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Abstract

Cancer is one of the non-contagious diseases that causes the

most significant number of human deaths. The time it takes for

cancer cells to be identified in a patient’s body significantly impacts

how easily they can be treated. An automatic screening method

using computer-aided diagnostic (CAD) is one way of early can-

cer detection. This dissertation proposes several models that can

be adopted as automatic screening methods. The first model is

a convolutional-based single neural network built by adopting the

Visual Geometry Group (VGG) module. The second model is an

ensemble model based on a voting system built by combining three

single networks from scratch by adopting three well-known mod-

ules: VGG, Inception, and Residual Network modules. The last

model is an ensemble model based on interconnected networks. Un-

like the previous ensemble model, this model does not use a voting

method in decision making but trains all three networks in an ex-

tensive linked network to make a single final decision. Furthermore,

the success of each model, also the benefits and drawbacks of it are

presented.
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1. Introduction

1.1. Motivation

Cancer is one the most lethal diseases in the world at the

present time. Cancer itself is categorized as a non-communicable

disease. Through a study, the World Health Organization (WHO)

stated that cancer kills humans during productive age or before 70

years [5]. Cancer can be defined as hundreds of types of diseases

with different characteristics from one another. Human cells, which

are abundant, can reproduce and are dependent on one another.

The human body can control these cells’ proliferation in normal

conditions to maintain their shape and size. However, cancer cells

interfere with this growth by moving from one place to another and

change shape and size beyond the control of the human metabolism

[56].

Clinical diagnosis is necessary to be done by doctors predomi-

nantly before confirming whether a patient has cancer or not. Fur-

thermore, the patient is advised to do a pathological examination

by an expert using a microscope. Presently, with the availabil-

ity of Whole Slide Image Scanner, there has been a significant

improvement in the quality and quantity of the cancer diagnosis

process due to its ability to detect variables in a more compre-

hensive histopathology image [35]. Another advantage of this tool
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is its ability to record appropriately all biological processes in the

human body such as apoptosis, angiogenesis, and metastasis [57].

The process of digitizing by the Whole Slide Image Scanner data

resulted in an explosion of large amounts of data. Thus, the avail-

ability of sufficient data can be utilized to implement deep learning

by developing a Convolutional Neural Network (CNN) model [48].

Figure 1.1 shows how cancer arises.

Source: https://www.teresewinslow.com/cellular-scientific/ihj90o9dtfaen5y6klyz2c97o92vr7

Figure 1.1: How cancer arises

The CNN model is reliable for predicting image data. In this

previous study [25], They developed a CNN model called AlexNet

that consists of two-layer blocks. The first block contains five stack

convolution layers, while the second block consists of three fully

connected layers. This model got satisfactory results in the com-

petition held by ImageNet, by analyzing 1.2 million images, this
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model got an error rate of 16.4%. Meanwhile, the lower error rate

of 15.3% was achieved when they modified the architecture to 7

CNN. The two error rates represent the top five predicted labels.

Visual Geometry Group (VGG) is one of the successful CNN

architectures in the 2014 ILSVRC ImageNet competition. By com-

bining the idea of definition, convolution block repetition, polling

layers, and small filters, VGG is developed into a model with effi-

cient and accurate performance. VGG was produced in two models,

namely 16 and 19 layers. In particular, the 19 layers VGG was re-

ported able to reach an error rate of 6.8% for the top five predicted

labels and 23.7% for the top first predicted labels [49].

The main purpose of using CNN is to extract features from an

image. The problem then arises due to the presence of the various

positions of the information in the image. In other words, the in-

formation from the image does not always exist at the same point,

sometimes we may find the desired information in the edge of an

image and may only occupy a small part of the image area. These

conditions require extra work in determining a suitable filter size

for CNN. If we use a too large filter, the disbursement of informa-

tion will be more global and lead to the high computation costs.

Meanwhile, if we use a too-small filter, the process of searching for

information is more local, which may lead to the possibility of los-

ing the desired information. To solve this problem, the Inception
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architecture came up with the idea of installing filters of different

sizes at one convolution level and then combining the outputs. The

purpose of this integration is to reduce the computation costs with-

out compromising model performance. By installing some of these

filters, this architecture will look wider than other architectures

[52].

Another idea starts when there is the fact that too deep and

complex architecture ruins the model’s performance. Thus a con-

cept was developed to divide the convolution into several blocks,

and each block has a shortcut for bypassing. This architecture pro-

duces a model known as the Residual Network (ResNet). ResNet

has several types, varied between the smallest architecture with 34

layers to the most complex with 152 layers. From the training and

validation process using the ImageNet dataset, ResNet achieved a

19.38% error rate for the top first predicted labels and a 4.49%

error rate for the top five predicted labels [17].

Understanding the fact that to distinguish histopathology im-

ages containing cancer cells and not containing cancer cells re-

quires an expert’s ability and supported by the fact that the de-

velopment of machine learning methods has reported satisfactory

achievements in classifying image data, this dissertation focuses on

implementing artificial intelligence such as a pathologist in classi-

fying human histopathology images by utilizing machine learning
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methods, especially convolutional neural networks.

1.2. Contribution and main structure of the

dissertation

This dissertation’s main idea has been published in both pro-

ceedings and journals in the form of articles that will be discussed

later. This work aims to optimize the CNN model for predicting

cancer cells in human histopathology images. The first experiment

was run by developing a VGG module. The convolution layers

in the VGG model were re-implemented with several adjustments,

including the number of layers, convolution channels, filters, multi-

layer perceptron (MLP), and convolution blocks. The histopathol-

ogy images in the dataset were trained using a model developed to

detect cancer cells.

The second experiment focused on ensemble-based CNN de-

velopment. Ensemble-based CNN is a combination of two or more

sub-models in order to get better performance. The proposed en-

semble model was a combination of three sub-models built from

scratch by implementing three well-known CNN modules, namely

the VGG module, the Inception module, and the ResNet module.

The last experiment focused on the efficiency of the ensem-

ble model. If the previous work ensemble members were trained
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separately, and the final result was determined by voting, the en-

semble members were trained simultaneously in an interconnected

model in this work. Furthermore, in the first ensemble model, each

sub-model weight were determined by the user, but in the second

ensemble model, the weighting was part of the training process.

The interconnected model determined the appropriate weight for

each sub-model. Thus, the sub-model with better performance will

possess a bigger weight than the other model.

Furthermore, the structure of this dissertation is arranged as

follows:

1. Introduction

This chapter explains the motivation, background, issues dis-

cussed, related publications, and the dissertation’s writing

structure.

2. Literature Review

This chapter discusses the methods used and the related work

of this dissertation.

3. Results and Discussion

This part contains three chapters that explained the results

obtained from the experiment and its comprehensive discus-

sion.
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4. Conclusion

This chapter presents the conclusions of all the work achieved

in this dissertation.
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2. Literature Review

2.1. Dataset

The data used in this dissertation was the PatchCam dataset.

PatchCam is a human histopathology image produced by theWhole

Slide Digital Scanner. This dataset was derived from the Came-

lyon16 dataset [2, 55]. Camelyon16 itself was a whole-slide image of

the lymph node section, which was then broken down into 220,025

pathology images with a size of 92x92 pixels. PatchCam was used in

the Kaggle Histopathology Cancer Detection competition. Figure

2.1 is an example of a cancer image, and Figure 2.2 is an example

of a non-cancer image from the PatchCam dataset.

Figure 2.1: Cancerous images.
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Figure 2.2: Non-cancerous images.

2.2. Convolutional Neural Network

Before we discuss the suggested architecture, it is advised to

understand the CNN architecture components beforehand. In gen-

eral, the CNN architecture is divided into two large blocks. The

first block is the feature extraction layer, in which the encoding

process occurs from the image into features. Specifically, these fea-

tures are the numbers that represent the image. If we break this

block up again, two layers work in it: the Convolution layers and

the Pooling layers.

The convolutional network, known as Convolutional Neural

Network (CNN) [30], is a type of neural network that can process

image data [8, 47, 19, 44, 36, 21, 51, 41, 50] and analyze medical

images [53, 1, 6, 16, 15, 32, 26, 59, 39, 23, 10, 34]. The terminology

of convolutional neural networks refers to the use of a mathematical

operation called convolution. Meanwhile, the mathematical process
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of convolution is a type of matrix multiplication tailored to the

needs of the neural network [12]. Furthermore, it is explained that

one of the implementations of the convolution operation is for two-

dimensional image processing. This process can be seen in [12] as

equation (2.1).

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n), (2.1)

It is explained that when we have a two-dimensional, I input image

and a two-dimensional K kernel, the output value S is calculated

by adding up each product of the multiplication of the pixel value

in I with K. Since the convolution is commutative, we can also

write the process as equation (2.2):

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (2.2)

For example, Figure 2.3 represents the input image a with kernel

b, then one of the convolution processes of a and b will produce

an output S(1, 1) = (U1, 1 ∗ K1, 1) + (U1, 2 ∗ K1, 2) + (U1, 3 ∗

K1, 3) + (U2, 1 ∗K2, 1) + (U2, 2 ∗K2, 2) + (U2, 3 ∗K2, 3). From

Figure 2.3, it can be understood that to complete the full convo-

lution process, there will be pixel shifting in the input image a to

be multiplied by the kernel b. This shifting is called Stride [7]. If

10



Figure 2.3: Convolution process.

the Stride value is one, then the shifting of the red box is one pixel

horizontally and vertically. The smaller the Stride value, the more

detailed information obtained. However, it should be noted that

the smaller the pixel shifting will also impact the computation cost

significantly. Apart from that, in fact, the output size will always

be smaller than the input size. As the output will be used as in-
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put in the following convolution process, the output’s overall size

will continuously decrease. This might have an impact of missing

important information from the input. In order to keep the output

size from decreasing drastically, a method called Padding is used

[7]. Padding manipulates the input size by adding the 0 pixel value

vertically and horizontally. The padding value represents the num-

ber of pixels to be added. Thus, to calculate the dimensions of the

output, the following formula can be used.

Output =
W −N + 2P

S
+ 1, (2.3)

Where;

W = Row / Column input size,

N = Row / Column input size,

P = Padding and,

S = Stride.

Pooling layers are another type of layer in a convolution block,

which is basically a filter with a certain Stride value to poll the

feature map. There are two types of polls often used: Max-Pooling

and Average-Pooling. Max-Pooling will choose the maximum value

on the feature map while the Average-Pooling layer will average the

value from the feature map.

In the next block, the resulting feature map will be continued

12



on the fully-connected layer (FC), which is a multilayer-perceptron

(MLP) in the form of a neural network in general with a Neuron

and Activation function [12, 35, 40]. At this stage, there are di-

mensional differences between the feature map and the MLP. The

feature map, which is the convolution process’s output, is a multi-

dimensional matrix, while MLP is a vector. To change the feature

map dimensions to a vector, a Flatten layer between convolution

blocks and MLP is needed. In this dissertation, two types of activa-

tion functions were used, namely Softmax and Rectified Linear Unit

(ReLU). The Softmax function has been very often used in deep

learning implementation [40]. By providing a probability value for

each class, Softmax was not only used in multi-classification prob-

lems but also for binary classes. Thus, the softmax function can be

written as follow:

f(xi) =
exp(xi)∑
j exp(xj)

, (2.4)

ReLU is an Activation function that provides a threshold for

values less than zero. In other words, this function sets all values

less than zero to zero. Thus the ReLU function can be written as:

f(x) = max(0, x) =

xi, if xi ≥ 0

0, if xi < 0
(2.5)

Currently, ReLU is the fastest activation function in the deep learn-

13



ing process [31] and has proven to be the most widely used [43],

because compare to the other activation functions, ReLU is proven

to have better performance [60, 9]. ReLU can quickly perform the

learning process because it does not calculate exponential and di-

vision processes like other activation functions [60].

2.3. Training parameters

In the model training process using a dataset, several parame-

ters need to be set. Generally, it can be explained that an algorithm

is required to train the CNN model. One of the common iterative

learning algorithms that are used is Stochastic Gradient Descent

(SGD) [3, 4]. There are at least two hyperparameters of SGD that

need to be understood in order to be appropriately implemented.

The two hyperparameters are Batches and Epochs.

As previously discussed, the deep learning process utilizes ar-

tificial neural networks to train the model. The SGD is an opti-

mization algorithm for carrying out the learning process. The opti-

mization process refers to a process of minimizing the loss function,

ensuing to the closer resulting model to the desired model. Because

the optimization process is carried out repeatedly until it gets the

smallest loss value, the number of epochs needs to be defined to

determine how many times the learning algorithm will work on the

14



entire dataset. Thus, epochs is the hyperparameter of SGD, which

determines how many iterations the dataset will be trained on. The

number of epochs varies, usually set to 10, 100 or even 1000. If the

epochs is set to 1, each sample in the dataset has one chance to up-

date model’s parameter. Batches or batch size is a hyperparameter

of SGD that determines how many samples will be worked when

updating the model’s parameters1

Several algorithm models with the gradient descent approach

have been developed, one of them is Adam optimizers [24]. The

Adam optimization algorithm is an extension of SGD and has been

widely used in deep learning implementations. Adam adopted the

advantages of the Adaptive Algorithm (AdaGrad) and Root Mean

Square Propagation (RMSProp). Some of the advantages of using

Adam optimizers, This method is easy to implement, it requires low

computation costs, is requires little memory space, is invariant to

scale the diagonals of the gradient, is suitable for solving big data

problems or many parameters, ideal for non-stationary purposes

and solving sparse gradient problems.

1https://keras.io/api/models/model_training_apis/.

15

https://keras.io/api/models/model_training_apis/


2.4. Preprocessing and augmentation

In the deep learning process, a large amount of data is needed.

More data available, the better the model that will be produced.

The process of augmentation in this work referred to [38]. This

process included several stages of manipulation, intending to du-

plicate the image. Although the duplication was made, the dupli-

cated image was not identical to the original image. Before dis-

cussing augmentation any further, we need to see that the main

reason for using data Augmentation, was because the model was

overfitting, which refers to the low validation value compared to a

model’s accuracy value. A model can experience overfitting due to

the lack of inside data learning process. Luckily in Keras2, we can

use a simple data augmentation method. In this work, we utilized

several methods of data augmentation. These methods including;

Rotation, Shearing, Shifting, Zoom, and Flipping.

2.5. Pre-trained model

The Pre-trained model is a model that has previously im-

proved, and it is proven to have a good accuracy value in doing

predictive work. One of the pre-trained models which have suc-

2https://keras.io/api/preprocessing/image/
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cessfully performed the predictive work is VGG19 [49]. VGG19 is

the CNN developed by Oxford University and entered the competi-

tion ImageNet Challenge ILSVRC in 2014. By relying on 19 layers,

VGG19 achieved an error rate of 7.5% when validating data and

a 7,3% error rate when testing data. The architecture of VGG19

included 16-layer convolution and 3 fully connected layers. Besides,

16 layers was arranged in such a way within 5 convolution blocks.

Each block ends with Max-Pooling layer, which aimed to reduce

the dimensions of the convolution. Before passing through fully

connected layers, the dimensions of convolution must be changed

first. For that, flatten layers were used in this architecture. The

fully connected layers previously mentioned was a Multilayer Per-

ceptron (MLP) consisting of three fully connected layers. The first

two fully connected layers used the ReLu activation function, while

the latter used softmax 1000 class according to the competition’s

problem classification.

The other trained model which successfully doing the classi-

fication and prediction of image data was the InceptionV3 [52].

This model is an extension of the successful GoogLeNet model at

the ImageNet competition. Module inception concept developed

based on the fact that image data have a unique characteristic. An

image may contain multiple objects, and not all objects constitute

an important part of the data set. Furthermore, the object’s posi-
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tion is not always in the center of the image, sometimes on the edge

picture. This condition is a challenge in designing the model. The

use of large filters in the model design will lead to higher computa-

tional costs. On the other hand, the utilization of small filters leads

to missing important information from the picture. The Inception

module provides a solution using different filter sizes utilization in

one level terminated with the concatenation process. Using multi-

ple filters with different sizes on one level, causing the architecture

to look physically wider instead of deeper. The single InceptionV3

model reported an error rate of 18.77% for top-1 label prediction

and a 4.2% error rate for the top-5 predicted label.

The pre-trained ResNet [17] model was an architecture that

develops shortcut concepts for doing a bypass. The idea of this

model was to group multiple convolution layers in a block. There-

fore, this model entirely looks like several collections of convolution

blocks. Further, each block will be experiencing a bypass with a

shortcut of the same convolution layer on every block. In addition

to the form of blocks, this architectural convolution also appears to

have a repetitive bypass process. The results achieved can explain

the weaknesses of a deep architecture that in fact can damage the

accuracy of the model. ResNet has several layer variants ranging

from 34 layers to 152. When tested with an ImageNet dataset, the

best results shown by ResNet-152 with the result of 19.35% error

18



rate on the top-1 predicted label and 4.49% the error rate on the

top 5 predicted labels.
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3. Single CNN to Classify Medical Im-

ages

3.1. Network architecture

In this chapter, we report our work involved a single CNN

architecture in predicting cancer on histopathological images [29].

This architecture was designed by adopting the VGG module. Re-

ferring to the architecture, VGG stacks convolution layers. Based

on this idea, we stacked eight convolution layers, which were two

64 channel of convolution, two 128 channel of convolution, two

256 channel of convolution, and two 512 channel of convolution.

Later, every two of these convolutions, a Max-pooling layer was

inserted. Thus, four convolution blocks were formed, filled with

two convolution layers and a max-pooling layer in each block. The

next block was the Multilayer Perceptron (MLP), a one-dimension

vector. This requires the information that took shape multidimen-

sional during the convolution process to be converted before en-

tering the MLP block. This process involved a flatten layer which

converts the multidimensional matrix to be a vector. After that,

we installed two of the Dense layers with 64 channels and ended

with the Dense layer two channel according to the problem in our

dataset, the binary classification. We utilized the ReLu activation
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function on all layers except for the last layer that used the Sig-

moid activation function. To avoid overfitting conditions, we also

put two Dropout 0.5 after the 64 channel Dense layer. For more

details, we show the architecture in Figure 3.1.

Figure 3.1: Architecture single CNN.
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3.2. Training process

In general, two part of training process was included. The first

part started from the input process and four convolution blocks

ended with the Max pooling layer. This process was coding an

image into a number which represents the image. The results of

the coding can be seen in a Feature Map as shown in Figure 3.2.

In this figure, part a was the input image given to the model while

Figure 3.2: Feature extraction stage.

part b-d was the extraction feature of the input image generated by

the model. Since each layer will generate a Feature Map, the first

block of the architecture we designed will generate a Feature Map

as shown in Figure 3.3. As we can see in Figure 3.3, it consisted

of three layers representing the three layers in the first block in

Figure 3.2. The first feature map represented the first 64 channel

convolution layer, the second feature map represented the second 64

channel convolution layer, while the third feature map represented

the Max pooling layer of the first convolution block.
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Figure 3.3: Feature extraction in block of convolution.

The training process was continued at the MLP block, in which

the backpropagation process was carried out in an iteration. This

process aimed to train the model to be closer to the target value or,

in other words, to minimize the value of error/loss. As previously

mentioned, this architecture involved the three MLP layers, which

were two Dense 64 channels with ReLu activation function and

one Dense two channels with Sigmoid activation function. Thus,

the backpropagation process calculation can use the Sigmoid Cross
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Entropy Loss or the so-called Binary Cross-Entropy Loss. This

function is a combination of the Cross-Entropy Loss Function with

the Sigmoid Activation Function. Because each class’s value did

not influence the other, this function was called an independent

function. Before we see how the function was implemented, let us

first look at Cross-Entropy Loss, namely:

CE = −
C∑
i=1

ti log(si), (3.1)

where ti is the target value and si is the score for the ith classes.

Because this is binary classification problem with C = 2, then cross

entropy loss for binary classification problem can be expressed by:

CE = −
2∑

i=1

ti log(si), (3.2)

or this is straightforward to:

CE = −t1log(s1)− (1− t1)log(1− s1). (3.3)

As we know si is calculated by Sigmoid Activation Function, when

we use this loss function, the formula for Cross Entropy Loss for

Binary Classification problem can be expressed as [45, 11]:

CE = −t1log(f(s1))− (1− t1)log(1− f(s1)), (3.4)
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where the sigmoid activation function represented by:

f(si) =
1

1 + esi
. (3.5)

The training process of the model produced accuracy and val-

idation values. The accuracy value represents whether or not the

architecture is well designed, while the validation value describes

how well the architecture’s parameters work. The accuracy value

itself was calculated by the composition of the amount of predicted

data as follows:

ACC =
TP + TN

TP + TN + FP + FN
, (3.6)

where TP is true positive, that is data in class 0 (no cancer) and

precisely predicted as class 0, TN is true negative, that is data

in class 1 (cancer) and correctly predicted as class 1. FP is false

positive, namely data in class 1, which is incorrectly predicted as

class 0, and conversely, FN is false negative as data in class 0, which

is mistakenly predicted as class 1.

From the training process of 50 epochs, it can be reported

that the architecture seems to be well implemented by achieving

an accuracy value of 0.80 on the first epoch and 0.91 on the fifti-

eth epoch. Likewise, the model’s parameters can be appropriately

implemented, evidenced by the validation value for the first epoch,
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which was 0.83 and at the last epoch, 0.92, as shown in Figure 3.4.

Figure 3.4: Model accuracy.

Likewise, the backpropagation process in the model went well.

It is shown in Figure 3.5, where there was a significant and consis-

tent decrease in the loss value during the training and validation.

The initial loss value during the training was 0.45, then drops to

0.22 at the fiftieth epoch. Simultaneously, the validation process

had an initial loss value of 0.39 and ends with a loss value of 0.19

in the last epoch. The validation value and training accuracy of

the model that was not far indicated that the model was well im-

plemented and did not experience overfitting.
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Figure 3.5: Model loss.

3.3. Results

After going through the training process, we tried to use a

model in predicting data. In this study, we used 66,007 histopatho-

logical images as testing data. From Figure 3.6, we can see the pre-

diction results of the entire data. The Y-axis represents the amount

of data, and the X-axis represents the score of each data. Further-

more, it can be explained that a score of 1 stated that the image

contained cancer cells and vice versa, a score of 0 did not contain

cancer cells. For more detail, approximately 29,000 images were
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predicted by the model with a high probability of not containing

cancer cells, whereas approximately 19,000 images were predicted

with a high probability of containing cancer cells. It can also be

seen that the proportion of the predicted data gets smaller when

it reached the value 0.5, where this value represents the model’s

hesitation when predicting the data.

Figure 3.6: Distribution of predictions.

Next, we presented a confusion matrix table that describes the

composition of the two classes’ prediction results. Of the total im-

ages, 39,310 images did not contain cancer cells, and 26,697 were

images indicated to have cancer cells. As much as 37,058 normal
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images were correctly predicted as normal images, while 2252 nor-

mal images were incorrectly predicted as images containing cancer

cells. On the other hand, 24,207 images indicated to have cancer

cells have correctly predicted, and only 2490 images from this class

were incorrectly predicted as normal images as described in Table

3.1.

Table 3.1: Confusion matrix.

x class no cancer (0) class cancer (1)

predicted as no cancer (0) 37058 2490

predicted as cancer (1) 2252 24207

support 39310 26697

We also calculated the Area Under Curve (AUC) from the suc-

cessfully classified data, by preliminary calculated the True Positive

Rate value and the False Positive Rate value. Then the two val-

ues were plotted in a Receiver Operating Characteristic Curve as

shown in Figure 3.7. From this figure, it can be understood that

the maximum TPR and FPR value was 1, which represented the

probability value of data in a class. The greater the TPR value and

the smaller the FPR value, the greater the AUC value obtained.
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Figure 3.7: ROC and AUC

3.4. Discussion

From the above research results, we can conclude that the Neu-

ral Network model with convolutional architecture can be used as

a solution to the binary classification problem in predicting can-

cer on histopathological images. The proposed CNN was proven

to study histopathological image features that can distinguish be-

tween images containing cancer cells and non-cancer cells. The

proposed model also demonstrated excellent performance in clas-

sifying histopathological images by producing no more than 1000
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images with probability values 0.4 to 0.6. Furthermore, only about

5000 images have a probability value of 0.2 to 0.8. The accuracy

value confirmed this result on the confusion matrix, which showed

the percentage of errors in the normal image class reached 0.6%,

and the image contained cancer cells up to 10%.

31



4. Ensemble CNN as a comparison for

single CNN performance

In this study, we designed several single networks and then

combined them into an ensemble model [27]. The developed single

network referred to several pre-trained models, which means that

even though we were designing the network from scratch, we relied

on pre-trained modules that were already there. The pre-trained

modules that we used including the VGG module, the Inception

module, and the ResNet module.

4.1. Related work

This research process began with mapping the similar works

that have been completed. These works were the utilization of

CNN to solve classification problems on similar dataset. The first

work was using the Dense Block and the Transition Block to de-

sign the P4M-DenseNet. This model achieved an accuracy value

of 89.8% for predicting histopathological images [55]. In the sec-

ond work, the GoogleLeNet architecture was used, which was then

trained in two different approaches. The first method was training

from scratch, and the second was fine-tuning. The results showed

that fine-tuning n the training process produced the best accuracy

value with 84.3% [58]. The third study was utilized the PatchCam
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dataset to demonstrate the designed ensemble model [22]. The en-

semble model was trained using the transfer learning method by

utilizing three pre-trained models, namely VGG19, MobileNet and

DenseNet. The model achieved satisfactory results of a 94.64 ac-

curacy score.

4.2. Data preprocessing

As explained in the previous chapter, an augmentation pro-

cess was first carried out on the dataset before entering the train-

ing process. The augmentation process includes rotation, shifting,

shearing, zoom and flipping as shown in Table 4.1.

Rotation 45◦

Shifting 0.2
Shearing 0.2
Zoom 0.2

Flipping Horizontal

Table 4.1: Augmentation process.

4.3. Network architecture

As mentioned earlier, we used the VGG, Inception, and ResNet

modules to design the ensemble model. To avoid very complex

models, we designed a simpler architecture than the existing pre-
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trained models. Thus, the first model was the LT-VGG which

adopted from the VGG module. This architecture was a stack of

thirteen layers consisting of ten Convolution layers and three Fully

Connected layers. A Max Pooling layer was inserted in every two

convolution layers to parse its dimensions. Then the Flatten layer

changed the dimensions of the features to be passed on to the MLP.

Within the MLP itself, there were three fully connected layers, each

with two 64-neurons and a layer of two neurons. All activation func-

tions in this architecture used the ReLu activation function except

for the final layer used the Softmax activation function according

to the dataset’s problem.

The second model was the LT-Inception which adopted from

the Inception module. The architecture in this model consisted of

twelve convolution layers, which were divided into two levels. The

architecture at both levels was identical, consisting of six convolu-

tion layers and ends with the Max Pooling layer. Afterward, the

layers at each level were assembled. To reduce the number of di-

mensions of features, the Average Pooling layer was used. Finally,

the feature was transmitted in an MLP consisting of two Fully

Connected 64-neurons and a Fully Connected two neurons. The

LT-Inception model used the ReLu Activation Function on almost

all networks except for the last layer; Softmax two classes.

LT-ResNet was the last model we used in the designed ensem-

34



ble. Using the ResNet module, we designed a total of 24 convolu-

tion layers. In detail, we installed eighteen convolution layers by

inserting a residual layer on each of the three convolution layers.

Like the previous model, LT-ResNet also used the Average Pool-

ing layer and the Flatten layer before entering MLP. Furthermore,

ended with the MLP consisted of three fully connected layers as in

the two previous models.

The ensemble method is one of the popular techniques to im-

prove CNN’s accuracy, as described in [20, 46, 14]. In this work,

we compared each model’s performance with the performance of

all three models simultaneously. The ensemble method used was a

voting system. Figure 4.1 is the design of our proposed model of

ensemble.

4.4. Training process

The histopathological image training process was initiated in

every single tissue. Each network exercised separately did not in-

terfere with one another. Because the training process did not use

the transfer learning method, initial weights were needed in the

training process. Realizing that the three single networks’ archi-

tecture has more than eight layers of convolution with non-linear

activation, Normal Distribution [18] was used as initial weights.
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Figure 4.1: Architecture of the ensemble model.

The use of the optimizer was also part of the hyperparameter of

the training process so that the Adam[24] optimizer was used with

a learning rate of 1e-4 and reduced by 1e-6 for each subsequent

epoch. To reduce the computational load, the batch size was im-

plemented in the training process. Accuracy, Precision and Recall

values were some of the parameters used in determining whether

or not the model was good. To calculate the value of Accuracy we

were using equation (3.6) and for these two parameters, we referred

to the following formula:
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Precision =
TP

TP + FP
, (4.1)

Recall =
TP

TP + FN
, where (4.2)

TP stands for true positive, where an image containing cancer

cells was accurately predicted as an image containing cancer cells.

Meanwhile, TN is the true negative, which was a normal image and

was predicted accurately as a normal image. FP stands for false

positive, a normal image but was mistakenly predicted as an image

containing cancer cells. In contrast, FN stands for false negative,

representing an image containing cancer cells but was incorrectly

predicted as a normal image. Apart from the parameters men-

tioned above, another parameter that affected was the loss value.

The smaller the model’s loss value, the closer the model is to the

expected target. In this study, the Softmax activation function was

used at the end of the network. Thus, to calculate the loss value,

cross-entropy was used for the Softmax loss function. Softmax

function f(s)i is represented by:

f(s)i =
esi∑K
c=1 e

sc
. (4.3)

Refers to [45, 12], Softmax function f(s) : RK → RK is a vector

function in the range [0, 1], where K is the number of classes. This
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function is obtained by calculating the exponential number to the

power of si, where si refers to the score s from class i. Hereafter,

numerator divided by the sum of the constant e to the power of all

score in number of classes. By having equation (4.3) then we have

the Softmax loss function:

CE = −
K∑
i

tilog(f(s)i). (4.4)

Equation 4.4 explains that cross-entropy CE is the sum of ground

truth ti logarithm the CNN score of each class that represents by

f(s)i.

The ensemble network’s training process included a separate

training process for every single network. Thus, every single net-

work provided a different representation of the trained image. Al-

ternatively, in other words, the model provided three different out-

puts for each given input. For this reason, the model required a

system that combines the three outputs into one output as a mu-

tual agreement of the three models. The method used in this pro-

cess was a voting system. The voting system itself referred to two

things. The first was that every single network has equal weight in

voting. In other words, every single network has the same ability to

influence the final result. This voting system was called Majority

Voting. The second voting system was assigning different weights
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to every single network. The weight given corresponded to the ca-

pability of a single network when trained separately. Thus, a single

network that has a good accuracy value will affect the final result

more significantly with other single networks. This voting system

was called Weighted Vote. Voting system itself refers to [13, 37], if

we have multiple scores x1, x2, . . ., xn, with corresponding weights

w1, w2, . . ., wn, then the weighted mean can be calculated through

x̄ =

∑n
i=1wixi∑n
i=1 wi

. (4.5)

4.5. Results

After passing through the training process of 50 epochs, the

results showed that the decrease in the loss value of LT-ResNet and

LT-Inception was relatively stable. Meanwhile, LT-VGG showed

fluctuating movements after the twentieth epoch. The three models

were not much different to achieve the loss value, namely, 0.13 for

LT-ResNet, 0.19 for LT-Inception, and 0.26 for LT-VGG. Thus,

from the training results, it was found that the LT-ResNet model

has a better loss value than the other two models. The loss score

achievement of the three single models is shown in Figures 4.2, 4.3

and, 4.4

The training results can also be reported that the three single
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Figure 4.2: Loss of LT-ResNet.

models did not experience overfitting, proven by the accuracy and

validation values of the training process, which were not distant.

In addition, the three single models showed a significant increase

in accuracy and validation values from the first epoch to the last

epoch. From Figures 4.5, 4.6 and, 4.7, it can be reported that the

LT-ResNet model achieved accuracy and validation values of up

to 0.95, the LT-Inception model achieved accuracy and validation

values of up to 0.93, and LT-VGG reached accuracy and validation

values of up to 0.95. Furthermore, the precision and recall values

of every single network in each class were calculated. The results
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Figure 4.3: Loss of LT-Inception.

obtained was the LT ResNet achieved a precision score of 0.95

with a recall of 0.97 for normal category images and a precision

score of 0.95, and a recall of 0.92 for images containing cancer

cells. The LT-Inception model achieved a precision value of 0.92

and a recall of 0.96 for normal images, while for images containing

cancer cells, 0.93 and 0.89, respectively, for the precision and recall

scores. The VGG model showed excellent results with precision and

recall values of 0.95 and 0.97, respectively for normal images, while

for images containing cancer cells, the precision and recall values

were 0.96 and 0.92, respectively. From the precision and recall
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Figure 4.4: Loss of LT-VGG.

calculations, it was clear that the LT-ResNet and LT-VGG models

have slightly better capabilities than the LT-Inception model.

From the training results using the majority voting method, it

was found that the ensemble model can correct the accuracy value

of a single model up to 0.96, confirmed by the fact that the value of

the precision and recall of the ensemble model was also better than

the single network model. For normal images, the ensemble model

achieved a precision value of 0.95 and a recall value of 0.98, while

for images containing cancer cells, the ensemble model achieved

precision and recall values of 0.96 and 0.93, respectively. After
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Figure 4.5: Accuracy of LT-ResNet.

obtaining the training results for each single network, it was decided

that the LT-ResNet and LT-VGG models each received a weight of

35%, while LT-Inception received a weight of 30% in the weighted

voting process. The results of weighted voting also reported the

same result as the majority vote method, namely an accuracy value

of up to 0.96 as shown in Table 4.2. This confirmed that in our

experiment, every single network received a suitable weight for the

voting process.

To see more detail the model’s capabilities, we calculated the

amount of the data either correctly or incorrectly predicted in the
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Figure 4.6: Accuracy of LT-Inception.

x LT-ResNet LT-Inception LT-VGG MV WMV
Pre 0 0.95 0.92 0.95 0.95 0.95
Rec 0 0.97 0.96 0.97 0.98 0.98
Pre 1 0.95 0.93 0.96 0.96 0.96
Rec 1 0.92 0.89 0.92 0.93 0.93
Acc 0.95 0.93 0.95 0.96 0.96

Table 4.2: Precision, Recall and Accuracy of the investigated mod-
els.

two classes. LT-ResNet was able to predict precisely 38,043 cancer

images with 1653 images of errors. Meanwhile, the normal image

that was predicted correctly was 24677 with an error rate of 2020.
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Figure 4.7: Accuracy of LT-VGG.

Furthermore, LT-Inception was able to accurately predict 37.657

images containing cancer cells with an error of 1653 images. As

for normal images, 23,634 images were predicted correctly with an

error of 3063 images. LT-VGG correctly classified 38,186 cancer

images and 1124 images were misclassified. In the normal image

class, 24,504 images were correctly classified, and 2193 images that

were misclassified. As previously explained, the ensemble model

performed better than all single models. The results achieved by

the majority voting system was 38,392 cancer images were suc-

cessfully predicted with an error of 918 images. More than that,

45



24,773 normal images were predicted correctly with 1924 image er-

rors. The majority voting results were confirmed by the results of

the weighted majority vote, with 38,397 images predicted as images

containing cancer cells and 913 images were misclassified. As much

as 24,787 images were correctly predicted to be normal, with the

error reaching 1910 images. Table 4.3 shows the comparison of the

amount of data predicted correctly and incorrectly by all models.

x LT-ResNet LT-Inception LT-VGG MV WMV
TP 38043 37657 38186 38392 38397
TN 24677 23634 24504 24773 24787
FP 2020 3063 2193 1924 1910
FN 1265 1653 1124 918 913

Table 4.3: Confusion matrix of the investigated models.

4.6. Discussion

This work has shown the comparison of the results obtained

from several similar jobs, which resolved classification problems on

histopathological images. Table 4.4 shows a comparison of the ac-

curacy scores of the methods we recommend with other methods.

From this table it can be concluded that the ensemble method can

improve the accuracy of the model. This can be seen from the two

ensemble model that we suggested, compared to these works [55,

58]. In addition, developing a single model from scratch can help
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the model to achieve optimal accuracy values without reducing the

model’s ability in classification work. Thus, the combination of

these two methods yielded the best accuracy value in our experi-

mental case. This was evidenced by comparing the results shown

by the proposed methods with this work [22]. Another conclusion

was that manual weighting on a single network for weighted vot-

ing did not show a significant impact, although there was a slight

improvement in the predicted data.

Method Architecture Accuracy
Veeling et al. P4M-DenseNet 89.8%
Xia et al. GoogleLeNet fine-tuned 84.3%

Kassani et al. Ensemble 94.64%
Proposed method 1 LT-ResNet 95%
Proposed method 2 LT-Inception 93%
Proposed method 3 LT-VGG 95%
Proposed method 4 Ensemble MV 96%
Proposed method 5 Ensemble WMV 96%

Table 4.4: Comparison results.

Referring to the references involved in this research, several

methods can be used to improve the model’s performance. One of

them was the Grid method to determine the correct training pa-

rameters for the model. The matter to consider was the machine’s

ability; it must be suitable for achieving optimal results. We also

considered including the voting process as part of the training pa-

rameters. Thus, the weighting will not be given arbitrarily, but
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the training process itself will determine which single network has

more influence on the ensemble model.
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5. Comparison of single, ensemble ma-

jority voting and, interconnected CNN

performance in the medical images

classification task

In the previous chapter, it was shown that the ensemble CNN

with the voting method achieved better accuracy values than the

Single CNN. It was also found that the weighting on the system

voting did not significantly impact the accuracy scores of the en-

semble model. Follow up on the findings that there was no signif-

icant impact of weighting for every single network, then the next

experiment focused on making the weighting process part of the

training parameters. In other words, the training process itself

will determine which single network influences the ensemble model

more when making decisions. This chapter reports the results of in-

vestigating the efficiency of interconnected CNNs in classifying the

medical images. For objectivity purposes, three different datasets

were used in this experiment.

5.1. Datasets

As previously mentioned, the model developed in this work

will then be trained on three different datasets. All three datasets
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were open data republished by Kaggle. One of them published in

the form of a competition, while others in the form of a dataset.

All three datasets were medical images resulting from the process of

digitizing the human body. The first dataset was the chest X-ray1

dataset, representing the least amount compared to other datasets.

A total of 5216 radiological images of human lungs were grouped

into two not proportionally distributed classes. Namely, 3875 im-

ages containing pneumonia and 1341 images not containing pneu-

monia. All images were labeled by a doctor and verified by an

expert. The sample image on the first dataset is shown in Fig-

ure 5.1. The second dataset was the Malaria2 dataset, representing

the medium dataset, which amounted to 27,560 images proportion-

ally distributed in both classes. The Open Knowledge Foundation3

owns the malaria dataset was later republished in the form of the

Kaggle dataset. The image was the digitization of the Thin Blood

Smear using a microscope application integrated into the android

smartphone. In the end, the dataset labeling process was carried

out by experts with two categories, namely, parasitized for images

containing malaria and normal for images that did not contain

malaria. Figure 5.2 shows an example of the Malaria dataset. The

third dataset was the dataset that has been used in the previous

1https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
2https://www.kaggle.com/miracle9to9/files1
3https://opendatacommons.org/licenses/by/1-0/index.html
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work, namely the PatchCam4 dataset republished by Kaggle in the

form of a competition. As previously explained, these data sets

were 220,025 small pathology images, categorized in two classes:

cancerous and non-cancerous, as shown in Figure 5.3.

Figure 5.1: X-ray dataset, (a) Normal and (b) bacterial or
viral pneumonia

5.2. Network architecture

The interconnected CNN architecture is a combination of sev-

eral CNNs. In this work, the three single networks were connected,

which then trained together in a more extensive network to have

a single decision [28]. The purpose of connecting the three single

4https://www.kaggle.com/c/histopathologic-cancer-detection
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Figure 5.2: Malaria dataset, (a) Normal and (b) parasitized

Figure 5.3: PatchCam dataset, (a) Cancerous and (b) non-
cancerous

networks was that even though the three single networks work in-

dependently, the results of training for every single network will de-
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termine how much this network affects the interconnected model.

Thus, this training process will give the proper weight to every

single network to influence the interconnected model in decision

making.

In this work, we used three single networks, which were the pre-

trained model. The three pre-trained models were VGG19 which

consisted of 16-layer convolution; InceptionV3, which utilized 48-

layer convolution; and MobileNet, which installed 18-layer convo-

lution. After going through the convolution layer, the dimensions

of the feature map need to be adjusted as required in the Multi-

layer Perceptron (MLP). For this reason, before the MLP section, a

Flatten layer was installed to change the dimensions of the features.

The MLP of each network was replaced with three fully connected

layers to adjust to the problems in the dataset. Two of the fully

connected layers used ReLu activation functions, while the other

used the two-class Softmax function. In the next stage, the three

single networks connected become one ensemble network. For this

reason, the Concatenation layer was used to unite the three single

networks into an Interconnected CNN network. After the three sin-

gle networks were united, MLP consisted of two Fully Connected

layers with a ReLu activation function, one final layer with two

classes of Softmax was re-installed. The design architecture of the

Interconnected model is shown in Figure 5.4.
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Figure 5.4: Architecture of the interconnected Model

5.3. Training process

Like previous works, this experiment was also through an aug-

mentation process in Table 4.1 to ensure the right amount of data

needed in the training process. Stages such as rotation, shifting,
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shearing, zoom, and flipping were techniques used in the augmenta-

tion process. Several aspects have been standardized for simplifying

the training process for four networks on three datasets. The first

aspect was the input size set to 100x100 pixels, as well as the batch

size set at 16 and the number of epochs at 50 for each training pro-

cess. Before starting the training process, 10% of the total dataset

has been separated into test sets. Subsequently, the dataset was

trained with a proportion of 70% for the training set and 30% as a

validation set.

In our work, the emphasis was on having a training process

that was carried out simultaneously in a series of interconnections.

Although each sub-network has authority in the training process,

the training process was an unseparated integral part, which caused

each sub-network’s weights to be determined by the training pro-

cess itself and not by the user. The sub-network will automatically

impact the overall interconnected model if the subnetwork has a

better performance than others. Contrariwise, a sub-network pro-

duced unsatisfactory performance will lead to less weight in the

final decision process. In [14], for the three sub-networks, the ini-

tial weights were calculated to be equal. Nonetheless, the weights

of the interconnected models in our model were calculated by the

training phase that each model had gone through. At neither the

beginning nor the end of the decision-making phase, the weighting
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process of each sub-network was interfered with.

In order to consider the adequacy of the amount of data and

computation costs, the Transfer learning training method was used

in this experiment. Transfer learning refers to the condition where

what has been learned in one dataset is exploited to improve gener-

alization in another dataset [12]. Furthermore, Transfer learning is

the improvement of learning in a new task through the transfer of

knowledge from a related task that has already been learned [54].

By utilizing Transfer Learning, unneeded layers can be frozen dur-

ing the training process. The Freezing layers technique was used

to deactivate the layers that were not required and prevent them

from consuming computational resources. As explained in [7], this

technique can disable the unneeded layers in the training process

but did not affect the model’s performance. The freezing layers

process included several layers that were deactivated during the

training process so that the update weights process did not occur

when information passes through the layers.

One of the goals of the training process was to get the least

possible loss. Thus the training process required a function that

can minimize the value of the loss. In this case, the Soft-Max func-

tion was implemented in the Loss function or better known as the

Soft-Max Loss function. How the Soft-Max function was imple-

mented in the Loss function has been explained in the previous
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chapter. From the explanation above, we can understand that in

order to get a minimum loss value, there was an iterative process

in calculating the loss value. This iteration process used a propa-

gation technique that involves an optimization technique known as

the Adam optimizer. In the optimization process itself, the initial

rate was determined, set to 1e-4 and 1e-6 decay for each subse-

quent epoch. In the end, the training process will produce several

parameters, namely Accuracy, Precision, and Recall. These three

parameters were the representation of whether or not a model is

adequate. The values of the three parameters were obtained from

True Positive, True Negative, False Positive, and False Negative

values. How the values of these parameters were calculated has

been explained in the previous chapter.

5.4. Results

The first experiment result was the training and validation of

every single network that was trained separately. There were sev-

eral goals to be achieved by training the three models separately.

The first was that the three models need to prove their respective

performance when trained on three different datasets. In other

words, it is necessary to consider the ability of the model indi-

vidually before being assigned as a member of the interconnected
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model. The second reason was that the voting-based ensemble

model, which will be used as a performance comparison of the in-

terconnected model, needs to train the three models individually.

Using the chest X-ray dataset, the three single networks could

be implemented properly from the training process. The accuracy

and validation values of the three models were not significantly dif-

ferent. This was also evidenced by the yellow and blue lines in

Figure 5.5, which overlapped and even intersect. This condition

proved that the parameters used in the model were suitable so that

the model did not overfit. Each model achieved a validation value

of 0.91 for VGG19, 0.89 for InceptionV3 and 0.93 for MobileNet.

The training process using the Malaria dataset also reported sat-

isfactory results, as shown in Figure 5.6. Even though the results

shown by MobileNet have a gap between the accuracy and valida-

tion values, the movement of the yellow line that increases every

epoch can be assumed this model was still acceptable. The re-

spective validation values achieved by a single network are 0.90 for

VGG19 and 0.80 for InceptionV3 and MobileNet. A slight differ-

ence was found when the three models were trained on the Patch-

Cam dataset where MobileNet showed a slight overfit condition as

shown in Figure 5.7. However, the other two models showed good

performance. The validation values achieved by the three models

when trained with the PatchCam dataset were 0.86 for VGG19, and
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Figure 5.5: Training and validation accuracy for X-ray dataset: a)
VGG19, b) InceptionV3 and, c) MobileNet

0.70 for InceptionV3 and MobileNet models. The second experi-

ment was to train all three single networks together. If the three

networks were trained separately in the first experiment, then in

this experiment, the three networks were trained simultaneously in

a connected network. In other words, in this process, all parameters

were trained together. From the training results, it was found that

the accuracy value of the interconnected models can be compared

with each single model. The comparison of the accuracy values of

a single network and interconnected models is shown in Table 5.1.

59



Figure 5.6: Training and validation accuracy for malaria dataset:
a) VGG19, b) InceptionV3 and, c) MobileNet

Dataset VGG19 InceptionV3 MobileNet Interconnected

chest X-ray 0.91 0.89 0.93 0.93

Malaria 0.90 0.80 0.80 0.90

PatchCam 0.86 0.70 0.70 0.86

Table 5.1: Validation accuracy of all models for three datasets.
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Figure 5.7: Training and validation accuracy for cancerous dataset:
a) VGG19, b) InceptionV3 and, c) MobileNet

5.5. Visualization of training process

This section describes the stages in the training process by

providing visualization of several images from the dataset. From

the chest X-ray dataset, the model identified pneumonia by study-

ing the integrity of the images of human lungs as a result of the

radiological process. Figure 5.8a is the input images given to the

model. The training process then produced features such as those

in Figures 5.8b to 5.8d. By studying these features, the model can
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then give the output as shown in Figure 5.8e that most of the lungs

still appeared healthy. Thus the image was categorized as normal

lungs. For the malaria dataset, Figure 5.9a is the input image

given to the model. Based on the input, the model extracted the

features as shown in Figures 5.9b to 5.9d. From these features, it

can be seen that the model can detect other objects that were not

supposed to exist in human Blood Smear Images. Based on the

features that indicated an unusual object in the image above, Fig-

ure 5.9e is the output given by the model in the form of a heat map

which showed a tendency in the image above Blood Smear Images

of malaria patients. The training process on the PatchCam dataset

aimed to detect the presence of cancer cells in human histopathol-

ogy images. Figure 5.10a is the input image input of the model. As

before, the model extracted features that were considered unique

concerning cancer cells. Some examples of images that represent

the feature extraction process are Figures 5.10b to 5.10d. After ex-

amining the features, the model can conclude that the image above

has cancer cells, as shown in Figure 5.10e. The heatmap in Figure

5.10e represents cancer cells with a lighter color than normal cells

which were represented in a dimmer color.
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Figure 5.8: a) Input, b)-d) Extracted Features, e) Heatmap

5.6. Predicted results

To see the model’s ability to predict new images, a dataset that

has never been used before in the training process was used, namely

10% of the images from each previously separated dataset. The

predicting the chest X-ray dataset showed that the accuracy values

achieved were 0.91, 0.84 and 0.91, respectively, for the VGG19, In-

ceptionv3, and MobileNet models. In this case, although the Inter-

connected model cannot exceed the accuracy value of the Majority

Voting, the results of the two models can still be compared. In more
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Figure 5.9: a) Input, b)-d) Extracted features, e) Heatmap

detail, Table 5.2 provides a breakdown of the number of images that

were predicted right or wrong in the two classes. From the values

of Precision and Recall in Table 5.2, it was found that the ability of

the Interconnected Model was slightly better than the majority vot-

ing. A total of 383 images indicated pneumonia could be predicted

correctly and 7 images were mispredicted. Meanwhile, Majority

Voting predicted images that indicate pneumonia as many as 370

images with 20 images were mispredicted. The number above was

equivalent to the recall value of 0.98 for the Interconnected Model

and 0.85 for the Majority Voting. Even so, the Precision values for
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Figure 5.10: a) Input, b)-d) Extracted Features, e) Heatmap

the two models were still comparable, namely 0.91 and 0.87.

Model TP FN TN FP Acc Pre Rec
VGG19 361 29 206 28 0.91 0.88 0.88

InceptionV3 345 45 179 55 0.84 0.80 0.76
MobileNet 370 20 195 39 0.91 0.90 0.95

Majority Voting 370 20 198 36 0.91 0.91 0.85
Interconnected 383 7 177 57 0.90 0.87 0.98

Table 5.2: Confusion matrix and classification report of chest X-ray
dataset.

The model was also tested on a malaria test set that had never

been used before in the training process. Table 5.3 shows slightly
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different results where two of the single models achieved good re-

sults while one model had lower performance than the previous

two models. Models VGG19 and InceptionV3 achieved an accuracy

value of 0.87, while MobileNet achieved an accuracy value of 0.72.

MobileNet’s ability was not optimum due to the significant predic-

tion errors when predicting images containing malaria. Thus these

results brought out two dominant models in the voting process. So

that the accuracy value of Majority Voting can still be maintained

at a reasonably good value, namely 0.86. On the other hand, the

Interconnected model worked adequately well by assigning precise

weights to every single network, raising the accuracy value to 0.88.

This can be seen in detail in Table 5.3 where the Interconnected

Model reached a recall value of up to 0.82 compared to the Majority

Voting, which only reaches 0.74. These values were obtained from

the number of images that the two models can predict accurately.

The Interconnected Model accurately predicted 823 malaria images

with 177 errors compared to the Majority Voting, which was only

able to accurately predict as many as 737 malaria images with 263

prediction errors. Even so, the Precision value of all models was

above 0.93.

The final evaluation process involved the PatchCam test set,

which has never been used before by all models in the training pro-

cess. From Table 5.4, it can be seen that this experiment only shows
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Model TP FN TN FP Acc Pre Rec
VGG19 798 202 938 62 0.87 0.93 0.80

InceptionV3 776 224 963 37 0.87 0.95 0.78
MobileNet 443 557 997 3 0.72 0.99 0.44

Majority Voting 737 263 988 12 0.86 0.98 0.74
Interconnected 823 177 942 58 0.88 0.93 0.82

Table 5.3: Confusion matrix and classification report of Malaria
dataset.

one dominant model, namely the VGG19 model with an accuracy

value of 0.87. Meanwhile, the other two models achieved accuracy

values of 0.73 for InceptionV3 and 0.66 for MobileNet. This result

influenced the voting process, which was only able to reach a score

of 0.83. Concurrently, the Interconnected Model achieved an ac-

curacy value of 0.87, proving that the Interconnected Model can

find the correct weight for every single network in the training pro-

cess. It was also verified by the Precision and Recall value of the

Interconnected Model, which was better than the Majority Voting

value, namely, 0.89 compared to 0.88 for the Precision value and

0.77 compared to 0.66 the recall value.

5.7. Discussion

After going through several experiments involving all three

datasets, we can conclude that the Interconnected Model was a re-
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Model TP FN TN FP Acc Pre Rec
VGG19 6692 2199 12400 709 0.87 0.89 0.75

InceptionV3 6638 2253 8838 4271 0.70 0.61 0.75
MobileNet 2696 6195 11882 1227 0.66 0.69 0.30

Majority Voting 5902 2989 12342 767 0.83 0.88 0.66
Interconnected 6721 2170 12316 793 0.87 0.89 0.77

Table 5.4: Confusion matrix and classification report of PatchCam
dataset.

liable tool when the accuracy of majority voting was low, proven

by looking at the results of experiments involving the Malaria and

PatchCam dataset. In these two experiments, the interconnected

model’s performance was slightly better than Majority Voting due

to the presence of at least one model that was not well performed.

Meanwhile, in the first experiment using the chest X-ray dataset,

the entire single network reached the optimum value, increasing

the accuracy value of the majority voting. The Interconnected

Model also made better predictions than majority voting in posi-

tive classes or images containing the disease. The way the intercon-

nected model works, which gives weight appropriately to each sub-

network, was proven to work more efficiently than initially training

the three models to determine the ranking and then assign the ap-

propriate weight according to the achievement of each sub-network.

This work focused on investigating the work efficiency of the

Interconnected Model and not on optimizing the accuracy value of
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each network. In other words, the use of transfer learning in this

work did not involve the fined-tunning process, which can be seen

from the achievement of the accuracy value of the proposed model

with several similar works using the same dataset [29, 33, 42].
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6. Conclusion

In this dissertation, we have shown several methods that can

be used in classifying medical images. The first method was uti-

lizing the CNN single network to classify medical images, which

was proven that a CNN network could be designed by adopting the

pre-trained VGG19 model. The resulting model has proven reliable

for detecting cancer cells in human histopathology images with an

accuracy score of 0.92.

Although it achieved quite satisfying results in detecting can-

cer cells on the histopathology image, the value of a single network’s

accuracy was still low compared to the accuracy value of the en-

semble network on several related works. Therefore, on our second

method, we proposed an ensemble network built from scratch, con-

sisting of three single networks. The voting method was chosen

to decide the ensemble network’s final results. This method was

proven to increase the accuracy value up to 0.96 when predicting

cancer cells on human histopathology images.

In the decision-making process, it was found that there was

a possibility that the majority voting method may lead to a false

decision. If two models agreed on the false decision, it can be sure

that the final decision would be false, which will reduce the ac-

curacy value of the ensemble network. Hence, the interconnected

model was proposed, which was architecturally similar to ensemble
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networks, although it did not use the voting method in determining

the final result. The interconnected network that trained all three

single networks simultaneously was proven to assign proper weights

to all three single networks for its final decision. Thus, an intercon-

nected network can be used as an option when the accuracy value

of the ensemble network based on the majority voting score is low.

71



Summary

This dissertation was motivated by several things. The first

one was the development of technology that allows digitizing histopatho-

logical images leading to a massive explosion of data which allows

the reuse processing. In line with this, the increasing ability of

machines to perform computational processes is an opportunity to

process large amounts of data. Based on this background, this

dissertation was focused on predicting medical images using Con-

volutional Neural Network (CNN).

There were three architectural approaches proposed to build

the model; the first architecture was using a single CNN network.

This VGG modules relied on a stack of convolutional blocks. In

detail, this model can be illustrated by stacking eight convolution

layers, each with two convolution layers with 64 channels, two 128

channels convolution layers, two 256 channels convolution layers,

and two 512 channels convolution layers. Next, a Max-Pooling

layer was inserted in each of the two convolution layers. Thus, the

architecture will form four convolutional blocks, with each block

having two convolutional layers and a pooling layer. Architecture

with a Multilayer Perceptron (MLP) filled with a Flatten layer

which functions to change the dimensions of the feature. Next,

two Fully Connected layers were installed, each of which has 64

neurons, and a Fully Connected layer with the Sigmoid activation
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function was installed as the last layer. This experiment succeeded

in achieving a value of 0.92 and Area Under Curve 0.98 in the

Receiving Operator Characteristics Curve.

The second approach was to build a series of models by com-

bining three well-known modules: VGG, Inception, and ResNet.

The final result was then determined by conducting a voting pro-

cess. The first voting process was majority voting, where the three

sub-networks have equal weight to make decisions. By having the

same weight, if two models agree on one decision and one model

with different decisions, the two models’ decisions will be taken.

The second voting process was to give the appropriate weight to

the sub-networks abilities when trained separately. With this vot-

ing method, the sub-networks that achieve better accuracy will

have a greater weight than the sub-networks that have less accu-

racy score. The results achieved from the voting process using both

the majority vote method and the weighted majority vote reached

0.96.

The final approach was based on the idea of putting weighting

tasks as part of the training process. As a result, neither at the

start nor at the end of the training period, the user calculated the

weighting. Technically, it can be described that the architecture

was built in an interconnected model. The interconnected model

consisted of three sub-models that trained together to predict med-
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ical images. By training together, the training process itself deter-

mines which model will affect the overall model. Training the three

models together impacts the number of training parameters where

all the model parameters were trained together. For this reason,

considering machine capability and computational costs, the pre-

trained model and transfer learning method were used. Technically,

the three models were three well-known trained models, namely

VGG19, InceptionV3, and MobileNet. In this experiment, three

different data sets were used to maintain the objectivity of the re-

search results, namely: the X-ray dataset, the Malaria dataset, and

the PatchCam dataset, which were also used in the two previous

studies. Then as a final step, the accuracy value of the intercon-

nected model was compared with the ensemble majority voting.

From the experimental results using the three datasets, dif-

ferent results were found. In the X-ray dataset, the three sub-

models have equal results. These results improved the majority

vote’s accuracy score, which reached 0.91, while the interconnected

model score was 0.90. On the other hand, the experiment using

the Malaria dataset showed that the three sub-models did not show

same level of accuracy, with VGG19 and InceptionV3 better then

MobileNet. Thus, the two sub-models influenced the voting process

more than the other sub-models, increasing the accuracy value of

the model to 0.86. Likewise, the interconnected model can main-
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tain the consistency of the accuracy value up to 0.88. The third

experiment used the PatchCam dataset; this experiment gave three

different results for the sub-model 0.87, 0.70, 0.66 respectively for

VGG19, InceptionV3, and MobileNet. This result affected the ac-

curacy value of the majority voting, which was 0.83 compared to the

accuracy value of the interconnected models, which remained con-

sistent at 0.87. Another result obtained was that although the ac-

curacy value of the interconnected model was slightly different from

the ensemble majority voting model, the interconnected model was

constantly better than the ensemble majority model in predicting

data in positive classes, which in the context of these three datasets

were images that were indicated to have disease.

In the end, this dissertation concluded that the CNN ensemble

network performed better than the single CNN network in the case

of predicting medical images. When the accuracy of the ensemble

majority voting model was low, the interconnected model can be

considered as a solution.
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