

DYNAMIC RESOURCE ALLOCATION IN CLOUD
COMPUTING USING A NEW HYBRID

METAHEURISTIC ALGORITHM
	
	

Egyetemi doktori (PhD) értekezés

	
	
	
	

Seyed Majid Mousavi

Témavezető: Dr. Fazekas Gábor	

	

	

	

	

DEBRECENI EGYETEM

Természettudományi Doktori Tanács

Informatikai Tudományok Doktori Iskola

Debrecen, 2017	

I hereby declare that this submission is my own work and that, to the best of my knowledge

and belief it contains no material previously published or written by another person nor

material which has been accepted for the award of any other degree or diploma of the

university or other institute of higher learning, except where due acknowledgment has been

made in the text.

Hungary, Debrecen, June 2017

Seyed Majid Mousavi

This is to certify that the thesis entitled “Dynamic resource allocation in Cloud Computing

using a new hybrid meta-heuristic algorithm" submitted by Seyed Majid Mousavi to

University of Debrecen for the award of the degree of Doctor of Philosophy is a bona fide

record of the research work carried out by him under my supervision and guidance. The

content of the thesis, in full or parts have not been submitted to any other Institute or

University for the award of any other degree or diploma.

Hungary, Debrecen, June 2017

Dr. Fazekas Gábor

DYNAMIC RESOURCE ALLOCATION
IN CLOUD COMPUTING USING A NEW HYBRID

METAHEURISTIC ALGORITHM

Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében
a informatika tudományágban

Írta: Seyed Majid Mousavi okleveles informatikus

Készült a Debreceni Egyetem Informatikai Tudományok doktori iskolája
(Diszkrét matematika, adatfeldolgozás és vizualizáció programja) keretében

Témavezető: Dr. Fazekas Gábor

A doktori szigorlati bizottság:

elnök: Prof. Halász Gábor

tagok: Dr. Porkoláb Zoltán

Dr. Aszalós László

A doktori szigorlat időpontja: 2016. June 17.

Az értekezés bírálói:

Dr.

Dr.

Dr.

A bírálóbizottság:

elnök: Dr.

tagok: Dr.

Dr.

Dr.

Dr.

Az értekezés védésének időpontja: 2017

Acknowledgment

Firstly, I would like to express my sincere gratitude to my advisor Dr. Fazekas Gábor for the

continuous support of my Ph.D study and related research, for his patience, motivation, and

immense knowledge. Besides my advisor, I would like to thank the rest of my thesis

committee: Prof.Terdik György, Prof. Csink László, and Dr. Szathmáry László, for their

insightful comments and encouragement, but also for the hard question which incented me to

widen my research from various perspectives.

Last but not the least, I would like to thank my family: my parents and to my brother and

sisters for supporting me spiritually throughout writing this thesis and my life in general.

Abstract

Cloud computing is an emerging technology and new trend for computing based on the

internet. In cloud computing, the dynamic resource allocation is an important process used

for the purpose of effective distribution of loads among virtual machines. The shared use of

resources by the consumers without any strategy brings a range of issues and challenges in

the cloud environment such as scalability, fault tolerance, reliability, availability, and energy

efficiency. Utilizing dynamic resource allocation for load balancing is considered as an

important optimization process of task scheduling in cloud computing. Load balancing strives

to balance the workload across virtual machines to achieve optimal machine utilization. An

inefficient resource allocation strategy and load balancer may overload some virtual

machines while other virtual machines are idle. Therefore, In order to achieve maximum

resource efficiency and scalability, exploring efficient methods and techniques, as well as the

development of novel algorithms, are highly desired. Meta-heuristic optimization techniques

have had an exceptional growth over the last two decades. The remarkable ability of meta-

heuristic techniques is motivated scientists from different fields to solve different problems.

Furthermore, such techniques can often find optimal solutions with less computational effort

than optimization algorithms, iterative methods, or simple heuristics. Accordingly, this thesis

proposes a new meta-heuristic load balancing algorithm with a combination of two relatively

new optimization algorithms. This algorithm can well contribute in maximizing the

throughput in cloud computing using well-balanced load across virtual machines. moreover,

the algorithm is able to overcome the problem of entrapping into local optimum. To evaluate

the performance of the proposed algorithm, the algorithm is benchmarked on eleven test

functions and a comparative study is conducted to verify the results with other existing

algorithms. Also, a simulation experiment is conducted to evaluate the effectiveness of the

algorithm in resource allocation problem. In the simulation, we have used uniformly and

normal distribution workloads in two homogeneous and heterogeneous cloud environments.

The results show the proposed algorithm is effective and outperforms than other existing

algorithms. Also, our proposed algorithm illustrates that there is a significant improvement in

cost of energy consumption, load balancing.

i

Contents

Acknowledgment

Abstract

Contents

List of Figures

List of Tables

1. Introduction
1.1. Introduction ………………………………………………………………………………. 1
1.2. Problem Statement and Motivation ………………………………………………………. 4
1.3. Novelty and Contributions ……………………………………………………………….. 6
1.4. Research Hypotheses …………………………………………………………………….. 7
1.5. Thesis Organization ………………………………………………………………………. 8

2. Cloud Computing and Theoretical Foundations
2.1. Introduction ………………………………………………………………………………. 10
2.2. Cloud Computing ………………………………………………………………………… 10

2.2.1. Cloud Deployment Models ………………………………………………………….. 11
2.2.2. Cloud Service Models ……………………………………………………………….. 12

2.3. Virtualization and Cloud Computing …………………………………………………….. 13
2.4. Resource Allocation ……………………………………………………………………… 15
2.5. Goals of Resources Allocation in Cloud …………………………………………………. 17

2.5.1. Load Balancing ……………………………………………………………………… 17
2.5.2. Quality of Service …………………………………………………………………… 17
2.5.3. Economic Principles ………………………………………………………………… 17
2.5.4. Best Time to Run ……………………………………………………………………. 18
2.5.5. Good Throughput …………………………………………………………………… 18

2.6. Resource Allocation Strategy (RAS) ……………………………………………………... 18
2.6.1. Resource Provisioning Process ……………………………………………………… 20
2.6.2. Resource Monitoring Process ……………………………………………………….. 21

2.7. Load Balancing …………………………………………………………………………… 22
2.8. Scheduling in Cloud Computing …………………………………………………………. 24
2.9. Scheduling Process in Cloud ……………………………………………………………... 25

ii

3. Background & Related Work
3.1. Literature Survey …………………………………………………………………………. 29

3.1.1. Literature Search Method …………………………………………………………… 29
3.2. Related Works ……………………………………………………………………………. 30

3.2.1. Single Objective Algorithms ………………………………………………………... 30
3.2.2. Multi Objective Algorithms …………………………………………………………. 34

3.2.2.1. Non-dominated Sorting Genetic algorithm-based Algorithm (NSGA) ……. 34
3.2.2.2. Grey Wolf Optimizer (GWO) ……………………………………………… 40
3.2.2.3. Teaching–Learning-Based Optimization (TLBO) …………………………. 43

3.2.3. Hybrid Algorithms …………………………………………………………………... 48
3.3. Overview and Comparative Study ……………………………………………………….. 52

4. Proposed Method
4.1. Elementary algorithms for solving resource allocation …………………………………... 56
4.2. Proposed method …………………………………………………………………………. 56

4.2.1. An elementary method ………………………………………………………………. 56
4.2.2. Combinatorial multi objective method ……………………………………………… 59
4.2.3. Mathematical model ………………………………………………………………… 60
4.2.4. Searching process for optimal solution ……………………………………………… 62
4.2.5. Complexity of the algorithm ………………………………………………………… 66
4.2.6. Big-O notation of the proposed algorithm …………………………………………... 66
4.2.7. Worse-Case and Best-Case ………………………………………………………….. 67

4.3. Running example of proposed algorithm ………………………………………………… 67

5. Computational and Simulation Results
5.1. Implementation details …………………………………………………………………… 72
5.2. Computational experiments ………………………………………………………………. 73

5.2.1. Results ……………………………………………………………………………….. 74
5.3. Introducing assessment Index …………………………………………………………….. 78
5.4. Simulation Results ………………………………………………………………………... 78

5.4.1. Uniform distribution workload ………………………………………………………… 79
5.4.2. Normal distribution workload …………………………………………………………. 87

6. Suggestions and future works
6.1. Conclusions and Discussion ………………………………………………………………… 92
6.2. Future Research Directions …………………………………………………………………. 92

References 96
Publications 107
Appendix

iii

List of Figures
1.1. Resource allocation in Cloud Computing …………………………………………………... 2
2.1. NIST visual model of Cloud Computing …………………………………………………… 11
2.2. Different cloud service models ……………………………………………………………... 12
2.3. Virtualization type in Cloud environment ……………………………………………...…… 13
2.4. Virtualized server ……………………………………………..…………………………….. 14
2.5. Different types of hypervisors ………………………………………………………..…….. 15
2.6. Resource allocator level in Cloud system ……………………………………………..……. 16
2.7. Some target functions in distributed systems ………………………………………….……. 18
2.8. Resource provision process ……………………………………………………...………….. 20
2.9. Resource monitoring process ………………………………………………….……………. 21
2.10. Resource monitoring process ……………………………………………………………….. 22
2.11. Load balancing in Cloud Computing ……………………………………………………….. 23
2.12. High-level view of task scheduling in Cloud Computing …………………...……………… 24
2.13. The process of scheduling in the Cloud …………………………………..………………… 26
2.14. Classification of scheduling algorithms in distributed environment ……………………….. 27
3.1. The process of selected articles ………………………………………..……………………. 30
3.2. An example of a workflow …………………………………………..……………………… 35
3.3. Mutation operation in the NSGA-II algorithm ……………………………………………… 37
3.4. Dividing the tasks to parallel levels to properly allocate tasks to the available resources ….. 39
3.5. View of the gray wolves motion in haunting …………………………………………..…… 41
3.6. Updating wolves' position …………………………………………………...……………… 41
3.7. Flowchart of Gray wolf ……………………………………………...……………………… 42
3.8. Distribution of scores by students ……………………………………………...…………… 44
3.9. Student learning in algorithm TLBO ……………………………………………………….. 45
3.10. Flowchart of Teaching-Learning-Based Optimization algorithm ……...…………………… 46
3.11. The mapping of tasks to resources in the HPSO algorithm ………………………………… 49
4.1. View of resource allocation in a distributed environment …………………………..……… 61
4.2. Flow diagram of proposed algorithm ………………………………………………..……… 64
4.3. An example of the proposed method process in bin packing problem space ………………. 68
4.4. An example of first fit algorithm process in bin packing problem space ……...…………… 70
5.1. Comparison of CPU time to reach optimum result in different algorithms ………………… 76
5.2. Comparison of hybrid method with other methods in the first experiment to achieve

optimal solution ……………………………………………………………………………... 82
5.3. Comparison of hybrid method with other methods in the second experiment to achieve

optimal solution ……………………………………………………………………………... 82
5.4. Difference between the proposed method and CGA-CGT, HI-BP, and optimal solution ….. 83
5.5. Load imbalance in the first test set ……………………………………..…………………… 85
5.6. Load imbalance in the second test set ………………………………………………………. 85
5.7. Comparison of RPD between GWO, optimal solution, and proposed algorithm …...……… 86
5.8. Performance evaluation between different algorithms in homogeneous environment …...… 88

iv

5.9. Performance evaluation between different algorithms in heterogeneous environment …..… 88
5.10. Comparison of makespan between different algorithms in homogeneous environment …… 89
5.11. Comparison of makespan between different algorithms in heterogeneous environment …... 89
5.12. Comparison of throughput between different algorithms in homogeneous environment …... 90
5.13. Comparison of throughput between different algorithms in heterogeneous environment ….. 90

v

List of Tables

2.1. Important parameters for RAS ……………………………………………………………… 19
3.1. Online research resources and keywords …………………………………………………… 29
3.2. An example of machine coding ……………………………………………………………... 37
3.3. Mapping of tasks to resources ………………………………………………………………. 50
3.4. A summary of the works done in the field of resources allocation with scheduling and load

balancing and cost …………………………………………………………………………... 52
4.1. Pseudo code of the proposed algorithm …………………………………………………….. 63
5.1. Pseudo code of PSO algorithm (left) and BBO algorithm (right) …………………………... 72
5.2. Used benchmark functions ………………………………………………………………….. 73
5.3. Result of benchmark functions in number of iteration 200 and population size of 30 …....... 75
5.4. Result of benchmark functions in number of iteration 1000 and population size of 30 ……. 75
5.5. Result of benchmark functions in number of iteration 1500 and population size of 30 ……. 75
5.6. Result of benchmark functions in number of iteration 1000 and population size of 20 ……. 76
5.7. Result of benchmark functions in number of iteration 1000 and population size of 50 ……. 76
5.8. Allocation with the proposed algorithm in data set binpack5 ………………………...…….. 80
5.9. Allocation in boxes dataset binpack5 …………………………………..…………………… 80
5.10. Differences between the proposed method and other methods in terms of solution of

packages allocated ………………………………………………………………………...… 81
5.11. Comparison of the proposed method with HI_BP and CGA-CGT …………...…………….. 83
5.12. Comparison of the load imbalance between the proposed algorithm and other algorithms ... 84
5.13. Comparison of RPD between proposed method and optimal solution ………………..……. 86
5.14. CloudSim setting for homogeneous and heterogeneous cloud environments ……………..... 87

Chapter 1: Introduction

1

Chapter 1

Introduction

Chapter 1: Introduction

2

1.1. Introduction

Cloud computing is an emerging technology and new trend for computing for providing IT

infrastructure based on virtualization of resources and services on a pay-per-use basis [1-3].

In cloud environment the physical machines run multiple virtual machines (VM) which are

presented to the clients as the computing resources. The architecture of a virtual machine is

based on a physical computer with similar functionality [4]. In fact virtual machine is a guest

program with software resources functioning similar to a physical computer. The popularity

and economical aspect of this technology have been caused many organizations and

companies adopt cloud services and virtualized infrastructures [5-6]. Daily increase of cloud

adoption and migrating to virtualized technology has caused cloud providers establish of

large-scale of infrastructures for cloud services.

Resource allocation technique is an important process to assign cloud resources based on

users’ application demands to achieve an optimal number of in-use servers in cloud

environments [7]. Therefore, an efficient resource allocation technique can be increasingly

important for cloud environments. Figure 1.1 shows resource allocation in cloud computing.

Figure 1-1: Resource allocation in Cloud Computing [8]

Resource allocation process operates dynamically for the purpose of load balancing of

non-preemptive tasks. This technique strives to balance the workload across virtual machines,

which aims to minimize response time in order to keep promises and quality of service in

accordance with Service Level Agreements (SLA) between the clients and the provider [9].

Chapter 1: Introduction

3

Furthermore, this process has to be carried out regularly due to the time-variant nature of the

loads of Application Environments (AE) [10].

In fact cloud clients are interested in having the shortest possible time to complete their

jobs and requests at the minimum cost [11]. On the other hand, the cloud providers are

interested in maximizing the utilization of their resources in order to lower overall cost to

increase their profit. Obviously, these two objectives are in conflict and often none of the

parties are not satisfied with the traditional methods of resource allocation and load balancing

techniques [9,12]. Classical methods are very time consuming for achieving fully optimized

solution and in some cases are impossible [13]. Also, traditional approximate methods are

reported inconclusive and inaccurate and often trapped in local optimum [14].

In cloud computing, there are two technical restrictions. First, the capacity of the machines

is physically limited; secondly, priorities for performing the jobs and requests should be in

direction with maximizing the efficiency of resources [15-17]. Therefore, using of resource

allocation and load balancing techniques are led to the reduction of the number of in-used

servers which has the direct effect on resources efficiency and overall throughput of cloud

computing. Virtual machines in distributed systems have different usage conditions

including; utilization costs and also different processing power [18]. The users' jobs may also

have the different amount of information. In addition, to allocate appropriate resources on

any machine to the jobs, the response time1 is also considered. The most important problem

in this process is the ordering process and how placement the tasks on resources are

conducted. In fact, by increasing the productivity of resources, the response time can be

reduced and simultaneously, can improve the total cost of resource utilization and load

balancing [11,19].

Therefore, In order to achieve maximum resource efficiency and scalability, exploring

new methods and techniques as well as development of novel algorithms are highly desired.

1 Response time is the time interval taken between submission of the user's request and the first
response that is produced

Chapter 1: Introduction

4

The remarkable ability of meta-heuristic techniques is motivated scientists from different

fields to solve variety of the problems. The meta-heuristic optimization techniques have had

an exceptional growth over the last two decades [20]. Therefore, such techniques can often

find optimal solutions with less computational effort than optimization algorithms, iterative

methods, or simple heuristics [21-22]. The question that arises is “why meta-heuristic

techniques are remarkably common?”. The answer will be easily found in four main

properties that characterize most meta-heuristics: simplicity, flexibility, derivation-free

mechanism, and avoidance of entrapment in local optima [23].

The aim of this study is to provide a new meta-heuristic approximation algorithm for

resource allocation in order to establish load balancing based on time and cost. A balance

should be established between the three target assessment variables for evaluating the

proposed approximation algorithm. These three target variables include:

 The time of completing the latest task among virtual machines.

 The average of the cost paid for use of resources by the user.

 The efficiency which is caused by the impact of load balancing based on completion

time and cost [24].

Regarding to the foregoing of the distributed system, the question is raised that; “How

shall we allocate resources to different users’ jobs and applications to achieve maximum

efficiency in cloud system?”. Accordingly, in this study, a new hybrid meta-heuristic

algorithm with combination of two relatively new optimization algorithms is proposed which

can well contribute in maximizing the throughput using well balanced load across virtual

resources.

1.2. Problem Statement and Motivation

With increasing use of distributed systems, and providing different on-demand Internet-

based services, as well as the importance of task completion time, resource allocation

problem in the purpose of load balancing is raised as one of the important topics in cloud

systems. Load balancing problem solving is of great importance to increase productivity

Chapter 1: Introduction

5

through the allocation of resources. This has prompted researchers to use all their knowledge

and create the ways to minimize costs and reduce Makespan. In distributed computing, the

cost must be paid for use of any resource, so minimizing the time of the use of resources will

be necessary[25]. On the other hand, resource allocation and load balancing are two

important challenges in cloud systems [26]. The resource allocation aims to achieve well

balanced load across virtual resources to increase resource efficiency in order to minimize the

time for all tasks. To achieve this goal, load balancing must be considered fairly on resources.

Distributed computing uses a variety of computational resources to facilitate doing tasks, so

choosing the appropriate techniques to perform the tasks can increase the efficiency of large-

scale cloud computing environments. Moreover, the load balancing is required in order to

achieve green computing in clouds [27].

So we can say that time, cost and load balancing are three important parameters for

solving the problem of resource allocation and scheduling requests from the user. These three

parameters are raised at two different levels of scheduling, namely the user-level and system-

level, which are usually at odds with each other. To solve the problem of load balancing,

resource allocation can be done so that a balanced workload is considered for different

resources. If the above steps are met, system performance will be increased and finally, the

tined needed for implementation of tasks will be reduced.

Unfortunately, the dynamic nature of cloud resources as well as the various demands of

users has led to the complexity of the resources allocation problem. In the cloud computing,

dynamic flexibility in resources allocation is offered by virtual machines. In some

circumstances, the situation may arise that the two applications at the same time try to access

a shared resource. Resource allocation technique should be in such a way that manages

optimization in order to avoid resource competition, piece-part resource, as well as resource

allocation request more than the tasks need. The importance and the need for discussion on

this research is related to resource allocation algorithms in cloud environment according to

the environment assumptions.

Chapter 1: Introduction

6

1.3. Novelty and Contributions

The goal of this study is to establish a suitable mapping between jobs and resources in

order to reach efficient load balancing in the cloud system, so as to satisfy the needs of both

user and system levels simultaneously. This study contributes to propose a novel meta-

heuristic algorithm for resource allocation in the purpose of load balancing. This

combinatorial algorithm is proposed using newest efficient optimization methods. This thesis

compares the performance of the proposed algorithm with the respect of the existing other

solutions. The major contributions of this thesis are as follows:

 A novel algorithm for resource allocation in the purpose of load balancing of non-

preemptive independent jobs in cloud computing in order to maximizing the

throughput using well balanced load across virtual machines.

 Overcoming the problem of entrapped into local optimum during resource allocation

process.

 One of the important features of the proposed algorithm is that the algorithm doesn't

require any special controller, and only needs normal optimization parameters, such

as population size and number of iterations which are involved in its

implementation. Therefore, the algorithm has the least dependency on the

parameters.

 In virtual systems, resources are dynamically changed. Thus, their behavior has

different performance in time. The meta-heuristic algorithms are able to provide

better decisions in solutions space. However, load balancing on virtual systems is

influenced by various factors such as time and cost.

 A systematic literature survey about various resource allocation and load balancing

methods, techniques and algorithms in cloud environment. Also, a comprehensive

review is conducted regarding pros/cons and the merits/demerits of these methods.

Chapter 1: Introduction

7

 Performance analysis and evaluation of the proposed algorithm is presented with

respect to other existing algorithms.

1.4. Research Hypotheses

It is hypothesized that the combination of two efficient optimization methods to cover

each other's weaknesses can improve approximate solutions for resource allocation and load

balancing in virtualized systems. It is hypothesized that each virtual machine based on its

processor capacity can do one or more tasks because each virtual machine can have one or

more processor core. The research divides the main hypothesis into small hypotheses.

Accordingly, the following hypotheses are proposed:

 Resources and virtual machine are considered same.

 Tasks are independent.

 Distributed environment is heterogeneous and dynamic.

 All tasks must be done.

 Each task is performed only by a virtual machine.

 Allocation is done exactly once.

 Each task has a specific size and volume of data.

 Each virtual machine has different and specified processing speed.

 Each virtual machine has a special price that must be paid for the use of it in time.

 It is hypothesized that, In order to achieve maximum resource efficiency and

scalability, exploring meta-heuristic algorithms as well as the development of new

combinatorial meta-heuristic algorithms are highly desired.

 It is hypothesized that, approximate meta-heuristic algorithms find optimal solutions

with less computational effort than optimization algorithms, iterative methods, or

simple heuristics.

 It is hypothesized that, establishment of balance among completion time, cost of

energy consumption, and increasing efficiency is done using optimization methods.

This balance is calculated relative to the load balancing factor.

Chapter 1: Introduction

8

 It is hypothesized that, the proposed algorithm can be introduced in a particular

framework to be applicable to OpenStack1 software or in cloud computing system.

The ultimate goal of this hypothesis is introducing a framework for communicating

proposed method in a distributed system, so that the complexity of communications

in terms of time in cloud computing systems to be justified.

 It is hypothesized that, the proposed algorithm for resource allocation can be

performed in polynomial time and ensures convergence to the optimal solution. This

means that it does not stick in local optimums.

1.5. Thesis Organization

This thesis is organized into six chapters. Chapter 2 provides concepts, advantages and

applications of the cloud computing. Also, the different aspects of resource allocation, load

balancing, and scheduling trends are explained. Chapter 3 presents background and a

systematic state-of-the-arts in resource allocation, and related issues in cloud computing.

Chapter 4 officially defines the problem and then presents a bin-packing based solution for

resource allocation in cloud computing. We introduce a new hybrid meta-heuristic method

using two of relatively new optimization methods to perform initial resource allocation and

load balancing while minimizing load imbalance, and cost of energy consumption. Chapter 5

presents computational and simulation results along with a comparative study to verify the

achieved results. Chapter 6 provides conclusions, summarizes the contributions of this work,

perspectives, and discusses the future studies directions. At the end, used references in this

thesis will be mentioned.

1 OpenStack is an open-source software which is developed in order to create, manage and control of
virtual servers and other resources in the data center.

Chapter 2: Cloud Computing and Theoretical Foundations

9

Chapter 2

Cloud Computing and Theoretical Foundations

Chapter 2: Cloud Computing and Theoretical Foundations

10

2.1. Introduction

The shared use of resources by the consumers without any strategy brings a range of issues

and challenges in the cloud environment such as: scalability, fault tolerance, reliability,

availability, and energy efficiency. These challenges appear when multiple concurrent

requests to a single server led to the server malfunctioning due to overload, while other

servers are idle. The main objective of the resource allocation is to reach optimal resource

utilization, avoid overloading the system, maximizing throughput and minimize the response

time, allocation the available resources with an effective strategy. Therefore, in such a large

scale heterogeneous environment is a big challenge. Before addressing resource allocation

challenge and solving the problem, a comprehensive study is needed to identify all aspect of

cloud computing. This chapter provides the main concept of cloud computing and

virtualization technique which serves as the soul of cloud computing.

2.2. Cloud Computing

Cloud computing is an emerging internet-based practice to provides computing as a utility

service. This technology is a popular model for providing Information Technology (IT)

resources as a network-based service in a cost-efficient and pay-per-use method. Since cloud

computing is new trends in IT outsourcing, organizations adopt and migrate to this

technology for their business processes. Although there are many definitions of cloud

computing in literature, none of them give a clear abstraction of this paradigm. The most

comprehensive definition is proposed by the National Institute of Standards and Technology

(NIST)[28]. The NIST definition is: “this technology is a network-based model to enable

convenient, on-demand network access to a shared pool of configurable computing resources

such as: networks, servers, storage, applications, and services. This model can be rapidly

provisioned and released with the least management effort or service provider interaction”.

The most important key features of this technology are on-demand self-service, broad

network access, resource pooling, rapid elastically, and measured service [30].

Chapter 2: Cloud Computing and Theoretical Foundations

11

 On-demand self-service: Cloud resources are provisioned whenever they are

required.

 Broad network access: Resources are accessible over the different kind of networks.

 Resource pooling: In order to allocate resources to cloud consumers, resources are

pooled and dynamically allocated to users' jobs.

 Rapid elastically: The capability of scalability of resources in request peak times.

Measured service: A crucial feature in which used resources and services are monitored

and measured by cloud providers in order to billing, access control, resource optimization,

and other tasks.

Figure 2-1 shows main component of a cloud system. Cloud computing consists of five

main specifications such as: On-demand self-service, broad network access, resource pooling,

rapid elasticity, and measured service [29]. Moreover, cloud computing has different service

models and four main deployment models.

Figure 2-1: NIST visual model of Cloud Computing [29]

2.2.1. Cloud Deployment Models

A cloud deployment model is an important aspect that represents a specific instance of

cloud infrastructure. There are four different cloud deployment models [31] as follows:

Chapter 2: Cloud Computing and Theoretical Foundations

12

 Private cloud: This model is a particular deployment model of cloud that provides a

distinct and secure cloud environment which is used by only one organization over

the Internet or a private internal network.

 Community cloud: Community deployment model refers to a shared cloud

environment among several organizations from a specific group such as banks or

heads of trading firms.

 Public cloud: Public cloud model is the standard cloud computing model which is

the most recognizable model of cloud computing that cloud provider makes

virtualized resources using pooled shared physical resources.

 Hybrid cloud: This model of cloud is a combination of other deployment models on-

premises with multiple providers. Because of complexity in the most of the

enterprises, they prefer to use the hybrid cloud solution where the advantage of each

model (the public, private or on-premises infrastructure) supports a single

application.

2.2.2. Cloud Service Models

There are various cloud-based services. Many cloud providers deliver a various type of

cloud emerged services. Three cloud service models have become widely used in small to

medium businesses: Software as a Service (SaaS), Platform as a Service (PaaS), and

Infrastructure as a Service (IaaS)[32-33]. Figure 2-2 shows different cloud service models

and their services content.

Figure 2-2: Different Cloud service models

Chapter 2: Cloud Computing and Theoretical Foundations

13

 Software as a Service (SaaS). This service is a model for the distribution of

applications over the Internet which is accessible for customers through a web

browser or a program interface. Some of the well-known cloud software services are

Google Apps, Salesforce, Office 365, Netflix, and etc.

 Platform as a Service (PaaS). This service refers to a set of cloud computing

services that provide a distributed platform to allow developers (Software

developers, web developers and businesses) to build applications and services over

the internet. Some of these services are AWS1, Windows Azure, Google App

Engine, and etc.

 Infrastructure as a Service (IaaS). This service is one of the main layers of cloud

computing in order to provide virtualized computing resources over the Internet.

Leading IaaS providers include AWS, Rackspace Open Cloud, and IBM SmartCloud

Enterprise.

2.3. Virtualization and Cloud Computing

Virtualization is a technique which is known as the soul of the cloud computing.

Virtualization technology hides the complexity of physical resources abstraction. This

technique provides hardware independence, ease of duplication, flexibility, relocation of

resources, isolation and creating protected environment, and green IT [34-35]. Figure 2-3

presents different type of virtualization in cloud environments.

Figure 2-3: Virtualization type in Cloud environment

1 Amazon Web Services (AWS)

Virtualization type
 in cloud

Client
virtualization

Network
virtualization

Server
virtualization

- Full virtualization
- Para-virtualization
- Partial virtualization

- Internal network virtualization
- External network virtualization

- Virtual desktop infrastructure
- Hosted virtual desktop

Chapter 2: Cloud Computing and Theoretical Foundations

14

Virtualization may be done in different cloud computing levels: Hardware virtualization,

Network virtualization, and Client virtualization [36].

 Server virtualization: A physical server is partitioning into multiple smaller virtual

servers based on virtualization techniques. The main advantage of this partitioning

includes maximizing utilization of resources in the physical server, and cost savings.

Figure 2-4 shows a physical server which is divided into multiple virtual machines

(VMs). In fact the architecture of each VM is based on physical computers with

similar functionality [37]. A cloud is created from numerous physical machines.

Each physical machine runs multiple virtual machines which are presented to the

end-users or so called clients as the computing resources. In cloud computing, a

virtual machine is a guest program with software resources which works like a real

physical computer.

Figure 2-4: Virtualized server

Host operating system is the operating system which is installed directly on the physical

server. Guest operating system is the operating system which is installed on the virtual

machines in the physical server. Hypervisor or Virtual Machine Manager (VMM) is a

software in order to host several different virtual machines on a single server [38]. In order to

implementing a virtual machine we can use two different hypervisor as follow:

 Hypervisor type-1: This type-1 of hypervisor runs directly on hardware as operating

system as shown in figure (left). It operates as a hardware virtualization engine. This

Chapter 2: Cloud Computing and Theoretical Foundations

15

type of hypervisor has better performance and greater flexibility in comparison with

another existing type.

 Hypervisor type-2: This type supports guest virtual machines on a host operating

system as figure shows (right). IBM strongly recommends that this type of

hypervisors be used mainly on client systems where efficiency is less critical.

 Figure 2-5 depicts different levels of host/guest operation systems and hypervisors.

Although both types of hypervisors are usable in different environments, reaching maximum

efficiency in each type of hypervisor is dependent on the environment which has to be

operated.

Figure 2-5: Different types of hypervisors

2.4. Resource Allocation

Resource allocation technique is an important process to allocate resources based on user’s

application demands to achieve an optimal number of servers in use. Nowadays, cloud

environments are mainly heterogeneous; they have physical and virtualized servers from

multiple generations and multiple vendors; which means that cloud consumers are

geographically dispersed and utilize a diverse range of resources. Cloud computing provides

a heterogeneous collection of parallel and distributed computing to deliver on-demand access

to shared pool of resources [39]. These resources may include a computer, group of

computers, network links, central processing units or disk drives [40-42]. The shared use of

resources by the consumers without any strategy brings a range of issues and challenge in

cloud environment such as: scalability, fault tolerance, reliability, availability and energy

Chapter 2: Cloud Computing and Theoretical Foundations

16

consumption. These challenges appear when multiple concurrent requests to a single server

lead to the server malfunctioning due to overload, while other servers are idle [43]. Thus,

handling and delivering appropriate resource allocation is a major challenge where users’

jobs are fluctuating frequently. Since the main objective of resource allocation is to reach

optimal resource utilization, avoid overloading the system, maximizing throughput in such a

large scale heterogeneous environment is a big challenge. Figure 2-6 depicts resource

allocator place in cloud system.

Figure 2-6: Resource allocator level in Cloud system [8]

An inefficient resource allocation decreases the quality of services in the cloud system if

the allocation process not to be accurately managed. In cloud computing, there are two

technical restrictions. First, the capacity of the machines is physically limited; secondly,

priorities for the implementation of the jobs should be in direction with maximizing the

efficiency of resources [44-45]. Therefore, an efficient resource allocator provides an

efficient process by allowing the service provider to allocate resources based on a managed

process for each individual module.

In the cloud computing, the resource can be considered as software, platform, and

infrastructure. These three resources are known respectively as SaaS, PaaS, and IaaS. In

cloud environments, resource allocation is done at two levels as follows:

Chapter 2: Cloud Computing and Theoretical Foundations

17

 In the first level, when cloud consumer is uploaded to cloud. The load balancing

algorithm allocates required instances to physical servers in order to balance the

loads across virtual machines.

 At the second level, all of the received requests by an application should be assigned

to a specific instance which is related to the application in the cloud to balance the

load across instances of the same application

2.5. Goals of Resources Allocation in Cloud

The main purpose of the resources allocation in the cloud environment is to achieve

customer satisfaction with minimal processing time, reducing fees for leasing resources and

simultaneously ensure the quality of servicing and improve throughput for trust and

satisfaction of the service provider. Special purposes of task scheduling include load

balancing, the quality of service, economic principle, and system throughput, which each of

them will be discussed in the system [46].

2.5.1. Load Balancing

Load balancing and tasks scheduling have a close relationship in the cloud environment.

Scheduling mechanism is responsible for optimal matching of task and resources in time and

cost. Load balancing in distributed environment is expressed at two levels, the first level is

the load on the virtual machine and the second level is the resource layers [47].

2.5.2. Quality of Service

In fact, the goal of cloud system is to provide storage and distributed services. Resources

are performed according to the demands and in the form of service quality of a cloud

provider. When resource management is done for the allocation of the task, we should first

ensure the quality of service [48].

2.5.3. Economic Principles

Cloud resources are widely distributed around the world. These resources may belong to a

certain organization, which conducts its own management policy. This distributed business

model provides services to suit different needs, which are related to the demands, therefore

Chapter 2: Cloud Computing and Theoretical Foundations

18

paying for demand is reasonable [49]. It can be said that advance market leads to promoting

job scheduling and resource management. Therefore we should make sure that both sides are

satisfied and obtain their profits.

2.5.4. Best Time to Rrun

Mainly, for applications, the tasks can be divided into different categories according to

user requirements, so the best time to run is set based on various targets for each task. This

indirectly improves the quality of scheduling service in the distributed environment.

2.5.5. Good Throughput

Throughput in cloud environment is considered as measure to assess the optimal

performance of the tasks. In addition, it is considered as a goal that must be considered in the

development of the economic model. Increased throughput is useful for both the user and the

service provider. Figure 2-7 shows classification of some target functions in distributed

systems.

Figure 2-7: Some target functions in distributed systems

2.6. Resource Allocation Strategy (RAS)

Resource allocation strategy is a collection of activities for optimal utilization of resources

within the limit of cloud computing system in order to meet the cloud application

requirements [50]. In RAS process, the type and amount of required resources by each

Objective
functions

Application
centric

Resource
centric

Makespan

Economic
cost

Resource
utilization

Economic
profit

Chapter 2: Cloud Computing and Theoretical Foundations

19

application must be considered. In order to achieve an efficient RAS avoiding following

criteria is very vital:

 Resource contention: The collision of two applications in order to access a resource

at the same time.

 Scarcity of resources: Lack or limitation of enough resources for applications.

 Resource fragmentation: Lack of integration between required resources or isolation

of resources in the system.

 Over-provisioning: Extra resource allocation for an application while other

applications need the resource.

 Under-provisioning: Allocation of the resources to an application fewer than

demand.

In order to avoid above problems in resource allocation, RAS should consider the

important parameters (as input parameters) from both cloud providers and cloud consumers

[50,51]. Some of these parameters are shown in table 2-1.

Table 2-1: Important parameters for RAS [50]

Parameter Provider Customer

Provider Offerings √ -

Resource Status √ -

Available Resources √ -

Application Requirements - √

Agreed Contract Between
Customer and provider

√ √

From cloud consumer’s viewpoint, service level agreement and application requirement

should be considered as major parameters to RAS. However, on the other hand, some

parameters in table 2-1 such as provider offering, the status of resources and available

resources are vital to be considered. But, from the cloud provider's point of view, predicting

the dynamic need of users for each individual request, and also dynamic nature of application

demands are impractical [50].

Chapter 2: Cloud Computing and Theoretical Foundations

20

Virtual machines in distributed systems have different usage conditions including; cost of

utilizing them and also different processing power. The jobs required by users may also have

a different amount of information. The most important problem in this process is the order

process and how the placement of jobs on resources is conducted. In fact by increasing the

productivity of resources, the response time can be reduced and simultaneously, can improve

the total cost for resource utilization and load balancing.

2.6.1. Resource Provisioning Process

Resource provisioning process provides the appropriate resource in order to allocate to the

users' jobs. This process itself consists of three main processes: discovery of resources,

allocation process, and monitoring process [50-52]. Figure 2-8 shows process of resource

provisioning in different provider layers in the cloud environment.

Figure 2-8: Resource provision process

Submit a user
request

Receive/ translator user
Request in to computing

Estimate capacity
 needed

Discover available
resource

Allocate resources to the requestor

Execute VM
Find/establish

provisioning VM
Available

Scheduler VM executions Submit request from infrastructure for
additional physical resources

Receive request

Process request based on
requirement

Provisioning of computing
resources

Service provider layer

Infrastructure provider layer

No

Yes

Chapter 2: Cloud Computing and Theoretical Foundations

21

As the figure illustrates discovery process and allocation process are accomplished at the

service provider layer while Infrastructure provider performs the processing requirements of

the physical resources. As the figure shows cloud consumers do not have any direct

interaction with infrastructure provider. Resources are provisioned through service provider

from the resource pool and delivered to consumers [52].

2.6.2. Resource Monitoring Process

The resource monitoring process is a methodology which can be performed by internal

auditors. The main purpose of resource monitoring is to ensure whether resource provisioning

and allocations comply with standards and service level agreements. Cloud resource

monitoring is a key tool to identify risks as an assessment function to improve throughput and

efficiency [53-54].

The main motivation for cloud resource monitoring is to provide an assurance engagement

between the cloud provider and consumers to raise cloud consumer’s confidence concerning

the measurement of cloud services against criteria.

Figure 2-9: Resource monitoring process

Figure 2-9 depicts the monitoring process provided by both providers. The figure shows

both providers have a direct role in order to monitor available resources to ensure the proper

functionality and related processes. In the case of any crash or overloaded, the providers can

change the process. But as it is shown in figure 2-10, only service provider plays a major role

in the monitoring process. This process is done in order to improve resource utilization

process. In such a circumstances service provider performs a load balancing process.

Monitor resources at
physical hosts

Ask the scheduler to
suspend request

Resources
crash/over
provision

Migrate/Expand virtual
resources to another

physical host

Continue to provide
request

No

Yes

Chapter 2: Cloud Computing and Theoretical Foundations

22

Figure 2-10: Monitor resources and load balancing

2.7. Load Balancing

Load balancing is a technique to distribute workloads equally and dynamically to all

virtual machines in cloud computing [55]. Resource allocation is done dynamically for the

purpose of load balancing of non-preemptive tasks. Load balancing is an NP-hard

optimization problem in cloud computing [56]. This technique strives to balance the

workload across VMs, which aims to minimize response time in order to keep promises and

quality of service in accordance with service level agreements between the clients and the

provider. Furthermore, as we mentioned earlier in previous chapter this process has to be

carried out regularly due to the time-variant nature of the loads of application

environments[10]. Regardless of advantages load balancing saves energy consumption which

helps in a clean and green environment. The main advantages of load balancing in cloud

computing are as follows [57]:

 No machine is overloaded.

 Maximizing throughput and overall performance of cloud.

 Optimal resource utilization.

 Avoiding bottlenecks.

 Reducing response time and completion time.

 Provision for a backup plan.

 Reaching the dream of green computing.

 Decreasing Energy Consumption and Carbon emission.

Monitor usage of
allocation

Perform load balancing
on physical resources

Underutilized
resources?

Dynamically reallocate
resource

Continue to provide
request

No

Yes

Chapter 2: Cloud Computing and Theoretical Foundations

23

Figure 2-11: Load balancing in Cloud Computing

Figure 2-11 shows load balancer place in cloud environment. As the figure illustrates, load

balancer distribute loads among virtual machines. This distribution is based on a specific

algorithm or technique. Different types of load balancing techniques are as follows:

 Static Load Balancing: The implementation of this type of load balancing is easy but

inefficient for the cloud environment, especially in high workloads [58]. This

method needs prior information of resources such as capacity, availability,

processing power, etc.

 Dynamic Load Balancing: The implementation of the algorithm is difficult but

compatible with cloud environment [58-59]. This method is suitable for systems

with heterogeneous resources. The advantages of these methods are as follows:

o No need prior information.

o Changeable at runtime by user.

o Appropriate for heterogeneous resources.

 Centralized Load Balancing: In this method, there is a server to allocate resources

and monitoring all other nodes. This server which is called coordinator, stores all

information about allocations, requests, and requirements. This method is used in

private or small cloud computing environments.

Chapter 2: Cloud Computing and Theoretical Foundations

24

 Distributed Load Balancing: there are several coordinators in each domain. Each

coordinator stores all information about its own domain such as allocations,

requests, and requirements. This method is compatible for all distributed networks.

 Hierarchical Load Balancing: This algorithm divided cloud network to different

levels for load balancing. This technique uses a hierarchical process based on a tree

structure. In this process, all parents have the information of all own children and

decision is made based on a hierarchical structure for each level.

2.8. Scheduling in Cloud Computing

Resource scheduling problem in cloud computing is also known as the resources

allocation in cloud environment. Scheduling is a very important issue in the field of cloud

computing. Figure 2-12 shows a view of a scheduling system in the cloud environment.

Figure 2-12: High-level view of task scheduling in Cloud Computing

VM scheduler

Resource allocation/Job scheduling/load balancer

 … VM1 VM2 VM3 VMn

Cloud users

Internet

Chapter 2: Cloud Computing and Theoretical Foundations

25

In cloud environment, each user may face with hundreds of virtual resources to perform

any task. In this case, the allocation of tasks to virtual resources by the user is impossible.

Scheduling system controls different tasks in distributed systems to reduce response time and

increases productivity of resources which causes to increase computing power [60].

The purpose of scheduling is distribution of resources and productivity of shared

resources. In the sense of scheduling, we will be faced with challenges, including cost, time,

security, reliability, inefficiency, and lack of control, which have been proposed in recent

years to improve these factors. In this section, we first review the issues addressed in terms of

scheduling, then the tasks done in this area will be discussed.

As figure 2-12 shows, it is obvious that, after sending the user's request via the Internet on

the distribution system, and then categorizing them, scheduling is raised and used one of the

evolutionary algorithms. It also will assign a set of tasks to available virtual machines.

2.9. Scheduling Process in Cloud

With the increasing popularity of distributed computing systems, scheduling theory draws

more attention. Scheduling is mapping the tasks to resources based on characteristics of

requests and tasks. In general, the scheduling process includes: Resource Discovering,

Resource Filtering, Resource Selection and Task Submission [61-62].

 Resource Discovering: In this section, the data center server discovers the available

resources.

 Resource Filtering: After the discovery of resources, information on their status is

collected.

 Resource Selection: Source selection is done based on specified parameters of task

and resource. This stage is decision-making.

 Task Submission: Task will be submitted to the selected resource in the previous

step.

Chapter 2: Cloud Computing and Theoretical Foundations

26

The scheduler carries out all scheduling activities and implemented to keep all resources

busy. This program has a direct effect on maximizing throughput, minimizing response time

and latency. Figure 2-13 illustrates the data flow process in the cloud environment.

Figure 2-13: The process of scheduling in the Cloud [63]

1) Job submission: The requested job is submitted by the user.

2) Request for resource information: Cloud Information System (CIS) consists of all

information about cloud resources. Needed information is requested for a job.

3) Resource information: Received information is sent to scheduler to make scheduling and

appropriate scheduling process.

4) Job submission: job is submitted and needed resources are allocated to the job by resource

allocation process.

5) Resource ID: Resources Id are sent. This resources id is used by user cloud interface to

control the process of data flow between user and cloud.

6) Sending input data: Input data are sent to resources by the user based on specified

scheduling.

7) Output to scheduler: scheduler receives real-time information from resource controller in

order to the administration of scheduling program.

8) Output to user: scheduler sends appropriate specified information to user cloud interface.

Chapter 2: Cloud Computing and Theoretical Foundations

27

Different classifications are listed for scheduling algorithms in distributed systems. In the

following, a general example of the categories is shown in figure 2-14.

Figure 2-14: Classification of scheduling algorithms in distributed environment

Local

Global

Static

Dynamic

Scheduling algorithm
in distributed system

Optimal

Suboptimal

Physical
distributed

Physical non-
distributed

Optimal

Suboptimal

Approximate

Heuristic

Cooperative

Non-
cooperative

Approximate

Heuristic

Optimal

Suboptimal

Optimal

Suboptimal

Chapter 3: Background & Related Work

28

Chapter 3

Background & Related Work

Chapter 3: Background & Related Work

29

3.1. Introduction

The main aim of this literature survey is to identify different related issues in resource

allocation, load balancing, and scheduling such as algorithms, methods, and techniques in

cloud computing as well as identifying areas for future research. Although in this research,

many solutions were identified, it has become apparent that much of the research being done

only relates to the theoretical side of this issue. Thus this review shows that, however many

of solutions and techniques have been identified, the future research should focus more on the

practical implications.

3.1.1. Literature Search Method

The first step is implemented to identify relevant literature. This step was conducted with

the help of provided online databases from different universities, publishers, and search

engines. The focus was to find the state of the arts regarding resource allocation and load

balancing issues in cloud environments. It is important to mention that review of all the found

results in search engines and different databases is impossible from a practical standpoint. It

is also important to note that based on the search way, search engines operate and order the

results depend on the computer used for search and many other search settings and factors.

Table 3-1 shows search keywords, online research databases and search engines which are

used in this literature study.

Table 3-1: Online research resources and keywords

Search criterions Name

Publishers Taylor & Francis – Wiley- Springer – Elsevier

Online databases
Scopus – ScienceDirect – Web of Science –
IEEEXplore – ACM Digital Library – DBLP –
MathSciNet – arXiv

Search engines
Google Scholar – Academic Search –
Microsoft Academic search – WorldWide
Sience – CiteSeerX

Keywords relevance to :
Resource allocation; Resource Scheduling;

Resource Management Load balancing

Chapter 3: Background & Related Work

30

Figure 3-1 shows the inclusion and exclusion criterions in order to select related studies

for this literature review.

Figure 3-1: The process of selected articles

3.2. Related Works

Selecting and developing an appropriate algorithm to solve multi-objective problems is of

utmost importance. In order to explore efficient solutions and addressing the related issues

from different aspects and to handle the constraints of the resource allocation at different

levels, existing state of the art needs to be studied and discussed. In this section, we provide a

detailed overview of resource allocation and load balancing techniques, methods and

algorithms at different dimensions and levels. Existing solutions are divided into three

categories as follows:

3.2.1. Single Objective Algorithms

Wu et al. [64] developed a method for tasks scheduling in line with load balancing using

RDPSO1 algorithms [65] in distributed environment. In this algorithm, Candidate solutions

are provided in task-resource solution pairs. Each particle not only learns about other

particles, which moves in direction, but also shows the other pairs at the right direction. The

goal of this method is to reduce the time of execution of the task.

1 Revised Discrete Particle Swarm Optimization

Chapter 3: Background & Related Work

31

Izakian et al.[66] developed a version of Particle Swarm Optimization(PSO)[67-69]

algorithm for scheduling tasks as discrete in order to balance the load on the grid. In this

model, each particle shows that each task is allocated to one resource available. In addition,

solutions have been put in a m n matrix, where m represents the number of machines and

n represents the number of tasks. Each element of the matrix represents a particle, which has

a value of 0 or 1, and in each column, only one element can have a value of 1. Columns

represent tasks allocated, and rows represent tasks assigned to a resource. In the proposed

method, the velocity of the particle, the best particle's personal position and the best global

position of each of them is shown as a m n matrix. The best personal position is a position

that a particle has ever had, and the best global position is a position that all particles have

ever had.

Banerjee et al.[70] introduced a method of resource allocation by using Ant Colony

Optimizer(ACO)[71]. The purpose of this method is to maximize scheduling throughput to

handle all users' requests due to heterogeneous resources in distributed environment, as well

as minimizing the completion time of the last task by using load balancing. In this model, the

distance between machines is shown as (r, s), which has specified length or cost. The cost is

shown as δ(r, s), as well as a pheromone concentration level that is shown as τ(r, s).

Pheromone updating law is calculated in accordance with evaporation factor and the cost

imposed Δτk (r, s) on the ant k when is in the direction of route (r, s). The concentration of

pheromone is updated on all routes between machines, when the task is processed on a

machine. This dynamic exploratory model is made in two ways, batch and online. When the

online method is used, any request is assigned immediately after entering machine, and in

batch mode, first of all requests are collected, then scheduling with respect to the approximate

specified running time (time of event) maps the tasks on the resources.

Gao et al.[72] proposed a method that includes a mechanism to maintain load balancing

using ant colony algorithm and the theory of complex networks. This type of scheduling has

been redesigned only for Open Cloud Computing Federation (OCCF). OCCF is includes

several cloud providers, which calls for the creation of a single resource interface of users. A

complex network is a graph with certain characteristics which simple networks don't have

Chapter 3: Background & Related Work

32

those features and this algorithm is consist of four steps. In the first phase, the ant is

frequently sent to a machine that has a little load to load balance to be maintained in OCCF,

as well as updating the pheromone on each machine. In the second stage, when the ant was

unable to correctly handle the workload, it will be sent by the machine, then the previous step

will be repeated, except when, the ant machine will convert to a machine with maximum

workload. A load balance is done in the third stage, the ant moves backward along the route

and the pheromone is updated on it. Each machine has a table, which contains the pheromone

route and its neighbor machine, the table saves the values which represent the pheromone on

that route. Updating pheromone is combined with increasing and evaporating. Finally, the

complex network structure evolves to adapt changes in workload. A complex network with

the specifications listed can be obtained through local behavior of ants. The profile is useful

for load balancing process in proposed algorithm.

Ludwig et al.[73] developed a method to schedule tasks in grid computing. In the

proposed algorithm, ants and tasks have strong relationship with each other. Whenever a task

for allocation refers to the resource, an ant will arise to find the best machine to allocate that

task. As soon as the task is allocated, the ant stores all information of relevant machines in

the form of a sequence of pheromones in a Load information table. Load information table

contains information on load in all machines. The ant meets machine and stores the load in

the table to guide other ants to select the best possible route. Many stores are listed in the

table. Authors added two rates to the proposed algorithm, Decay Rate (DR) and Mutation

Rate (MR). These rates are used when the ant wants to go from one machine to another.

There are two items to select, or go to a machine randomly due to the probability of mutation

given. The second way is that, using Load information table in two machines, determines the

next destination with the passage of time, due to higher decay probability, mutation

probability is reduced. In this case, the ant relies on information in the table for routing, and

does not do random selection.

Babu & Krishna [56] introduced a method to balance load inspired by Honey bees

algorithm [74] in a distributed environment. Their aim is to provide the algorithm to achieve

load balancing across virtual machines, and to minimize completion time of the last task in

Chapter 3: Background & Related Work

33

the cloud infrastructure. In this method, virtual machines based on the amount of their load

are placed in three groups of virtual machines with overload, virtual machines with under

load and virtual machines with balance load. Each group includes a number of virtual

machines, the tasks have been removed from the machines with overload and after making a

decision will be placed on one of the virtual machines with under load. In this way, each task

is considered as a bee, and virtual machines with under load are considered as the destination

of the bees. Bees have to update the information including the amount of loads on each

virtual machine, the total load on all virtual machines, the number of tasks of each virtual

machine and the number of virtual machines in each group. When the process of task shifting

on the machine is done, the virtual machine that is balanced will be added to load-balanced

virtual machines group. The load balancing process ends, when all virtual machines are

placed in this balanced group. In [75], Zhao introduced a method of assigning tasks

scheduling using particle swarm optimization algorithm in order to minimize processing time

of the tasks, and the cost of using resources in a distributed environment.

Karthick et al.[76] developed a method of scheduling for allocation of tasks in distributed

systems using ant algorithm. The aim of offering this procedure is to create load balancing

and reduce completion time of tasks scheduling. In this method, the tasks are selected to

perform by artificial ants. Every ant select a task to perform acts based on pheromones table

and heuristic values that have been assigned to each task in the preparation stage of

algorithm. After selecting any task by the ant, it's time to select the processor for that task

among the available processors. A processor is selected to run, which gives the earliest

completion time and the best solutions by using the algorithm. Each ant stores in its memory

information about the tasks performed, such as task completion time, number of processors

that the task is executed on them, as well as the status of each processor in different moments

to speed up computing the next time.

In [77], Abdullah and Osman developed a method of tasks scheduling using simulated

annealing algorithm for distributed system, which has less execution time than the genetic

algorithm. In this method, there are n and m machines, which the tasks should be allocated to

Chapter 3: Background & Related Work

34

existing machines. Generally, the aim of algorithm is to reduce the execution time

considering the deadline specified, so that the load balancing to be maintained.

Xu et al. [78], in order to find suitable solution for mapping a set of requests to the

available resources in the system, introduced a method according to the distributed system

conditions. In this way, the initial population is done purposefully, which it speeds up the

process of finding the solution. The purpose of this algorithm is to reduce the implementation

time and create load balancing.

3.2.2. Multi Objective Algorithms

The multi-objective algorithm is an area of multiple criteria decision making. The multi-

objective optimizations involve several conflicting objectives, which are concerned with

mathematical optimization problems to be optimized simultaneously [79]. This sort of

optimization methods has been used in many fields of science, including engineering,

economics, and logistics where optimal decisions need [79].

3.2.2.1. Non-dominated Sorting Genetic algorithm-based Algorithm (NSGA)

Xue et al.[80] presented a Non-dominated Sorting Genetic Algorithm-based(NSGA)[81]

multi-objective method for resource allocation in distributed environment scheduling. Their

aim was to minimize the time and cost in load balancing using resources and achieve Pareto

optimal front, so that crowding distance is met. For this purpose, they used Self-adaptive

Crowding Distance (SCD), in addition, in the proposed method, a mutation operator was

added to the traditional algorithm NSGA-II to avoid premature convergence.

In this method, the tasks are shown by a Directed Acyclic Graph (DAG), the equation of

 E T , E , V       is considered for a graph, where T  is the set of tasks and iT

represents a task, the amount of iT
represents the amount calculated for that task, E  is a

set of edges, each edge as ijE
has a relation with two tasks i and j, and represents that the task

j can't be done until the task i is finished.

Chapter 3: Background & Related Work

35

Figure 3-2: An example of a workflow [80]

V  is a set of virtual machines in a cluster, iV means thi machine of this set, the cost

iV represents the cost of using the thi machine per unit of time. The ability of iV is used to

demonstrate the processing power for the machine i. Figure 3-2 shows a workflow of T0 to T7,

the tasks T9 and T8 are independent.

ە
ۖ
۔

ۖ
ۓ
ሺ݁ݎܲ																																																			,0 ௜ܶሻ ൌ ∅, ሺ݈݋ܥ ௜ܶሻ ൌ ∅

௘ሺݐ		 ௞ܶሻଵஸ௜ஸ௠
௠௔௫		 ሺ݁ݎܲ																													, ௜ܶሻ ് ∅, ሺ݈݋ܥ ௜ܶሻ ൌ ∅

∑ ௘൫ݐ	 ௝ܶ൯,																																ܲ݁ݎሺ ௜ܶሻ ൌ ∅, ሺ݈݋ܥ ௜ܶሻ ് ∅	௡ିଵ
௝ୀ଴

௘ሺݐ		 ௞ܶሻଵஸ௜ஸ௠
௠௔௫		 ൅ ∑ ௘൫ݐ	 ௝ܶ൯,			ܲ݁ݎሺ ௜ܶሻ ് ∅, ሺ݈݋ܥ ௜ܶሻ ് ∅	௡ିଵ

௝ୀ଴ 		

 (3-1)

The purpose of the Pre(Ti) is a direct parent of node Ti, Col (Ti) is a task has priority over

the task i, and should be allocated to the machine before that, the start time for processing is

shown as Ts, and end time of the processing is displayed by Te. m represents the number of

independent tasks and n is the number of tasks dependent on Ti. Equation (3-1) shows this

process. According to equation (3-1) we realize that as long as Pre(Ti) and Col (Ti) are

empty, Ti is not be processed, the processing value for Ti consists of three parts:

 The first section is the time spent by Ti when it is allocated to a specified machine.

 Waiting time spent by Ti, when is waiting for the completion of task processing of Ti.

Chapter 3: Background & Related Work

36

 Waiting time spent by Ti, when is waiting for completion of the task Ti. Now, we can

obtain Te using the equation (3-2).

௘ܶሺ ௜ܶሻ ൌ 	
௔௠௢௨௡௧ሺ்೔ሻ

௔௕௜௟௜௧௬ሺ௏೔ሻ
൅ ௦ܶሺ ௜ܶሻ																							 (3-2)

Assumptions considered by authors to create the model were as follows:

 Task can be performed on several machines.

 When several tasks are allocated to a machine, the task which is received earlier has

higher priority.

 The more is the processing power of machine, the more the price will be.

Considering these assumptions and using start time for the first processing and the

completion time of final processing, the total time spent using equation (3-3) is obtained.

Financial cost is obtained with the use of equation (3-4).

௧௢௧௔௟ݐ ൌ ௘ܶሺ ௟ܶ௔௦௧ሻ െ ௦ܶ൫ ௙ܶ௜௥௦௧൯	 (3-3)

ܿ௧௢௧௔௟ ൌ 	∑ ܿ௜ ∗ ൫ ௘ܶሺ ௜ܶሻ െ ௦ܶሺ ௜ܶሻ൯			
௉
௜ୀଵ (3-4)

Two intended aims by Xu et al. is obtained using equation (3-5).

ቊ
݉݅݊ሺݐ௧௢௧௔௟ሻ ൌ ݉݅݊ሺ ௘ܶሺ ௟ܶ௔௦௧ሻ െ ௦ܶሺ ௙ܶ௜௥௦௧ሻሻ													

݉݉݅݊ሺܿ௧௢௧௔௟ሻ ൌ ݉݅݊ሺ∑ ܿ௜ ∗ ሺ ௘ܶሺ ௜ܶሻ െ ௦ܶሺ ௜ܶሻሻ
௉
௜ୀଵ ሻ

		 (3-5)

To create a scheduling mode, the matrix a = p×q is considered where p represents the

working group and q is the number of virtual machines. The elements of the matrix aij have

values of 0 or 1, if aij =1 (i.e. Ti is assigned to Vj, otherwise aij =0).

According to the assumption 2, a task can't be run on several machines and only one

element in each column can have a value of 1. Based on the assumption 3, more than one

element in each row can have a value of 1.

Chapter 3: Background & Related Work

37

Table 3-2: An example of machine coding [80]

Table 3-2 shows an example of this matrix coding method. To overcome the problem of

low convergence speed and failure to comply with congestion, authors at the intersection,

mutation and fourth step of standard algorithms NSGA-II made some changes; the changes

have created as follows:

To improve the performance of the intersections, a strategy is used called STOX1 [82] that

comes from SJOX2 [82]. However this strategy trapped the algorithms to the local optimums.

To resolve this problem, Xu et al. have made the changes in mutation part. This means that in

the matrix position, two columns randomly are selected as the starting and ending point, and

gene segments can move between the two points. Figure 3-3 shows the mutation operation.

Figure 3-3: Mutation operation in the NSGA-II algorithm[80]

Standard NSGA-II algorithm has the following steps:

 Setting the population size, the maximum evolutionary generation max(Gen) and

initializing the population P(Gen).

1 Similar Task Order Crossover
2 Similar Job Order Crossover

Chapter 3: Background & Related Work

38

 Selecting the chromosomes in P(Gen) to perform crossover and mutation as well as

generating new population Q(Gen).

 Integrating P(Gen) and Q(Gen) as R(Gen) and performing sorting and ranking

chromosome in R(Gen), chromosomal are placed in few ranks.

 Calculating the crowding distance of chromosomes in every rank and sorting them in

ascending at congestion distance.

 Choosing m high chromosomes of R(Gen) and transferring them to P(Gen + 1)

based on ranking and crowding distance of chromosomes R(Gen).

 Set Gen = Gen + 1 and, if Gen <max(Gen) go step 2, otherwise go to step 7.

 Inserting chromosomes P(Gem) in the Pareto front.

SCD1 method is used to adjust the distance of condensation, which is defined as the

quotient of the two operands. One of them is a maximum distance of two targets in the cost

dimension, and the other is maximum distance of two targets in the time dimension. A

variable is also considered as a counter that counts the time when SCDP2 does not change

during the period. The evolution of generation ends, when the count reaches a certain level.

According to the authors, the algorithm might get stuck in local optimum. To fix the problem,

the probability of crossover and mutation increases to 0.01 to reach a certain level. SCDP

algorithm has 6 steps as follows:

 Initializing the maxPc, maxPm and maxcount variables, represent the probability of

crossover, mutation and upper limit of counter. For the first generation, SCDP

amount is equal to 1, otherwise, it is equal to the previous generation value.

 Calculating new SCDP in the current generation, that if it is not equivalent to the

previous generation, variables of the stage 1 are updated otherwise one unit is added

to SCDP.

 If the counter reaches the upper limit, go to the step 6, otherwise go to step 4.

 If the probability of crossover reaches to its upper limit, then go to step 5, and

otherwise, add 0.01 to the probability of crossover.

1 Self-adapting Crowding Distance
2 Self-adapting Crowding Distance Parameter

Chapter 3: Background & Related Work

39

 If the probability of mutation reaches to its upper limit, go to step 6, otherwise add

0.01 to the probability of mutation, otherwise it ends.

All steps are considered in the stage 4 of traditional NSGA-II algorithm. Evaluation results

show improving performance of the algorithm compared with its old version.

Salimi et al.[83] introduced a multi-objective task scheduling using fuzzy systems and

standard NSGA-II algorithms for distributed computing systems. The goal of this method

was to minimize implementation of task time, and the costs paid by the user for the use of

resources and increase the productivity of resources. This study was associated with the load

balancing in the distributed system. They used the indirect method and fuzzy systems and

ignored the implementation of the third objective function to solve this problem.

In [84], Cheng provided an optimized hierarchical resource allocation algorithm for

workflows using general heuristic algorithm. In this model, the main objective of co-

ordination between the tasks and duties assigned to the service, in accordance with the

operational needs is to perform the tasks properly and observing the priority between them.

This model accomplishes workflow tasks scheduling aimed at load balancing and divide the

tasks to different levels and mapping (allocation) of each level of tasks to resources that they

have the processing power. Figure 3-4 shows division of the tasks to different.

Figure 3-4: Dividing the tasks to parallel levels to properly allocate tasks

to the available resources [84]

Chapter 3: Background & Related Work

40

3.2.2.2. Grey Wolf Optimizer (GWO)

Grey Wolf algorithm has recently been introduced by Mir Jalali [85-86] that is based on

the behavior of wolves hunting and their rule hierarchies. Hierarchical structure and social

behavior of wolves is modeled during hunting process in the form of mathematical models

and is used for the design of optimization algorithm. Wolves' leader is called Alpha which is

responsible for hunting. The second level of wolves which helps header is called Beta. The

third level of wolves is called Delta which is designed to support alpha and beta. The lowest

level is called Omega.

In general, the algorithm steps can be summarized as follows:

 The fitness of all solution levels is computed and three top solutions are selected as

alpha, beta, and delta until the end of the algorithm. The alpha level solution is the

best fitness one. After alpha, beta and delta are the best solutions respectively. And

the next better solution is delta.

 In each iteration, the three top solutions (alpha, beta, and delta wolves) have the

ability to estimate the hunt, and do it in each iteration using the following equations:

pD C .X (t) X (t)= -
   

 (3-6)

1 pX (t) X (t) A .D+ = -
   

 (3-7)

The wolves encircle around the hunt. Xp, is hunting position vector. A and C are hunting

vector coefficients. X is the wolves' position and t shows the stage of each iteration. D shows

behavior of encircling around the hunt. The vectors A and C are calculated as follows:

1A 2a.r a 
   

 (3-8)

2C 2.r
 

 (3-9)

 In each iteration, after determining of the position of alpha, beta, and delta wolves’

positions, other solutions are updated in compliance with them. Hunting information

Chapter 3: Background & Related Work

41

is done by alpha, beta and delta. And the rest update their X position with them. As

figure 3-5 shows, wolves are able to change their position based on location of prey.

Figure 3-5: View of the gray wolves motion in haunting [85]

1 2 3α α β β δ δD = C .X -X , D = C .X -X , D = C .X -X
           

 (3-10)

1 2 3
1

3

X X X
X (t)

+ +
+ =

  
 where:

1 1

2 2

3 3

X X A .(D)
X X A .(D)
X X A .(D)a a

a a

a a

ì üï ï= -ï ïï ïï ï= -í ýï ïï ï= -ï ïï ïî þ

   
   
    (3-11)

 In each iteration, vector and consequently vectors b and c are updated (figure 3-6).

Figure 3-6: Updating wolves' position [85]

Chapter 3: Background & Related Work

42

 At the end of iteration, alpha wolf position is considered as the optimal point. This

value is A. The value of A is an option value which is between [-2a, 2a]. The

absolute value of A is less than 1, so the wolves attack when they are at the A

distance from the prey, while it is necessary to converge toward each other’s at the

distances of more than one.

The flowchart of gray wolves is introduced by Guha et al.[87]. In the gray wolf algorithm,

parameters such as the initial population size, vector coefficients and the number of iterations

and the number of wolves’ level are to be determined. Then, the cost function of optimization

which is minimized in this study is introduced then. Afterward, the initial population is

formed randomly then, the fitness function is introduced. Then, in the loop on a regular basis,

the position of the wolves' levels is determined and the fitness function is calculated, and

using them, the new positions are calculated again. Iteration of this loop is specified

according to the initial parameters. After repeating fitness value loop, the value of the optimal

function will be shown. Figure 3-7 shows flowchart of the gray wolf algorithm.

Figure 3-7: Flowchart of Gray wolf [87]

Start

Initialization of grey wolves
(search agents)

Initialize
Calculate fitness

value

Find Xα , Xβ
and Xδ

iter< itermax
Update the position of

searching agents

Display Xα as
best solution

Update a, A and C

End

Calculate fitness
value

Update Xα , Xβ and Xδ

iter= iter+1

Yes

No

Chapter 3: Background & Related Work

43

The results of the gray wolves algorithm are as follows [88-89]:

 Avoiding local optimum and the convergence of this method in problems with

restrictions and no limits has been approved.

 Rotational movements of wolves can be modeled in multidimensional spaces. So

many multi-objective problems with the correct values such as load balancing in

distributed systems can be modeled.

 Determining and adjusting the values of A and C should be discussed to solve

different optimization problems. It is very convenient for multi-objective

optimization.

3.2.2.3. Teaching–Learning-Based Optimization (TLBO)

Teaching–Learning-Based Optimization algorithm is a way to explore the space of a

problem to find the settings or parameters to maximize a specific purpose. The algorithm was

introduced by Rao et al.[90] Similar to other evolutionary optimization techniques,

Teaching–Learning-Based Optimization algorithm is an algorithm derived from nature, and

works based on teacher teaching in a classroom. This algorithm is inspired from modeling the

teaching and learning problem mathematically and presents a new model for solving

optimization problems. Teaching-Learning-Based Optimization algorithm is based on the

teaching of a teacher in the classroom. A teacher in the classroom by expressing material

plays an important role in student learning and if the teaching is effective, the students will

learn the material better. In addition to the teacher factor, review of lessons by students would

lead to better learning. This algorithm uses a total population of solutions to achieve the

overall solution. Population is considered as a group of learners or students in a class.

A teacher tries to increase the level of knowledge by teaching and learning, so the students

can achieve a good score. In fact, a good teacher makes students closer to the level of his

knowledge. The teacher is a person with high knowledge in the class that shares his

knowledge with students in class, so that the best solution (the best student of the population

class) in the same iteration acts as a teacher. It should be considered that the students acquire

knowledge based on the quality of teaching by the teacher and students status (the average

Chapter 3: Background & Related Work

44

class scores). In addition, students increase their knowledge through interaction between

themselves. This idea is the basis of Teaching–Learning-Based Optimization algorithm for

solving optimization problems. The algorithm operates in two phases, the first phase is the

teacher who shares his knowledge to develop the class and the second phase is the review of

courses by students in the same class. In the following, we describe the process of teaching

and learning:

Training process:

The first stage of Teaching-Learning-Based Optimization algorithm is training phase. At

this stage, a teacher tries to improve the scores of a classroom.

Figure 3-8: Distribution of scores by students: by two teacher (left)

by through for a group of students(right) [90]

In Figure 3-8, the Gaussian distribution function is used and the average scores obtained

by students in classroom are shown as M1 and M2. In this figure, M1 and M2, respectively,

show the average scores of two separate classrooms with the same students. As it is shown in

the figure 3-8 (left), the second teacher with the average scores of M2 has acted better than the

first teacher with average score of M1. Gaussian probability function is as follows:

2

2

()

2
1

()
2

x

f X e
m
s

s p

- -

= (3-12)

In this formula, μ is the average scores of students which are shown as M1 and M2. The

only point of evaluating a teacher is the students’ scores, and when a teacher wants to

improve the status of a class, he/she should focuses on the average scores.

Chapter 3: Background & Related Work

45

In figure 3-8(right), TA is the best student in the class which is mimicked as a teacher. TA

will try to increase average MA towards their own level according to his or her capability,

thereby increasing the student's level to a new average MB. It means that the academic level

of students is approaching to their teacher, or exactly equal with him/her. This creates a new

population of the classroom which has shown an average of MB and teacher TB. In fact, the

knowledge level of students does not reach the teacher’s level. It is just close to it, which is

also depends on the level of classroom ability (average scores).

Learning process:

The second stage of Teaching-Learning-Based Optimization algorithm is interacting and

learning process among students in a classroom. In a classroom, students can discuss and

learn the issues. It is a mutual interaction phase between students, which transfers the

knowledge among students. Figure 3-9 shows interactive learning among students that cause

the student with low knowledge moves toward the student with more knowledge.

Figure 3-9: Student learning in algorithm TLBO

Based on the figure 3-10, Xj has a better score than Xi. So according to the learning phase,

Xi must move toward Xj.

,)(j i j ii newX X X X X= = + - (3-13)

Figure 3-10 shows an exact state of the weak student toward the strong one, which is the

best motion. To reach this goal Teaching-Learning-Based Optimization algorithm should use

a random parameter r to move parameter Xi to Xj.

j j i j ii , newX X r (X) XX X   (3-14)

If, Xj wants to move to a better position on the problem space, should be located at

distance of j j iX (X)X  from the Xi.

Chapter 3: Background & Related Work

46

j ji j ii , newX X r (X) XX X   (3-15)

Parameter r is a random number in problem, which leads to increase power search for

algorithm. According to the formula, students moving step is equal to the result of subtracting

good student with a bad student. Figure 3-10 shows the flowchart of Teaching-Learning-

Based Optimization algorithm.

Figure 3-10: Flowchart of Teaching-Learning-Based Optimization algorithm [90]

Initialize number of students (population)

Calculate the mean of each design variable

Identify the best solution (teacher)

Modify solution based on best solution
Xnew=Xold+r(Xteacher-Mean(Tf))

Is the solution better
than existing?

Select any two solutions randomly Xi & Xj

Accept Reject

Is Xi better than Xj

Xnew=Xold+r(Xj - Xi) Xnew=Xold+r(Xi -Xj)

Is the solution better
than existing? Accept Reject

Is termination
criteria satisfied?

Final value of solutions

Yes No

Yes No

No

No

Yes

Yes

Chapter 3: Background & Related Work

47

According to the defined pseudo-code, students increase their knowledge in two ways.

One method is participating in classroom and benefitting from the teacher knowledge, and the

other one is reviewing of lessons between the students. It is assumed for modeling that each

student exchanges his idea with another student randomly. After calculating the new member

of the population, the cost function value is compared with the value of the cost function of

the same member in the previous iteration. If the new value was lower, a new member will be

replaced. This process is repeated. Pseudo-code of learning phase is as follows:

For i = 1 : Pn

 Randomly select two learners Xi and Xj, where i ≠ j

 If f (Xi) < f (Xj)

 Xi, new = Xold + ri (Xi − Xj)

 Else

 Xi, new = Xold + ri (Xj − Xi)

 End If
End For

Accept Xnew if it gives a better function value.

Steps of Teaching–Learning-Based Optimization algorithm:

 Preparation: Setting parameters values and creating the initial population.

 Calculating the average members of the population.

 Choose the best member of the population as a teacher.

Teacher is considered as T that is Xbest. You can consider the teacher as the best member

of population, which makes moving average scores towards itself newM T= .

The new class mean must approach to the best student in the classroom. In fact, all class

members should learn the new average, and make themselves close to it, and move toward it,

which is shown in the following formula:

(), newi new i fX X r M T M= + - ´ (3-16)

Tf is a random number between the numbers {1, 2}, which is selected with equal

probability and is multiplied in the previous average. If the training factor is equal to 1, the

Chapter 3: Background & Related Work

48

new mean motion is moved normally. But if the factor is equal to two, moving step of

average will be twice and the difference increases, therefore the probability of learning and

improving solutions will be increased.

1. Better solutions replace the old solution (worse).

2. Learning phase:

At this stage, for each solution Xi, we select a random solution such as Xj.

If Xi is better:

 Xi,new=Xi+r(Xi-Xj)

If Xj is better:

 Xi,new=Xi+r(Xj-Xi)

3. Better solutions replace the old solution (worse).

4. Termination conditions are checked, and if these conditions are not met, the

implementation of the algorithm goes to the second phase, and otherwise, the loop

is stopped, and the algorithm ends.

The results of using education-based learning algorithm are as follows:

1. According to learning, the basis of the training, improves the solution.

2. The specific parameter for setting is required.

3. Single-objective optimization is very convenient.

Since training is based on local operations, always convergence may not be guaranteed.

3.2.3. Hybrid Algorithms

Gomathi and Karthikey[91] introduced a method for assigning tasks in a distributed

environment using Hybrid Particle Swarm Optimization(HPSO) algorithm, so they can meet

the user needs and increase the amount of load balancing with productivity. The aim of the

authors is to minimize the longest completion of task time among processors and create load

balancing. In the proposed method, the resources are heterogeneous in distributed

Chapter 3: Background & Related Work

49

environments. For this method, there are n independent tasks which are shown as Ti where

i={1,2,3,…,n} and m different processors which are shown as Rj where j={1,2,3,…,n}.

The time of implementation of task i on the resource j is shown as p (i, j), and the resource

utilization for each processor is shown as ܴ௜ሺ௨௧௜௟௜௦௔௧௜௢௡ሻ. Task allocation to resources is in

form of a permutation matrix, in the permutation matrix if x(i, j)=1, that is, the task i is

assigned to the resource j, otherwise ݔ௜,௝ ൌ 0. This method assures us that each task exactly is

assigned to a processor. The method of calculating targets is in form of equations (3-17), (3-

18), and (3-19). As mentioned in Chapter 1, there are two general methods for solving multi-

objective scheduling problems. In fact we have two purposes, using traditional methods to a

target or directly using multi-objective optimization algorithms, in case of attempting to solve

the problem.

ܵܯ ൌ 	∑ ௜ܲ௝ ∗ 			௜௝ݔ
௡
௝ୀଵଵஸ௜ஸ௠

௠௔௫		 (3-17)

ܴଓሺ̅݊݋݅ݐܽݏ݈݅݅ݐݑሻ ൌ ሺ∑ ܴ݅ሺ݊݋݅ݐܽݏ݈݅݅ݐݑሻ௠
௜ୀଵ ሻ ݉⁄ 		 (3-18)

ݒ݂ ൌ minܵܯ maxܴଓሺ̅݊݋݅ݐܽݏ݈݅݅ݐݑሻ	⁄ (3-19)

S.t.

෍ݔ௜௝ ൌ 1

௠

௜ୀଵ

, ∀݆ ∈ ܶ

௜௝ݔ ൌ ሼ0,1ሽ, ∀݅ ∈ ܴ, ∀݆ ∈ ܶ

ܴ௜ሺ݊݋݅ݐܽݏ݈݅݅ݐݑሻ ൌ
∑ ௜ܲ௝
௡
௝ୀଵ

ܵܯ
, ∀݅ ∈ ܴ

In this method, each solution is shown as a particle in the population; each particle is a

vector with n dimension which is defined for scheduling an independent task. Figure 3-11

shows the particles in the proposed model.

Figure 3-11: The mapping of tasks to resources in the HPSO algorithm [91]

Chapter 3: Background & Related Work

50

The position and velocity of particles in the first generation can be obtained in accordance

with equations (3-20) and (3-21).

ܺ଴
௞ ൌ ܺ௠௜௡ ൅ ሺܺ௠௔௫ െ ܺ௠௜௡ሻ ∗ (20-3) 	ݎ

଴ܸ
௞ ൌ ௠ܸ௜௡ ൅ ሺ ௠ܸ௔௫ െ ௠ܸ௜௡ሻ ∗ (21-3) 	ݎ

r is a random number between zero and one, due to the binding property of particle swarm

optimization algorithm, the particles, position is continuously calculated. In this method, the

continuous amount has become the discrete amount using the small position value, and the

mapping is performed in accordance with equation (3-22). In this mapping, and continuous

amounts ݔ௜
௞ ൌ ሼݔ௜

ଵ	ݔ௜
ଶ ௜ݔ	…

௡ሽ	have become the discrete values ݏ௜
௞ ൌ ሼݏ௜

ଵ	ݏ௜
ଶ ௜ݏ	…

௡ሽ, using	ݓ݋݊

equation (3-23), the allocation is done. Table 3-3 shows 6-tasks mapping between three

resources.

Table 3-3: Mapping of tasks to resources [91]

We have both social and cognitive factors, social factor represents collaboration between

the particles to move toward the best goal, and the cognitive component represents the

personal experience of the particle. In this hybrid algorithm, cognitive component is defined

as the difference of position between two different particles which are randomly chosen and

are substituted in the velocity vector; the equation (3-22) illustrates this process.

δ ൌ ܺ௞ െ ܺ௝					 ௞ܸାଵ
௜ ൌ ௞ܹ ௞ܸ

௜ ൅ ߜߚ ൅ ܿଶݎଶ൫ ௞ܲ
௚ െ ܺ௞

௜ ൯				݂݅	݀݊ܽݎ	ሺ0,1ሻ ൏ൌ 	 ௞ܸ
௜				 (3-22)

In this equation, δ is the vector dimension, and β is a scaling coefficient in the range of (0, 1).

Ti position which is related to the ith particle is defined as equation (3-23).

Chapter 3: Background & Related Work

51

As it is shown in equation (3-23) and (3-24), the particles move to a new location only

when the new location has much better fitness according to [91], this prevents premature

convergence of problem solution in HPSO and helps to solve the problem.

ܺ௞ାଵ
௜ ൌ ௜ܶ				݂݅				݂ݒሺ ௜ܶሻ ൏ ൫ܺ௞ݒ݂

௜ ൯		 (3-23)

௜ܶ ൌ ܺ௞
௜ ൅ ௞ܸାଵ

௜ 			 (3-24)

The algorithm which is including 100 tasks and 5 resources in 100 replications with 10

particles per generation was compared with the standard particle swarm optimizer algorithm

and the comparison results demonstrate the effectiveness of this method in reducing

makespan and especially increasing the efficiency of the system.

In [92] introduced a heuristic method based on particle swarm algorithm for tasks

scheduling on distributed environment resources, which considers the computational cost and

the cost of data transfer. This algorithm optimizes dynamic mapping tasks to resources using

particle swarm optimization classical algorithm and ultimately balance the system load

balancing. This optimization method is composed of two components, one of them is tasks

scheduling operations and the other one is particle swarm algorithm particles steps to obtain

an optimal mix of the tasks to resources mapping. In this method, each particle represents a

mapping of tasks to available resources. The first step in this exploration method is to

calculate the mapping of all tasks, which is possible when there will also be a dependency

between tasks and this algorithm takes into account the dependencies between tasks as the

allocation of ready tasks to resources based on output pairs obtained from particle swarm

optimization algorithm. The purpose of the ready task is something that its implementation

has ended and input data is obtained to perform child task by doing relevant calculations.

Upon completion of the task, ready list will be updated. After that, the average delay time (to

start the task) and bandwidth to transfer data will be updated between resources based on

network utilization. In other words, since the communication cost varies over time, particle

swarm algorithm mapping operations is calculated again, and this creates a scheduling

heuristic method to handle runtime for tasks mapping. The scheduling process has been as

online and is being repeated until all tasks are scheduled [93].

Chapter 3: Background & Related Work

52

3.3. Overview and Comparative Study

In this section, using the table 3-4, we have an overview on the works done in the field of

tasks scheduling which were mentioned in the previous section. This table includes the

objectives of tasks scheduling, the algorithms used in these methods, the simulation

environment of the algorithms and the presented year. Grey wolf algorithm and teaching-

learning-based algorithm still have not been evaluated in the context of resource allocation,

load balancing, and scheduling in cloud computing. Table 3-4 presents a comparative study

between different resource allocation techniques based on their strengths and limitations.

Table 3-4: A summary of the works done in the field of resources allocation
with scheduling and load balancing and cost

Simulation
tool Year Targets Environment Evolutionary

algorithm Author

Matlab 2014

 Reduce the longest termination
time among resources

 Reduce the resources cost
 Load balancing

Cloud
multi-target

genetic
Xue

et al [80]

GridSim 2014

 Reduce the longest termination
time among resources

 Reduce the resources cost
 Load balancing

Grid
multi-target

genetic
Salimi

et al [83]

Java
environment 2012

 Reduce the longest termination
time among resources

 Load balancing
Cloud genetic Cheng [84]

Java
environment 2013

 Reduce the longest termination
time among resources

 Load balancing
Cloud

swarm
optimization

Gomathi &
Karthikey

[91]

Amazon
EC2 2010

 Reduce the longest termination
time among resources

 Load balancing
Cloud

swarm
optimization

Pandey
et al [92]

Ad-hoc
VC++
toolkit

2012

 Reduce the longest termination
time among resources

 Reduce the workflow time
 Load balancing

Grid
swarm

optimization
Wu

et al [64]

Java
environment 2010

 Reduce the longest termination
time among resources

 Reduce the workflow time
 Load balancing

Cloud
swarm

optimization
Izakian

et al [66]

Chapter 3: Background & Related Work

53

Simulated
cloud 2009

 Reduce the longest termination
time among resources

 Load balancing
Cloud Ant colony

Banerjee
et al [70]

CloudSim 2016
 Reduce the longest termination

time among resources
 Load balancing

Cloud Ant colony
Mousavi &

Fazekas
[19]

GridSim

2011

 Reduce the longest termination
time among resources

 Load balancing
Grid Ant colony

Ludwig &
Moallem

[73]

CloudSim 2013
 Reduce the longest termination

time among resources
 Load balancing

Cloud Bee colony
Babu &
Krishna

[56]

CloudSim 2015
 Reduce the longest termination

time among resources
 Reduce the resources cost

Cloud
swarm

optimization
Zhao [75]

CloudSim 2014
 Reduce the longest termination

time among resources
 Load balancing

Cloud
Simulated
Annealing

Abdullah &
Othman

[77]

Clients want that their work to be completed in the shortest possible time and at minimal

cost which cloud servers should receive. On the other hand, the cloud providers are interested

in maximizing the use of their resources and also to increase their profits. The two are in

conflict with each other.

The literature review shows that traditional methods which are used for optimization may

be definitive and accurate, yet they are often trapped in local optimum. In fact due to the

dynamic nature of distributed environment and heterogeneous resources, in such a system,

the scheduling process must be done automatically and very quickly. That is why the

scheduling process is recognized as NP-complete problem [26]. Traditional approaches are

not dynamic and suitable to solve such scheduling problem. These approaches contain a large

search space; facing a large number of possible solutions and a tedious process to find the

optimal solution.

There is currently no efficient method available to solve these problems. In such

circumstances, the traditional approach has been set to find a fully optimized solution instead

Chapter 3: Background & Related Work

54

of finding the semi-optimal solution, but in a shorter time. In this context, IT professionals

are focused on exploratory methods. Therefore, meta-heuristic algorithms which have a

global overview, as they ensure convergence to solution and do not fall into the trap in local

optimum, are of importance. Consequently, the GW algorithm is chosen for this purpose. In

addition, the TLBO algorithm is used in a hybrid form with GWO to improve local

optimization and increase accuracy.

Chapter 4: Proposed Method

55

Chapter 4

Proposed Method

Chapter 4: Proposed Method

56

4.1. Elementary algorithms for solving resource allocation

In the default for resource allocation problem, the users' jobs have to be allocated to virtual

resources in the cloud servers (e.g. virtual server) and each server has a limited capacity [94].

The question is "how to allocate appropriate resources to the jobs in order to achieve well-

balanced load across virtual servers with the least number of servers?".

An elementary algorithm which was raised for this problem is the First Fit (FF)

algorithm[95]. This algorithm is a greedy algorithm and used as the basis for comparing the

methods in the investigation. In this algorithm, the resources are allocated to the jobs, with

the order of first available empty resource [95]. In this thesis, the resource allocation problem

is considered as an example of Bin Packing Problem (BPP)[96] with several objectives of

response time, load balancing, and cost.

4.2. Proposed method

Dynamic resource allocation and load balancing on virtualized systems like cloud

computing are influenced by various factors such as time and cost. Since our aim is

maximum utilization of cloud resources with respect different factors, using classical

methods are inefficient. In order to optimize resource allocation and load balancing process,

we need multi-objective optimization and approximation methods because these problems

have to be solved in multi-dimensional spaces. Therefore, due to the multi-objective and

dynamic nature of the resource allocation and load balancing problems and also difficulties in

dealing with the local optimum, traditional methods need to improve and major advancement.

4.2.1. An elementary method

We have several jobs which need the amount of 0.5, 0.3, 0.4, 0.8, 0.2, 0.2 and 0.2% of

cloud resources (servers' processor). These resources in the cloud have the same capacity of

1. The aim is to perform allocation with the least resources. In other words, we have the best

load balancing aimed to the fewest resources, so that, time and cost is not worse from the

desired limit. This optimization problem is raised aimed to use the least resources. Resource

allocation with at least resources causes the maximum capacity of the servers to be used and

Chapter 4: Proposed Method

57

response time and load balancing to be improved and energy consumption is also reduced by

minimizing the number of virtual servers. In an example, the applicant has raised his

requests in the cloud system as follows:

 The amount of requested resource for each job by the applicantItems 0.5 , 0.3 , 0.4 , 0.8 , 0.2 , 0.2 , 0.2

 Resources capacityResources 1 ,1 ,1 , ,1  

Assumes, first 0.5, then 0.3 and 0.4 are entered to the cloud environment and we have a

series of resources with the capacity of 1. We tried to achieve the best load balancing for the

entire system with minimal resources. We also want to find an optimal solution for resource

allocation in a greedy manner. The greedy Index is that the first resource with empty space to

be used and resources must not be wasted and also available resources should be used as

much as possible. Allocation steps are as follows:

The first step: The order of jobs 0.5, 0.3 can be considered for the first resource, but

there is no space for 0.4 because its value increases from 1 and is more than the resource

capacity. The capacity of 0.2 (empty space) is left from the first resource after the

allocation of jobs 0.5 and 0.3.

0.2

0.3

0.5

The second step: In the second phase, job 0.4 can be placed on the resource 2, and there

is no space for the next resource 0.8.

0.2

0.3

0.5

0.6

0.4

Chapter 4: Proposed Method

58

The third step: we can place job 0.8 on the third resource.

0.2

0.3

0.5

0.6

0.4

 0.2

0.8

The fourth step: The job with 0.2 of processing is placed on the first resource, and the

first resource should be filled.

0.2

0.3

0.5

0.6

0.4

 0.2

0.8

The fifth step: The jobs with 2.0 and 2.0 can be placed in the second resource and 2.0 of

the second resource remains empty.

0.2

0.3

0.5

0.2

0.2

0.2

0.4

 0.2

0.8

At the end of this method, three resources were allocated, and in total 0.4 = (0.2 + 0.2) of

the resources is unallocated. The problem in optimal mode should use a maximum of three

resources because:

The total required resources is (0.2 + 0.2 + 0.2 + 0.8 + 0.4 + 0.3 + 0.5) = 2.6, and because

resources are used properly, 2.6 ≈ 3 resources are needed. The main concern issue about these

solutions is that, with the increasing number of requests, the amount of empty space of

resources will be increased. Consequently, the total empty spaces will be plenty, in a way that

the waste resources are increased in cloud resources.

Chapter 4: Proposed Method

59

4.2.2. Combinatorial multi objective method

There are many algorithms can be used for multi-dimensional problem-solving. Today,

meta-heuristic algorithms play a pivotal role to solve multi-dimensional problems. Grey wolf

algorithm is a multi-dimensional meta-heuristic algorithm which is completely explored in

the previous chapter. The hierarchical structure of the grey wolves is mathematically

modelled and used for the design of optimization techniques. In this algorithm, the best

solutions are calculated based on a multi-dimensional space and the optimal solution is

selected into a solution space. The grey wolf algorithm can be used to solve the multi-

dimensional problem but usually trapped in the local optimum.

We also investigated the different aspect of teaching–learning-based algorithm in the

previous chapter. This meta-heuristic algorithm is an optimization method to explore the

space of a problem in order to find the settings or parameters to maximize a specific purpose.

In virtualized systems, the performance of virtualized resources is dynamically changed

based on their workloads in time. The use of teaching-learning-base algorithm provides better

decisions on future choices. Unlike the grey wolf algorithm, teaching–learning-based

algorithm avoids to entrapping into the local optimum.

Our proposed method is a combination of these two multi-dimensional optimization

algorithms to eliminate their weaknesses in order to make a new hybrid robust meta-heuristic

algorithm. Proposed method integrates the abilities of exploitation and exploration in the grey

wolf algorithm with the abilities of the convergence and avoiding local optimum in teaching–

learning-based algorithm.

One of the most important features of hybrid algorithm is that doesn't require any special

controller, and only normal optimization parameters, such as initial population size, the

number of iterations and so on are involved in its implementation, and this has led that it has

the least dependency on the parameters. Proposed algorithm can improve approximate

solutions into solution space for the resources allocation and load balancing in cloud

computing.

Chapter 4: Proposed Method

60

4.2.3. Mathematical model

Load balancing index is calculated as the evaluation parameters as follows:

 L is the load balancing parameter.

 1-L is lack of load balancing parameter.

()* 1 * *B a L b C c T= - + + (3-1)

The index shows the amount of load balancing between task completion time (T), and cost

of energy consumption (C) to perform the task and resource productivity (B). Therefore, load

balancing index in the cloud computing system is defined as above, in which their

coefficients according to the cloud computing system (a, b, c) are subject to change.

According to the importance of load balancing, L usually has the higher value, and

coefficients b and c according to the type of system and the importance of the cost and

response time will change. Finally, the aim is to minimize the index B.

When the number of requested jobs increases, the complexity rises and continues to extent

that resources are wasted, while load imbalance reaches to its maximum and a lot of

resources will be wasted. Consequently, completion time T and the cost of energy

consumption C increases. In order to overcome these incensements, with reducing the

number of resources by load balancing technique across virtual servers, energy consumption

will be reduced in cloud computing. Load balancing causes the reduction in response time

than existing resources as much as possible. Therefore, in principle, we are looking for load

balancing by reducing the number of servers in our resource allocation.

There is a distributed network in a cloud environment with resource systems S1,

S2,S3,…,Sn. The resources are ready to service in the distributed network to various nodes.

Different jobs are sent to the resource systems by nodes. The overall goal of the system is an

agreed task scheduling for resource allocation and performing the jobs in order to achieve

load balancing in the system.

Chapter 4: Proposed Method

61

Here the scheduler is responsible for allocating one or more Jobs to one or more resource

system in the distributed system [97]. In other words, the agreement on job scheduling is

done by the scheduler. The scheduler provides a scheduling for resource allocation [98].

Several jobs are allocated at time t in parallel and processed in distributed system. The

number of variables kT is permutation between jobs and resources. This variable is called p,

and its value is calculated as follows:

mP n (n is number of tasks and m is number of resources) (3-2)

Figure 4-1: View of resource allocation in a distributed environment

As it is described in figure 4-1 each node includes several jobs. Each job requires a series

of specific resources. The problem can be introduced as follows:

n1 2Job j , j , , j 

1 m2Resource R ,R , , R 

If in particular example, the resources 1 m2R ,R , , R have the same capacity and the

processing power of all is the same, and n1 2j , j , , j needs 1% of the processor processing,

the professional model can be defined in such a way that, what jobs use which resources to

achieve maximum load balancing, minimum response time and minimum cost. For the exact

solution of the problem, all possible allocation modes must be calculated to choose the best

mode. Due to a large number of the modes (exponential), the problem is an example of bin

packing problem which is NP-complete type.

Chapter 4: Proposed Method

62

An objective function is defined for resource i and the jobs j (eq.3-3). yi is the number of

resources (Bins). Therefore, the objective function and the mathematical programming model

of optimization is as follows:

()() () ()() * 1 * *
j j jy y yMin B a L b C c T= - + + (3-3)

S.t.

1

,
n

i ij j
i

w x Ky j
=

£ "å

, 0,1 ,ij jx y i j= "

1

,
n

ij j
j

x b j
=

£ "å

0,1ijx i= "

Where.

1

0i

job i is used
x

job i isnot used

ìïï= íïïî

1

0j

resource j is used
y

resource j isnot used

ìïï=íïïî

The aim is to find the minimum number of virtual machines yj to minimize the objective

function. The values of L and C and T (load balancing, cost and response time) are calculated

based on the number of virtual resources yj. The variable of xij demonstrates that the ith job is

processing in jth virtual machine, and if its value is equal to 0, it means that there is no

enough resource in jth virtual machine and if its value is equal to 1, it means that there is

enough resource to allocate the jth virtual machine. Every job has the capacity of wi. The first

limitation shows that total capacity of all jobs can be placed at the maximum K available

resources. The second limitation shows the maximum capacity of each virtual resource. bj is

the capacity of each virtual resource.

4.2.4. Searching process for optimal solution

Grey wolves often search based on to the position of their leaders (alpha, beta, and delta).

They diverge from each other to search for prey and converge to attack prey [85]. Rotational

movements of wolves can be modeled in multi-dimensional spaces. Thus, the most of multi-

Chapter 4: Proposed Method

63

objective problems such as resource allocation in distributed systems can be modeled. The

pseudo code of the proposed algorithm is presented in table 4-1:

Table 4-1: Pseudo code of the proposed algorithm

the grey wolf population Xi=(i=1,2,…,n)Initialize
Initialize a,b and c
Calculate the fitness of each search agent
X1=the best Search gent
X2=the second best Search Agent
X3=the third best Search agent
While t<Max number of iterations)

For each search agent
Update the position of the current search agent by equation
End for

Calculate the fitness of all search agents
Update X1,X2,X3
t=t+1
If not improve solution

Begin
wolf_sol_wolf=Solution_grey

olution for TLBO Initialize sol_wolf for initialize_s
Sol_TLBO=Do TLBO with Initialize Population with sol_wolf
Intialize the grey wolf population Xi= Sol_TLBO, Initialize a,b and c
Calculate the fitness of each search agent

X2=the second best Search agent, X3=the third X1=the best Search agent,
best Search agent

end
end while
return X1

To see how proposed method is theoretically able to search in solution space, the

algorithm steps can be summarized as follows:

 In problem search space, the optimal solution is difficult to find. Therefore, based on

mathematically simulation of hunting behavior in gray wolves, we consider three top

values (Alpha, Beta, and Delta) and save them as the best solutions obtained so far. In

the next step, other search agents (omegas wolves) are obliged to update their positions

(value) according to the position of the best search agents.

 The main advantage of this algorithm is that if there was no improvement in gray wolf

algorithm, according to the teaching-learning process, we try to find a better solution. If

the problem is stuck in local optimum, teaching-learning process can introduce the new

area of space based on training phase, which may improve the solution. Because of the

Chapter 4: Proposed Method

64

accuracy of gray wolf algorithm in the local behavior (defect of the grey wolf

algorithm), after each iteration, the position of wolves is updated. These positions can

be improved by the teaching-learning algorithm, and then gray wolf algorithm is

repeated again. This process increases the accuracy of gray wolf algorithm. Figure 4-2

illustrates flow diagram of proposed algorithm.

Figure 4-2: Flow diagram of proposed algorithm

Start

Initialization of grey wolves
(search agents)

Initialize a, b and c
Calculate fitness

value

Find Xα , Xβ
and Xδ

iter< itermax

Update the position of
searching agents

Display Xα as
best solution

End

Yes

No

Update a, b and c

Calculate fitness
value

Update Xα , Xβ and Xδ iter= iter+1

Initialization of population by
solution_grey_wolves ,

Specify termination criterion

If improve

No

Yes

Initialize Xα
as best solution

Improve solutions based
on best solution

Are new solutions
better than existing?

Reject

Select any two solutions
randomly and improve

Are new solutions
better than existing?

Is termination
criteria satisfied?

Calculate the mean of each design variable

Yes

No

Yes

Reject

No

No

Chapter 4: Proposed Method

65

In the initial state, a series of random numbers with uniform or normal distribution are

considered as the initial population, and a basic solution is considered for the problem with

initialization of coefficients variation a, b, c.

Each wolf is considered as a solution. In other words, each wolf is considered as a solution

to the problem. Three best solutions (Alpha, Beta, and Delta) are selected as optimal

solutions. These selections are selected on the basis of the objective function and fitness

function in grey wolf optimization. Then, the program enters the main loop and update the

position of other wolves (other solutions) with the capability of exploitation and exploration

in grey wolf optimizer.

This means that, according to the first three solutions (α, β, and δ), the algorithm considers

more value for the probability of reaching better solutions. Correspondingly, the algorithm

values the wolves of beta, delta and gamma classes and a new position of wolves' community

and their classification can be obtained. Now, the fitness function is calculated again for the

wolves and three new solutions (wolves) are selected. If a better solution is found in the new

classification than old solutions, the algorithm continues the same process to find the optimal

solution. If there is no any improvement in solutions, the best solution between the wolves is

considered as the initial solution (initial population) for teaching-learning-base algorithm.

Therefore, the problem continues by the teaching-learning-base algorithm and its solution

is considered as the initial population to start the gray wolf algorithm again and the gray wolf

algorithm starts again. It should be noted that in the gray wolf algorithm, each wolf represents

a solution in the solution space, which the best solution will be chosen in any stage according

to the position of other wolves.

Generally speaking, the best solution space of the gray wolf is considered as the initial

solution for teaching-learning-base algorithm. After that, the output is implemented as the

initial solution space for the next iteration of the gray wolf algorithm.

Chapter 4: Proposed Method

66

4.2.5. Complexity of the algorithm

Time and space are two important resources which an algorithm needs to solve a

problem[99]. The time complexity of an algorithm implicates the number of steps and total

time required by the algorithm during computational process. The most common metric for

calculating time complexity is Big-O notation [100]. The most common estimation method in

order to the calculation of time complexity is counting the number of primary execution

functions by the algorithm. Since each algorithm is developed based on different functions

and may vary with types of its own input data, therefore, worse case is usually considered for

an algorithm in order to estimate of time complexity. Hence, this is the maximum time taken

to solve a problem of size n.

4.2.6. Big-O notation of the proposed algorithm

An algorithm has a complexity f (n) = O(g(n)) if there exist positive constants n0 and c

such that ∀n > n0, f (n) ≤ c · g(n). In this case, the function f (n) is upper bounded by the

function g(n). The Big-O notation can be used to compute the time or the space complexity of

an algorithm.

In order to compute complexity of the proposed algorithm we assume:

Let  1 2 3 mS s ,s ,s ,...s be the set of items and  1 2 3i iS s ,s ,s ,...s

Let iL be the set of sizes of all iS S  which are not larger than t (t is capacity of each Bin)

The largest subset of S (of size at most t) is the largest number in mL

We compute iL from i 1L  : i i 1 i 1 iL L (L s)   

Where i i 1 i(x s) (L s)   iff i 1x L  and ix s t 

The algorithm:

o Let 0L { 0 }   O 1 time

o For i 1...m :

o Compute i 1 i(L s)  from i 1L    i 1O L  time

o Compute i i 1 i 1 iL L (L s)      iO L time

o Output the largest number in mL   mO L time

Chapter 4: Proposed Method

67

Each iL is of length iL t

The overall time complexity is therefore  O mt

If m n the time complexity would be  O nt

Theorem:

We say that an algorithm is polynomial time

 If it runs in polynomial when all the numbers are integer cn (c is constant)

Therefore the algorithm run time is:    c 1O On t n 

4.2.7. Worse-Case and Best-Case

Combinatorial problems are deceptive because they are defined easily but often very

difficult to solve. For instance, there is no any algorithm to find the optimal solution for

Travelling Salesman Problem (TSP) [101]. Similarly, there is no any algorithm to guarantee

satisfactory of a given Constraint Satisfaction Problem (CSP) [102] instance in polynomial

time. Accordingly, this phenomenon has been encountered on a wide variety of problems and

led to the development of new theories, in particular, to the theory of NP-completeness. The

main aim is the classification of the problems based on that how difficult they are to solve.

The class of NP-complete problems is solved by a non-deterministic Turing machine in a

polynomial time. NP-complete problems are considered as inherently intractable based on

computational viewpoint. Therefore, it is obvious that in the worse-case, any algorithm that

tries to solve an NP-complete problem requires polynomial time. Thus, based on defined

polynomial objective function and calculated time complexity our proposed algorithm in

worse-case needs polynomial run time O(nc), where n is the number of workloads and c is the

number of virtual machines. In the best case the algorithm needs a linear run time Ω(n) where

the number of virtual machines are equal to 1.

4.3. Running example of proposed algorithm

As explained earlier, the proposed algorithm is a kind of approximate algorithm which

works with a solution space during the searching process and reaching the optimal solution.

The solution space may contain a lot of solution and in each iteration, the algorithm tries to

Chapter 4: Proposed Method

68

search optimal and convergence other solution to optimal solution. Since the nature of this

algorithm is population-base, therefore using this algorithm in order to see the functionality

of algorithm in small scales in hard. However, we applied proposed algorithm on a uniformly

distribution with 15 values between [0-1] as an example in the bellow and received surprising

results. In order to explain example, we tried to present another example with the greedy

method which is used in most of the resource allocation methods, in order to clarify the

difference of proposed method in optimization. Figure 4-3 presents a running example of

proposed algorithm.

Items 0.1

0.7

1.0

0.4

0.8

0.2

0.6

0.8

0.5

0.8

0.7

0.3

0.5

0.9

0.6

Capacity of each Bin 2

Allocation process 1 Allocation process 2 Allocation process 3

1.0 0.9 0.8
Bin1 Bin2 Bin3

 0.7

1.0 0.9 0.8 0.8 0.6
Bin1 Bin2 Bin3 Bin4 Bin5

 0.6 0.7 0.3 0.8

1.0 0.9 0.8 0.8 0.6
Bin1 Bin2 Bin3 Bin4 Bin5

Allocation process 4 Allocation process 5

 0.4 0.5
0.5 0.6 0.7 0.3 0.8
1.0 0.9 0.8 0.8 0.6

Bin1 Bin2 Bin3 Bin4 Bin5

0.1 0.2 0.4 0.7 0.5
0.5 0.6 0.7 0.3 0.8
1.0 0.9 0.8 0.8 0.6

Bin1 Bin2 Bin3 Bin4 Bin5

Total free spaces after allocation = 0.4 + 0.3 + 0.1 + 0.2 + 0.1 = 1.1
f

Figure 4-3: An example of the proposed method process in bin packing problem space

In this example, we have a uniform distribution as input, which is shown as the items in

the example. Assume these items considered as workloads in the cloud system. Also, assume

we have some virtual machines in the cloud system and capacity of each virtual machine is

equal to 2 (It is noteworthy that, because we want to solve this example as a bin packing

problem, therefore each bin represents a Virtual machine).

The workloads applied on algorithm and algorithm has to find the optimal resource for

each workload. The algorithm aim is that allocates the least number of virtual machines to

Chapter 4: Proposed Method

69

workload. With decreasing number of machines, the cost of energy consumption also

decreased. And also waste spaces in each virtual machine to be decreased, which means

increasing load balancing. The process of allocation for each iteration in example is as

follows:

Step 1: All possible solutions are calculated for each job.

Step 2: Three best solutions are selected as best solutions (alpha, beta, and delta).

Step 3: Other solutions are obliged to get convergence to best solutions. If in the

convergence process, there was any improvement, then best three new solutions are

replaced old best solutions.

Step 4: if there was not any improvement in convergence process, the best solutions are

optimal solutions and solution are global optimum (this process will be done by TLBO

algorithm).

Step 5: The resource is assigned.

This process will be done in each iteration, therefore we will have high accuracy to find

optimal solution and avoid local optimum in our algorithm. This example has 5 allocation

process and proposed algorithm allocate the least number of bins (Virtual machines) to

workloads (Items).

The Bin packing problem instance is considered with bin capacity equal to 2 and 15 items.

The best resource (Bins) is selected for each requested job (each item). In each allocation

process, optimal resource (the optimal resource is selected based on the best solution in

solution space of algorithm- which is Alpha) is selected for requested jobs. In this executed

example, three allocations are considered in each allocation process.

In each allocation process, all possible solution for each item (load) is calculated. It means

in each allocation process we have a solution space. Consequently, the optimal solution

which is the optimal resource for a load is gained. The optimal resource is calculated for

every single load after avoiding all local optimums.

Chapter 4: Proposed Method

70

As we mentioned earlier, In order to compare the processes of proposed algorithm, we

represent the second example in figure 4-4. We have used the first-fit greedy algorithm in the

second example and applied the same items as workloads. In a short comparison, the

difference is clear between examples. The number of used bins (virtual machines) is 5 bins in

proposed algorithm and 6 bins in the second example. The total amount of waste space in

proposed algorithm is 1.1, while it is 3.1 in the second example. Load balancing is visible in

the first running example.

Items 0.1

0.7

1.0

0.4

0.8

0.2

0.6

0.8

0.5

0.8

0.7

0.3

0.5

0.9

0.6

Capacity of each bin 2

Allocation process 1 Allocation process 2 Allocation process 3

1.0 0.8 0.7
Bin1 Bin2 Bin3

 0.5 0.8

1.0 0.8 0.7 0.9
Bin1 Bin2 Bin3 Bin4

0.5 0.5 0.8 0.6
1.0 0.8 0.7 0.9 0.7

Bin1 Bin2 Bin3 Bin4 Bin5

Allocation process 4 Allocation process 5

0.5 0.5 0.8 0.6 0.6 0.4
1.0 0.8 0.7 0.9 0.7 0.8

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6

 0.2 0.1 0.3
0.5 0.5 0.8 0.6 0.6 0.4
1.0 0.8 0.7 0.9 0.7 0.8

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6

 Total free spaces after allocation = 0.5 + 0.5 + 0.5 + 0.4 + 0.6 + 0.5 = 3.1
f

Figure 4-4: An example of first fit algorithm process in bin packing problem space

Chapter 5: Computational and Simulation Results

71

Chapter 5

Computational and Simulation Results

Chapter 5: Computational and Simulation Results

72

5.1. Implementation details

Since it is not enough just to propose a new algorithm, a number of different

computational tests are performed in order to verify the functionality of algorithm to ensure

that the proposed algorithm is efficient. This section contains a computational comparative

study between proposed algorithm and several explained previous algorithms (Grey Wolf

Optimizer, Particle Swarm Optimization and Biogeography-Based Optimization (BBO)

[103]). The proposed algorithm was programmed by the author in the Matlab (V2016a) in

Windows7 (64-bit, Professional edition, version 6.1- Build 7601: service pack 1) mode. The

computational experiments were performed on a desktop computer with an Intel(R) core(TM)

i5-2410M 2.30GHz and installed memory(RAM) 4.00 GB.

Table 5-1: Pseudo code of PSO algorithm (left) and BBO algorithm (right)

For each particle
 Initialize particle
END
Do
 For each particle
 Calculate fitness value
 If the fitness value is better than the
best fitness value (pBest) in history
 set current value as the new pBest
 End
 Choose the particle with the best fitness
value of all the particles as the gBest
 For each particle
 Calculate particle velocity according
equation (a)
 Update particle position according
equation (b)
 End

Initialize a population of N candidate solutions{ xk }
While not(termination criterion)
For each , set emigration probability μk fitness of xk

, with [0,1]km Î

For each xk , set immigration probability 1k kl m= -

For each individual (1,...,)z k Nk =

For each independent variable index [1.]s nÎ

Use kl to probabilistically decide whether to

immigrate to z k

 If immigrating then
 Use { }im to probabilistically select the

 emigrating individual x j ; () ()z s x sk j¬

 End if
Next independent variable index: 1s s¬ +
Probabilistically mutate z k

Next individual: 1k k¬ + ; { } { }x zk k¬

Next generation

To implement other mentioned algorithms, the basic pseudo code was downloaded from

their official website and then programmed in the Matlab (V2016a) by author (see Appendix

B). These algorithms also performed on the same machine which proposed algorithm

performed. Table 5-1 shows pseudo code of PSO and BBO algorithms. Although there was

no any difficulty during implementation processes, programming of optimization algorithms

need high accuracy and require taking much time.

Chapter 5: Computational and Simulation Results

73

5.2. Computational experiments

In order to compare different optimization algorithms, their behavior have to be

investigated when faced with solving different mathematical functions. Therefore, to compare

the proposed algorithm against other algorithms, at first, the proposed algorithm is

benchmarked on 15 benchmark function [104]. Table 5-2 shows the list of these functions.

Table 5-2: Used benchmark functions

Function Function Domain Optimal mode

Sphere 2

1

(x)
D

i
i

F x
=

=å -50≤ xi ≤ 50 () 0f x * = Unimodal

Chung
Reynolds

2 2

1

(x) ()
D

i
i

F x
=

= å −100 ≤ xi ≤ 100 () 0f x * = Unimodal

Schwefel 2/22
11

()
D n

i i
ii

f x x x
==

= + å -10 ≤ xi ≤ 10 () 0f x * = Unimodal

Schwefel 2/21 () max { ,1 }i if x x i n= £ £ -100 ≤ xi ≤100 () 0f x * = Unimodal

Cube 3 2 2
2 1 1() 100() (1)f x x x x= - + + −10 ≤ xi ≤ 10 () 0f x * = Unimodal

Dixon & Price 2 2 2
1 1

2

() (1) (2)
D

i i
i

f x x i x x -
=

= - + -å −10 ≤ xi ≤ 10 () 0f x * = Unimodal

Griewank
2

1

() cos() 1
4000

D
i i

i

x x
f x

i=

= - +å −100 ≤ xi ≤ 100 () 0f x * = Multimodal

Rosenbrock 2 2 2
1

1

() (100() (1))
D

i i i
i

f x x x x+
=

= - + -å −20 ≤ xi ≤ 20 () 0f x * = Multimodal

Ackley

2

1

1() 20exp 0.2
D

i
i

f x x
D =

æ ö÷ç ÷=- ç- ÷ç ÷÷çè ø
å

1

1exp cos(2) 20
D

i
i

x
D

p
=

æ ö÷ç- + +÷ç ÷ç ÷è øå 

−32 ≤ xi ≤ 32 () 0f x * = Multimodal

Rastrigin 2

1

() 10cos(2) 10
D

i i
i

f x x xp
=

é ù= - +ê úë ûå −10 ≤ xi ≤ 10 () 0f x * = Multimodal

Brown
2 2

1

1
(1) (1)2 2

1
1

() () ()i i

D
x x

i i
i

f x x x+

-
+ +

+
=

= +å −4 ≤ xi ≤ 4 () 0f x * = Multimodal

Chapter 5: Computational and Simulation Results

74

Test functions or benchmark functions are important to validate and compare the

performance of optimization algorithms [105]. Consequently, to verify achieved results, the

results are compared with three above optimization algorithms.

Each algorithm has been investigated in different conditions, i.e. changing the number of

iteration (200, 1000, 1500), holding the iteration size constant 30, changing the iteration size

(20, 30, 50), and holding the number of iteration constant 1000. It is noteworthy that the

algorithms have been run 20 times for each of the abovementioned conditions on a

benchmark function, and the final result has been obtained from the average of 20 times of

running so that the rate of error decreases. Benchmark functions used in table 5-2 are divided

into two groups: Unimodal and Multimodal.

All of these test functions are presented here in order to examine the performance of

global optimization methods. The behavior of these test functions to reach optimal result

varies to cover most difficulties faced in the area of continuous global optimization. It is

important to note that unimodal functions are appropriate for benchmarking exploitation and

multimodal functions have many local optima with the number of increase exponentially

along with different dimensions. This makes them suitable for benchmarking the exploration

ability of an algorithm [85].

5.2.1. Results

Although, the results are different in number of iteration and population size, the

computational results showed that concerning unimodal functions like sphere and Chang

Reynolds , which are simple functions with no local optima. If we have many or few

iterations, large or small population size, hybrid algorithm outperforms other algorithms. This

rule also applies to Schwefel 2/21 function because not only it is a simple function, but it also

does not have any local optima. As results show in tables 5-3, 5-4, 5-5, 5-6, and 5-7, hybrid

algorithm outperformed in comparison with all other algorithms in unimodal and multimodal

functions.

Chapter 5: Computational and Simulation Results

75

Table 5-3: Result of benchmark functions in number of iteration 200
and population size of 30

Function Hybrid method GWO PSO BBO
sphere 0 0 0.064355 0.045546
Chung Reynolds 0 0 0 0.063455
Schwefel 2/22 0 0.049545 0.035231 0.024245
Schwefel 2/21 0.005634 0.015366 0.104434 0.223567
Cube 0 0.094653 0.073244 0.083556
Dixon & Price 0.064556 0.034444 0.042324 0.075743
Griewank 0.034567 0.043433 0.047651 0.124456
Rosenbrock 0.022345 0.022655 0.107431 0.144677
Ackley 0.014238 0.072762 0.052764 0.034357
Rastrigin 0.013251 0.094749 0.074321 0.073534
Brown 0.025231 0.030769 0.060328 0.053567

Table 5-4: Result of benchmark functions in number of iteration 1000
and population size of 30

Function Hybrid method GWO PSO BBO
sphere 0 0 0 0
Chung Reynolds 0 0 0 2.78E-04
Schwefel 2/22 0 0 6.34E-03 3.31E-04
Schwefel 2/21 0 0 0 0
Cube 0.052115 0.115553 8.37E-03 6.22E-04
Dixon & Price 0 0.025688 5.45E-02 7.82E-02
Griewank 0 0.014521 0.012366 0.001343
Rosenbrock 0 0.013483 0.010828 0.013231
Ackley 0.003451 0.081342 0.017007 0.005432
Rastrigin 0.004783 0.022348 0.010613 0.024389
Brown 0.004532 0.038901 0.007164 0.043265

Table 5-5: Result of benchmark functions in number of iteration 1500
and population size of 30

Function Hybrid method GWO PSO BBO
sphere 0 0 0 0
Chung Reynolds 0 0 0 0
Schwefel 2/22 0 2.54E-07 0 0
Schwefel 2/21 0 0 2.65E-07 0.005696
Cube 0 10.55E-06 4.64E-08 8.57E-06
Dixon & Price 0 6.35E-04 7.34E-04 0.007046
Griewank 0 0 0.035662 0.070721
Rosenbrock 0.002345 0.004236 0.000823 0.006457
Ackley 0.003211 0.005673 0.007012 0.006542
Rastrigin 0.002144 0.006578 0.070687 0.005465
Brown 0.002754 0.004265 0.006423 0.003333

Chapter 5: Computational and Simulation Results

76

Table 5-6: Result of benchmark functions in number of iteration 1000
and population size of 20

Function Hybrid method GWO PSO BBO
sphere 0 0 0 0
Chung Reynolds 0 0 0 0
Schwefel 2/22 0 0 0 0
Schwefel 2/21 0 0 6.84E-03 3.43E-04
Cube 0 7.26E-05 5.34E-04 7.24E-03
Dixon & Price 0 7.73E-03 0.06578 5.63E-03
Griewank 0 0 0.053578 0.002556
Rosenbrock 0 0.025335 0.012645 0.024674
Ackley 0.003435 0.056322 0.012446 0.025467
Rastrigin 0.007432 0.012467 0.013234 0.036456
Brown 0.004562 0.025367 0.002355 0.045366

Table 5-7: Result of benchmark functions in number of iteration 1000
and population size of 50

Function Hybrid method GWO PSO BBO
sphere 0 0 0 0
Chung Reynolds 0 0 0 0
Schwefel 2/22 0 0 0 0
Schwefel 2/21 0 0 6.42E-04 0
Cube 0 8.25E-03 0 5.43E-05
Dixon & Price 0 0 5.34E-03 6.43E-04
Griewank 0 0.035654 0.025435 0.003656
Rosenbrock 0 0.054353 0.025435 0.026545
Ackley 0.008767 0.076544 0.014679 0.003765
Rastrigin 0.006576 0.037654 0.017654 0.015434
Brown 0.003757 0.027645 0.004868 0.025436

Figure 5-1: Comparison of CPU time to reach optimum result
 in different algorithms

Chapter 5: Computational and Simulation Results

77

According to the figure 5-1, results show comparing of the CPU time to reach the

optimum in 4 algorithms, hybrid algorithm reaches the optimum, sooner than other

algorithms in all life conditions.

Generally speaking, hybrid algorithm is the best algorithm to solve a problem for the

simple functions that do not have any local optima. Regarding Schwefel 2/22 function, hybrid

algorithm delivered better results than other algorithms in almost all cases. This function is a

bit more complex than Sphere function, for it contains both the sum and the product of

variables. In addition, this function contains local optima. Therefore, hybrid algorithm could

be used to solve the complex problems that contain local optima. Rosenbrock function is a

rather complex function which does not have local optima or products of the variables. When

we face the restriction of iterations, hybrid algorithm still yields better results. Yet, when

there is no iterations restriction, Bees algorithm works better. In conclusion, in order to obtain

better results from Bees algorithm for rather complex functions that do not contain local

optima, more iterations and larger iteration are required. In Restring and Ackley functions

that there are many local optima like Schwefel 2/22 which have local optima, hybrid

algorithm outperforms than others in changing the number of generation and iteration size as

well. In Griewank algorithm, which is a rather complex function, hybrid algorithm still

delivers the best results on the condition that the iteration size and rate of iterations are small

or big, low or high because this function does not contain local optima.

The overall computational result shows the GWA is usually trapped in local optima. So, it

is not suitable for the problems that contain local optima. Due to its high rate of convergence,

this algorithm is an appropriate option for solving other problems. Unlike GWA, hybrid

algorithm will not be trapped in local optima, and it seems that taking advantage of TLBO

was appropriate to revise GWO algorithm. In general, for very complex problems the results

show that proposed hybrid algorithm is suitable and will help us achieve the optimized result

especially in resource allocation in cloud environments where there are many local optima.

Chapter 5: Computational and Simulation Results

78

5.3. Introducing assessment Index

Load balancing is the process of allocation of the total load to cloud resources in order to

improve energy efficiency by reducing virtual resources and eliminate a condition in which

the numbers of nodes are heavily loaded, while others are idle. The impact of load balancing

based on reducing the number of resources and load balancing is called load balancing index.

The amount of efficiency of each resource Riefficiency is equivalent to the percent of resource

that has been used compared to the total resource.

Formally, the coefficient of variation of resource efficiency is called the lack of load

balancing. This variable indicates the amount of deviation extent from productivity.

According to statistical indicators, if this variable is zero, all resources absolutely will be

used. This variable is equal to the division of standard deviation productivity  in resources

on mean of the number of resources. If the variable is close to zero, the load balancing will be

better done. The standard deviation in system is calculated as:

1

21 ()
N

i
efficiency iRi - mean R

N
s

=

= å (5-1)

Therefore, load balancing factor (Flb) and load imbalance factor (NFlb) are introduced using

following equations:

 1...
()i

NFlb i n
mean R

s
= = (5-2)

C
Flb

n

s-
= (5-3)

Where C is the capacity of each resource or virtual machine.

5.4. Simulation Results

To assess the performance of proposed algorithm, we used two different probability

distributions, uniform and normal distribution, which are considered as distribution of

workload in cloud computing. Uniform distribution workloads represent the uniform amount

of small, medium and large size of loads while normal distribution workloads show the

Chapter 5: Computational and Simulation Results

79

symmetrical fashion in the cloud environment. In all of the simulations, the following

parameters were used for our proposed algorithm:

a) MaxIt = 500; % Maximum Number of Iterations

b) nPop = 250; %for each test must be updated Population Size

c) Dim = number of variables (e.g. a=0.0354, b=38.3055, c=1243.531)

MaxIt is the number of iterations for the algorithm. Whatever it increases, the time needed

to implement increases, and in some cases, accuracy increases, but increasing iteration

always doesn't guarantee improvement of the solution. nPop is proportion of the number of

package in bin packaging problem which is the same processes that can be processed by

cloud resources. This amount according to the bin packing data set will be equal to 250, 500,

1000 and etc. Coefficients a, b, c have been selected according to the resource [49]. Dim is

the number of packets in the bin packaging dataset.

5.4.1. Uniform distribution workload

According to the assessment index, load imbalance and the number of resources allocated

are compared with each other. In this case, bin packing problem is considered as a model of

resource allocation in the cloud computing. The packages on the bin packing are considered

as processes requests that are processed in the cloud virtual servers. We want to allocate the

packages or processes with minimum number of boxes or servers. Fewer boxes cause the

resources to be used in a better manner, load balancing can be done better, and fewer servers

will be effective on costs and energy consumption.

To produce random numbers, uniform distributed in the interval [0, 1] is considered,

which in case of need for greater interval, it has become a larger scale. Experiments have

been conducted on ready data sets called Falkenauer [106]. This data set is presented in eight

categories, which the sets one to four are uniform, and they are displayed with the letter u.

The next number after u indicates the number of packets. These sets have been distributed

between 20 and 100 and the capacity of boxes is 150. The second series of sets five to eight

are displayed with the letter t. The next number after t indicates the number of packets. This

Chapter 5: Computational and Simulation Results

80

set is called triplet, the packets are distributed between 25 and 50, and the size of the boxes is

100. There are 60 packages in the dataset binpack5 with the capacity of 100 boxes, as

follows:

36.6000 26.8000 36.6000 43.0000 26.3000 30.7000 41.4000
28.7000 29.9000 49.5000 25.1000 25.4000 47.4000 25.2000
27.4000 37000 26.9000 36.1000 47.3000 25.2000 27.5000
47.2000 25.9000 26.9000 44.4000 25.8000 29.8000 43.9000
27.3000 28.8000 44.5000 27.2000 28.3000 41.9000 26.1000
32.0000 36.3000 27.1000 36.6000 35.5000 27.3000 37.2000
46.6000 26.2000 27.2000 35.7000 29.2000 35.1000 39.5000
25.5000 35.0000 35.0000 30.3000 34.7000 45.0000 25.2000
29.8000 41.0000 27.5000 31.5000

The optimal solution to solve this problem is the allocation to the following form. The

optimal solution of the allocation is 20 boxes. Our proposed method has achieved an

approximate solution of 23. The solution has acted better than the GW and TLBO algorithms

alone, it is shown in Table 5-8.

Table 5-8: Allocation with the proposed algorithm in data set binpack5

Optimal
result

Proposed
method PSO BBO TLBO Gray wolf Dataset

20 23 24 25 26 24 First part of
binpck5 dataset

Table 5-9: Allocation in boxes dataset binpack5
Bin1 49.5,47.4, Bin13 35,35,29.9,
Bin2 47.3,47.2, Bin14 34.7,32,31.5,
Bin3 46.6,45, Bin15 30.7,30.3,29.8,
Bin4 44.5,44.4, Bin16 29.8,28.8,28.7,
Bin5 43.9,43, Bin17 28.3,27.5,27.4,
Bin6 41.9,41.4, Bin18 27.3,27.3,27.2,
Bin7 41,39.5, Bin19 27.2,26.9,26.9,
Bin8 37.2,37,25.5, Bin20 26.8,26.2,26.1,
Bin9 36.6,36.6,26.3, Bin21 25.9,25.8,25.4,
Bin10 36.6,36.3,27.1, Bin22 25.2,25.2,25.2,
Bin11 36.1,35.7,27.5, Bin23 25.1,
Bin12 35.5,35.1,29.2,

Table 5-9 shows the allocation of all packages of binpak5 dataset to 23 boxs. Each box is

shown as a bin which numbers in front of that shows the packages weights (e.g. weights of

49.5, 47.4 have placed in the first box). Other boxes have allocated to different packages in

Chapter 5: Computational and Simulation Results

81

the same manner. The percentage of unallocated free space in data set Binpack5 is 0.1304 or

13.04% and load balancing (the space allocated) is equivalent to 0.8696.

The best possible mode is the division of the sum of the packages' values to the space of

100, which 20 is obtained as the optimal solution. Since the problem is a kind discrete type,

there is the possibility of load imbalance in the optimal solution. In the following, the

comparison of these methods is continued by different experiment datasets. Table 5-10 shows

the results.

This table shows that with increasing data, the accuracy of the proposed method reduces,

but in total, in solving the resource allocation problem with bin packaging problem, our

method has higher accuracy than other methods. In the second experiment, according to data

dispersion and greater capacity of the box compared with the packages, it will be more

difficult; however, the proposed method seems desirable and outperforms other methods.

Figures 5-2 and 5-3 illustrate the results.

Table 5-10: Differences between the proposed method and other methods
in terms of solution of packages allocated

Optimal
solution Hybrid GWO TLBO Resource

capacity
No. of
Jobs Dataset Exp.

99 100 100 100 150 250 Binpack1-U250_00 First
100 101 101 102 150 250 Binpack1-U250_01 First
99 100 100 104 150 250 Binpack2-U250_00 First

100 101 101 104 150 250 Binpack2-U250_01 First
198 201 203 206 150 500 Binpack3-U500_00 First
201 204 207 208 150 500 Binpack3-U500_01 First
399 403 407 413 150 1000 Binpack4-U1000_00 First
406 411 419 423 150 1000 Binpack4-u1000_01 First
20 23 23 23 100 60 Binpack5-T60_00 Second
20 23 23 23 100 60 Binpack5-T60_01 Second
40 45 45 46 100 120 Binpack6-T120_00 Second
40 45 45 47 100 120 Binpack6-T120_01 Second
83 94 96 99 100 249 Binpack7-T249_00 Second
83 95 98 103 100 249 Binpack7-T249_01 Second

167 190 198 203 100 501 Binpack8-T501_00 Second
167 191 201 207 100 501 Binpack8-T501_01 Second

Chapter 5: Computational and Simulation Results

82

Figure 5-2: Comparison of hybrid method with other methods in the first experiment

to achieve optimal solution

Figure 5-3: Comparison of hybrid method with other methods in the second experiment

to achieve optimal solution

According to recent articles [107-108], CGA-CGT and HI-BP methods have provided the

best solution for bin packing problem. We compared the proposed method with these two

methods in next experiment. In order to implement these methods, we also used Matlab 2016

and performed the implemented program on the same machine which is used for all of the

1 2 3 4 5 6 7 8
100

150

200

250

300

350

400

450

First Test (Data set Binpack1-Binpack4)

N
o

B

in
s

Compare Number of Allocated Bin's (Virtual Mavhine's) in Different Methods

TLBO
GWO
Hybrid

1 2 3 4 5 6 7 8
20

40

60

80

100

120

140

160

180

200

220
Compare Number of Allocated Bin's (Virtual Mavhine's) in Different Methods

second Test (Data set Binpack5-Binpack8)

N
o

B

in
s

TLBO
GWO
Hybrid

Chapter 5: Computational and Simulation Results

83

simulations as explained earlier (see Appendix).The proposed hybrid method shows

outperforms than these two methods. Table 4-3 shows it.

Table 5-11: Comparison of the proposed method with HI_BP and CGA-CGT

Optimal
solution Hybrid CGA-

CGT HI_BP Resource
capacity

No. of
Job Dataset Exp.

99 100 100 100 150 250 Binpack1-U250_00 First
100 101 101 101 150 250 Binpack1-U250_01 First
99 100 100 100 150 250 Binpack2-U250_00 First

100 101 101 101 150 250 Binpack2-U250_01 First
198 201 201 204 150 500 Binpack3-U500_00 First
201 204 204 204 150 500 Binpack3-U500_01 First
399 403 404 404 150 1000 Binpack4-U1000_00 First
406 411 413 414 150 1000 Binpack4-u1000_01 First
20 23 23 23 100 60 Binpack5-T60_00 Second
20 23 23 23 100 60 Binpack5-T60_01 Second
40 45 45 45 100 120 Binpack6-T120_00 Second
40 45 45 47 100 120 Binpack6-T120_01 Second
83 94 94 96 100 249 Binpack7-T249_00 Second
83 95 97 101 100 249 Binpack7-T249_01 Second

167 190 194 202 100 501 Binpack8-T501_00 Second
167 191 199 204 100 501 Binpack8-T501_01 Second

Figure 5-4: Difference between the proposed method and CGA-CGT,
HI-BP, and optimal solution

Figure 5-4 shows the difference between the approximate solutions with the optimal

solution which the difference is within acceptable limits. Table 5-12 shows the calculating

Chapter 5: Computational and Simulation Results

84

load balancing in different tests. As the results show, with the increasing data, the proposed

method has superior performance than the two other methods.

Nflb index shows the lack of load balancing, which increasing its values demonstrate

better load balancing. Increasing load imbalance shows that the maximum resource capacity

is used. It means that the amount of empty capacity of the resources is low, so with increasing

data, load balancing is performed better in the proposed algorithm. Table 5-12 shows load

imbalance between the methods in the first and fourth experimental set.

Table 5-12: Comparison of the load imbalance between the proposed algorithm
and other algorithms

Nflb-
Proposal
method

Nflb-
GWO

Nflb-
TLBO

Resource
capacity

No. of
Job DataSet Exp.

0.0145 0.0145 0.0145 150 250 Binpack1-U250_00 First
0.0195 0.0195 0.0193 150 250 Binpack1-U250_01 First
0.0145 0.0145 0.0138 150 250 Binpack2-U250_00 First
0.0195 0.0195 0.0178 150 250 Binpack2-U250_01 First
0.0170 0.0163 0.0159 150 500 Binpack3-U500_00 First
0.0155 0.0147 0.0143 150 500 Binpack3-U500_01 First
0.0113 0.0103 0.0097 150 1000 Binpack4-U1000_00 First
0.140 0.0127 0.0119 150 1000 Binpack4-u1000_01 First

0.1304 0.1304 0.1304 100 60 Binpack5-T60_00 Second
0.1304 0.1304 0.1304 100 60 Binpack5-T60_01 Second
0.1111 0.1111 0.1023 100 120 Binpack6-T120_00 Second
0.1111 0.1111 0.1013 100 120 Binpack6-T120_01 Second
0.1170 0.1090 0.1010 100 249 Binpack7-T249_00 Second
0.1263 0.1226 0.1203 100 249 Binpack7-T249_01 Second
0.1211 0.1139 0.1107 100 501 Binpack8-T501_00 Second
0.1257 0.1231 0.1219 100 501 Binpack8-T501_01 Second

Index of load imbalance acts in a reverse manner compared with load balancing index.

With increasing NFLB, the performance of load balancing will be increased. Due to the

incorrect understanding structure of training in the experiments, TLBO method doesn’t have

a good load balancing with increasing data. The proposed method shows a good performance

with increasing data in load balancing. Load balancing can be calculated by the lack of load

balancing. Load balancing can show appropriate allocation. The second experiment in Table

Chapter 5: Computational and Simulation Results

85

5-12 confirms the performance of the proposed method in the fifth to eighth data set.The

related charts have shown in figure 5-5 and 5-6.

Figure 5-5: Load imbalance in the first test set

Figure 5-6: Load imbalance in the second test set

Variable of relative percentage changes in comparison with the best answer can

demonstrate the accuracy of the algorithm. Therefore, in order to evaluate robustness of the

proposed algorithm in next experiment we calculate RPD (Robust Parameter Design)

1 2 3 4 5 6 7 8
0.008

0.01

0.012

0.014

0.016

0.018

0.02

Data set's for Binpack1 to Binpack4

N
on

 L
oa

d
B

al
an

ci
ng

Non Load Balancing between Virtual Machines in cloud

TLBO
GWO
Hybrid

1 2 3 4 5 6 7 8
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

data set for Binpack5 to Binpack6

N
on

 L
oa

d
B

al
an

ci
ng

Non Load Balancing in Virtual Machines in Cloud

TLBO
GWO
Hybrid

Chapter 5: Computational and Simulation Results

86

parameter which is a normalized change percentage than the best answer where fheuristic is

meta-heuristic value and foptimal is the optimal value.

100 heuristic optimal

optimal

f f
RPD

f

-
= ´ (5-4)

This criterion shows the performance and robustness of the algorithm with the increase of

the data. Table 5-13 demonstrates comparison of RPD between proposed algorithm and

optimal solution.

Table 5-13: Comparison of RPD between proposed method and optimal solution

RPD Optimal
solution Hybrid Resource

capacity
No. of

Job Dataset Exp.

1/99 99 100 150 250 Binpack1-U250_00 First
1/100 100 101 150 250 Binpack1-U250_01 First
1/99 99 100 150 250 Binpack2-U250_00 First

1/100 100 101 150 250 Binpack2-U250_01 First
3/198 198 201 150 500 Binpack3-U500_00 First
3/201 201 204 150 500 Binpack3-U500_01 First
4/399 399 403 150 1000 Binpack4-U1000_00 First
5/406 406 411 150 1000 Binpack4-u1000_01 First
3/20 20 23 100 60 Binpack5-T60_00 Second
3/20 20 23 100 60 Binpack5-T60_01 Second
5/40 40 45 100 120 Binpack6-T120_00 Second
5/40 40 45 100 120 Binpack6-T120_01 Second

11/83 83 94 100 249 Binpack7-T249_00 Second
12/83 83 95 100 249 Binpack7-T249_01 Second

23/167 167 190 100 501 Binpack8-T501_00 Second
22/167 167 191 100 501 Binpack8-T501_01 Second

Figure 5-7: Comparison of RPD between GWO, optimal solution, and proposed algorithm

Chapter 5: Computational and Simulation Results

87

The results indicate that the proposed method has superior performance with increasing

data. The average of relative percentage changes is increased in an appropriate way in

experimental data and has a better flow in comparison with other algorithms. Figure 5-7

indicates improvements of the RPD parameter in comparison with other results. The results

show, with increasing data, the performance is observed to be stable in the proposed method.

5.4.2. Normal distribution workload

 In order to evaluate proposed algorithm using normal distribution workload, we used

CloudSim simulator in two different environments. CloudSim has the capability to simulate

for modelling cloud computing in the homogeneous and heterogeneous environment.

Table 5-14: CloudSim setting for homogeneous and heterogeneous cloud environments

Entities Parameters Values for
homogeneous Env.

Values for
heterogeneous Env.

User No. of Users 20 20

CloudLet No. of CloudLets 120-800 120-800

Host No. of host 5 5

 Ram 4096MB 25GB

 Storage 500GB 2TB

Virtual Machines Network Bandwidth 5GB 10GB

 No. of VMs 12 20

 MIPS

 RAM 2048MB 128MB to 15GM

 Bandwidth 128MB to 15GM

 VMM Xen Xen

 Operation system Linux Linux

 No. of CPUs 2 2

 No. of Datacenters 2 2

CloudSim toolkit is an open source framework that enables developers to model and

different layers of cloud computing infrastructure and application services. Table 5-14 shows

presents cloudlets, cloud users, virtual machines, and host and data center properties for two

Chapter 5: Computational and Simulation Results

88

different homogeneous and heterogeneous cloud environments respectively. The efficiency of

the algorithm under uniform distribution through Falkenauer datasets was investigated.

Figure 5-8: Performance evaluation between different algorithms
in homogeneous environment

Figure 5-9: Performance evaluation between different algorithms
in heterogeneous environment

Figure 5-8, 5-9 show the performance between proposed algorithm, GWO, PSO, and BBO

with using normal distribution workloads in homogeneous and heterogeneous environments

in the cloud system respectively. The x-axis and y-axis are the numbers of virtual machines

and number of loads respectively. The results clearly show that proposed algorithm has better

performance for using maximum capacity of virtual machines. The figures show that

proposed algorithm maximizes the utilization of resources. As it is clear, with increasing the

Chapter 5: Computational and Simulation Results

89

loads, the proposed algorithm uses the least number of virtual machines. It means the

simulated cloud system using the proposed method can balance loads across virtual

machines.

Figure 5-10: Comparison of makespan between different algorithms

in homogeneous environment

Figure 5-11: Comparison of makespan between different algorithms

in heterogeneous environment

Figure 5-10 and 5-11 illustrates the comparison of makespan between proposed algorithm,

GWO, PSO, and BBO with using normal distribution workloads in homogeneous and

heterogeneous environments in the cloud system respectively. The x-axis and y-axis are the

numbers of cloudlets and execution time respectively. The results clearly depict that proposed

Chapter 5: Computational and Simulation Results

90

algorithm outperforms in terms of time reduction. Reduction of the makespan has a direct

effect on response time. The results indicate the algorithm has superior performance in both

homogeneous and heterogeneous environments in comparison with other methods.

The comparison of throughput between proposed algorithm, GWO, PSO, and BBO is

shown in figures 5-12 and 5-13. This comparison is based on normal distribution workloads

in both the heterogeneous and homogeneous environments in the cloud system. The

measurement of this factor is calculated based on the number of the performed tasks and

time. The results indicate that the number of performed tasks by proposed algorithm is

impressive in comparison with other algorithms. The overall results reflect superiority of the

proposed algorithm in comparison with other algorithms.

Figure 5-12: Comparison of throughput between different algorithms

in homogeneous environment

Figure 5-13: Comparison of throughput between different algorithms

in heterogeneous environment

Chapter 6: Conclusions and Future Directions

91

Chapter 6

Conclusions and Future Directions

Chapter 6: Conclusions and Future Directions

92

6.1. Conclusions and Discussion

The high workloads across virtual machines are one of the main challenges of the cloud

computing. Therefore, appropriate resource allocation and load balancing techniques and

methods are becoming increasingly vital for cloud environments. The requested tasks by a

client have to wait for sending to the virtual machines where appropriate resources are

available. These allocations are independent of the executive priority of the tasks. However,

cloud client may offer larger value for its requests in order to raise his/her task priority and

eventually may succeed in taking control over the resources needed. Current resource

allocation methods such as FIFO and Round-Robin which is used in the clouds do greedy and

unfair allocation regardless of priority between users’ jobs.

This thesis designs a new method for dynamic resource allocation problem in cloud

computing. This method is developed for the bin-packing problem, where the packages were

introduced as workloads and each Bin introduced as a virtual machine in cloud computing

environment. The ultimate goal of the problem solving was that the allocation of packages to

Bins is done so that using the minimum number of Bins.

A new combinatory meta-heuristic algorithm using gray wolf optimizer and teaching-

learning-base optimizer was introduced in this regard. The research issues and the major

contributions which have been made in this thesis are summarized as follows:

 In chapter 2, the concept of cloud computing and theoretical foundations in

virtualized environments are introduced. This chapter further investigates the

problem of resource allocation and explains that the load balancing leads to reduce

traffic load in the cloud network, and as a result, energy consumption costs will be

decreased.

 Chapter 3 presents a comprehensive survey of the state-of-the-arts on resource

allocation, load balancing and scheduling techniques, algorithms, and methods in

cloud environments. In this chapter, we provide an overview of the related works of

techniques related to resource allocation at different dimensions and levels such as

objectives, optimization methods, simulation and implementation tools, and the

executable environment. The main goal to organize the state-of-the-arts has been to

Chapter 6: Conclusions and Future Directions

93

reach a deep and clear comprehension of the problem, to identify the key factors,

issues, challenges in relation to existing related works.

 Chapter 4 proposes a bin packing based approach for dynamic resource allocation

and load balancing using two relatively new multi-objective optimization

techniques. By an efficient allocation process, the number of rented virtual machines

is reduced, and it causes decreasing number of cloud physical servers, and

consequently, cost reduction in cloud infrastructures. Also, it has direct effects on

reducing energy consumption. This process leads to maximize utilization of

resources in virtual machines. Therefore, the amount of waste spaces is decreased

across virtual machines and helps to increase load balancing in the cloud

environment. The proposed algorithm is an approximation algorithm.

 In chapter 5, in order to evaluate the performance of our method, the proposed

algorithm is benchmarked on eleven test functions and a comparative study is

conducted to verify the results with other existing algorithms. Also, the proposed

algorithm is simulated in two different tools (Matlab and CloudSim) and the

experimental results are presented. The evaluation results indicate that the proposed

method in high workloads for resource allocation in Cloud Scheduler has better

performance than other existing methods. The complexity of the algorithm is

polynomial. The results of the load balancing experiments in two homogeneous and

heterogeneous environment show that by applying uniform and normal workload

distributions, the proposed method outperforms in comparison with other existing

techniques.

6.2. Future Research Directions

Our main focus in this study was on suggesting a novel hybrid meta-heuristic algorithm to

improve the performance of resource allocation process in cloud computing environments.

Some issues related to resource allocation in cloud computing that needs further research,

have not been addressed in this thesis. This practical study can be considered as the starting

Chapter 6: Conclusions and Future Directions

94

point of the variety of researchers. The potential future directions of this research include the

following:

- Semi-automated admission control mechanisms for resource allocation in the cloud

to decide which user requests to be accepted. This important issue is related to

reservation of the cloud resource in advance. The main problem of traditional

resource allocation techniques in the cloud is that requested resource by user's

application may be not available in time and the related requests will be refused by

the system. Advanced reservation request technique is used to guarantee the

availability of required resources at the specified time. The aim is to integrate a

semi-automated admission control mechanism with our algorithm to improve the

optimality of our method.

- Load forecasting techniques are extremely important in order to reduce energy

consumption and predict overall workloads in cloud computing. Therefore, as future

work, we can improve the stability and performance of our algorithm with

forecasting algorithms.

- One of the important usages of our proposed algorithm is to be integrated with

OpenStack(see Appendix A). Therefore, implementation of proposed algorithm in

order to provide an efficient resource allocation and scheduling policies to this cloud

environment can be an important future work.

- Most of the state-of-the-arts on resource allocation in cloud computing focus on

workflows with independent tasks. Extension of the proposed algorithm for

workflows with dependent jobs can be done in future.

- Trying to extend proposed algorithm to different distributed environment. For

example, simulating the algorithm for resource allocation problem in Apache

Hadoop and evaluation of the algorithm for this environment.

- The most of the research focus to present new resource allocation methods and

techniques while there is no any resource allocation framework that is practical for

Chapter 6: Conclusions and Future Directions

95

different cloud deployment models. Therefore, developing a resource allocation

framework is needed.

- The definition and calculation of energy and reducing network traffic through

dynamic resource allocation, load balancing, and cloud scheduling using proposed

algorithm can be another area for future research.

- More accuracy in the calculation of choices by the teaching-learning-base algorithm

can be another area of future research. Neural networks can be used in order to

predict. Neural network doesn't guarantee the convergence, but the combination of

our proposed method with neural network techniques can guarantee convergence

and increase the speed.

- Implementation of the proposed method with the real workloads in a real cloud

environment can provide more accurate solutions for the future research and

introduce more research areas for different types of clouds.

96

References

[1] Subashini, S. and Kavitha, V.: A survey on security issues in service delivery models

of cloud computing. Journal of network and computer applications, 34(1), pp.1-11,

2011.

[2] Chen, S.L., Chen, Y.Y. and Kuo, S.H.: A novel load balancing architecture and

algorithm for cloud services. Computers & Electrical Engineering, 58, pp.154-160,

2017.

[3] Nema, L., Sharma, A. and Jain, S.: Load Balancing Algorithms in Cloud Computing:

An Extensive Survey. International Journal of Engineering Science, pp. 63-74, 2016.

[4] Murata, Y., Egawa, R., Higashida, M. and Kobayashi, H.: A history-based job

scheduling mechanism for the vector computing cloud. In Applications and the

Internet (SAINT), 2010 10th IPSJ International Symposium, pp. 125-128, IEEE, 2010.

[5] Wang, W., Zeng, G., Tang, D. and Yao, J.: Cloud-DLS: Dynamic trusted scheduling

for Cloud computing. Expert Systems with Applications, 39(3), pp.2321-2329, 2012.

[6] Pawar, C.S. and Wagh, R.B.: A review of resource allocation policies in cloud

computing. World Journal of Science and Technology, 2(3), pp.165-167, 2012.

[7] Alakeel, A.M.: A guide to dynamic load balancing in distributed computer

systems. International Journal of Computer Science and Information Security, 10(6),

pp.153-160, 2010.

[8] Ghribi, C., 2014. Energy efficient resource allocation in cloud computing

environments, Doctoral dissertation, Institut National des Télécommunications, 2014.

[9] Wu, L., Garg, S.K. and Buyya, R.: SLA-based admission control for a Software-as-a-

Service provider in Cloud computing environments. Journal of Computer and System

Sciences, 78(5), pp.1280-1299, 2012.

[10] Li, X. and Du, J.: Adaptive and attribute-based trust model for service-level

agreement guarantee in cloud computing. IET Information Security, 7(1), pp.39-50,

2013.

97

[11] Liu, K., Jin, H., Chen, J., Liu, X., Yuan, D. and Yang, Y.: A compromised-time-cost

scheduling algorithm in swindew-c for instance-intensive cost-constrained workflows

on a cloud computing platform. The International Journal of High Performance

Computing Applications, 24(4), pp.445-456, 2010.

[12] Alkhanak, E.N., Lee, S.P. and Khan, S.U.R.: Cost-aware challenges for workflow

scheduling approaches in cloud computing environments: Taxonomy and

opportunities. Future Generation Computer Systems, 50, pp.3-21, 2015.

[13] Chiu, C.F., Hsu, S.J., Jan, S.R. and Chen, J.A.: Task scheduling based on load

approximation in cloud computing environment. In Future Information Technology,

pp. 803-808, Springer, 2014.

[14] Yang, X., Liu, D., Ma, H. and Xu, Y.: Online approximate solution of HJI equation

for unknown constrained-input nonlinear continuous-time systems. Information

Sciences, 328, pp.435-454, 2016.

[15] Singh, S. and Chana, I.: A survey on resource scheduling in cloud computing: Issues

and challenges. Journal of Grid Computing, 14(2), pp.217-264, 2016.

[16] Toosi, A.N., Calheiros, R.N. and Buyya, R.: Interconnected cloud computing

environments: Challenges, taxonomy, and survey. ACM Computing Surveys

(CSUR), 47(1), p.7-19, 2014.

[17] Rong, C., Nguyen, S.T. and Jaatun, M.G.: Beyond lightning: A survey on security

challenges in cloud computing. Computers & Electrical Engineering, 39(1), pp.47-54,

2013.

[18] Boutaba, R., Zhang, Q. and Zhani, M.F.: Virtual machine migration in cloud

computing environments: Benefits, challenges, and approaches. Communication

Infrastructures for Cloud Computing, pp.383-408, 2013.

[19] Mousavi, S.M. and Gábor, F.: A novel algorithm for Load Balancing using HBA and

ACO in Cloud Computing environment. International Journal of Computer Science

and Information Security, 14(6), p.48, 2016.

[20] Singh, P., Dutta, M. and Aggarwal, N.: A review of task scheduling based on meta-

heuristics approach in cloud computing. Knowledge and Information Systems, 52(1),

pp.1-51, 2017.

98

[21] Pooranian, Z., Shojafar, M., Abawajy, J.H. and Abraham, A.: An efficient meta-

heuristic algorithm for grid computing. J. Comb. Optim., 30(3), pp.413-434, 2015.

[22] Gandomi, A.H., Yang, X.S. and Alavi, A.H.: Cuckoo search algorithm: a

metaheuristic approach to solve structural optimization problems. Engineering with

computers, pp.1-19, 2013.

[23] BoussaïD, I., Lepagnot, J. and Siarry, P.: A survey on optimization

metaheuristics. Information Sciences, 237, pp.82-117, 2013.

[24] Khetan, A., Bhushan, V. and Gupta, S.C.: A novel survey on load balancing in cloud

computing. Proc. International Journal Of Engineering Research & Technology

(IJERT) ISSN, pp.2278-0181, 2013.

[25] Singh, S. and Chana, I.: A survey on resource scheduling in cloud computing: Issues

and challenges. Journal of Grid Computing, 14(2), pp.217-264, 2016.

[26] Randles, M., Lamb, D. and Taleb-Bendiab, A.: April. A comparative study into

distributed load balancing algorithms for cloud computing. In Advanced Information

Networking and Applications, 2010 IEEE 24th International Conference, pp. 551-556,

2010.

[27] Khan, N., Shah, A. and Nusratullah, K.: Adoption of Virtualization in Cloud

Computing: A Foundation Step towards Green Computing. International Journal of

Green Computing (IJGC), 6(1), pp.40-47, 2015.

[28] Erl, T., Puttini, R. and Mahmood, Z.: Cloud computing: concepts, technology &

architecture. Pearson Education, Book, 2013.

[29] Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger, L. and Leaf, D.: NIST Cloud

Computing Reference Architecture. National Institute of Standards and Technology of

the US Department of Commerce, Special Publication 500-292, 2014.

[30] Mousavi. SM.,Fazekas. G.: Increasing QoS in SaaS for low Internet speed

connections in cloud. The 9th International Conference on Applied Informatics, Eger,

Hungary, pp. 195-200, 2014.

[31] Kalloniatis, C., Mouratidis, H. and Islam, S.: Evaluating cloud deployment scenarios

based on security and privacy requirements. Requirements Engineering, 18(4),

pp.299-319, 2013.

99

[32] Kavis, M.J.: Architecting the cloud: design decisions for cloud computing service

models (SaaS, PaaS, and IaaS). John Wiley & Sons, Book, 2014.

[33] Chun, S.H. and Choi, B.S.: Service models and pricing schemes for cloud

computing. Cluster Computing, 17(2), pp.529-535, 2014.

[34] Lin, J.W., Chen, C.H. and Lin, C.Y.: Integrating QoS awareness with virtualization in

cloud computing systems for delay-sensitive applications. Future Generation

Computer Systems, 37, pp.478-487, 2014.

[35] García-Valls, M., Cucinotta, T. and Lu, C.: Challenges in real-time virtualization and

predictable cloud computing. Journal of Systems Architecture, 60(9), pp.726-740,

2014.

[36] Lubomski, P., Kalinowski, A. and Krawczyk, H.: June. Multi-level virtualization and

its impact on system performance in cloud computing. In International Conference on

Computer Networks, pp. 247-259, Springer International Publishing, 2016.

[37] Durairaj, M. and Kannan, P.: A study on virtualization techniques and challenges in

cloud computing. International Journal of Scientific and Technology Research, 3(11),

pp.147-51, 2014.

[38] Blenk, A., Basta, A., Reisslein, M. and Kellerer, W.: Survey on network virtualization

hypervisors for software defined networking. IEEE Communications Surveys &

Tutorials, 18(1), pp.655-685, 2016.

[39] Xiao, Z., Song, W. and Chen, Q.: Dynamic resource allocation using virtual machines

for cloud computing environment. IEEE transactions on parallel and distributed

systems, 24(6), pp.1107-1117, 2013.

[40] Um, T.W., Lee, H., Ryu, W. and Choi, J.K.: Dynamic resource allocation and

scheduling for cloud-based virtual content delivery networks. ETRI Journal, 36(2),

pp.197-205, 2014.

[41] Anuradha, V.P. and Sumathi, D.: February. A survey on resource allocation strategies

in cloud computing. In Information Communication and Embedded Systems

(ICICES), 2014 International Conference, pp. 1-7, IEEE, 2014.

[42] Shyamala, K. and Rani, T.S.: An analysis on efficient resource allocation mechanisms

in cloud computing. Indian Journal of Science and Technology, 8(9), pp.814-821,

2015.

100

[43] Domanal, S.G. and Reddy, G.R.M.: January. Optimal load balancing in cloud

computing by efficient utilization of virtual machines. In Communication Systems and

Networks (COMSNETS), 2014 Sixth International Conference, pp. 1-4, IEEE, 2014.

[44] Shahzad, F.: State-of-the-art survey on cloud computing security Challenges,

approaches and solutions. Procedia Computer Science, 37, pp.357-362, 2014.

[45] Shamsi, J., Khojaye, M.A. and Qasmi, M.A.: Data-intensive cloud computing:

requirements, expectations, challenges, and solutions. Journal of grid

computing, 11(2), pp.281-310, 2013.

[46] Zhan, Z.H., Liu, X.F., Gong, Y.J., Zhang, J., Chung, H.S.H. and Li, Y.: Cloud

computing resource scheduling and a survey of its evolutionary approaches. ACM

Computing Surveys (CSUR), 47(4), p.63, 2015.

[47] Dave, A., Patel, B. and Bhatt, G.: October. Load balancing in cloud computing using

optimization techniques: A study. In Communication and Electronics Systems

(ICCES), International Conference, pp. 1-6, IEEE, 2016.

[48] Ardagna, D., Casale, G., Ciavotta, M., Pérez, J.F. and Wang, W.: Quality-of-service

in cloud computing: modeling techniques and their applications. Journal of Internet

Services and Applications, 5(1), p.11, 2014.

[49] Haas, C., Caton, S., Chard, K. and Weinhardt, C.: January. Co-operative

infrastructures: An economic model for providing infrastructures for social cloud

computing. In System Sciences (HICSS), 2013 46th Hawaii International Conference,

pp. 729-738, IEEE, 2013.

[50] Mohamaddiah, M.H., Abdullah, A., Subramaniam, S. and Hussin, M.: A survey on

resource allocation and monitoring in cloud computing. International Journal of

Machine Learning and Computing, 4(1), p.31, 2014.

[51] Gouda, K.C., Radhika, T.V. and Akshatha, M.: Priority based resource allocation

model for cloud computing. International Journal of Science, Engineering and

Technology Research, 2(1), pp.200-215, 2013.

[52] Zhang, L., Li, Z. and Wu, C.: April. Dynamic resource provisioning in cloud

computing: A randomized auction approach. In INFOCOM, 2014 Proceedings IEEE,

pp. 433-441, IEEE, 2014.

101

[53] Al-Ayyoub, M., Jararweh, Y., Daraghmeh, M. and Althebyan, Q.: Multi-agent based

dynamic resource provisioning and monitoring for cloud computing systems

infrastructure. Cluster Computing, 18(2), pp.919-932, 2015.

[54] Han, F.F., Peng, J.J., Zhang, W., Li, Q., Li, J.D., Jiang, Q.L. and Yuan, Q.: Virtual

resource monitoring in cloud computing. Journal of Shanghai University (English

Edition), 15(5), pp.381-385, 2011.

[55] Ramezani, F., Lu, J. and Hussain, F.K.: Task-based system load balancing in cloud

computing using particle swarm optimization. International journal of parallel

programming, 42(5), p.739-750, 2014.

[56] LD, D.B. and Krishna, P.V.: Honey bee behavior inspired load balancing of tasks in

cloud computing environments. Applied Soft Computing, 13(5), pp.2292-2303, 2013.

[57] Chaczko, Z., Mahadevan, V., Aslanzadeh, S. and Mcdermid, C.: September.

Availability and load balancing in cloud computing. In International Conference on

Computer and Software Modeling, Singapore, Vol(14), 2011.

[58] Milani, A.S. and Navimipour, N.J.: Load balancing mechanisms and techniques in the

cloud environments: Systematic literature review and future trends. Journal of

Network and Computer Applications, 71, pp.86-98, 2016.

[59] Mohanty, S., Patra, P.K. and Mohapatra, S.: Dynamic Task Assignment with Load

Balancing in Cloud Platform. In Emerging Research Surrounding Power

Consumption and Performance Issues in Utility Computing, pp. 363-385, 2016.

[60] Ergu, D., Kou, G., Peng, Y., Shi, Y. and Shi, Y.: The analytic hierarchy process: task

scheduling and resource allocation in cloud computing environment. The Journal of

Supercomputing, pp.1-14, 2013.

[61] Masdari, M., ValiKardan, S., Shahi, Z. and Azar, S.I.: Towards workflow scheduling

in cloud computing: a comprehensive analysis. Journal of Network and Computer

Applications, 66, pp.64-82, 2016.

[62] Salot, P.: A survey of various scheduling algorithm in cloud computing

environment. International Journal of Research in Engineering and Technology, 2(2),

pp.131-135, 2013.

102

[63] Dreshti P.H., Altaf B.M.: Improve Performance by Task Scheduling Beneficial to

Both User and Cloud Provider in Cloud Computing. International Journal of

Computer Science and Mobile Computing, 3(4), pp.1283-1288, 2014.

[64] Wu, L.: A revised discrete particle swarm optimization for cloud workflow

scheduling, Journal of Information and Communication Technologies, 18(3), pp. 1-5,

2012.

[65] Chen, C.L., Huang, S.Y., Tzeng, Y.R. and Chen, C.L.: A revised discrete particle

swarm optimization algorithm for permutation flow-shop scheduling problem. Soft

Computing, 18(11), pp.2271-2282, 2014.

[66] Izakian, H., Ladani, B.T., Abraham, A. and Snasel, V.: A discrete particle swarm

optimization approach for grid job scheduling. International Journal of Innovative

Computing, Information and Control, 6(9), pp.1-15, 2010.

[67] Wang, F.S. and Chen, L.H.: Particle swarm optimization (PSO). Encyclopedia of

Systems Biology, pp.1649-1650, 2013.

[68] Engelbrecht, A.: July. Particle swarm optimization. In Proceedings of the Companion

Publication of the 2014 Annual Conference on Genetic and Evolutionary

Computation (pp. 381-406). ACM, 2014.

[69] Du, K.L. and Swamy, M.N.S.: Particle swarm optimization. In Search and

Optimization by Metaheuristics, pp. 153-173, Springer International Publishing, 2016.

[70] Banerjee, S.,Mukherjee, I., and Mahanti., P.: Cloud computing initiative using

modified ant colony framework, World academy of science, engineering and

technology, pp. 200–203, 2009.

[71] Ünal, M., Ak, A., Topuz, V. and Erdal, H.: Ant Colony Optimization (ACO).

In Optimization of PID Controllers Using Ant Colony and Genetic Algorithms, pp.

31-35, Springer, 2013.

[72] Gao, Y., Guan, H., Qi, Z., Hou, Y. and Liu, L.: A multi-objective ant colony system

algorithm for virtual machine placement in cloud computing. Journal of Computer

and System Sciences, 79(8), pp.1230-1242, 2013.

[73] Ludwig, S.A. and Moallem, A.: Swarm intelligence approaches for grid load

balancing. Journal of Grid Computing, 9(3), pp.279-301, 2011.

103

[74] Yuce, B., Packianather, M.S., Mastrocinque, E., Pham, D.T. and Lambiase, A.: Honey

bees inspired optimization method: the bees algorithm. Insects, 4(4), pp.646-662,

2013.

[75] Zhao, S., Lu, X. and Li, X.: Quality of service-based particle swarm optimization

scheduling in cloud computing. In Proceedings of the 4th International Conference on

Computer Engineering and Networks, pp. 235-242, Springer, 2015.

[76] Karthick, A.V., Ramaraj, E. and Subramanian, R.G.: February. An efficient multi

queue job scheduling for cloud computing. In Computing and Communication

Technologies (WCCCT), 2014 World Congress, pp. 164-166, 2014.

[77] Abdullah, M. and Othman, M.: Simulated annealing approach to cost-based multi-

quality of service job scheduling in cloud computing enviroment. American Journal

of Applied Sciences, 11(6), p.872-885, 2014.

[78] Xu, G., Pang, J. and Fu, X.: A load balancing model based on cloud partitioning for

the public cloud. Tsinghua Science and Technology, 18(1), pp.34-39, 2013.

[79] Deb, K.: Multi-objective optimization. In Search methodologies, Book, pp. 403-449,

Springer US, 2014.

[80] Xue, S., Liu, F. and Xu, X.: An Improved Algorithm Based on NSGA-II for Cloud

PDTs Scheduling. Journal of Software, 9(2), pp.443-450, 2014.

[81] Bensmaine, A., Dahane, M. and Benyoucef, L.: A non-dominated sorting genetic

algorithm based approach for optimal machines selection in reconfigurable

manufacturing environment. Computers & Industrial Engineering, 66(3), pp.519-524,

2013.

[82] Ruiz, R., Maroto, C. and Alcaraz, J.: Two new robust genetic algorithms for the

flowshop scheduling problem. Omega, 34(5), pp.461-476, 2006.

[83] Salimi, R., Motameni, H. and Omranpour, H.: Task scheduling using NSGA II with

fuzzy adaptive operators for computational grids. Journal of Parallel and Distributed

Computing, 74(5), pp.2333-2350, 2014.

[84] Cheng, B.: Hierarchical cloud service workflow scheduling optimization schema

using heuristic generic algorithm. Przeglad Elektrotechniczny, 88(2), pp.92-95, 2012.

104

[85] Mirjalili, S., Mirjalili, S.M. and Lewis, A. Grey wolf optimizer. Advances in

Engineering Software, 69, pp.46-61, 2014.

[86] Mirjalili, S., Saremi, S., Mirjalili, S.M. and Coelho, L.D.S.: Multi-objective grey wolf

optimizer: a novel algorithm for multi-criterion optimization. Expert Systems with

Applications, 47, pp.106-119, 2016.

[87] Guha, D., Roy, P.K. and Banerjee, S.: Load frequency control of large scale power

system using quasi-oppositional grey wolf optimization algorithm. Engineering

Science and Technology, an International Journal, 19(4), pp.1693-1713, 2016.

[88] Zhang, S. and Zhou, Y.: Grey wolf optimizer based on Powell local optimization

method for clustering analysis. Discrete Dynamics in Nature and Society, 14(3), pp.

47-61, 2015.

[89] Saremi, S., Mirjalili, S.Z. and Mirjalili, S.M.: Evolutionary population dynamics and

grey wolf optimizer. Neural Computing and Applications, 26(5), pp.1257-1263, 2015.

[90] Rao, R.V., Savsani, V.J. and Vakharia, D.P.: Teaching–learning-based optimization: a

novel method for constrained mechanical design optimization problems. Computer-

Aided Design, 43(3), pp.303-315, 2011.

[91] Gomathi, B., and Karthikeyan, K.: Task Scheduling algorithm Based on hybrid

particle swarm optimization in cloud computing environment, Journal of Theoretical

and Applied Information Technology, pp. 33-38, 2013.

[92] Pandey, S., Wu, L., Guru, S.M. and Buyya, R.: April. A particle swarm optimization-

based heuristic for scheduling workflow applications in cloud computing

environments. In Advanced information networking and applications (AINA), 2010

24th IEEE international conference, pp. 400-407, IEEE, 2010.

[93] Madni, S.H.H., Latiff, M.S.A. and Coulibaly, Y.: Resource scheduling for

infrastructure as a service (IaaS) in cloud computing: Challenges and

opportunities. Journal of Network and Computer Applications, 68, pp.173-200, 2016.

[94] Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A. and Buyya, R.: CloudSim:

a toolkit for modeling and simulation of cloud computing environments and

evaluation of resource provisioning algorithms. Software: Practice and

experience, 41(1), pp.23-50, 2011.

105

[95] Xia, B. and Tan, Z.: Tighter bounds of the First Fit algorithm for the bin-packing

problem. Discrete Applied Mathematics, 158(15), pp.1668-1675, 2010.

[96] Coffman Jr, E.G., Csirik, J., Galambos, G., Martello, S. and Vigo, D.: Bin packing

approximation algorithms: survey and classification. In Handbook of Combinatorial

Optimization, pp. 455-531, Springer New York 2013.

[97] Liu, Z., Qu, W., Liu, W., Li, Z. and Xu, Y.: Resource preprocessing and optimal task

scheduling in cloud computing environments. Concurrency and Computation:

Practice and Experience, 27(13), pp.3461-3482, 2015.

[98] Tripathy, L. and Patra, R.R.: Scheduling in cloud computing. International Journal on

Cloud Computing: Services and Architecture (IJCCSA), 4(5), pp.21-37, 2014.

[99] Neri, F.: An Introduction to Computational Complexity. In Linear Algebra for

Computational Sciences and Engineering (pp. 349-362). Springer, 2016.

[100] Tomita, E., Tanaka, A. and Takahashi, H.: The worst-case time complexity for

generating all maximal cliques and computational experiments. Theoretical Computer

Science, 36(1), pp.28-42, 2006.

[101] Hoffman, K.L., Padberg, M. and Rinaldi, G.: Traveling salesman problem.

In Encyclopedia of operations research and management science, pp. 1573-1578,

Springer US, 2013.

[102] Barto, L. and Kozik, M.: Robustly solvable constraint satisfaction problems. SIAM

Journal on Computing, 45(4), pp.1646-1669, 2016.

[103] Simon, D.: Biogeography-based optimization. IEEE transactions on evolutionary

computation, 12(6), pp.702-713, 2008.

[104] Jamil, M. and Yang, X.S.: A literature survey of benchmark functions for global

optimisation problems. International Journal of Mathematical Modelling and

Numerical Optimisation, 4(2), pp.150-194, 2013.

[105] Kyrö, P.: Benchmarking as an action research process. Benchmarking: An

International Journal, 11(1), pp.52-73, 2004.

[106] Falkenauer, E.: Genetic algorithms and grouping problems. John Wiley & Sons, Inc,

1998.

106

[107] Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gómez, C., Huacuja,

H.J.F. and Alvim, A.C.: A grouping genetic algorithm with controlled gene

transmission for the bin packing problem. Computers & Operations Research, 55,

pp.52-64, 2015.

[108] Alvim, A.C., Ribeiro, C.C., Glover, F. and Aloise, D.J.: A hybrid improvement

heuristic for the one-dimensional bin packing problem. Journal of Heuristics, 10(2),

pp.205-229, 2004.

107

Publications

List of Related publications

1. Mousavi. SM., Mosavi. A., Varkonyi-Koczy, A.R., Fazekas., G.: Dynamic resource

allocation in Cloud Computing. Journal Acta Polytechnica Hungarica, 14(3), pp. 80-

101, 2017.

2. Mousavi. SM., Fazekas.G.: A Novel Algorithm for Load Balancing using HBA and

ACO in Cloud Computing Environment. International Journal of Computer Science and

Information Security, 14(6), pp.48-52, 2016.

3. Mousavi. SM.,Fazekas. G.: Increasing QoS in SaaS for low Internet speed connections

in cloud. The 9th International Conference on Applied Informatics, Eger, Hungary, pp.

195-200, 2014.

4. Mousavi. SM. Fazekas.G.: Dynamic resource allocation in cloud computing: A survey

and taxonomy”, Journal of Engineering and Applied Sciences, Accepted (Mar 2017), in

press.

5. Mousavi. SM. et al: A load balancing algorithm for resource allocation in cloud

computing. Advances in Intelligent Systems and Computing, Recent Global Research and

Education: Technological Challenges, Springer International Publishing 2017, Accepted,

in press.

6. Mousavi. SM., Fazekas. G.: Comparison of efficiency of meta-heuristic algorithms to

solve optimization problems in cloud resource allocation. Journal of computers,

(Submitted).

Further publications

7. Mousavi. SM.: A new architecture for Iran's communication Infrastructures for national

Cloud Computing. International conference in Electrical and Computer Engineering,

Tehran, Iran, Aug 2015, http://cbconf.ir/en/.

108

8. Mousavi. SM., Fazekas G.: Cloud Computing Auditing Roadmap and Process. Journal

of Engineering and Applied Sciences, Accepted (March 2017), in press.

9. Farzaneh. Y., Mousavi. SM., Mousavi. A., Azodinia. M.: Improving Client Access

License for Apache Hadoop Application. Journal of computers, (Submitted).

Appendix A

OpenStack

OpenStack Nova is the OpenStack compute project. It is a compute controller that pools

computing resources like CPU, memory, etc... Nova provides API's to control on-demand

scheduling of compute instances like virtual machines on multiple virtualization technologies,

bare metal, or container technologies. Nova uses images to launch instances or VMs. In this

chapter, we provide an explanation of the steps to create an instance with Nova in order to

implement the proposed algorithm on OpenStack Nova as future work.

1. Create a simple credential file:

vi creds
Paste the following :
export OS_TENANT_NAME = admin
export OS_USERNAME = admin
export OS_PASSWORD = admin_pass
export OS_AUTH_URL =" http ://192.168.100.11:5000/ v2 .0/"

2. Upload the cirros cloud image:

source creds
glance image - create --name "cirros -0.3.2 - x86_64 " --is - public true \
--container - format bare --disk - format qcow2 \
--location http :// cdn . download . cirros - cloud .net /0.3.2/ cirros -0.3.2 - x86_64 - disk .
img

3. List Images:

glance image – list

4. Create an external network:

source creds
Create the external network :

neutron net - create ext - net -- shared -- router : external = True
Create the subnet for the external network :
neutron subnet - create ext - net --name ext - subnet \
--allocation - pool start =192.168.100.101 , end =192.168.100.200 \
--disable - dhcp -- gateway 192.168.100.1 192.168.100.0/24

5. Create an internal (tenant) network:

source creds
Create the internal network :
neutron net - create int - net
Create the subnet for the internal network :
neutron subnet - create int - net --name int - subnet \
--dns - nameserver 8.8.8.8 -- gateway 172.16.1.1 172.16.1.0/24

6. Create a router on the internal network and attach it to the external network:

source creds
Create the router :
neutron router - create router1
Attach the router to the internal subnet :
neutron router - interface -add router1 int - subnet
Attach the router to the external network by setting it as the gateway :
neutron router - gateway - set router1 ext – net

7. Generate a key pair:

ssh – keygen

8. Add the public key:

source creds
nova keypair - add --pub - key ~/. ssh / id_rsa .pub key1

9. Verify the public key is added:

nova keypair – list

10. Add rules to the default security group to access your instance remotely:

Permit ICMP (ping):
nova secgroup -add - rule default icmp -1 -1 0.0.0.0/0
Permit secure shell (SSH) access :
nova secgroup -add - rule default tcp 22 22 0.0.0.0/0

11. Launch your instance:

NET_ID =$(neutron net - list | awk '/ int -net / { print $2 }')
nova boot -- flavor m1. tiny --image cirros -0.3.2 - x86_64 --nic net -id= $NET_ID \
--security - group default --key - name key1 instance1

12. Note: To choose the instance parameters these commands could be used:

nova flavor - list : -- flavor m1. tiny
nova image - list : --image cirros -0.3.2 - x86_64
neutron net - list : --nic net -id= $NET_ID
nova secgroup - list : --security - group default
nova keypair - list : --key - name key1

13. Check the status of your instance:

nova list

Appendix B

All implemented algorithms and used dataset in this thesis are downloadable using the following
link:

https://drive.google.com/file/d/0B_YXoYhgc4BqZ2tJY1Jkc2MwZlU/view?usp=sharing

