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1. Background and objectives of the doctoral 
dissertation 
Radiological imaging is widely used to diagnose 
neurological pathologies, characterise and confirm 
lesions in tumour staging, therapy planning, and to 
assess therapeutic response. Different anatomical 
lesions, pathological processes and functional changes 
can be assessed and characterised by imaging. However, 
in most cases, the analysis of imaging images is based on 
visual inspection only, and thus qualitative results are 
obtained. It would be much more appropriate to use 
testing methods and protocols that also provide 
quantitative results, because this would allow the 
objective characterisation of certain diseases or 
conditions in numerical terms. One of the current 
research goals of medical imaging is to extract as much 
quantitative information as possible from the diagnostic 
image obtained. This effort is called radiomics. 
A radiomics data or index (RI) can be, for example, a 
statistical parameter such as skewness or entropy 
derived from a histogram of voxels associated with a 
given lesion. However, RIs that attempt to describe the 
spatial correlation or relationship of voxel values may be 
even more advantageous, and thus more directly related 
to tissue area heterogeneity. The latter parameters are 
also called texture indices (TI) or features, and typical 
representatives are, for example, the so-called gray level 
co-occurrence matrix (GLCM)-based parameters. In 
contrast to histological studies, which have specific 
difficulties and limitations in determining the 
heterogeneity of the entire lesion volume, radiomic 
analysis is a non-invasive method and can provide 
insight into the texture of the entire lesion. The analysis 



4 

 

of quantitative methods may be inherently given for a 
single modality, such as PET and CT scans using the SUV 
and Hounsfield Unit scales. However, in the case of MR 
imaging, the possibility of quantitative characterisation 
is relatively limited because the pixel values of the 
images obtained are highly dependent on the specific 
examination protocol, the sequence used and its 
settings. 
The last 5 years have seen an explosion of research into 
the texture characterisation and analysis of various 
diseases and their diagnostic value. Although texture 
analysis (TA) is a promising image analysis method that 
quantitatively determines the 2D or 3D intensity 
patterns and correlations of voxels, it is currently not yet 
part of routine imaging diagnostics. Texture analysis 
may be able to identify pixel patterns, including possibly 
those that cannot be easily detected by the human eye. 
These methods have previously been successfully used 
on MR images for the scientific treatment of a number of 
neurological diseases, including brain tumours, epilepsy, 
Alzheimer's disease and multiple sclerosis. Statistical 
analysis of numerical data from more patient studies 
may allow us to develop a more accurate diagnostic 
picture and to discover correlations that may provide 
new information on differential diagnosis. A limiting 
factor in the implementation of radiomics is that the 
value of the calculated parameters can be strongly 
influenced by a number of measurement and 
examination conditions, such as the spatial resolution of 
the imaging modality. In this context, the resolution of 
histological specimens and state-of-the-art in vivo 
imaging differ in magnitude (histological sections: 10-4-
10-3 mm; in vivo diagnostic imaging: 0.5-5 mm). In 
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addition, radiomics values can be affected by image 
reconstruction methods, the segmentation of the lesion 
used, and the so-called discretisation and normalisation 
procedures. 
A number of published studies in the field of CT, MR and 
PET imaging have highlighted the challenges related to 
the reproducibility and reliability of radiomics features 
when different manufacturers and imaging devices, scan 
and reconstruction setups have been investigated. 
Recently, the Image Biomarker Standardization 
Initiative (IBSI) was introduced to standardize the 
definition of radiomic features. Currently, close to a 
thousand radiomics parameters have been proposed 
and defined in the IBSI guidelines. Their usability and 
reliability for diagnostic analysis for a given disease is 
challenging, even on imaging devices of the same type 
(e.g. MR) but with different technical capabilities (e.g. 1.5 
- 3 T field). This is partly because subsets of RIs can be 
useful in diagnosing lesions in one organ (e.g. the brain), 
while they may perform poorly in other body regions. 
Another fact is that the pixel discretization used, such as 
the fixed bin size (FBS) or fixed bin number (FBN) 
parameters, can significantly affect the RI values. It is 
already established in the literature that, for example, 
FBS discretisation may be preferable for PET imaging, 
but this is not yet clear for MR. It is well known that 
although CT and PET are quantitative methods, MRI is 
inherently not. The number and size of lesions in MRI 
scans is the most common quantitative measure used by 
radiologists, yet there is growing interest in measuring 
and analysing radiomic features. However, there is as yet 
no consensus on how different MRI systems and data 
acquisition protocols affect the robustness and 
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reliability of radiomic parameters for different 
pathologies. 
Indeed, radiomics analysis is more difficult on MRI 
images because the intensity of the tissue imaging signal 
is affected by many more data acquisition settings than 
with other imaging modalities. Most radiomics 
parameters can be influenced not only by the magnetic 
field strength of the MR scanners, but also by setup 
parameters such as field of view, spatial resolution, 
reconstruction algorithm, number of repetitions, echo 
time (TE) and number of excitations (NEX or NSA), as 
well as signal-to-noise ratio (SNR). In addition, the 
images may contain a number of MR imaging-related 
artifacts (field distortion or so-called Gibbs artifacts) 
that are unknown in, for example, CT or PET. 
In medical imaging, data acquisition, image 
reconstruction and optimal adjustment of image 
processing steps can usually be investigated with 
specific phantoms, but creating a reproducible 
heterogeneous phantom is a non-trivial task. 
Nevertheless, in recent years, several studies have 
attempted to investigate the reproducibility and 
reliability of texture parameters using some biological 
and some simpler physical phantoms. In the field of 
medical imaging, it is important to note that phantom 
construction requires the use of materials with stable 
properties over time, which can be easily reproduced 
and, if necessary, easily transported between imaging 
centres. These requirements are generally not met by 
the textured phantoms produced to date for MRI studies. 
3D printing technology has recently become a promising 
phantom fabrication technique for almost all medical 
imaging modalities. It has the potential to enable rapid, 
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reproducible and cost-effective manufacturing. A wide 
variety of phantoms are now available, ranging from 3D 
models of actual patient data to mathematical 
(geometric) models. These phantoms have a fixed shape 
and are highly reproducible, giving the possibility to 
emphasise specific small spatial details in a shape. 
Despite this, dedicated 3D designed and printed MR 
radiomics phantoms have not yet appeared in the MR 
literature, which may be due to the fact that they do not 
have sufficient accurate geometry but must have 
sufficient heterogeneous contrast. 
In the present work, using human MR images, we 
investigated which types and settings should be chosen 
for the most critical steps of image processing - 
segmentation, discretization and normalization options 
- in order to achieve the most reliable radiomic analysis. 
In addition, biological phantoms (kiwifruit, onion and 
tomato) were used to realistically test the robustness 
and reproducibility of the texture indices. In addition, we 
developed 3D printed models of two specific textures 
that can be loaded with MRI contrast agents to compare 
which phantom type is most suitable for testing the 
radiomics characteristics of MR images. 
 
Objectives 
 
In our research, we used MRI images to investigate the 
following specific problems: 
 
1. texture indices can be sensitive to a number of 

factors, such as the protocol parameters of the 
imaging study used, as well as the segmentation of 
the selected pathological area. To analyse this, we 
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investigated the difference between free-hand and 
semi-automated elliptical segmentation in terms of 
derived texture values for human patient groups 
with glioblastoma, ischaemia and multiple sclerosis. 
 

2. We also analysed the effect of discretisation of voxel 
values in segmented VOI using human and phantom 
studies. Three discretization methods were 
analyzed: the LRR, LAR and AR algorithms. We also 
analyzed whether there is an optimal bin value 
choice for each discretization. 

 
 

3. Due to the non-quantitative nature of MRI, even for 
the same patient and anatomical region, voxel values 
will not be the same for repeated scans. For 
comparative cranial MRI studies, normalization 
methods are attempted, but their impact on radiomic 
analysis is not clear. Therefore, we also aimed at 
comparative texture analysis of normalized and non-
normalized human MRI images. 
 

4. Reliability and reproducibility of texture counting is 
a major issue when MR scanners with different 
spatial resolutions are used in a multicentre study. 
Accordingly, we have designed texture analysis of the 
same phantoms on both 1.5 and 3 Tesla MR scanners. 

 
 

5. We also sought to answer the question of which 
phantom constructs might be appropriate to 
determine the reliability and reproducibility of 
texture analyses on MRI images as accurately as 
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possible. This has involved the use of texture 
phantoms produced by biological and 3D print 
techniques. 
 

We planned to address the problems and questions 
raised through two independent pilot projects. The first 
was based on human MRI studies, while the second used 
only biological and 3D printed phantoms. 
 
2. Materials and methods 
 
2.1. MR methodology 
 
In the human study project, we were able to 
retrospectively select MRI images from 71 patients who 
underwent contrast-weighted 3D T1 and T2 
measurements on a 1.5 Tesla Siemens Magnetom 
Essenza scanner. Patients were collected into three 
subgroups according to their pathologies: ischemic 
stroke (N = 22), multiple sclerosis (N = 22) and 
neurological tumor (N = 27). Both T2-weighted axial and 
3D T1-weighted axial measurements after contrast 
administration were performed according to local 
standard protocols for the diseases. In the project with 
phantoms, MR studies were carried out with biological 
(kiwi, tomato and onion) and 3D printed objects. All 
phantoms were examined in two clinical MRI machines 
in 2021, using MRI imaging equipment at the University 
of Debrecen Clinical Centre: one was a 3 T Philips 
Achieva and the other a 1.5 T Siemens Magnetom 
Essenza system. Three RF coils were used: an 8-channel 
cranial and a 32-channel neurovascular coil at 3 T, and a 
6-channel cranial coil at 1.5 T field strength. For both 
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devices and for each coil, T2- and T1-weighted 3D 
coronal isotropic voxel measurements were performed 
according to clinical routine, with FOV, matrix size and 
resolution converted to the respective volume. Each 
measurement was repeated three times to test 
reproducibility. Each time, a new table position was set 
before each repetition, so that the phantoms under 
investigation were always positioned in the isocenter, 
the most homogeneous magnetic field. All tests were 
also performed at 1x1x1 and 2x2x2 mm isotropic voxel 
resolution. 
 
3.2 Image processing 
 
In the human studies part of our study, retrospective MR 
images were processed from patients with multiple 
scelrosis, some primary or secondary brain tumour or 
ischaemia. The imaging plane of all primary MR images 
was axial. We chose to process axial slices because they 
were acquired in the same plane aligned/designed to the 
same anatomical region in all patients: the imaginary 
plane connecting the anterior and posterior comissura 
was measured parallel to the imaginary plane. 
To process the images of patients, we used the "Carimas 
2.10" software for the evaluation of medical images, 
developed by the Turku PET Centre, for the Windows 
operating system. The segmentation of the affected 
areas was performed separately for each disease group. 
In all cases, a free manual or semi-automated elliptical 
segmentation method was chosen for the definition of 
VOIs placed on pathological areas. In addition, within the 
same brain volume, a healthy brain area of the same size 
as the pathological VOI was segmented on the opposite 
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side. For brain tumors or metastases, 1 VOI was placed 
in the pathology-affected area and 1 in the healthy area. 
However, in patients with ischaemia and multiple 
sclerosis, there are more, as these are often multifocal 
lesions. Here, we considered fresh ischaemic areas, 
previous vascular lesions and healthy brain in the case 
of ischaemic lesions. VOIs were placed in each of these 
areas with a size of at least 1 cm3. For SM patients, VOIs 
were similarly placed on active and inactive foci and 
healthy brain tissue. The voxel coordinates and values 
associated with the segments were saved in a text file 
format, which was read and processed in a subsequent 
step in the Matlab environment for texture analysis. The 
MR images of 3D printed and biological phantoms were 
segmented semi-automatically using the open source 
software platform "3D Slicer". In this case, Carimas was 
not chosen because of the different MR settings 
(different field strengths, spatial resolutions, weights 
and RF coils) and the large number of objects (360) to be 
segmented in three iterations, which would have made 
manual segmentation of each slice very time-consuming. 
Furthermore, since the phantom objects are bounded by 
air, automatic segmentation algorithms could be highly 
inefficient. An additional advantage of 3D Slicer is its 
ability to select any number of objects within a volume if 
segmentation can be easily performed automatically due 
to the adjacency conditions. Using this, after loading 
each MRI image, we placed a small sphere VOI in the 
same type of vegetable/fruit using the Slicer's segment 
editor, as well as a few additional small sphere VOIs in 
the background without objects. Then, using the "grow 
from seeds" built-in algorithm, the program 
automatically segmented the same fruit or vegetable. If 
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necessary, the resulting VOIs were manually corrected 
to exclude artificial products from part-volume or effect 
effects. For example, if the boundary zone between the 
fruit/veggie and the surrounding air was incorrectly 
defined, or if the most apical surfaces of some 
fruits/veggies were in contact with each other and 
segmentation artefacts resulted. 
 
3.3 Normalization, discretization and calculation of 
texture indices 
 
For the studies with phantoms, two different MRI 
machines were used, so due to the non-quantitative 
nature of MRI, the need to normalise the image data 
arose. Normalisation can also be considered as a 
necessary harmonisation for MRI that can improve the 
reliability of radiomic data. To define μ and σ as the mean 
and standard deviation of the image, the so-called μ ± 3σ 
normalization was applied, which centred the voxel 
values with the defined standard deviation on the 
corresponding (zero) mean. Furthermore, by this 
procedure voxels outside the range [μ - 3σ, μ + 3σ] were 
excluded from the original values. Next, all three 
discretization methods were applied to the segmented 
volumes for both human and phantom MRI images. We 
discretized using the LAR, LRR and AR algorithms, using 
several different bin widths (B) and bin values (D). For 
the LRR, D was defined as 8, 16, 32, 64, 128, 256, 512 and 
1024, while for the AR and LAR procedures, B was 
defined as the following set: {1, 5, 10, 15, 20, 25, 30, 35, 
40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100}. The 
values of D and B were defined to include all the 
possibilities that have been found in the literature so far. 
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The calculation of the radiomics parameters was the last 
image processing step. The number of radiomics data 
documented and applied by IBSI is currently close to two 
hundred. In our work, we investigated the most 
commonly used and promising radiomics indices in the 
literature. The 40 features selected for the processing of 
human MRI images were 18 GLCM, 11 GLSZM and 11 
GLRLM-based texture indices, all calculated according to 
the IBSI definition. For the phantom MRI images, 
normalization was also applied, so that simpler 
statistical features of the segments could be compared, 
accordingly, the aforementioned 40 TI parameters were 
complemented with the most commonly used 
histogram-based statistical feature. The histogram 
indices included in the study were: minimum, maximum, 
mean, median and volume. 
 
3.4 Statistical analysis 
 
For the human studies, a non-parametric Wilcoxon rank-
sum hypothesis test was also performed to compare TI 
between healthy and diseased areas using Matlab's 
rank-sum function. As null hypothesis, we assumed that 
the TI values of healthy and diseased areas are from the 
same median distribution. The test assumes that the two 
samples are independent, and also that the two samples 
may have different item counts. This test is also called 
the Mann-Whitney U test. 
In addition, we calculated the Spearman correlation 
coefficient (R2) between the volume of each TI and the 
associated lesion for each patient and healthy VOI group 
and for both MRI contrasts. 
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For our work on biological and 3D printed phantoms, we 
calculated the mean and standard deviation of the RIs for 
each modality and for three repeated measurements, 
and from these we also determined the coefficient of 
variation (CV). For phantom measurements, we also 
determined the relative parameter difference (RPD) for 
measuring the relative RI difference of a given phantom 
between two different measurement settings. All 
calculations were performed using Matlab or Microsoft 
Office Excel software. 
 
4. New scientific results of the thesis 
 
4.1 Relationship between texture analysis and 
image-discretization methods on T1 and T2 
weighted MR images of different patient groups  
 
In our work based on human MR scans, we have 
investigated in detail the effect of discretization 
procedures transforming the voxel values of images on 
texture indices in T1- and T2-weighted MR scans and in 
three different types of neurological diseases (ischemia, 
tumor and metastasis). To the best of our knowledge, 
this is the first study comparing all three discretization 
methods (AR, LAR and LRR) for MR images and 
analysing the reliability of the TIs as a function of these 
methods. Our study revealed that the majority of the 
selected texture indices varied significantly when the 
discretization parameters (bin width or bin number) 
were changed within a predefined range. In this thesis, 
we selected 18 GLCM, 11 GLSZM and 11 GLRLM based 
texture features, those that have been previously 
identified as relevant parameters in the literature. Of the 
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18 GLCM-type TI, only two (NormInvDiff and 
Correlation) were not dependent on binning 
parameters, considering the three disease groups and all 
MRI data acquisition protocols. Although parameters 
that are independent of lesion volume and MRI data 
acquisition are desirable, independence also suggests 
that their use may not be appropriate for disease 
identification. In addition to this, it is important to note 
that all other texture indices (N = 38) are monotonic 
with several orders of magnitude variation depending 
on the binning values. However, the direction (nature) of 
the monotonicity and the range of values are typical for 
all texture indices. These characteristics may depend 
fundamentally on the mathematical expression used to 
define the texture indices, so a more specific analysis of 
the formulae would greatly help to investigate the 
applicability of the individual radiometric parameters. 
However, publications on the detailed analysis of 
mathematical expressions are not yet available in the 
literature. It is often of great importance to compare the 
diagnostic performance of texture indices in different 
MRI centres and in studies obtained using different 
cohort analyses. However, these comparisons are often 
clouded by the fact that the diagnostic power and 
reliability of different TI's can be highly dependent on 
the specific discretization method and its parameter 
(number of bins or width). Because of the clinical utility 
of TI's and the potential dependence between 
discretization parameters, it is essential that a study 
should only be compared with other studies that use the 
same number of bins (or bin width) and discretization 
technique. Very often, however, this is not the case, with 
many publications based on very different D values (LRR 
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technique, D = 256, 128, 32) and B choices (LAR 
technique, B = 5, 10). Our results showed that the 
magnitudes of the range of TI values do not depend on 
the disease groups (IS, MS and TU) or the imaging 
sequences used for analysis (T1 or T2 image contrast). 
We also found that, under AR and LRR discretization, all 
TI have exactly the same range and specific value, 
although B binning values spanned several orders of 
magnitude. The possible correlation between the VOI 
size of the lesions and the TIs is another problem related 
to the usability of texture indices. Accordingly, using 
human MR images, we performed a detailed analysis of 
the actual relationship between the VOI volume of 
lesions and the TIs, identifying 426 correlation diagrams 
and parameters. The correlation curves of TIs obtained 
for AR and LRR methods showed that most indices were 
weakly correlated with tumor volume. Note that it was 
not observed that the correlations of TIs and volumes 
were dependent on the patient groups or the T1 or T2 
MR sequence used. For a more transparent presentation, 
we also calculated Spearman's correlation coefficients 
(R2) and used these to generate a colour-coded image 
showing R2 values for all three diseases studied and for 
T1 or T2 contrast. Cases with R2 > 0.5 (|R| > 0.71) were 
considered highly correlated, corresponding to light 
green, orange and even lighter colours. Thus, from the 
colour maps, it was clear that these values were mainly 
associated with the AR and LRR discretization methods 
and the GLRLM and GLSZM texture index groups for both 
segmentations. In addition to these, it is also noticeable 
that when using the LRR method and elliptic 
segmentation, several GLCM parameters also show 
higher correlation. Furthermore, the GLCM-based data 
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are even more highly correlated when LRR 
discretization and manual segmentation were used for 
the analysis. The strong correlation is undesirable in 
most cases, as the changes in TI should depend on 
texture, not volume. In other words, LRR discretization 
is detrimental to the correlations between lesion volume 
and TI, and this finding is consistent with some previous 
studies. Note that the R2 value for a given TI does not 
vary significantly as a function of disease or T1 or T2 
contrast. The exceptions are the RP, LZE, LZLGE, LZHGE 
and ZP indices, which all belong to the GLRLM and 
GLSZM groups. Color-coded p-values of the hypothesis 
tests performed for LRR and AR discretization were also 
generated for the relationship between each patient and 
control area. The hypothesis was that the TI values of 
healthy areas would differ from those obtained for 
pathological areas. A higher number of texture traits was 
observed (p-value<0.05) when the AR technique was 
used instead of LRR for both segmentation methods. 
Furthermore, manual segmentation yielded fewer 
significantly different TI, and this was even more 
pronounced for LRR discretization. A possible 
explanation for this phenomenon could be that when 
using manual segmentation, the tissues outside the 
lesion also affect the calculation of TI (since the lesion 
boundary zone is mostly occupied in manual 
segmentation), as opposed to the case of elliptical VOIs, 
where only tissues inside the lesion are explicitly 
selected. Based on the AR discretization and any 
segmentation, the most promising TI's in MR images are 
Jvar, Dissim, SumVar, Contrast, NormInvDiff, 
ClusterProm, LGRE. Another interesting fact is that there 
are TI's that are correlated with volume (as shown in 
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Figures 25 and 26) but still can detect differences 
between patient and control areas based on hypothesis 
testing. We also compared the effects of two basic 
segmentation strategies, manual and 3D elliptical 
volume selection. We used two VOIs to compare healthy 
and diseased tissue. One VOI was placed in the 
pathological area and another VOI equal to the previous 
volume was placed in the healthy tissue on the opposite 
side. Our analysis showed that fewer statistically 
significant differences in texture parameters could be 
obtained with manual VOI segmentation. This can be 
explained by the fact that voxels at the interface may 
contain a mixture of surrounding tissue and tissue from 
the lesion due to inadequate spatial resolution. 
Accordingly, the calculated texture indices are also 
distorted. The 3D ellipsoidal segmentation method gave 
the TI that detects the most tissue discrepancies for any 
discretization. 
 
4.2 Investigation of the robustness of radiomic 
characteristics in MR examinations, using 3D 
printed and biological phantoms 
3D printing techniques offer a unique new opportunity 
to create textures and analyse the reliability of radiomic 
data derived from MR scans. In general, the results 
obtained with 3D printed Hilbert and QR code cubes 
showed good agreement with those obtained with 
biological phantoms, and could even be used to 
advantage for the development of optimal MR imaging 
protocols. This is a very important finding because many 
radiomics data are significantly influenced by MR field 
strength and the setup parameters of protocols; thus, 
harmonization of MRI systems may be critical. It is also 
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found that for high-resolution MR images (1x1x1 mm3 
isotropic volume), it is possible to extract QR code 
information texturally, thus providing acceptable image 
quality for radiomic analysis. To the best of our 
knowledge, this fact has not been previously reported in 
publications evaluating texture or heterogeneity studies. 
Based on our results, we propose new 3D printed 
phantom models to verify and evaluate the applicability 
and reliability of radiomics methods in MRI scans. Three 
cube-shaped phantoms have been produced: a simple 
5x5x5 cm3 3D Hilbert cube and two 3D QR codes with 
5x5x4 and 4x4x3 cm3 dimensions. The 3D QR phantom 
could be a potential experimental tool for medical 
imaging, especially for the analysis and investigation of 
texture indices. 
Based on literature data, hundreds of radiomics data can 
be calculated from a segmented image volume. In 
research projects, the usefulness and reliability of 
radiomics features are analysed on the basis of patient 
examinations and often using machine learning 
techniques, with appropriate predictive or prognostic 
models, to select texture indices that may already be of 
prognostic value. This process would be greatly 
facilitated if the number of available radiomics data 
could be reduced and, in addition, the reliability of the 
radiomics data could be easily checked in advance on 
several different MR machines. The biological phantoms 
we use and the 3D printed phantoms we have developed 
could be suitable for this purpose. In our studies, we 
used biological phantoms to verify whether the results 
obtained with 3D phantoms can be translated to real 
human measurements. We also aimed to use biological 
phantoms to analyse the robustness of radiomics data 
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obtained during imaging with different MRI devices. To 
this end, 3 tomatoes, 3 onions and 3 kiwis were selected 
and all biological and 3D printed phantoms were 
subjected to the same MR scans and radiomic analysis. 
We have shown that the robust texture of the Hilbert 
cube does not change significantly at different MR 
resolutions (1 mm3 or 2 mm3); however, the image 
structure of the finer patterned QR cube is significantly 
degraded at 2 mm3 resolution. In the case of biological 
phantoms, textures characteristic of vegetables/fruits 
were well identified at both spatial resolutions, although 
images were definitely more blurred at the lower 
resolution (2 mm3). This image degradation, or 
"blurring" effect, is caused by the reduced sampling 
number in k-space and the associated loss of contrast in 
MRI. In other words, the performance of RIs can be 
highly dependent on the specific texture and spatial 
resolution of the underlying images. 
Next, we investigated the effect of image normalization 
applied to MRI on radiomics calculations. We showed 
that CVs are generally reduced when normalization is 
applied, regardless of the biological phantoms involved. 
Furthermore, normalization increased the 
reproducibility parameters in almost all cases, 
expressed as % REP, and this is in good agreement with 
the results of other publications based on human 
studies. A similar trend (albeit with different specific 
values) was seen for each radiomics group (GLCM, 
GLSZM, GLRM, and histogram-based groups), as the 
reproducibility was higher in all cases when 
normalization was performed. Histogram-based 
parameters had little or negligible dependence on 
normalization, as would be expected for a first-order 
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statistical parameter. It was also seen that 
reproducibility was poor (CV>10%) for all MRI settings 
and all biological objects for the following RIs: Jmax, 
Energy, ClusterShade, HGRE, SRHGE, LRHGE, LZE, 
LZLGE, LZHGE. Due to poor reproducibility, these RIs 
were ignored for further analyses and only normalized 
data were used in all further evaluations. 
In general, the CVs of all vegetables and fruits are lower 
at the lower field strength (1.5 T), which is in agreement 
with other observations. Another fact is that for all three 
biological phantoms, there were several MR test 
protocols at 3T field strength for which the CV was 
greater than 10%. This could be due to two reasons: first, 
the homogeneity of the magnetic field in 3T MRI is 
generally worse than at 1.5 T field strength. Second, the 
structure of biological phantoms can change slightly 
within a few days (this was the typical time of repetition 
between the two MRI machines). It is also noticeable that 
this effect is only significant for the 32-channel RF coil 
when using tomato and onion, while it is detectable for 
both RF coils when using kiwi. Probably due to the finer 
structure of kiwifruit, the T1 weighting or the lower 
spatial resolution parameters gave a different 
reproducibility compared to the T2 contrast or the 2 mm 
resolution setting. 
It was also found that there was no difference between 
AR and LRR discretization after normalization of the MRI 
data. 
However, AR discretisation was found to be better in a 
previous study analysing human MRI scans. However, 
the protocol of the previous study differed in some 
respects from the current study, as only one MR machine 
was used; thus, no normalization of the images was 
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necessary. Without normalisation, AR discretisation 
may therefore be preferable. Several studies also 
emphasise that AR discretisation can lead to more 
reliable radiomic analysis, but there is no longer 
necessarily a difference between the effect of AR and 
LRR for normalised MR images. However, it can be 
concluded from our present results and other published 
data that normalized MRI images can facilitate the 
selection of the most appropriate binning parameters. 
For the statistical analysis, we also defined an RPD 
metric to determine the relative parameter difference 
value, for a given phantom and between two different 
measurement settings, to measure the difference in 
relative RI. We performed this analysis on both 3D 
printed and biological phantoms and found that RPD can 
vary by more than 20% for the same object when 
comparing MR systems with different field strengths. 
This fact did not depend on whether the spatial 
resolution was 1 mm3 or 2 mm3, nor on whether the 
MRI scan was T1 or T2 contrast. In addition, some GLSM-
type RIs (GLNU, ZSNU and ZP) very often have high RPD 
values. It was also observed that the RPD "patterns" for 
3D phantoms were not characteristically different from 
the image patterns of biological phantoms. So QR cubes 
perform similarly well to biological phantoms. In 
addition, the RPD parameters of the more robust Hilbert 
cube typically have a smaller value distribution than the 
RPD values of QR and all other biological phantoms, 
which means a higher degree of reproducibility of the 
Hilbert cube from a radiomics point of view. In other 
words, radiomics analyses suggest that the Hilbert cube 
is a simpler shape than any biological phantom. 



23 

 

The phantoms developed and applied in this thesis have 
several textural advantages and may be useful in 
radiomics analyses using MRI images. The phantoms 
have been designed and selected to ensure 
reproducibility and reliability not only during the 
measurements of the scan, but also to keep the objects in 
an unchanged physical state for as long as possible. The 
biological phantoms were considered stable for 
approximately two weeks, while the 3D phantoms did 
not change their physical properties during the entire 
duration of the study (approximately 1 year). Based on 
these results, it can be concluded that the phantoms used 
(both 3D printed and biological) could be beneficial to 
the radiomics community, which is striving to 
standardize both imaging protocols and radiomics 
analysis strategies. For the analysis of radiomics 
characteristics (reproducibility, reliability), the 
flexibility of 3D printing is a favourable method for 
producing new types of texture phantoms, as the use of 
identical materials and printing settings can ensure that 
imaging centres located far apart can produce fully 
equivalent objects to be imaged. 
5. Summary 
From the point of view of radiomic analysis, we 
compared the effect of three voxel discretization 
methods on brain MRI images of three different types of 
diseases (ischaemia, tumor and metastasis). We found 
that the values of all 40 TIs characteristically depend on 
the applied binning parameters, thus appropriate 
binning selection is not a trivial task. Therefore, it is very 
critical that comparative and large multicentre studies 
should only be performed with the same discretization 
and binning strategies. In addition, the above-mentioned 
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characteristic does not change if it is examined with a 
different type of disease or with a different MR sequence. 
The AR and LAR based methods give TI values that are 
similar to each other, but significantly different 
compared to LRR, when we consider the calculations of 
control and pathological brain areas. We also found that 
in general, TI's are weakly correlated with the volume of 
lesions, however, when LRR discretization method was 
chosen several GLCM based texture parameters showed 
higher correlation. Therefore, AR or LAR discretisation 
is recommended instead of LRR for brain MRI images. 
Furthermore, using semi-automated elliptical VOIs, we 
can obtain more significantly different TI between 
control and patient areas compared to using manual 
segmentation. 
Using biological phantoms, we have investigated in 
detail how radiomics analysis in a multicentre MRI 
environment depends on the object (kiwi, onion, 
tomato), the field strength B0, the T1 or T2 weighting, 
the RF coil used and the voxel discretisation. Under test-
retest experimental conditions, we found that 
normalization of MRI images significantly reduces the 
variability of radiomics indices. We show that 3D T1-
weighted imaging, with lower field strength (1.5 T) and 
better spatial resolution (1 mm3), provides the most 
robust radiomics features. We also generated phantoms 
using 3D printing techniques, and the results obtained 
with the presented 3D printed Hilbert and QR code 
cubes showed good agreement with the results obtained 
with biological phantoms. With the Hilbert phantom, 
which has a more robust and therefore simpler texture 
than real tissue, fewer mismatched texture parameters 
can be filtered out, but significantly under-performing 
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radiomics parameters can be successfully identified. The 
analysis with the REP parameter also showed that QR 
code-like phantoms can be equivalent to biological 
phantoms when radiomic analysis is investigated. 
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