof. First, it is clear that for every a; b; x 2 Z1 and an 1D-neighbourhoodsequence B, d(a; b;B) = d(a � x; b � x;B) holds. Thus we may suppose thatp = o = (0; 0; 0; : : : ). Let q; q0 2 Z1 with jPri(q)j = jPri(q0)j for every i 2 N. Toprove the �rst part of the lemma, it is suÆcient to show that d(o; q;B) = d(o; q0;B).To do this, �rst put d(o; q;B) = k < 1 and let o = q0; q1; : : : ; qk = q be a pathfrom o to q. For i = 0; : : : ; k de�ne the points q0i in the following way:Prj(q0i) = � Prj(qi); if Prj(q) = Prj(q0),�Prj(qi); if Prj(q) = �Prj(q0).Now we have q00 = o and q0k = q0. Moreover, for i = 1; : : : ; k and j 2 N, Prj(q0i�1) 6=Prj(q0i) implies Prj(qi�1) 6= Prj(qi). Indeed, suppose that Prj(qi�1) = Prj(qi) andlet "Prj(q) = Prj(q0) with " 2 f1;�1g. However, by the de�nition of Prj(q0i�1)and Prj(q0i), in this case we would have Prj(q0i�1) = "Prj(qi�1) = "Prj(qi) =Prj(q0i), which would be a contradiction. Hence P1i=1 jPrj(q0i) � Prj(q0i�1)j �P1i=1 jPrj(qi)�Prj(qi�1)j, which shows that q0i�1 and q0i are b(i)-neighbours. Thisproves d(o; q0;B) � k. Exchanging q and q0 we have d(o; q;B) = d(o; q0;B) in thecase k <1. However, if d(o; q;B) =1, just as above we must have d(o; q0;B) =1,as well. Indeed, d(o; q0;B) = k < 1 would imply d(o; q;B) � k which would be acontradiction.The second statement of the lemma is an immediate consequence of the �rstone. �If the points p; q 2 Z1 di�er only at �nitely many coordinates, then their dis-tance is certainly �nite (regardless of B), and the points of a shortest path connect-ing them belongs to an nD subspace of Z1 for some n 2 N. By this observation,the following two lemmas are obvious. However, since these lemmas play importantroles in the proof of Theorem 4.8, and for the convenience of the reader, we providethe easy proofs of these statements.



LATTICE OF GENERALIZED NEIGHBOURHOOD SEQUENCES IN nD AND1D 13Lemma 4.6. Let p and q be two points in Z1 such that jfi : Pri(p) 6= Pri(q)gj =c < 1. Let B = fb(i) : i 2 Ng be an 1D-neighbourhood sequence, and letA = fa(i) : i 2 Ng be an1D-neighbourhood sequence with a(i) = minfb(i); cg fori 2 N. Then d(p; q;A) = d(p; q;B).Proof. It is clear that d(p; q;B) � d(p; q;A), so we have only to show the oppositerelation. Put H = fi : Pri(p) 6= Pri(q)g, and m = d(p; q;B). Since c <1, we havem < 1. Hence there exists a path p = p0; p1; : : : ; pm = q from p to q determinedby B in Z1. For 1 � i � m� 1 letPrj(qi) = � Prj(pi); for j 2 H;Prj(p); for j 2 N nH ,and set q0 = p and qm = q. Now by the de�nitions of A and the points qi, itis clear that q0; q1; : : : ; qm is a path from p to q determined by A, which yieldsd(p; q;A) � m = d(p; q;B), and the lemma is proved. �Lemma 4.7. Let B be an 1D-neighbourhood sequence, and p and q two pointsin Z1 such that the set H = fi : Pri(p) 6= Pri(q)g is �nite. Let d(p; q;B) = m.Then there exists a path p = q0; q1; : : : ; qm = q from p to q determined by B in Z1such that for every i = 1; : : : ;m and j 2 N nH we have Prj(qi�1) = Prj(qi).Proof. The points q0; : : : ; qm de�ned in the proof of Lemma 4.6 clearly have thedesired properties. �In Theorem 4.8 we describe how d(p; q;B) can be calculated. This result is ofindependent interest, but it will be useful in the proof of Theorem 4.10, too.Theorem 4.8. Let p and q be two distinct points in Z1 such that the set fjPri(p)�Pri(q)j : i 2 Ng is bounded, and let B = fb(i) : i 2 Ng be an 1D-neighbourhoodsequence. For c � 1 let Hc = fi : jPri(p) � Pri(q)j � cg, and put k = minfc :jHcj <1g and h = jHkj. For i 2 N let a(i) = minfh; b(i)g, and A = fa(i) : i 2 Ng.Moreover, put r = (Pri(p))i2Hk and s = (Pri(q))i2Hk . Let t be de�ned by thefollowing properties:� b(t) =1;� jfi : i � t and b(i) =1gj = k � 1.If such t does not exist, then putt = � 0; if k = 1,1; otherwise.Now the following equality holds:d(p; q;B) = maxfdh(r; s;A); tg;where for h � 1, dh(r; s;A) is the h-dimensional distance of r and s determined byA, and d0(r; s;A) = 0.Proof. By Lemma 4.5, without loss of generality we may suppose that Pri(p) �Pri(q) for every i 2 N. First, it is clear that if h = 0, then d(p; q;B) = t. Assume



14 A. FAZEKAS, A. HAJDU AND L. HAJDUthat h � 1, and put dh(r; s;A) = x. Let r = r0; r1; : : : ; rx = s be a path from p toq determined by A in Zh. First suppose that x � t, and let 1 � m1 < m2 < � � � <mt � x be the k � 1 indices with b(mi) =1, i = 1; : : : ; t. Set M = fm1; : : : ;mtg.De�ne the points qi for i = 0; : : : ; x in Z1 in the following way: q0 = p,Prj(qi) = 8><>: Prj(ri); for j 2 Hk, i 2 f1; : : : ; xg,Prj(qi�1); for j 2 N nHk; i 2 f1; : : : ; xg nM ,min (Prj(qi�1) + 1;Prj(q)) ; for j 2 N nHk, i 2M .By this de�nition, the points qi�1; qi are b(i)-neighbours for i = 1; : : : ; x. Moreover,we have qx = q. Indeed, for j 2 Hk clearly Prj(qx) = Prj(rx) = Prj(q) holds. Onthe other hand, as x � t, for j 2 N n Hk the jth coordinate is increased k � 1times (if necessary), and we obtain Prj(qx) = Prj(q) for these indices, too. Hencein this case we have d(p; q;B) � x = maxfdh(r; s;A); tg. Now suppose that t > x.If t = 1, then there is nothing to prove, so suppose that t < 1. Let the pointsr0; : : : ; rx be as before, and for 0 � i � x de�ne the points qi in the same way. Fori = x+ 1; : : : ; t putPrj(qi) = � min (Prj(qi�1) + 1;Prj(q)) ; if b(i) =1 and j 2 N nHk,Prj(qi�1); otherwise.It is clear that for i = 1; : : : ; t the points qi�1; qi are b(i)-neighbours. Moreover, wehave qt = q. Indeed, for j 2 Hk we even have Prj(qx) = Prj(q). On the other hand,if j 2 N n Hk, then the jth coordinate is increased (at most) k � 1 times, whichyields Prj(qt) = Prj(q) for such indices, too. Hence, in this case we have againd(p; q;B) � t = maxfdh(r; s;A); tg:Now we prove that d(p; q;B) � maxfdh(r; s;A); tg. Let d(p; q;B) = m < 1. (Ifm = 1, then we are ready.) Let p = p0; p1; : : : ; pm = q be a path from p to qdetermined by B in Z1. Let qi for i = 0; : : : ;m be de�ned in the following way:Prj(qi) = � Prj(pi); for j 2 Hk;0; for j 2 N nHk.Clearly, for i = 1; : : : ;m, qi�1 and qi are b(i)-neighbours. Hence, by Lemma 4.6and Lemma 4.7, and by the de�nitions of r, s and A, we haved(p; q;B) � d(q0; qm;B) = d(q0; qm;A) � dh(r; s;A):On the other hand, it is clear that d(p; q;B) � t. Indeed, let u, v, and w be anythree points in Z1 such that u and v are b(i)-neighbours for some i 2 N. For c 2 Nlet Uc = fi : jPri(u) � Pri(w)j � cg, Vc = fi : jPri(v) � Pri(w)j � cg, and putku = minfc : jUcj < 1g, kv = minfc : jVcj < 1g. If jUcj = 1 or jVcj = 1 forevery c 2 N, then put ku = 1 or kv = 1, respectively. Now, if b(i) < 1, thenclearly ku = kv, and even if b(i) = 1, we have jku � kv j � 1 (with the agreementj1 � 1j = 0). Hence, by the de�nition of k and t, we obtain d(p; q;B) � t,which implies d(p; q;B) � maxfdh(r; s;A); tg. The proof of the theorem is nowcomplete. �



LATTICE OF GENERALIZED NEIGHBOURHOOD SEQUENCES IN nD AND1D 15Remark 4.9. It is interesting to note that combining the above result with theformula provided for d(p; q;B) in Theorem 2.6, it is possible to calculate explicitelythe distance of two points in Z1, determined by an 1D-neighbourhood sequence.On the other hand, if we take p; q 2 Z1 such that they di�er at only �nitely manyplaces, then we have k = 1 whence t = 0 in Theorem 4.8. This shows that thedistance de�ned in Z1 is in fact a generalization of the distances introduced in the�nite dimensional cases.The following result is the extension of Theorem 3.2 to Z1.Theorem 4.10. Let Bc = fb(c)(i) : i 2 Ng (c = 1; 2) be two 1D-neighbourhoodsequences. For i; k 2 N, c = 1; 2, put f (c)k (j) =Pji=1min(b(c)(i); k). Thend(p; q;B1) � d(p; q;B2) for all p; q 2 Z1if and only if f (1)k (i) � f (2)k (i) for all i 2 N, k 2 N :Proof. First we derive the second property from the �rst one. Contrary to thesecond statement, suppose that for some j; h 2 N, f (1)h (j) < f (2)h (j) holds. Letui = � jfb(2)(t) : b(2)(t) = i; 1 � t � jgj; for 1 � i < h;jfb(2)(t) : b(2)(t) � i; 1 � t � jgj; for i = h,and put p = (0; 0; 0; : : : ), q = (u1; u1+u2; :::; u1+u2+� � �+uh; 0; 0; : : : ). For c = 1; 2and i 2 N set a(c)(i) = minfb(c)(i); hg and sequences Ac = fa(c)(i) : i 2 Ng. ByLemma 4.6, by the constructions of p, q and Al, l = 1; 2, and by f (1)h (j) < f (2)h (j),we have d(p; q;B1) = d(p; q;A1) > d(p; q;A2) = d(p; q;B2);which contradicts the �rst statement, and the �rst part of the theorem is proved.Now we prove that the second statement implies the �rst one. Fix two arbitrarypoints, p and q in Z1. Without loss of generality we may suppose that the setfjPri(p)�Pri(q)j : i 2 Ng is bounded, otherwise we have d(p; q;B1) = d(p; q;B2) =1. Let h; r; s; tc and Ac denote the parameters, points and sequences correspondingto p; q, and Bc, c = 1; 2, de�ned in Theorem 4.8. Using this Theorem, it is suÆcientto show that t1 � t2 and dh(r; s;A1) � dh(r; s;A2) in Zh.First suppose that t1 > t2. This implies that for some n 2 N, jfi : i �n and b(1)(i) = 1gj < jfi : i � n and b(2)(i) = 1gj. However, in this case forsome m we clearly have f (1)m (n) < f (2)m (n), which contradicts the second statement.Now we prove that dh(r; s;A1) � dh(r; s;A2). To do this, observe that Ac forc = 1; 2 is an hD-neighbourhood sequence. Moreover, for 1 � k � h the functionsf (c)k corresponding to Bl are just the same as those corresponding to Ac, c = 1; 2in Theorem 3.2. Hence, by Theorem 3.2 we have dh(r; s;A1) � dh(r; s;A2), whichcompletes the proof of the theorem. �Now we study the structure of the 1D-neighbourhood sequences. First wede�ne two ordering relations on them, which are just the extensions of the �nitedimensional orderings to this general case.



16 A. FAZEKAS, A. HAJDU AND L. HAJDUDe�nition 4.11. Let B1 and B2 be 1D-neighbourhood sequences. We writeB1 w� B2, if for every i; k 2 N, f (1)k (i) � f (2)k (i) holds.Remark 4.12. Let S1, S01, S01(l�) and S01(l) be the sets of generalized, pe-riodic, at most l-periodic and l-periodic (l 2 N) 1D-neighbourhood sequences,respectively. It is clear that w� is an antisymmetric, transitive relation, i.e. apartial ordering on all these sets. However, just as in the �nite dimensional case,(S1;w�), (S01;w�), (S01(l�);w�) and (S01(l);w�) with l � 2 are not lattices.These statements are simple consequences of Propositions 3.6 through 3.11.De�nition 4.13. By the above notation, for B1 = fb(1)(i) : i 2 Ng; B2 =fb(2)(i) : i 2 Ng 2 S1 we write B1 w B2 if and only if b(1)(i) � b(2)(i) forevery i 2 N.It turns out that w has much more pleasant properties than w� in case of 1D-neighbourhood sequences, too.Proposition 4.14. (S1;w), (S01;w) and (S01(l);w) for any l � 1 are distributivelattices, with greatest lower bound f1g and least upper bound f1g. Moreover, the�rst and third lattices are complete, but the second one is not.Proof. The statement is a simple consequence of Propositions 3.14, 3.15, 3.16 and3.19. We omit the details. �Remark 4.15. (S01(l�);w) is a complete distributive lattice for 1 � l � 5. Ifl � 6, then (S01(l�);w) is not a lattice. The proofs of these statements are trivial(see Proposition 3.17 and Remark 3.18).The following result provides some information about the structures of severalother subsets of S1 under w.Proposition 4.16. Let S�1 = fB : B = fb(i) : i 2 N and b(i) 2 Ngg, S+1 =S1n=1 Sn and S�1 = S1n=1 S0n, where Sn and S0n are de�ned in De�nition 3.3. Then(S�1;w), (S+1;w) and (S�1;w) are non-complete distributive lattices (sublattices ofS1) with greatest lower bound f1g. S�1, S+1 and S�1 have no least upper bounds.Proof. Let S be any of the sets S�1, S+1, S�1. It is evident that for each A1; A2 2 S,A1_A2 and A1^A2 de�ned in S1, also belong to S. Hence these three sets clearlyform distributive lattices under w. It is obvious that f1g is the greatest lower boundof each lattice, and that they have no least upper bounds. The last observationimmediately implies the non-completeness of the lattices. �Finally, we show that the lattice (S1;w) (and in some special cases (S01(l�);w)or (S01(l);w)) can be considered as the closure of the union of the �nite dimensionallattices, studied in the previous chapter. We also include the lattices (S01;w) and(S�1;w) into this consideration.Proposition 4.17. Use the previous notation, and put S�1(l�) = S1n=1 S0n(l�) andS�1(l) = S1n=1 S0n(l) for l 2 N, where S0n(l�) and S0n(l) are de�ned in De�nition 3.3.In S1, (S1;w) is the closure of the lattices (S01;w), (S�1;w), (S+1;w), (S�1;w),(S�1(l�);w) and (S�1(l);w). Moreover, in S01(l) for every l 2 N, (S01(l);w) is the
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