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Abstract 

Cloud computing is an emerging technology and new trend for computing based on the 

internet. In cloud computing, the dynamic resource allocation is an important process used 

for the purpose of effective distribution of loads among virtual machines. The shared use of 

resources by the consumers without any strategy brings a range of issues and challenges in 

the cloud environment such as scalability, fault tolerance, reliability, availability, and energy 

efficiency. Utilizing dynamic resource allocation for load balancing is considered as an 

important optimization process of task scheduling in cloud computing. Load balancing strives 

to balance the workload across virtual machines to achieve optimal machine utilization. An 

inefficient resource allocation strategy and load balancer may overload some virtual 

machines while other virtual machines are idle. Therefore, In order to achieve maximum 

resource efficiency and scalability, exploring efficient methods and techniques, as well as the 

development of novel algorithms, are highly desired. Meta-heuristic optimization techniques 

have had an exceptional growth over the last two decades. The remarkable ability of meta-

heuristic techniques is motivated scientists from different fields to solve different problems. 

Furthermore, such techniques can often find optimal solutions with less computational effort 

than optimization algorithms, iterative methods, or simple heuristics. Accordingly, this thesis 

proposes a new meta-heuristic load balancing algorithm with a combination of two relatively 

new optimization algorithms. This algorithm can well contribute in maximizing the 

throughput in cloud computing using well-balanced load across virtual machines. moreover, 

the algorithm is able to overcome the problem of entrapping into local optimum. To evaluate 

the performance of the proposed algorithm, the algorithm is benchmarked on eleven test 

functions and a comparative study is conducted to verify the results with other existing 

algorithms. Also, a simulation experiment is conducted to evaluate the effectiveness of the 

algorithm in resource allocation problem. In the simulation, we have used uniformly and 

normal distribution workloads in two homogeneous and heterogeneous cloud environments. 

The results show the proposed algorithm is effective and outperforms than other existing 

algorithms. Also, our proposed algorithm illustrates that there is a significant improvement in 

cost of energy consumption, load balancing. 
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1.1. Introduction 

Cloud computing is an emerging technology and new trend for computing for providing IT 

infrastructure based on virtualization of resources and services on a pay-per-use basis [1-3]. 

In cloud environment the physical machines run multiple virtual machines (VM) which are 

presented to the clients as the computing resources. The architecture of a virtual machine is 

based on a physical computer with similar functionality [4]. In fact virtual machine is a guest 

program with software resources functioning similar to a physical computer. The popularity 

and economical aspect of this technology have been caused many organizations and 

companies adopt cloud services and virtualized infrastructures [5-6]. Daily increase of cloud 

adoption and migrating to virtualized technology has caused cloud providers establish of 

large-scale of infrastructures for cloud services.  

Resource allocation technique is an important process to assign cloud resources based on 

users’ application demands to achieve an optimal number of in-use servers in cloud 

environments [7]. Therefore, an efficient resource allocation technique can be increasingly 

important for cloud environments. Figure 1.1 shows resource allocation in cloud computing. 

 

Figure 1-1: Resource allocation in Cloud Computing [8] 

Resource allocation process operates dynamically for the purpose of load balancing of 

non-preemptive tasks. This technique strives to balance the workload across virtual machines, 

which aims to minimize response time in order to keep promises and quality of service in 

accordance with Service Level Agreements (SLA) between the clients and the provider [9]. 
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Furthermore, this process has to be carried out regularly due to the time-variant nature of the 

loads of Application Environments (AE) [10].  

In fact cloud clients are interested in having the shortest possible time to complete their 

jobs and requests at the minimum cost [11]. On the other hand, the cloud providers are 

interested in maximizing the utilization of their resources in order to lower overall cost to 

increase their profit. Obviously, these two objectives are in conflict and often none of the 

parties are not satisfied with the traditional methods of resource allocation and load balancing 

techniques [9,12]. Classical methods are very time consuming for achieving fully optimized 

solution and in some cases are impossible [13]. Also, traditional approximate methods are 

reported inconclusive and inaccurate and often trapped in local optimum [14]. 

In cloud computing, there are two technical restrictions. First, the capacity of the machines 

is physically limited; secondly, priorities for performing the jobs and requests should be in 

direction with maximizing the efficiency of resources [15-17]. Therefore, using of resource 

allocation and load balancing techniques are led to the reduction of the number of in-used 

servers which has the direct effect on resources efficiency and overall throughput of cloud 

computing. Virtual machines in distributed systems have different usage conditions 

including; utilization costs and also different processing power [18]. The users' jobs may also 

have the different amount of information. In addition, to allocate appropriate resources on 

any machine to the jobs, the response time1 is also considered. The most important problem 

in this process is the ordering process and how placement the tasks on resources are 

conducted. In fact, by increasing the productivity of resources, the response time can be 

reduced and simultaneously, can improve the total cost of resource utilization and load 

balancing [11,19]. 

Therefore, In order to achieve maximum resource efficiency and scalability, exploring 

new methods and techniques as well as development of novel algorithms are highly desired.  

                                                            
1 Response time is the time interval taken between submission of the user's request and the first 
response that is produced  
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The remarkable ability of meta-heuristic techniques is motivated scientists from different 

fields to solve variety of the problems. The meta-heuristic optimization techniques have had 

an exceptional growth over the last two decades [20]. Therefore, such techniques can often 

find optimal solutions with less computational effort than optimization algorithms, iterative 

methods, or simple heuristics [21-22]. The question that arises is “why meta-heuristic 

techniques are remarkably common?”. The answer will be easily found in four main 

properties that characterize most meta-heuristics: simplicity, flexibility, derivation-free 

mechanism, and avoidance of entrapment in local optima [23]. 

The aim of this study is to provide a new meta-heuristic approximation algorithm for 

resource allocation in order to establish load balancing based on time and cost. A balance 

should be established between the three target assessment variables for evaluating the 

proposed approximation algorithm. These three target variables include: 

 The time of completing the latest task among virtual machines. 

 The average of the cost paid for use of resources by the user. 

 The efficiency which is caused by the impact of load balancing based on completion 

time and cost [24]. 

Regarding to the foregoing of the distributed system, the question is raised that; “How 

shall we allocate resources to different users’ jobs and applications to achieve maximum 

efficiency in cloud system?”. Accordingly, in this study, a new hybrid meta-heuristic 

algorithm with combination of two relatively new optimization algorithms is proposed which 

can well contribute in maximizing the throughput using well balanced load across virtual 

resources. 

1.2. Problem Statement and Motivation 

With increasing use of distributed systems, and providing different on-demand Internet-

based services, as well as the importance of task completion time, resource allocation 

problem in the purpose of load balancing is raised as one of the important topics in cloud 

systems. Load balancing problem solving is of great importance to increase productivity 
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through the allocation of resources. This has prompted researchers to use all their knowledge 

and create the ways to minimize costs and reduce Makespan. In distributed computing, the 

cost must be paid for use of any resource, so minimizing the time of the use of resources will 

be necessary[25]. On the other hand, resource allocation and load balancing are two 

important challenges in cloud systems [26]. The resource allocation aims to achieve well 

balanced load across virtual resources to increase resource efficiency in order to minimize the 

time for all tasks. To achieve this goal, load balancing must be considered fairly on resources. 

Distributed computing uses a variety of computational resources to facilitate doing tasks, so 

choosing the appropriate techniques to perform the tasks can increase the efficiency of large-

scale cloud computing environments. Moreover, the load balancing is required in order to 

achieve green computing in clouds [27]. 

So we can say that time, cost and load balancing are three important parameters for 

solving the problem of resource allocation and scheduling requests from the user. These three 

parameters are raised at two different levels of scheduling, namely the user-level and system-

level, which are usually at odds with each other. To solve the problem of load balancing, 

resource allocation can be done so that a balanced workload is considered for different 

resources. If the above steps are met, system performance will be increased and finally, the 

tined needed for implementation of tasks will be reduced.  

Unfortunately, the dynamic nature of cloud resources as well as the various demands of 

users has led to the complexity of the resources allocation problem. In the cloud computing, 

dynamic flexibility in resources allocation is offered by virtual machines. In some 

circumstances, the situation may arise that the two applications at the same time try to access 

a shared resource. Resource allocation technique should be in such a way that manages 

optimization in order to avoid resource competition, piece-part resource, as well as resource 

allocation request more than the tasks need. The importance and the need for discussion on 

this research is related to resource allocation algorithms in cloud environment according to 

the environment assumptions. 
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1.3. Novelty and Contributions 

The goal of this study is to establish a suitable mapping between jobs and resources in 

order to reach efficient load balancing in the cloud system, so as to satisfy the needs of both 

user and system levels simultaneously. This study contributes to propose a novel meta-

heuristic algorithm for resource allocation in the purpose of load balancing. This 

combinatorial algorithm is proposed using newest efficient optimization methods. This thesis 

compares the performance of the proposed algorithm with the respect of the existing other 

solutions. The major contributions of this thesis are as follows: 

 A novel algorithm for resource allocation in the purpose of load balancing of non-

preemptive independent jobs in cloud computing in order to maximizing the 

throughput using well balanced load across virtual machines. 

 Overcoming the problem of entrapped into local optimum during resource allocation 

process. 

 One of the important features of the proposed algorithm is that the algorithm doesn't 

require any special controller, and only needs normal optimization parameters, such 

as population size and number of iterations which are involved in its 

implementation. Therefore, the algorithm has the least dependency on the 

parameters. 

 In virtual systems, resources are dynamically changed. Thus, their behavior has 

different performance in time. The meta-heuristic algorithms are able to provide 

better decisions in solutions space. However, load balancing on virtual systems is 

influenced by various factors such as time and cost. 

 A systematic literature survey about various resource allocation and load balancing 

methods, techniques and algorithms in cloud environment. Also, a comprehensive 

review is conducted regarding pros/cons and the merits/demerits of these methods. 
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 Performance analysis and evaluation of the proposed algorithm is presented with 

respect to other existing algorithms. 

1.4. Research Hypotheses 

It is hypothesized that the combination of two efficient optimization methods to cover 

each other's weaknesses can improve approximate solutions for resource allocation and load 

balancing in virtualized systems. It is hypothesized that each virtual machine based on its 

processor capacity can do one or more tasks because each virtual machine can have one or 

more processor core. The research divides the main hypothesis into small hypotheses. 

Accordingly, the following hypotheses are proposed: 

 Resources and virtual machine are considered same. 

 Tasks are independent. 

 Distributed environment is heterogeneous and dynamic. 

 All tasks must be done. 

 Each task is performed only by a virtual machine. 

 Allocation is done exactly once. 

 Each task has a specific size and volume of data. 

 Each virtual machine has different and specified processing speed. 

 Each virtual machine has a special price that must be paid for the use of it in time. 

  It is hypothesized that, In order to achieve maximum resource efficiency and 

scalability, exploring meta-heuristic algorithms as well as the development of new 

combinatorial meta-heuristic algorithms are highly desired. 

 It is hypothesized that, approximate meta-heuristic algorithms find optimal solutions 

with less computational effort than optimization algorithms, iterative methods, or 

simple heuristics. 

 It is hypothesized that, establishment of balance among completion time, cost of 

energy consumption, and increasing efficiency is done using optimization methods. 

This balance is calculated relative to the load balancing factor. 
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 It is hypothesized that, the proposed algorithm can be introduced in a particular 

framework to be applicable to OpenStack1 software or in cloud computing system. 

The ultimate goal of this hypothesis is introducing a framework for communicating 

proposed method in a distributed system, so that the complexity of communications 

in terms of time in cloud computing systems to be justified. 

 It is hypothesized that, the proposed algorithm for resource allocation can be 

performed in polynomial time and ensures convergence to the optimal solution. This 

means that it does not stick in local optimums. 

1.5. Thesis Organization 

This thesis is organized into six chapters. Chapter 2 provides concepts, advantages and 

applications of the cloud computing. Also, the different aspects of resource allocation, load 

balancing, and scheduling trends are explained. Chapter 3 presents background and a 

systematic state-of-the-arts in resource allocation, and related issues in cloud computing. 

Chapter 4 officially defines the problem and then presents a bin-packing based solution for 

resource allocation in cloud computing. We introduce a new hybrid meta-heuristic method 

using two of relatively new optimization methods to perform initial resource allocation and 

load balancing while minimizing load imbalance, and cost of energy consumption. Chapter 5 

presents computational and simulation results along with a comparative study to verify the 

achieved results. Chapter 6 provides conclusions, summarizes the contributions of this work, 

perspectives, and discusses the future studies directions. At the end, used references in this 

thesis will be mentioned. 

 

 

                                                            
1 OpenStack is an open-source software which is developed in order to create, manage and control of 
virtual servers and other resources in the data center. 
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2.1. Introduction 

The shared use of resources by the consumers without any strategy brings a range of issues 

and challenges in the cloud environment such as: scalability, fault tolerance, reliability, 

availability, and energy efficiency. These challenges appear when multiple concurrent 

requests to a single server led to the server malfunctioning due to overload, while other 

servers are idle. The main objective of the resource allocation is to reach optimal resource 

utilization, avoid overloading the system, maximizing throughput and minimize the response 

time, allocation the available resources with an effective strategy. Therefore, in such a large 

scale heterogeneous environment is a big challenge. Before addressing resource allocation 

challenge and solving the problem, a comprehensive study is needed to identify all aspect of 

cloud computing. This chapter provides the main concept of cloud computing and 

virtualization technique which serves as the soul of cloud computing. 

2.2. Cloud Computing 

Cloud computing is an emerging internet-based practice to provides computing as a utility 

service. This technology is a popular model for providing Information Technology (IT) 

resources as a network-based service in a cost-efficient and pay-per-use method. Since cloud 

computing is new trends in IT outsourcing, organizations adopt and migrate to this 

technology for their business processes. Although there are many definitions of cloud 

computing in literature, none of them give a clear abstraction of this paradigm. The most 

comprehensive definition is proposed by the National Institute of Standards and Technology 

(NIST)[28]. The NIST definition is: “this technology is a network-based model to enable 

convenient, on-demand network access to a shared pool of configurable computing resources 

such as: networks, servers, storage, applications, and services. This model can be rapidly 

provisioned and released with the least management effort or service provider interaction”.  

The most important key features of this technology are on-demand self-service, broad 

network access, resource pooling, rapid elastically, and measured service [30].  
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 On-demand self-service: Cloud resources are provisioned whenever they are 

required. 

 Broad network access: Resources are accessible over the different kind of networks. 

 Resource pooling: In order to allocate resources to cloud consumers, resources are 

pooled and dynamically allocated to users' jobs. 

 Rapid elastically: The capability of scalability of resources in request peak times. 

Measured service: A crucial feature in which used resources and services are monitored 

and measured by cloud providers in order to billing, access control, resource optimization, 

and other tasks. 

Figure 2-1 shows main component of a cloud system. Cloud computing consists of five 

main specifications such as: On-demand self-service, broad network access, resource pooling, 

rapid elasticity, and measured service [29]. Moreover, cloud computing has different service 

models and four main deployment models.  

 

 

Figure 2-1: NIST visual model of Cloud Computing [29]  

2.2.1. Cloud Deployment Models 

A cloud deployment model is an important aspect that represents a specific instance of 

cloud infrastructure. There are four different cloud deployment models [31] as follows: 
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 Private cloud: This model is a particular deployment model of cloud that provides a 

distinct and secure cloud environment which is used by only one organization over 

the Internet or a private internal network.  

 Community cloud: Community deployment model refers to a shared cloud 

environment among several organizations from a specific group such as banks or 

heads of trading firms.  

 Public cloud: Public cloud model is the standard cloud computing model which is 

the most recognizable model of cloud computing that cloud provider makes 

virtualized resources using pooled shared physical resources.  

 Hybrid cloud: This model of cloud is a combination of other deployment models on-

premises with multiple providers. Because of complexity in the most of the 

enterprises, they prefer to use the hybrid cloud solution where the advantage of each 

model (the public, private or on-premises infrastructure) supports a single 

application. 

2.2.2. Cloud Service Models 

There are various cloud-based services. Many cloud providers deliver a various type of 

cloud emerged services. Three cloud service models have become widely used in small to 

medium businesses: Software as a Service (SaaS), Platform as a Service (PaaS), and 

Infrastructure as a Service (IaaS)[32-33]. Figure 2-2 shows different cloud service models 

and their services content.  

 

Figure 2-2: Different Cloud service models 
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 Software as a Service (SaaS). This service is a model for the distribution of 

applications over the Internet which is accessible for customers through a web 

browser or a program interface. Some of the well-known cloud software services are 

Google Apps, Salesforce, Office 365, Netflix, and etc. 

 Platform as a Service (PaaS). This service refers to a set of cloud computing 

services that provide a distributed platform to allow developers (Software 

developers, web developers and businesses) to build applications and services over 

the internet. Some of these services are AWS1, Windows Azure, Google App 

Engine, and etc.  

 Infrastructure as a Service (IaaS). This service is one of the main layers of cloud 

computing in order to provide virtualized computing resources over the Internet. 

Leading IaaS providers include AWS, Rackspace Open Cloud, and IBM SmartCloud 

Enterprise. 

2.3. Virtualization and Cloud Computing 

Virtualization is a technique which is known as the soul of the cloud computing. 

Virtualization technology hides the complexity of physical resources abstraction. This 

technique provides hardware independence, ease of duplication, flexibility, relocation of 

resources, isolation and creating protected environment, and green IT [34-35]. Figure 2-3 

presents different type of virtualization in cloud environments. 

 

 

 

 

 

 

Figure 2-3: Virtualization type in Cloud environment 
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Virtualization may be done in different cloud computing levels: Hardware virtualization, 

Network virtualization, and Client virtualization [36].  

 Server virtualization: A physical server is partitioning into multiple smaller virtual 

servers based on virtualization techniques. The main advantage of this partitioning 

includes maximizing utilization of resources in the physical server, and cost savings. 

Figure 2-4 shows a physical server which is divided into multiple virtual machines 

(VMs). In fact the architecture of each VM is based on physical computers with 

similar functionality [37]. A cloud is created from numerous physical machines. 

Each physical machine runs multiple virtual machines which are presented to the 

end-users or so called clients as the computing resources. In cloud computing, a 

virtual machine is a guest program with software resources which works like a real 

physical computer.  

 

Figure 2-4: Virtualized server 

Host operating system is the operating system which is installed directly on the physical 

server. Guest operating system is the operating system which is installed on the virtual 

machines in the physical server. Hypervisor or Virtual Machine Manager (VMM) is a 

software in order to host several different virtual machines on a single server [38]. In order to 

implementing a virtual machine we can use two different hypervisor as follow: 

 Hypervisor type-1: This type-1 of hypervisor runs directly on hardware as operating 

system as shown in figure (left). It operates as a hardware virtualization engine. This 
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type of hypervisor has better performance and greater flexibility in comparison with 

another existing type. 

 Hypervisor type-2: This type supports guest virtual machines on a host operating 

system as figure shows (right). IBM strongly recommends that this type of 

hypervisors be used mainly on client systems where efficiency is less critical. 

 Figure 2-5 depicts different levels of host/guest operation systems and hypervisors. 

Although both types of hypervisors are usable in different environments, reaching maximum 

efficiency in each type of hypervisor is dependent on the environment which has to be 

operated. 

 

Figure 2-5: Different types of hypervisors 

2.4. Resource Allocation 

Resource allocation technique is an important process to allocate resources based on user’s 

application demands to achieve an optimal number of servers in use. Nowadays, cloud 

environments are mainly heterogeneous; they have physical and virtualized servers from 

multiple generations and multiple vendors; which means that cloud consumers are 

geographically dispersed and utilize a diverse range of resources. Cloud computing provides 

a heterogeneous collection of parallel and distributed computing to deliver on-demand access 

to shared pool of resources [39]. These resources may include a computer, group of 

computers, network links, central processing units or disk drives [40-42]. The shared use of 

resources by the consumers without any strategy brings a range of issues and challenge in 

cloud environment such as: scalability, fault tolerance, reliability, availability and energy 
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consumption. These challenges appear when multiple concurrent requests to a single server 

lead to the server malfunctioning due to overload, while other servers are idle [43]. Thus, 

handling and delivering appropriate resource allocation is a major challenge where users’ 

jobs are fluctuating frequently. Since the main objective of resource allocation is to reach 

optimal resource utilization, avoid overloading the system, maximizing throughput in such a 

large scale heterogeneous environment is a big challenge. Figure 2-6 depicts resource 

allocator place in cloud system. 

 

Figure 2-6: Resource allocator level in Cloud system [8] 

An inefficient resource allocation decreases the quality of services in the cloud system if 

the allocation process not to be accurately managed. In cloud computing, there are two 

technical restrictions. First, the capacity of the machines is physically limited; secondly, 

priorities for the implementation of the jobs should be in direction with maximizing the 

efficiency of resources [44-45]. Therefore, an efficient resource allocator provides an 

efficient process by allowing the service provider to allocate resources based on a managed 

process for each individual module. 

In the cloud computing, the resource can be considered as software, platform, and 

infrastructure. These three resources are known respectively as SaaS, PaaS, and IaaS. In 

cloud environments, resource allocation is done at two levels as follows: 
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 In the first level, when cloud consumer is uploaded to cloud. The load balancing 

algorithm allocates required instances to physical servers in order to balance the 

loads across virtual machines. 

 At the second level, all of the received requests by an application should be assigned 

to a specific instance which is related to the application in the cloud to balance the 

load across instances of the same application 

2.5. Goals of Resources Allocation in Cloud 

The main purpose of the resources allocation in the cloud environment is to achieve 

customer satisfaction with minimal processing time, reducing fees for leasing resources and 

simultaneously ensure the quality of servicing and improve throughput for trust and 

satisfaction of the service provider. Special purposes of task scheduling include load 

balancing, the quality of service, economic principle, and system throughput, which each of 

them will be discussed in the system [46]. 

2.5.1. Load Balancing 

Load balancing and tasks scheduling have a close relationship in the cloud environment. 

Scheduling mechanism is responsible for optimal matching of task and resources in time and 

cost. Load balancing in distributed environment is expressed at two levels, the first level is 

the load on the virtual machine and the second level is the resource layers [47]. 

2.5.2. Quality of Service 

In fact, the goal of cloud system is to provide storage and distributed services. Resources 

are performed according to the demands and in the form of service quality of a cloud 

provider. When resource management is done for the allocation of the task, we should first 

ensure the quality of service [48]. 

2.5.3. Economic Principles 

Cloud resources are widely distributed around the world. These resources may belong to a 

certain organization, which conducts its own management policy. This distributed business 

model provides services to suit different needs, which are related to the demands, therefore 
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paying for demand is reasonable [49]. It can be said that advance market leads to promoting 

job scheduling and resource management. Therefore we should make sure that both sides are 

satisfied and obtain their profits. 

2.5.4. Best Time to Rrun 

Mainly, for applications, the tasks can be divided into different categories according to 

user requirements, so the best time to run is set based on various targets for each task. This 

indirectly improves the quality of scheduling service in the distributed environment. 

2.5.5. Good Throughput 

Throughput in cloud environment is considered as measure to assess the optimal 

performance of the tasks. In addition, it is considered as a goal that must be considered in the 

development of the economic model. Increased throughput is useful for both the user and the 

service provider. Figure 2-7 shows classification of some target functions in distributed 

systems. 

 

 

 

 

 

 

 

 

 

Figure 2-7: Some target functions in distributed systems 

2.6. Resource Allocation Strategy (RAS) 
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application must be considered. In order to achieve an efficient RAS avoiding following 

criteria is very vital: 

 Resource contention: The collision of two applications in order to access a resource 

at the same time. 

 Scarcity of resources: Lack or limitation of enough resources for applications. 

 Resource fragmentation: Lack of integration between required resources or isolation 

of resources in the system. 

 Over-provisioning: Extra resource allocation for an application while other 

applications need the resource. 

 Under-provisioning: Allocation of the resources to an application fewer than 

demand. 

In order to avoid above problems in resource allocation, RAS should consider the 

important parameters (as input parameters) from both cloud providers and cloud consumers 

[50,51]. Some of these parameters are shown in table 2-1. 

Table 2-1: Important parameters for RAS [50] 

Parameter Provider Customer 

Provider Offerings  √ - 

Resource Status  √ - 

Available Resources  √ - 

Application Requirements  - √ 

Agreed Contract Between  
Customer and provider  

√ √ 

From cloud consumer’s viewpoint, service level agreement and application requirement 

should be considered as major parameters to RAS. However, on the other hand, some 

parameters in table 2-1 such as provider offering, the status of resources and available 

resources are vital to be considered. But, from the cloud provider's point of view, predicting 

the dynamic need of users for each individual request, and also dynamic nature of application 

demands are impractical [50]. 
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Virtual machines in distributed systems have different usage conditions including; cost of 

utilizing them and also different processing power. The jobs required by users may also have 

a different amount of information. The most important problem in this process is the order 

process and how the placement of jobs on resources is conducted. In fact by increasing the 

productivity of resources, the response time can be reduced and simultaneously, can improve 

the total cost for resource utilization and load balancing. 

2.6.1. Resource Provisioning Process 

Resource provisioning process provides the appropriate resource in order to allocate to the 

users' jobs. This process itself consists of three main processes: discovery of resources, 

allocation process, and monitoring process [50-52]. Figure 2-8 shows process of resource 

provisioning in different provider layers in the cloud environment. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8: Resource provision process 
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As the figure illustrates discovery process and allocation process are accomplished at the 

service provider layer while Infrastructure provider performs the processing requirements of 

the physical resources. As the figure shows cloud consumers do not have any direct 

interaction with infrastructure provider. Resources are provisioned through service provider 

from the resource pool and delivered to consumers [52]. 

2.6.2. Resource Monitoring Process 

The resource monitoring process is a methodology which can be performed by internal 

auditors. The main purpose of resource monitoring is to ensure whether resource provisioning 

and allocations comply with standards and service level agreements. Cloud resource 

monitoring is a key tool to identify risks as an assessment function to improve throughput and 

efficiency [53-54].  

The main motivation for cloud resource monitoring is to provide an assurance engagement 

between the cloud provider and consumers to raise cloud consumer’s confidence concerning 

the measurement of cloud services against criteria. 

 

 

 

 

Figure 2-9: Resource monitoring process 

Figure 2-9 depicts the monitoring process provided by both providers. The figure shows 

both providers have a direct role in order to monitor available resources to ensure the proper 

functionality and related processes. In the case of any crash or overloaded, the providers can 

change the process. But as it is shown in figure 2-10, only service provider plays a major role 

in the monitoring process. This process is done in order to improve resource utilization 

process. In such a circumstances service provider performs a load balancing process. 
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Figure 2-10: Monitor resources and load balancing 

2.7. Load Balancing 

Load balancing is a technique to distribute workloads equally and dynamically to all 

virtual machines in cloud computing [55]. Resource allocation is done dynamically for the 

purpose of load balancing of non-preemptive tasks. Load balancing is an NP-hard 

optimization problem in cloud computing [56]. This technique strives to balance the 

workload across VMs, which aims to minimize response time in order to keep promises and 

quality of service in accordance with service level agreements between the clients and the 

provider. Furthermore, as we mentioned earlier in previous chapter this process has to be 

carried out regularly due to the time-variant nature of the loads of application 

environments[10]. Regardless of advantages load balancing saves energy consumption which 

helps in a clean and green environment. The main advantages of load balancing in cloud 

computing are as follows [57]: 

 No machine is overloaded. 

 Maximizing throughput and overall performance of cloud. 

 Optimal resource utilization. 

 Avoiding bottlenecks. 

 Reducing response time and completion time. 

 Provision for a backup plan. 

 Reaching the dream of green computing. 

 Decreasing Energy Consumption and Carbon emission. 
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Figure 2-11: Load balancing in Cloud Computing 

Figure 2-11 shows load balancer place in cloud environment. As the figure illustrates, load 

balancer distribute loads among virtual machines. This distribution is based on a specific 

algorithm or technique. Different types of load balancing techniques are as follows: 

 Static Load Balancing: The implementation of this type of load balancing is easy but 

inefficient for the cloud environment, especially in high workloads [58]. This 

method needs prior information of resources such as capacity, availability, 

processing power, etc. 

 Dynamic Load Balancing: The implementation of the algorithm is difficult but 

compatible with cloud environment [58-59]. This method is suitable for systems 

with heterogeneous resources. The advantages of these methods are as follows: 

o No need prior information. 

o Changeable at runtime by user. 

o Appropriate for heterogeneous resources. 

 Centralized Load Balancing: In this method, there is a server to allocate resources 

and monitoring all other nodes. This server which is called coordinator, stores all 

information about allocations, requests, and requirements. This method is used in 

private or small cloud computing environments. 
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 Distributed Load Balancing: there are several coordinators in each domain. Each 

coordinator stores all information about its own domain such as allocations, 

requests, and requirements. This method is compatible for all distributed networks. 

 Hierarchical Load Balancing: This algorithm divided cloud network to different 

levels for load balancing. This technique uses a hierarchical process based on a tree 

structure. In this process, all parents have the information of all own children and 

decision is made based on a hierarchical structure for each level. 

2.8. Scheduling in Cloud Computing 

Resource scheduling problem in cloud computing is also known as the resources 

allocation in cloud environment. Scheduling is a very important issue in the field of cloud 

computing. Figure 2-12 shows a view of a scheduling system in the cloud environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-12:  High-level view of task scheduling in Cloud Computing 
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In cloud environment, each user may face with hundreds of virtual resources to perform 

any task. In this case, the allocation of tasks to virtual resources by the user is impossible. 

Scheduling system controls different tasks in distributed systems to reduce response time and 

increases productivity of resources which causes to increase computing power [60].  

The purpose of scheduling is distribution of resources and productivity of shared 

resources. In the sense of scheduling, we will be faced with challenges, including cost, time, 

security, reliability, inefficiency, and lack of control, which have been proposed in recent 

years to improve these factors. In this section, we first review the issues addressed in terms of 

scheduling, then the tasks done in this area will be discussed.  

As figure 2-12 shows, it is obvious that, after sending the user's request via the Internet on 

the distribution system, and then categorizing them, scheduling is raised and used one of the 

evolutionary algorithms. It also will assign a set of tasks to available virtual machines.  

2.9. Scheduling Process in Cloud  

With the increasing popularity of distributed computing systems, scheduling theory draws 

more attention. Scheduling is mapping the tasks to resources based on characteristics of 

requests and tasks. In general, the scheduling process includes: Resource Discovering, 

Resource Filtering, Resource Selection and Task Submission [61-62].  

 Resource Discovering: In this section, the data center server discovers the available 

resources. 

 Resource Filtering: After the discovery of resources, information on their status is 

collected. 

 Resource Selection: Source selection is done based on specified parameters of task 

and resource. This stage is decision-making. 

 Task Submission: Task will be submitted to the selected resource in the previous 

step. 
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The scheduler carries out all scheduling activities and implemented to keep all resources 

busy. This program has a direct effect on maximizing throughput, minimizing response time 

and latency. Figure 2-13 illustrates the data flow process in the cloud environment. 

 

 

Figure 2-13: The process of scheduling in the Cloud [63] 

1) Job submission: The requested job is submitted by the user. 

2) Request for resource information: Cloud Information System (CIS) consists of all 

information about cloud resources. Needed information is requested for a job. 

3) Resource information: Received information is sent to scheduler to make scheduling and 

appropriate scheduling process. 

4) Job submission: job is submitted and needed resources are allocated to the job by resource 

allocation process. 

5) Resource ID: Resources Id are sent. This resources id is used by user cloud interface to 

control the process of data flow between user and cloud. 

6) Sending input data: Input data are sent to resources by the user based on specified 

scheduling. 

7) Output to scheduler: scheduler receives real-time information from resource controller in 

order to the administration of scheduling program. 

8) Output to user: scheduler sends appropriate specified information to user cloud interface. 
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Different classifications are listed for scheduling algorithms in distributed systems. In the 

following, a general example of the categories is shown in figure 2-14.  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-14: Classification of scheduling algorithms in distributed environment 
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3.1. Introduction 

The main aim of this literature survey is to identify different related issues in resource 

allocation, load balancing, and scheduling such as algorithms, methods, and techniques in 

cloud computing as well as identifying areas for future research. Although in this research, 

many solutions were identified, it has become apparent that much of the research being done 

only relates to the theoretical side of this issue. Thus this review shows that, however many 

of solutions and techniques have been identified, the future research should focus more on the 

practical implications. 

3.1.1. Literature Search Method 

The first step is implemented to identify relevant literature. This step was conducted with 

the help of provided online databases from different universities, publishers, and search 

engines. The focus was to find the state of the arts regarding resource allocation and load 

balancing issues in cloud environments. It is important to mention that review of all the found 

results in search engines and different databases is impossible from a practical standpoint. It 

is also important to note that based on the search way, search engines operate and order the 

results depend on the computer used for search and many other search settings and factors. 

Table 3-1 shows search keywords, online research databases and search engines which are 

used in this literature study.  

Table 3-1: Online research resources and keywords 

Search criterions Name 

Publishers Taylor & Francis – Wiley- Springer – Elsevier 

Online databases 
Scopus – ScienceDirect – Web of Science – 
IEEEXplore – ACM Digital Library – DBLP – 
MathSciNet – arXiv 

Search engines 
Google Scholar – Academic Search – 
Microsoft Academic search –  WorldWide 
Sience – CiteSeerX 

Keywords relevance to : 
Resource allocation; Resource Scheduling; 

Resource Management Load balancing 
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Figure 3-1 shows the inclusion and exclusion criterions in order to select related studies 

for this literature review. 

 

Figure 3-1: The process of selected articles 

3.2. Related Works 

Selecting and developing an appropriate algorithm to solve multi-objective problems is of 

utmost importance. In order to explore efficient solutions and addressing the related issues 

from different aspects and to handle the constraints of the resource allocation at different 

levels, existing state of the art needs to be studied and discussed. In this section, we provide a 

detailed overview of resource allocation and load balancing techniques, methods and 

algorithms at different dimensions and levels. Existing solutions are divided into three 

categories as follows: 

3.2.1. Single Objective Algorithms 

Wu et al. [64] developed a method for tasks scheduling in line with load balancing using 

RDPSO1 algorithms [65] in distributed environment. In this algorithm, Candidate solutions 

are provided in task-resource solution pairs. Each particle not only learns about other 

particles, which moves in direction, but also shows the other pairs at the right direction. The 

goal of this method is to reduce the time of execution of the task. 

 

                                                            
1 Revised Discrete Particle Swarm Optimization 
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Izakian et al.[66] developed a version of Particle Swarm Optimization(PSO)[67-69] 

algorithm for scheduling tasks as discrete in order to balance the load on the grid. In this 

model, each particle shows that each task is allocated to one resource available. In addition, 

solutions have been put in a m   n   matrix, where m represents the number of machines and 

n represents the number of tasks. Each element of the matrix represents a particle, which has 

a value of 0 or 1, and in each column, only one element can have a value of 1. Columns 

represent tasks allocated, and rows represent tasks assigned to a resource. In the proposed 

method, the velocity of the particle, the best particle's personal position and the best global 

position of each of them is shown as a m   n  matrix. The best personal position is a position 

that a particle has ever had, and the best global position is a position that all particles have 

ever had. 

Banerjee et al.[70] introduced a method of resource allocation by using Ant Colony 

Optimizer(ACO)[71]. The purpose of this method is to maximize scheduling throughput to 

handle all users' requests due to heterogeneous resources in distributed environment, as well 

as minimizing the completion time of the last task by using load balancing. In this model, the 

distance between machines is shown as (r, s), which has specified length or cost. The cost is 

shown as δ(r, s), as well as a pheromone concentration level that is shown as τ(r, s). 

Pheromone updating law is calculated in accordance with evaporation factor and the cost 

imposed Δτk (r, s) on the ant k when is in the direction of route (r, s). The concentration of 

pheromone is updated on all routes between machines, when the task is processed on a 

machine. This dynamic exploratory model is made in two ways, batch and online. When the 

online method is used, any request is assigned immediately after entering machine, and in 

batch mode, first of all requests are collected, then scheduling with respect to the approximate 

specified running time (time of event) maps the tasks on the resources. 

Gao et al.[72] proposed a method that includes a mechanism to maintain load balancing 

using ant colony algorithm and the theory of complex networks. This type of scheduling has 

been redesigned only for Open Cloud Computing Federation (OCCF). OCCF is includes 

several cloud providers, which calls for the creation of a single resource interface of users. A 

complex network is a graph with certain characteristics which simple networks don't have 
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those features and this algorithm is consist of four steps. In the first phase, the ant is 

frequently sent to a machine that has a little load to load balance to be maintained in OCCF, 

as well as updating the pheromone on each machine. In the second stage, when the ant was 

unable to correctly handle the workload, it will be sent by the machine, then the previous step 

will be repeated, except when, the ant machine will convert to a machine with maximum 

workload. A load balance is done in the third stage, the ant moves backward along the route 

and the pheromone is updated on it. Each machine has a table, which contains the pheromone 

route and its neighbor machine, the table saves the values which represent the pheromone on 

that route. Updating pheromone is combined with increasing and evaporating. Finally, the 

complex network structure evolves to adapt changes in workload. A complex network with 

the specifications listed can be obtained through local behavior of ants. The profile is useful 

for load balancing process in proposed algorithm. 

Ludwig et al.[73] developed a method to schedule tasks in grid computing. In the 

proposed algorithm, ants and tasks have strong relationship with each other. Whenever a task 

for allocation refers to the resource, an ant will arise to find the best machine to allocate that 

task. As soon as the task is allocated, the ant stores all information of relevant machines in 

the form of a sequence of pheromones in a Load information table. Load information table 

contains information on load in all machines. The ant meets machine and stores the load in 

the table to guide other ants to select the best possible route. Many stores are listed in the 

table. Authors added two rates to the proposed algorithm, Decay Rate (DR) and Mutation 

Rate (MR). These rates are used when the ant wants to go from one machine to another. 

There are two items to select, or go to a machine randomly due to the probability of mutation 

given. The second way is that, using Load information table in two machines, determines the 

next destination with the passage of time, due to higher decay probability, mutation 

probability is reduced. In this case, the ant relies on information in the table for routing, and 

does not do random selection. 

Babu & Krishna [56] introduced a method to balance load inspired by Honey bees 

algorithm [74] in a distributed environment. Their aim is to provide the algorithm to achieve 

load balancing across virtual machines, and to minimize completion time of the last task in 



Chapter 3: Background & Related Work 

33 
 

the cloud infrastructure. In this method, virtual machines based on the amount of their load 

are placed in three groups of virtual machines with overload, virtual machines with under 

load and virtual machines with balance load. Each group includes a number of virtual 

machines, the tasks have been removed from the machines with overload and after making a 

decision will be placed on one of the virtual machines with under load. In this way, each task 

is considered as a bee, and virtual machines with under load are considered as the destination 

of the bees. Bees have to update the information including the amount of loads on each 

virtual machine, the total load on all virtual machines, the number of tasks of each virtual 

machine and the number of virtual machines in each group. When the process of task shifting 

on the machine is done, the virtual machine that is balanced will be added to load-balanced 

virtual machines group. The load balancing process ends, when all virtual machines are 

placed in this balanced group. In [75], Zhao introduced a method of assigning tasks 

scheduling using particle swarm optimization algorithm in order to minimize processing time 

of the tasks, and the cost of using resources in a distributed environment. 

Karthick et al.[76] developed a method of scheduling for allocation of tasks in distributed 

systems using ant algorithm. The aim of offering this procedure is to create load balancing 

and reduce completion time of tasks scheduling. In this method, the tasks are selected to 

perform by artificial ants. Every ant select a task to perform acts based on pheromones table 

and heuristic values that have been assigned to each task in the preparation stage of 

algorithm. After selecting any task by the ant, it's time to select the processor for that task 

among the available processors. A processor is selected to run, which gives the earliest 

completion time and the best solutions by using the algorithm. Each ant stores in its memory 

information about the tasks performed, such as task completion time, number of processors 

that the task is executed on them, as well as the status of each processor in different moments 

to speed up computing the next time. 

In [77], Abdullah and Osman developed a method of tasks scheduling using simulated 

annealing algorithm for distributed system, which has less execution time than the genetic 

algorithm. In this method, there are n and m machines, which the tasks should be allocated to 
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existing machines. Generally, the aim of algorithm is to reduce the execution time 

considering the deadline specified, so that the load balancing to be maintained. 

 

Xu et al. [78], in order to find suitable solution for mapping a set of requests to the 

available resources in the system, introduced a method according to the distributed system 

conditions. In this way, the initial population is done purposefully, which it speeds up the 

process of finding the solution. The purpose of this algorithm is to reduce the implementation 

time and create load balancing. 

3.2.2. Multi Objective Algorithms 

The multi-objective algorithm is an area of multiple criteria decision making. The multi-

objective optimizations involve several conflicting objectives, which are concerned with 

mathematical optimization problems to be optimized simultaneously [79]. This sort of 

optimization methods has been used in many fields of science, including engineering, 

economics, and logistics where optimal decisions need [79]. 

3.2.2.1. Non-dominated Sorting Genetic algorithm-based Algorithm (NSGA) 

Xue et al.[80] presented a Non-dominated Sorting Genetic Algorithm-based(NSGA)[81] 

multi-objective method for resource allocation in distributed environment scheduling. Their 

aim was to minimize the time and cost in load balancing using resources and achieve Pareto 

optimal front, so that crowding distance is met. For this purpose, they used Self-adaptive 

Crowding Distance (SCD), in addition, in the proposed method, a mutation operator was 

added to the traditional algorithm NSGA-II to avoid premature convergence.  

In this method, the tasks are shown by a Directed Acyclic Graph (DAG), the equation of 

 E   T ,  E ,  V         is considered for a graph, where T   is the set of tasks and iT
 

represents a task, the amount of iT
represents the amount calculated for that task, E  is a 

set of edges, each edge as ijE
has a relation with two tasks i and j, and represents that the task 

j can't be done until the task  i is finished. 
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Figure 3-2: An example of a workflow [80] 

V   is a set of virtual machines in a cluster, iV  means thi  machine of this set, the cost 

iV represents the cost of using the thi machine per unit of time. The ability of iV is used to 

demonstrate the processing power for the machine i. Figure 3-2 shows a workflow of T0 to T7, 

the tasks T9 and T8 are independent. 

 

ە
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۔

ۖ
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ሺ݁ݎܲ																																																			,0 ௜ܶሻ ൌ ∅, ሺ݈݋ܥ ௜ܶሻ ൌ ∅

௘ሺݐ		 ௞ܶሻଵஸ௜ஸ௠
௠௔௫		 ሺ݁ݎܲ																													, ௜ܶሻ ് ∅, ሺ݈݋ܥ ௜ܶሻ ൌ ∅

∑ ௘൫ݐ	 ௝ܶ൯,																																ܲ݁ݎሺ ௜ܶሻ ൌ ∅, ሺ݈݋ܥ ௜ܶሻ ് ∅	௡ିଵ
௝ୀ଴

௘ሺݐ		 ௞ܶሻଵஸ௜ஸ௠
௠௔௫		 ൅ ∑ ௘൫ݐ	 ௝ܶ൯,			ܲ݁ݎሺ ௜ܶሻ ് ∅, ሺ݈݋ܥ ௜ܶሻ ് ∅	௡ିଵ

௝ୀ଴ 		

                            (3-1) 

 

The purpose of the Pre(Ti) is a direct parent of node Ti, Col (Ti) is a task has priority over 

the task i, and should be allocated to the machine before that, the start time for processing is 

shown as Ts, and end time of the processing is displayed by Te. m represents the number of 

independent tasks and n is the number of tasks dependent on Ti. Equation (3-1) shows this 

process. According to equation (3-1) we realize that as long as Pre(Ti) and Col (Ti) are 

empty,  Ti  is not be processed, the processing value for Ti consists of three parts: 

 The first section is the time spent by Ti when it is allocated to a specified machine. 

 Waiting time spent by Ti, when is waiting for the completion of task processing of Ti. 
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 Waiting time spent by Ti, when is waiting for completion of the task Ti. Now, we can 

obtain Te using the equation (3-2). 

 

௘ܶሺ ௜ܶሻ ൌ 	
௔௠௢௨௡௧ሺ்೔ሻ

௔௕௜௟௜௧௬ሺ௏೔ሻ
൅ ௦ܶሺ ௜ܶሻ																							                      (3-2) 

 

Assumptions considered by authors to create the model were as follows: 

 Task can be performed on several machines. 

 When several tasks are allocated to a machine, the task which is received earlier has 

higher priority. 

 The more is the processing power of machine, the more the price will be. 

Considering these assumptions and using start time for the first processing and the 

completion time of final processing, the total time spent using equation (3-3) is obtained. 

Financial cost is obtained with the use of equation (3-4). 

 

௧௢௧௔௟ݐ ൌ ௘ܶሺ ௟ܶ௔௦௧ሻ െ ௦ܶ൫ ௙ܶ௜௥௦௧൯	                                  (3-3) 

 

ܿ௧௢௧௔௟ ൌ 	∑ ܿ௜ ∗ ൫ ௘ܶሺ ௜ܶሻ െ ௦ܶሺ ௜ܶሻ൯			
௉
௜ୀଵ                        (3-4) 

 

Two intended aims by Xu et al. is obtained using equation (3-5). 

 

ቊ
݉݅݊ሺݐ௧௢௧௔௟ሻ ൌ ݉݅݊ሺ ௘ܶሺ ௟ܶ௔௦௧ሻ െ ௦ܶሺ ௙ܶ௜௥௦௧ሻሻ													

݉݉݅݊ሺܿ௧௢௧௔௟ሻ ൌ ݉݅݊ሺ∑ ܿ௜ ∗ ሺ ௘ܶሺ ௜ܶሻ െ ௦ܶሺ ௜ܶሻሻ
௉
௜ୀଵ ሻ

		                     (3-5) 

To create a scheduling mode, the matrix a = p×q is considered where p represents the 

working group and q is the number of virtual machines. The elements of the matrix aij have 

values of 0 or 1, if aij =1 (i.e. Ti is assigned to Vj, otherwise aij =0).  

According to the assumption 2, a task can't be run on several machines and only one 

element in each column can have a value of 1. Based on the assumption 3, more than one 

element in each row can have a value of 1.  

 



Chapter 3: Background & Related Work 

37 
 

Table 3-2: An example of machine coding [80] 

 

Table 3-2 shows an example of this matrix coding method. To overcome the problem of 

low convergence speed and failure to comply with congestion, authors at the intersection, 

mutation and fourth step of standard algorithms NSGA-II made some changes; the changes 

have created as follows: 

To improve the performance of the intersections, a strategy is used called STOX1 [82] that 

comes from SJOX2 [82]. However this strategy trapped the algorithms to the local optimums. 

To resolve this problem, Xu et al. have made the changes in mutation part. This means that in 

the matrix position, two columns randomly are selected as the starting and ending point, and 

gene segments can move between the two points. Figure 3-3 shows the mutation operation. 

 

Figure 3-3: Mutation operation in the NSGA-II algorithm[80] 

Standard NSGA-II algorithm has the following steps: 

 Setting the population size, the maximum evolutionary generation max(Gen) and 

initializing the population P(Gen). 

                                                            
1 Similar Task Order Crossover 
2 Similar Job Order Crossover 
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 Selecting the chromosomes in P(Gen) to perform crossover and mutation as well as 

generating new population Q(Gen). 

 Integrating P(Gen) and Q(Gen) as R(Gen) and performing sorting and ranking 

chromosome in R(Gen), chromosomal are placed in few ranks. 

 Calculating the crowding distance of chromosomes in every rank and sorting them in 

ascending at congestion distance. 

 Choosing m high chromosomes of R(Gen) and transferring them to P(Gen + 1) 

based on ranking and crowding distance of chromosomes R(Gen). 

 Set Gen = Gen + 1 and, if Gen <max(Gen) go step 2, otherwise go to step 7. 

 Inserting chromosomes P(Gem) in the Pareto front. 

SCD1 method is used to adjust the distance of condensation, which is defined as the 

quotient of the two operands. One of them is a maximum distance of two targets in the cost 

dimension, and the other is maximum distance of two targets in the time dimension. A 

variable is also considered as a counter that counts the time when SCDP2 does not change 

during the period. The evolution of generation ends, when the count reaches a certain level. 

According to the authors, the algorithm might get stuck in local optimum. To fix the problem, 

the probability of crossover and mutation increases to 0.01 to reach a certain level. SCDP 

algorithm has 6 steps as follows: 

 Initializing the maxPc, maxPm and maxcount variables, represent the probability of 

crossover, mutation and upper limit of counter. For the first generation, SCDP 

amount is equal to 1, otherwise, it is equal to the previous generation value. 

 Calculating new SCDP in the current generation, that if it is not equivalent to the 

previous generation, variables of the stage 1 are updated otherwise one unit is added 

to SCDP. 

 If the counter reaches the upper limit, go to the step 6, otherwise go to step 4. 

 If the probability of crossover reaches to its upper limit, then go to step 5, and 

otherwise, add 0.01 to the probability of crossover. 

                                                            
1 Self-adapting Crowding Distance 
2 Self-adapting Crowding Distance Parameter 
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 If the probability of mutation reaches to its upper limit, go to step 6, otherwise add 

0.01 to the probability of mutation, otherwise it ends. 

All steps are considered in the stage 4 of traditional NSGA-II algorithm. Evaluation results 

show improving performance of the algorithm compared with its old version. 

Salimi et al.[83] introduced a multi-objective task scheduling using fuzzy systems and 

standard NSGA-II algorithms for distributed computing systems. The goal of this method 

was to minimize implementation of task time, and the costs paid by the user for the use of 

resources and increase the productivity of resources. This study was associated with the load 

balancing in the distributed system. They used the indirect method and fuzzy systems and 

ignored the implementation of the third objective function to solve this problem. 

In [84], Cheng provided an optimized hierarchical resource allocation algorithm for 

workflows using general heuristic algorithm. In this model, the main objective of co-

ordination between the tasks and duties assigned to the service, in accordance with the 

operational needs is to perform the tasks properly and observing the priority between them. 

This model accomplishes workflow tasks scheduling aimed at load balancing and divide the 

tasks to different levels and mapping (allocation) of each level of tasks to resources that they 

have the processing power. Figure 3-4 shows division of the tasks to different. 

 

Figure 3-4: Dividing the tasks to parallel levels to properly allocate tasks  

to the available resources [84] 
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3.2.2.2. Grey Wolf Optimizer (GWO) 

Grey Wolf algorithm has recently been introduced by Mir Jalali [85-86] that is based on 

the behavior of wolves hunting and their rule hierarchies. Hierarchical structure and social 

behavior of wolves is modeled during hunting process in the form of mathematical models 

and is used for the design of optimization algorithm. Wolves' leader is called Alpha which is 

responsible for hunting. The second level of wolves which helps header is called Beta. The 

third level of wolves is called Delta which is designed to support alpha and beta. The lowest 

level is called Omega.  

In general, the algorithm steps can be summarized as follows: 

 The fitness of all solution levels is computed and three top solutions are selected as 

alpha, beta, and delta until the end of the algorithm. The alpha level solution is the 

best fitness one. After alpha, beta and delta are the best solutions respectively. And 

the next better solution is delta. 

 In each iteration, the three top solutions (alpha, beta, and delta wolves) have the 

ability to estimate the hunt, and do it in each iteration using the following equations: 

pD C .X ( t ) X (t)= -
   

                        (3-6) 

1 pX ( t ) X ( t ) A .D+ = -
   

                   (3-7) 

The wolves encircle around the hunt. Xp, is hunting position vector. A and C are hunting 

vector coefficients. X is the wolves' position and t shows the stage of each iteration. D shows 

behavior of encircling around the hunt. The vectors A and C are calculated as follows: 

1A 2a.r a 
   

                        (3-8) 

2C 2.r
 

                               (3-9) 

 In each iteration, after determining of the position of alpha, beta, and delta wolves’ 

positions, other solutions are updated in compliance with them. Hunting information 
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is done by alpha, beta and delta. And the rest update their X position with them. As 

figure 3-5 shows, wolves are able to change their position based on location of prey.  

 

Figure 3-5: View of the gray wolves motion in haunting [85] 

1 2 3α α β β δ δD = C .X -X , D = C .X -X , D = C .X -X
           

                 (3-10) 

1 2 3
1

3

X X X
X (t )

+ +
+ =

  
     where:      

1 1

2 2

3 3

X X A .( D )
X X A .( D )
X X A .( D )a a

a a

a a

ì üï ï= -ï ïï ïï ï= -í ýï ïï ï= -ï ïï ïî þ

   
   
                (3-11) 

 In each iteration, vector and consequently vectors b and c are updated (figure 3-6).  

 

Figure 3-6: Updating wolves' position [85] 
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 At the end of iteration, alpha wolf position is considered as the optimal point. This 

value is A. The value of A is an option value which is between [-2a, 2a]. The 

absolute value of A is less than 1, so the wolves attack when they are at the A 

distance from the prey, while it is necessary to converge toward each other’s at the 

distances of more than one. 

The flowchart of gray wolves is introduced by Guha et al.[87]. In the gray wolf algorithm, 

parameters such as the initial population size, vector coefficients and the number of iterations 

and the number of wolves’ level are to be determined. Then, the cost function of optimization 

which is minimized in this study is introduced then. Afterward, the initial population is 

formed randomly then, the fitness function is introduced. Then, in the loop on a regular basis, 

the position of the wolves' levels is determined and the fitness function is calculated, and 

using them, the new positions are calculated again. Iteration of this loop is specified 

according to the initial parameters. After repeating fitness value loop, the value of the optimal 

function will be shown. Figure 3-7 shows flowchart of the gray wolf algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-7: Flowchart of Gray wolf [87] 
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The results of the gray wolves algorithm are as follows [88-89]: 

 Avoiding local optimum and the convergence of this method in problems with 

restrictions and no limits has been approved. 

 Rotational movements of wolves can be modeled in multidimensional spaces. So 

many multi-objective problems with the correct values such as load balancing in 

distributed systems can be modeled. 

 Determining and adjusting the values of A and C should be discussed to solve 

different optimization problems. It is very convenient for multi-objective 

optimization. 

3.2.2.3. Teaching–Learning-Based Optimization (TLBO) 

Teaching–Learning-Based Optimization algorithm is a way to explore the space of a 

problem to find the settings or parameters to maximize a specific purpose. The algorithm was 

introduced by Rao et al.[90] Similar to other evolutionary optimization techniques, 

Teaching–Learning-Based Optimization algorithm is an algorithm derived from nature, and 

works based on teacher teaching in a classroom. This algorithm is inspired from modeling the 

teaching and learning problem mathematically and presents a new model for solving 

optimization problems. Teaching-Learning-Based Optimization algorithm is based on the 

teaching of a teacher in the classroom. A teacher in the classroom by expressing material 

plays an important role in student learning and if the teaching is effective, the students will 

learn the material better. In addition to the teacher factor, review of lessons by students would 

lead to better learning. This algorithm uses a total population of solutions to achieve the 

overall solution. Population is considered as a group of learners or students in a class.  

A teacher tries to increase the level of knowledge by teaching and learning, so the students 

can achieve a good score. In fact, a good teacher makes students closer to the level of his 

knowledge. The teacher is a person with high knowledge in the class that shares his 

knowledge with students in class, so that the best solution (the best student of the population 

class) in the same iteration acts as a teacher. It should be considered that the students acquire 

knowledge based on the quality of teaching by the teacher and students status (the average 
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class scores). In addition, students increase their knowledge through interaction between 

themselves. This idea is the basis of Teaching–Learning-Based Optimization algorithm for 

solving optimization problems. The algorithm operates in two phases, the first phase is the 

teacher who shares his knowledge to develop the class and the second phase is the review of 

courses by students in the same class. In the following, we describe the process of teaching 

and learning: 

Training process:  

The first stage of Teaching-Learning-Based Optimization algorithm is training phase. At 

this stage, a teacher tries to improve the scores of a classroom. 

 

 
Figure 3-8: Distribution of scores by students: by two teacher (left) 

by through for a group of students(right) [90] 

In Figure 3-8, the Gaussian distribution function is used and the average scores obtained 

by students in classroom are shown as M1 and M2. In this figure, M1 and M2, respectively, 

show the average scores of two separate classrooms with the same students. As it is shown in 

the figure 3-8 (left), the second teacher with the average scores of M2 has acted better than the 

first teacher with average score of M1. Gaussian probability function is as follows: 

2

2

( )

2
1

( )
2

x

f X e
m
s

s p

- -

=                                     (3-12) 

In this formula, μ is the average scores of students which are shown as M1 and M2. The 

only point of evaluating a teacher is the students’ scores, and when a teacher wants to 

improve the status of a class, he/she should focuses on the average scores. 
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In figure 3-8(right), TA is the best student in the class which is mimicked as a teacher. TA 

will try to increase average MA towards their own level according to his or her capability, 

thereby increasing the student's level to a new average MB. It means that the academic level 

of students is approaching to their teacher, or exactly equal with him/her. This creates a new 

population of the classroom which has shown an average of MB and teacher TB. In fact, the 

knowledge level of students does not reach the teacher’s level. It is just close to it, which is 

also depends on the level of classroom ability (average scores).  

Learning process:  

The second stage of Teaching-Learning-Based Optimization algorithm is interacting and 

learning process among students in a classroom. In a classroom, students can discuss and 

learn the issues. It is a mutual interaction phase between students, which transfers the 

knowledge among students. Figure 3-9 shows interactive learning among students that cause 

the student with low knowledge moves toward the student with more knowledge. 

 
Figure 3-9: Student learning in algorithm TLBO 

Based on the figure 3-10, Xj has a better score than Xi. So according to the learning phase, 

Xi must move toward Xj. 

, )(j i j ii newX X X X X= = + -                (3-13) 

Figure 3-10 shows an exact state of the weak student toward the strong one, which is the 

best motion. To reach this goal Teaching-Learning-Based Optimization algorithm should use 

a random parameter r to move parameter Xi to Xj. 

j j i j ii , newX X r  (X ) XX X                    (3-14) 

If, Xj wants to move to a better position on the problem space, should be located at 

distance of j j iX  (X )X  from the Xi.  
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j ji j ii , newX X r  (X ) XX X                    (3-15) 

Parameter r is a random number in problem, which leads to increase power search for 

algorithm. According to the formula, students moving step is equal to the result of subtracting 

good student with a bad student. Figure 3-10 shows the flowchart of Teaching-Learning-

Based Optimization algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-10: Flowchart of Teaching-Learning-Based Optimization algorithm [90] 
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According to the defined pseudo-code, students increase their knowledge in two ways. 

One method is participating in classroom and benefitting from the teacher knowledge, and the 

other one is reviewing of lessons between the students. It is assumed for modeling that each 

student exchanges his idea with another student randomly. After calculating the new member 

of the population, the cost function value is compared with the value of the cost function of 

the same member in the previous iteration. If the new value was lower, a new member will be 

replaced. This process is repeated. Pseudo-code of learning phase is as follows: 

For i = 1 : Pn 

      Randomly select two learners Xi and Xj, where i ≠ j 

     If f (Xi) < f (Xj) 

           Xi, new = Xold + ri (Xi − Xj) 

     Else 

          Xi, new = Xold + ri (Xj − Xi) 

    End If 
End For 

Accept Xnew if it gives a better function value. 

Steps of Teaching–Learning-Based Optimization algorithm: 

 Preparation: Setting parameters values and creating the initial population. 

 Calculating the average members of the population. 

 Choose the best member of the population as a teacher. 

Teacher is considered as T that is Xbest. You can consider the teacher as the best member 

of population, which makes moving average scores towards itself newM T= . 

The new class mean must approach to the best student in the classroom. In fact, all class 

members should learn the new average, and make themselves close to it, and move toward it, 

which is shown in the following formula: 

( ), newi new i fX X r M T M= + - ´                         (3-16) 

Tf is a random number between the numbers {1, 2}, which is selected with equal 

probability and is multiplied in the previous average. If the training factor is equal to 1, the 
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new mean motion is moved normally. But if the factor is equal to two, moving step of 

average will be twice and the difference increases, therefore the probability of learning and 

improving solutions will be increased. 

1. Better solutions replace the old solution (worse). 

2. Learning phase:  

At this stage, for each solution Xi, we select a random solution such as Xj. 

If Xi is better: 

           Xi,new=Xi+r(Xi-Xj) 

If Xj is better: 

          Xi,new=Xi+r(Xj-Xi) 

3. Better solutions replace the old solution (worse). 

4. Termination conditions are checked, and if these conditions are not met, the 

implementation of the algorithm goes to the second phase, and otherwise, the loop 

is stopped, and the algorithm ends. 

The results of using education-based learning algorithm are as follows: 

1. According to learning, the basis of the training, improves the solution. 

2. The specific parameter for setting is required. 

3. Single-objective optimization is very convenient. 

Since training is based on local operations, always convergence may not be guaranteed. 

3.2.3. Hybrid Algorithms 

Gomathi and Karthikey[91] introduced a method for assigning tasks in a distributed 

environment using Hybrid Particle Swarm Optimization(HPSO) algorithm, so they can meet 

the user needs and increase the amount of load balancing with productivity. The aim of the 

authors is to minimize the longest completion of task time among processors and create load 

balancing. In the proposed method, the resources are heterogeneous in distributed 
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environments. For this method, there are n independent tasks which are shown as Ti where 

i={1,2,3,…,n} and m different processors which are shown as Rj where j={1,2,3,…,n}.  

The time of implementation of task i on the resource j is shown as p (i, j), and the resource 

utilization for each processor is shown as ܴ௜ሺ௨௧௜௟௜௦௔௧௜௢௡ሻ. Task allocation to resources is in 

form of a permutation matrix, in the permutation matrix if x(i, j)=1, that is, the task i is 

assigned to the resource j, otherwise ݔ௜,௝ ൌ 0. This method assures us that each task exactly is 

assigned to a processor. The method of calculating targets is in form of equations (3-17), (3-

18), and (3-19). As mentioned in Chapter 1, there are two general methods for solving multi-

objective scheduling problems. In fact we have two purposes, using traditional methods to a 

target or directly using multi-objective optimization algorithms, in case of attempting to solve 

the problem. 

 

ܵܯ ൌ 	∑ ௜ܲ௝ ∗ 			௜௝ݔ
௡
௝ୀଵଵஸ௜ஸ௠

௠௔௫		                                                           (3-17) 

ܴଓሺ̅݊݋݅ݐܽݏ݈݅݅ݐݑሻ ൌ ሺ∑ ܴ݅ሺ݊݋݅ݐܽݏ݈݅݅ݐݑሻ௠
௜ୀଵ ሻ ݉⁄ 		                         (3-18) 

ݒ݂ ൌ minܵܯ maxܴଓሺ̅݊݋݅ݐܽݏ݈݅݅ݐݑሻ	⁄                                             (3-19) 

S.t. 

෍ݔ௜௝ ൌ 1

௠

௜ୀଵ

, ∀݆ ∈ ܶ 

௜௝ݔ ൌ ሼ0,1ሽ, ∀݅ ∈ ܴ, ∀݆ ∈ ܶ 

ܴ௜ሺ݊݋݅ݐܽݏ݈݅݅ݐݑሻ ൌ
∑ ௜ܲ௝
௡
௝ୀଵ

ܵܯ
, ∀݅ ∈ ܴ 

In this method, each solution is shown as a particle in the population; each particle is a 

vector with n dimension which is defined for scheduling an independent task. Figure 3-11 

shows the particles in the proposed model.  

 

Figure 3-11: The mapping of tasks to resources in the HPSO algorithm [91] 
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The position and velocity of particles in the first generation can be obtained in accordance 

with equations (3-20) and (3-21). 

ܺ଴
௞ ൌ ܺ௠௜௡ ൅ ሺܺ௠௔௫ െ ܺ௠௜௡ሻ ∗  (20-3)                    	ݎ

଴ܸ
௞ ൌ ௠ܸ௜௡ ൅ ሺ ௠ܸ௔௫ െ ௠ܸ௜௡ሻ ∗  (21-3)                      	ݎ

r is a random number between zero and one, due to the binding property of particle swarm 

optimization algorithm, the particles, position is continuously calculated. In this method, the 

continuous amount has become the discrete amount using the small position value, and the 

mapping is performed in accordance with equation (3-22). In this mapping, and continuous 

amounts ݔ௜
௞ ൌ ሼݔ௜

ଵ	ݔ௜
ଶ ௜ݔ	…

௡ሽ	have become the discrete values ݏ௜
௞ ൌ ሼݏ௜

ଵ	ݏ௜
ଶ ௜ݏ	…

௡ሽ,  using	ݓ݋݊

equation (3-23), the allocation is done. Table 3-3 shows 6-tasks mapping between three 

resources. 

Table 3-3: Mapping of tasks to resources [91] 

 

We have both social and cognitive factors, social factor represents collaboration between 

the particles to move toward the best goal, and the cognitive component represents the 

personal experience of the particle. In this hybrid algorithm, cognitive component is defined 

as the difference of position between two different particles which are randomly chosen and 

are substituted in the velocity vector; the equation (3-22) illustrates this process. 

δ ൌ ܺ௞ െ ܺ௝					 ௞ܸାଵ
௜ ൌ ௞ܹ ௞ܸ

௜ ൅ ߜߚ ൅ ܿଶݎଶ൫ ௞ܲ
௚ െ ܺ௞

௜ ൯				݂݅	݀݊ܽݎ	ሺ0,1ሻ ൏ൌ 	 ௞ܸ
௜				       (3-22) 

In this equation, δ is the vector dimension, and β is a scaling coefficient in the range of (0, 1). 

Ti position which is related to the ith particle is defined as equation (3-23). 
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As it is shown in equation (3-23) and (3-24), the particles move to a new location only 

when the new location has much better fitness according to [91], this prevents premature 

convergence of problem solution in HPSO and helps to solve the problem. 

ܺ௞ାଵ
௜ ൌ ௜ܶ				݂݅				݂ݒሺ ௜ܶሻ ൏ ൫ܺ௞ݒ݂

௜ ൯		         (3-23) 

௜ܶ ൌ ܺ௞
௜ ൅ ௞ܸାଵ

௜ 			                                       (3-24) 

The algorithm which is including 100 tasks and 5 resources in 100 replications with 10 

particles per generation was compared with the standard particle swarm optimizer algorithm 

and the comparison results demonstrate the effectiveness of this method in reducing 

makespan and especially increasing the efficiency of the system. 

In [92] introduced a heuristic method based on particle swarm algorithm for tasks 

scheduling on distributed environment resources, which considers the computational cost and 

the cost of data transfer. This algorithm optimizes dynamic mapping tasks to resources using 

particle swarm optimization classical algorithm and ultimately balance the system load 

balancing. This optimization method is composed of two components, one of them is tasks 

scheduling operations and the other one is particle swarm algorithm particles steps to obtain 

an optimal mix of the tasks to resources mapping. In this method, each particle represents a 

mapping of tasks to available resources. The first step in this exploration method is to 

calculate the mapping of all tasks, which is possible when there will also be a dependency 

between tasks and this algorithm takes into account the dependencies between tasks as the 

allocation of ready tasks to resources based on output pairs obtained from particle swarm 

optimization algorithm. The purpose of the ready task is something that its implementation 

has ended and input data is obtained to perform child task by doing relevant calculations. 

Upon completion of the task, ready list will be updated. After that, the average delay time (to 

start the task) and bandwidth to transfer data will be updated between resources based on 

network utilization. In other words, since the communication cost varies over time, particle 

swarm algorithm mapping operations is calculated again, and this creates a scheduling 

heuristic method to handle runtime for tasks mapping. The scheduling process has been as 

online and is being repeated until all tasks are scheduled [93]. 
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3.3. Overview and Comparative Study 

In this section, using the table 3-4, we have an overview on the works done in the field of 

tasks scheduling which were mentioned in the previous section. This table includes the 

objectives of tasks scheduling, the algorithms used in these methods, the simulation 

environment of the algorithms and the presented year. Grey wolf algorithm and teaching-

learning-based algorithm still have not been evaluated in the context of resource allocation, 

load balancing, and scheduling in cloud computing. Table 3-4 presents a comparative study 

between different resource allocation techniques based on their strengths and limitations. 

Table 3-4: A summary of the works done in the field of resources allocation  
with scheduling and load balancing and cost 

Simulation 
tool Year Targets Environment Evolutionary 

algorithm Author 

Matlab 2014 

 Reduce the longest termination
time among resources 

 Reduce the resources cost 
 Load balancing 

Cloud 
multi-target 

genetic 
Xue  

et al [80] 

GridSim 2014 

 Reduce the longest termination
time among resources 

 Reduce the resources cost 
 Load balancing 

Grid 
multi-target 

genetic 
Salimi  

et al [83] 

Java 
environment 2012 

 Reduce the longest termination
time among resources 

 Load balancing 
Cloud genetic Cheng [84] 

Java 
environment 2013 

 Reduce the longest termination
time among resources 

 Load balancing 
Cloud 

swarm 
optimization 

Gomathi & 
Karthikey 

[91] 

Amazon 
EC2 2010 

 Reduce the longest termination
time among resources 

 Load balancing 
Cloud 

swarm 
optimization 

Pandey  
et al [92] 

Ad-hoc 
VC++ 
toolkit 

2012 

 Reduce the longest termination
time among resources 

 Reduce the workflow time 
 Load balancing 

Grid 
swarm 

optimization 
Wu  

et al [64] 

Java  
environment 2010 

 Reduce the longest termination
time among resources 

 Reduce the workflow time 
 Load balancing 

Cloud 
swarm 

optimization 
Izakian  

et al [66] 
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Simulated 
cloud 2009 

 Reduce the longest termination
time among resources 

 Load balancing 
Cloud Ant colony 

Banerjee   
et al [70] 

CloudSim 2016 
 Reduce the longest termination

time among resources 
 Load balancing 

Cloud Ant colony 
Mousavi & 

Fazekas 
[19] 

GridSim 
 

2011 

 Reduce the longest termination
time among resources 

 Load balancing 
Grid Ant colony 

Ludwig &  
Moallem 

[73] 

CloudSim 2013 
 Reduce the longest termination

time among resources 
 Load balancing 

Cloud Bee colony 
Babu & 
Krishna 

[56] 

CloudSim 2015 
 Reduce the longest termination 

time among resources 
 Reduce the resources cost 

Cloud 
swarm 

optimization 
Zhao [75] 

CloudSim 2014 
 Reduce the longest termination

time among resources 
 Load balancing 

Cloud 
Simulated 
Annealing 

Abdullah & 
Othman 

[77] 

 

Clients want that their work to be completed in the shortest possible time and at minimal 

cost which cloud servers should receive. On the other hand, the cloud providers are interested 

in maximizing the use of their resources and also to increase their profits. The two are in 

conflict with each other. 

The literature review shows that traditional methods which are used for optimization may 

be definitive and accurate, yet they are often trapped in local optimum. In fact due to the 

dynamic nature of distributed environment and heterogeneous resources, in such a system, 

the scheduling process must be done automatically and very quickly. That is why the 

scheduling process is recognized as NP-complete problem [26]. Traditional approaches are 

not dynamic and suitable to solve such scheduling problem. These approaches contain a large 

search space; facing a large number of possible solutions and a tedious process to find the 

optimal solution.  

There is currently no efficient method available to solve these problems. In such 

circumstances, the traditional approach has been set to find a fully optimized solution instead 
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of finding the semi-optimal solution, but in a shorter time. In this context, IT professionals 

are focused on exploratory methods. Therefore, meta-heuristic algorithms which have a 

global overview, as they ensure convergence to solution and do not fall into the trap in local 

optimum, are of importance. Consequently, the GW algorithm is chosen for this purpose. In 

addition, the TLBO algorithm is used in a hybrid form with GWO to improve local 

optimization and increase accuracy.  
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4.1. Elementary algorithms for solving resource allocation 

In the default for resource allocation problem, the users' jobs have to be allocated to virtual 

resources in the cloud servers (e.g. virtual server) and each server has a limited capacity [94]. 

The question is "how to allocate appropriate resources to the jobs in order to achieve well-

balanced load across virtual servers with the least number of servers?". 

An elementary algorithm which was raised for this problem is the First Fit (FF) 

algorithm[95]. This algorithm is a greedy algorithm and used as the basis for comparing the 

methods in the investigation. In this algorithm, the resources are allocated to the jobs, with 

the order of first available empty resource [95]. In this thesis, the resource allocation problem 

is considered as an example of Bin Packing Problem (BPP)[96] with several objectives of 

response time, load balancing, and cost. 

4.2. Proposed method 

Dynamic resource allocation and load balancing on virtualized systems like cloud 

computing are influenced by various factors such as time and cost. Since our aim is 

maximum utilization of cloud resources with respect different factors, using classical 

methods are inefficient. In order to optimize resource allocation and load balancing process, 

we need multi-objective optimization and approximation methods because these problems 

have to be solved in multi-dimensional spaces. Therefore, due to the multi-objective and 

dynamic nature of the resource allocation and load balancing problems and also difficulties in 

dealing with the local optimum, traditional methods need to improve and major advancement. 

4.2.1. An elementary method 

We have several jobs which need the amount of 0.5, 0.3, 0.4, 0.8, 0.2, 0.2 and 0.2% of 

cloud resources (servers' processor). These resources in the cloud have the same capacity of 

1. The aim is to perform allocation with the least resources. In other words, we have the best 

load balancing aimed to the fewest resources, so that, time and cost is not worse from the 

desired limit. This optimization problem is raised aimed to use the least resources. Resource 

allocation with at least resources causes the maximum capacity of the servers to be used and 
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response time and load balancing to be improved and energy consumption is also reduced by 

minimizing the number of virtual servers.  In an example, the applicant has raised his 

requests in the cloud system as follows:  

 The  amount  of  requested  resource  for  each  job  by  the  applicantItems 0.5 ,  0.3 ,  0.4 ,  0.8 ,  0.2 ,  0.2 ,  0.2  

 Resources  capacityResources 1 ,1 ,1 , ,1               

Assumes, first 0.5, then 0.3 and 0.4 are entered to the cloud environment and we have a 

series of resources with the capacity of 1. We tried to achieve the best load balancing for the 

entire system with minimal resources. We also want to find an optimal solution for resource 

allocation in a greedy manner. The greedy Index is that the first resource with empty space to 

be used and resources must not be wasted and also available resources should be used as 

much as possible. Allocation steps are as follows: 

The first step:  The order of jobs 0.5, 0.3 can be considered for the first resource, but 

there is no space for 0.4 because its value increases from 1 and is more than the resource 

capacity. The capacity of 0.2 (empty space) is left from the first resource after the 

allocation of jobs 0.5 and 0.3. 

0.2 

0.3 

0.5 

The second step: In the second phase, job 0.4 can be placed on the resource 2, and there 

is no space for the next resource 0.8. 

0.2 

0.3 

0.5 

 

 
0.6 

0.4 
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The third step: we can place job 0.8 on the third resource. 

0.2 

0.3 

0.5 

 

 
0.6 

0.4 
 

 0.2 

0.8 

 

The fourth step: The job with 0.2 of processing is placed on the first resource, and the 

first resource should be filled. 

0.2 

0.3 

0.5 

 

 
0.6 

0.4 
 

 0.2 

0.8 

 

The fifth step: The jobs with 2.0 and 2.0 can be placed in the second resource and 2.0 of 

the second resource remains empty. 

0.2 

0.3 

0.5 

 

 

0.2 

0.2 

0.2 

0.4 
 

 0.2 

0.8 

 

At the end of this method, three resources were allocated, and in total 0.4 = (0.2 + 0.2) of 

the resources is unallocated. The problem in optimal mode should use a maximum of three 

resources because: 

The total required resources is (0.2 + 0.2 + 0.2 + 0.8 + 0.4 + 0.3 + 0.5) = 2.6, and because 

resources are used properly, 2.6 ≈ 3 resources are needed. The main concern issue about these 

solutions is that, with the increasing number of requests, the amount of empty space of 

resources will be increased. Consequently, the total empty spaces will be plenty, in a way that 

the waste resources are increased in cloud resources.  
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4.2.2. Combinatorial multi objective method 

There are many algorithms can be used for multi-dimensional problem-solving. Today, 

meta-heuristic algorithms play a pivotal role to solve multi-dimensional problems. Grey wolf 

algorithm is a multi-dimensional meta-heuristic algorithm which is completely explored in 

the previous chapter. The hierarchical structure of the grey wolves is mathematically 

modelled and used for the design of optimization techniques.  In this algorithm, the best 

solutions are calculated based on a multi-dimensional space and the optimal solution is 

selected into a solution space. The grey wolf algorithm can be used to solve the multi-

dimensional problem but usually trapped in the local optimum.  

We also investigated the different aspect of teaching–learning-based algorithm in the 

previous chapter. This meta-heuristic algorithm is an optimization method to explore the 

space of a problem in order to find the settings or parameters to maximize a specific purpose. 

In virtualized systems, the performance of virtualized resources is dynamically changed 

based on their workloads in time. The use of teaching-learning-base algorithm provides better 

decisions on future choices. Unlike the grey wolf algorithm, teaching–learning-based 

algorithm avoids to entrapping into the local optimum. 

Our proposed method is a combination of these two multi-dimensional optimization 

algorithms to eliminate their weaknesses in order to make a new hybrid robust meta-heuristic 

algorithm. Proposed method integrates the abilities of exploitation and exploration in the grey 

wolf algorithm with the abilities of the convergence and avoiding local optimum in teaching–

learning-based algorithm.  

One of the most important features of hybrid algorithm is that doesn't require any special 

controller, and only normal optimization parameters, such as initial population size, the 

number of iterations and so on are involved in its implementation, and this has led that it has 

the least dependency on the parameters. Proposed algorithm can improve approximate 

solutions into solution space for the resources allocation and load balancing in cloud 

computing. 
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4.2.3. Mathematical model 

Load balancing index is calculated as the evaluation parameters as follows:  

 L is the load balancing parameter.  

 1-L is lack of load balancing parameter. 

( )* 1 * *B a L b C c T= - + +                (3-1) 

The index shows the amount of load balancing between task completion time (T), and cost 

of energy consumption (C) to perform the task and resource productivity (B). Therefore, load 

balancing index in the cloud computing system is defined as above, in which their 

coefficients according to the cloud computing system (a, b, c) are subject to change. 

According to the importance of load balancing, L usually has the higher value, and 

coefficients b and c according to the type of system and the importance of the cost and 

response time will change. Finally, the aim is to minimize the index B. 

When the number of requested jobs increases, the complexity rises and continues to extent 

that resources are wasted, while load imbalance reaches to its maximum and a lot of 

resources will be wasted. Consequently, completion time T and the cost of energy 

consumption C increases. In order to overcome these incensements, with reducing the 

number of resources by load balancing technique across virtual servers, energy consumption 

will be reduced in cloud computing. Load balancing causes the reduction in response time 

than existing resources as much as possible. Therefore, in principle, we are looking for load 

balancing by reducing the number of servers in our resource allocation. 

There is a distributed network in a cloud environment with resource systems S1, 

S2,S3,…,Sn. The resources are ready to service in the distributed network to various nodes. 

Different jobs are sent to the resource systems by nodes. The overall goal of the system is an 

agreed task scheduling for resource allocation and performing the jobs in order to achieve 

load balancing in the system.  
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Here the scheduler is responsible for allocating one or more Jobs to one or more resource 

system in the distributed system [97]. In other words, the agreement on job scheduling is 

done by the scheduler. The scheduler provides a scheduling for resource allocation [98]. 

Several jobs are allocated at time t in parallel and processed in distributed system. The 

number of variables kT is permutation between jobs and resources. This variable is called p, 

and its value is calculated as follows: 

mP n       (n is number of tasks and m is number of resources)          (3-2) 

 

Figure 4-1: View of resource allocation in a distributed environment 

As it is described in figure 4-1 each node includes several jobs. Each job requires a series 

of specific resources. The problem can be introduced as follows:  

n1 2Job j , j , , j   

1 m2Resource R ,R ,   ,  R   

If in particular example, the resources 1 m2R ,R ,   ,  R  have the same capacity and the 

processing power of all is the same, and n1 2j , j , , j  needs 1% of the processor processing, 

the professional model can be defined in such a way that, what jobs use which resources to 

achieve maximum load balancing, minimum response time and minimum cost. For the exact 

solution of the problem, all possible allocation modes must be calculated to choose the best 

mode. Due to a large number of the modes (exponential), the problem is an example of bin 

packing problem which is NP-complete type.  
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An objective function is defined for resource i and the jobs j (eq.3-3). yi is the number of 

resources (Bins). Therefore, the objective function and the mathematical programming model 

of optimization is as follows: 

( )( ) ( ) ( )( )  * 1 * *    
j j jy y yMin B a L b C c T= - + +                     (3-3) 

S.t. 

1

,
n

i ij j
i

w x Ky j
=

£ "å

                 

, 0,1 ,ij jx y i j= "

 

                               

1

,
n

ij j
j

x b j
=

£ "å
                     

0,1ijx i= "  

Where. 

1

0i

job i is used
x

job i isnot used

ìïï= íïïî            

1

0j

resource j is used
y

resource j isnot used

ìïï=íïïî
 

The aim is to find the minimum number of virtual machines yj to minimize the objective 

function. The values of L and C and T (load balancing, cost and response time) are calculated 

based on the number of virtual resources yj. The variable of xij demonstrates that the ith job is 

processing in jth virtual machine, and if its value is equal to 0, it means that there is no 

enough resource in jth virtual machine and if its value is equal to 1, it means that there is 

enough resource to allocate the jth virtual machine.  Every job has the capacity of wi. The first 

limitation shows that total capacity of all jobs can be placed at the maximum K available 

resources. The second limitation shows the maximum capacity of each virtual resource. bj is 

the capacity of each virtual resource. 

4.2.4. Searching process for optimal solution 

Grey wolves often search based on to the position of their leaders (alpha, beta, and delta). 

They diverge from each other to search for prey and converge to attack prey [85]. Rotational 

movements of wolves can be modeled in multi-dimensional spaces. Thus, the most of multi-
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objective problems such as resource allocation in distributed systems can be modeled. The 

pseudo code of the proposed algorithm is presented in table 4-1: 

Table 4-1: Pseudo code of the proposed algorithm 

the grey wolf population Xi=(i=1,2,…,n)Initialize 
Initialize a,b and c
Calculate the fitness of each search agent
X1=the best Search gent
X2=the second best Search Agent
X3=the third best Search agent
While t<Max number of iterations)

For each search agent    
Update the position of the current search agent by equation       
End for      

Calculate the fitness of all search agents
Update X1,X2,X3
t=t+1
If not improve solution

Begin    
wolf_sol_wolf=Solution_grey     

olution for TLBO  Initialize sol_wolf for initialize_s           
Sol_TLBO=Do TLBO with Initialize Population with sol_wolf            
Intialize the grey wolf population Xi= Sol_TLBO, Initialize a,b and c          
Calculate the fitness of each search agent          

X2=the second best Search agent, X3=the third X1=the best Search agent, 
best Search agent

end  
end while
return X1

To see how proposed method is theoretically able to search in solution space, the 

algorithm steps can be summarized as follows: 

 In problem search space, the optimal solution is difficult to find. Therefore, based on 

mathematically simulation of hunting behavior in gray wolves, we consider three top 

values (Alpha, Beta, and Delta) and save them as the best solutions obtained so far. In 

the next step, other search agents (omegas wolves) are obliged to update their positions 

(value) according to the position of the best search agents. 

 The main advantage of this algorithm is that if there was no improvement in gray wolf 

algorithm, according to the teaching-learning process, we try to find a better solution. If 

the problem is stuck in local optimum, teaching-learning process can introduce the new 

area of space based on training phase, which may improve the solution. Because of the 
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accuracy of gray wolf algorithm in the local behavior (defect of the grey wolf 

algorithm), after each iteration, the position of wolves is updated. These positions can 

be improved by the teaching-learning algorithm, and then gray wolf algorithm is 

repeated again. This process increases the accuracy of gray wolf algorithm. Figure 4-2 

illustrates flow diagram of proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2: Flow diagram of proposed algorithm 
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In the initial state, a series of random numbers with uniform or normal distribution are 

considered as the initial population, and a basic solution is considered for the problem with 

initialization of coefficients variation a, b, c.  

Each wolf is considered as a solution. In other words, each wolf is considered as a solution 

to the problem. Three best solutions (Alpha, Beta, and Delta) are selected as optimal 

solutions. These selections are selected on the basis of the objective function and fitness 

function in grey wolf optimization. Then, the program enters the main loop and update the 

position of other wolves (other solutions) with the capability of exploitation and exploration 

in grey wolf optimizer. 

This means that, according to the first three solutions (α, β, and δ), the algorithm considers 

more value for the probability of reaching better solutions. Correspondingly, the algorithm 

values the wolves of beta, delta and gamma classes and a new position of wolves' community 

and their classification can be obtained. Now, the fitness function is calculated again for the 

wolves and three new solutions (wolves) are selected. If a better solution is found in the new 

classification than old solutions, the algorithm continues the same process to find the optimal 

solution. If there is no any improvement in solutions, the best solution between the wolves is 

considered as the initial solution (initial population) for teaching-learning-base algorithm.  

Therefore, the problem continues by the teaching-learning-base algorithm and its solution 

is considered as the initial population to start the gray wolf algorithm again and the gray wolf 

algorithm starts again. It should be noted that in the gray wolf algorithm, each wolf represents 

a solution in the solution space, which the best solution will be chosen in any stage according 

to the position of other wolves. 

Generally speaking, the best solution space of the gray wolf is considered as the initial 

solution for teaching-learning-base algorithm. After that, the output is implemented as the 

initial solution space for the next iteration of the gray wolf algorithm.  
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4.2.5. Complexity of the algorithm 

Time and space are two important resources which an algorithm needs to solve a 

problem[99]. The time complexity of an algorithm implicates the number of steps and total 

time required by the algorithm during computational process. The most common metric for 

calculating time complexity is Big-O notation [100]. The most common estimation method in 

order to the calculation of time complexity is counting the number of primary execution 

functions by the algorithm. Since each algorithm is developed based on different functions 

and may vary with types of its own input data, therefore, worse case is usually considered for 

an algorithm in order to estimate of time complexity. Hence, this is the maximum time taken 

to solve a problem of size n. 

4.2.6. Big-O notation of the proposed algorithm 

An algorithm has a complexity f (n) = O(g(n)) if there exist positive constants n0 and c 

such that ∀n > n0, f (n) ≤ c · g(n). In this case, the function f (n) is upper bounded by the 

function g(n). The Big-O notation can be used to compute the time or the space complexity of 

an algorithm. 

In order to compute complexity of the proposed algorithm we assume: 

Let  1 2 3 mS s ,s ,s ,...s  be the set of items and  1 2 3i iS s ,s ,s ,...s  

Let iL  be the set of sizes of all iS S   which are not larger than t  (t is capacity of each Bin) 

The largest subset of S  (of size at most t ) is the largest number in mL   

We compute iL  from i 1L  :    i i 1 i 1 iL L ( L s )      

Where i i 1 i( x s ) (L s )    iff i 1x L   and ix s t    

The algorithm: 

o Let 0L { 0 }    O 1  time 

o For i 1...m :   

o Compute i 1 i( L s )  from i 1L         i 1O L   time 

o Compute i i 1 i 1 iL L ( L s )          iO L  time 

o Output the largest number in mL       mO L  time 
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Each iL is of length iL t  

The overall time complexity is therefore  O mt  

If m n  the time complexity would be  O nt  

Theorem:  

We say that an algorithm is polynomial time 

         If it runs in polynomial when all the numbers are integer cn  (c is constant) 

Therefore the algorithm run time is:     c 1O On t n   

4.2.7. Worse-Case and Best-Case 

Combinatorial problems are deceptive because they are defined easily but often very 

difficult to solve. For instance, there is no any algorithm to find the optimal solution for 

Travelling Salesman Problem (TSP) [101]. Similarly, there is no any algorithm to guarantee 

satisfactory of a given Constraint Satisfaction Problem (CSP) [102] instance in polynomial 

time. Accordingly, this phenomenon has been encountered on a wide variety of problems and 

led to the development of new theories, in particular, to the theory of NP-completeness. The 

main aim is the classification of the problems based on that how difficult they are to solve. 

The class of NP-complete problems is solved by a non-deterministic Turing machine in a 

polynomial time. NP-complete problems are considered as inherently intractable based on 

computational viewpoint. Therefore, it is obvious that in the worse-case, any algorithm that 

tries to solve an NP-complete problem requires polynomial time. Thus, based on defined 

polynomial objective function and calculated time complexity our proposed algorithm in 

worse-case needs polynomial run time O(nc), where n is the number of workloads and c is the 

number of virtual machines. In the best case the algorithm needs a linear run time Ω(n) where 

the number of virtual machines are equal to 1. 

4.3. Running example of proposed algorithm 

As explained earlier, the proposed algorithm is a kind of approximate algorithm which 

works with a solution space during the searching process and reaching the optimal solution. 

The solution space may contain a lot of solution and in each iteration, the algorithm tries to 
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search optimal and convergence other solution to optimal solution. Since the nature of this 

algorithm is population-base, therefore using this algorithm in order to see the functionality 

of algorithm in small scales in hard. However, we applied proposed algorithm on a uniformly 

distribution with 15 values between [0-1] as an example in the bellow and received surprising 

results. In order to explain example, we tried to present another example with the greedy 

method which is used in most of the resource allocation methods, in order to clarify the 

difference of proposed method in optimization. Figure 4-3 presents a running example of 

proposed algorithm.  
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f 

Figure 4-3: An example of the proposed method process in bin packing problem space 

In this example, we have a uniform distribution as input, which is shown as the items in 

the example. Assume these items considered as workloads in the cloud system. Also, assume 

we have some virtual machines in the cloud system and capacity of each virtual machine is 

equal to 2 (It is noteworthy that, because we want to solve this example as a bin packing 

problem, therefore each bin represents a Virtual machine).  

The workloads applied on algorithm and algorithm has to find the optimal resource for 

each workload. The algorithm aim is that allocates the least number of virtual machines to 
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workload. With decreasing number of machines, the cost of energy consumption also 

decreased. And also waste spaces in each virtual machine to be decreased, which means 

increasing load balancing. The process of allocation for each iteration in example is as 

follows: 

Step 1: All possible solutions are calculated for each job.  

Step 2: Three best solutions are selected as best solutions (alpha, beta, and delta).  

Step 3: Other solutions are obliged to get convergence to best solutions. If in the 

convergence process, there was any improvement, then best three new solutions are 

replaced old best solutions. 

Step 4: if there was not any improvement in convergence process, the best solutions are 

optimal solutions and solution are global optimum (this process will be done by TLBO 

algorithm). 

Step 5: The resource is assigned. 

This process will be done in each iteration, therefore we will have high accuracy to find 

optimal solution and avoid local optimum in our algorithm. This example has 5 allocation 

process and proposed algorithm allocate the least number of bins (Virtual machines) to 

workloads (Items). 

The Bin packing problem instance is considered with bin capacity equal to 2 and 15 items. 

The best resource (Bins) is selected for each requested job (each item). In each allocation 

process, optimal resource (the optimal resource is selected based on the best solution in 

solution space of algorithm- which is Alpha) is selected for requested jobs. In this executed 

example, three allocations are considered in each allocation process. 

In each allocation process, all possible solution for each item (load) is calculated. It means 

in each allocation process we have a solution space. Consequently, the optimal solution 

which is the optimal resource for a load is gained. The optimal resource is calculated for 

every single load after avoiding all local optimums. 
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As we mentioned earlier, In order to compare the processes of proposed algorithm, we 

represent the second example in figure 4-4. We have used the first-fit greedy algorithm in the 

second example and applied the same items as workloads. In a short comparison, the 

difference is clear between examples. The number of used bins (virtual machines) is 5 bins in 

proposed algorithm and 6 bins in the second example. The total amount of waste space in 

proposed algorithm is 1.1, while it is 3.1 in the second example. Load balancing is visible in 

the first running example. 
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Figure 4-4: An example of first fit algorithm process in bin packing problem space 
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5.1. Implementation details 

Since it is not enough just to propose a new algorithm, a number of different 

computational tests are performed in order to verify the functionality of algorithm to ensure 

that the proposed algorithm is efficient. This section contains a computational comparative 

study between proposed algorithm and several explained previous algorithms (Grey Wolf 

Optimizer, Particle Swarm Optimization and Biogeography-Based Optimization (BBO) 

[103]). The proposed algorithm was programmed by the author in the Matlab (V2016a) in 

Windows7 (64-bit, Professional edition, version 6.1- Build 7601: service pack 1) mode. The 

computational experiments were performed on a desktop computer with an Intel(R) core(TM) 

i5-2410M 2.30GHz and installed memory(RAM) 4.00 GB.  

Table 5-1: Pseudo code of PSO algorithm (left) and BBO algorithm (right) 

For each particle  
    Initialize particle 
END 
Do 
    For each particle  
        Calculate fitness value 
        If the fitness value is better than the 
best fitness value (pBest) in history 
            set current value as the new pBest 
    End 
    Choose the particle with the best fitness 
value of all the particles as the gBest 
    For each particle  
        Calculate particle velocity according 
equation (a) 
        Update particle position according 
equation (b) 
    End  

Initialize a population of N candidate solutions{ xk } 
While not(termination criterion) 
For each , set emigration probability μk  fitness of xk 

, with [0,1]km Î   

For each xk , set immigration probability 1k kl m= -   

For each individual ( 1,..., )z k Nk =   

For each independent variable index [1. ]s nÎ   

Use kl  to probabilistically decide whether to 

immigrate to z k   

     If immigrating then 
          Use { }im to probabilistically select the  

          emigrating individual x j ; ( ) ( )z s x sk j¬   

     End if 
Next independent variable index: 1s s¬ +   
Probabilistically mutate z k   

Next individual: 1k k¬ +  ; { } { }x zk k¬   

Next generation 

To implement other mentioned algorithms, the basic pseudo code was downloaded from 

their official website and then programmed in the Matlab (V2016a) by author (see Appendix 

B). These algorithms also performed on the same machine which proposed algorithm 

performed. Table 5-1 shows pseudo code of PSO and BBO algorithms. Although there was 

no any difficulty during implementation processes, programming of optimization algorithms 

need high accuracy and require taking much time. 
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5.2. Computational experiments 

In order to compare different optimization algorithms, their behavior have to be 

investigated when faced with solving different mathematical functions. Therefore, to compare 

the proposed algorithm against other algorithms, at first, the proposed algorithm is 

benchmarked on 15 benchmark function [104]. Table 5-2 shows the list of these functions. 

Table 5-2: Used benchmark functions 

Function Function Domain Optimal mode 

Sphere 2

1

(x)
D

i
i

F x
=

=å  -50≤ xi ≤ 50 ( )  0f x * =  Unimodal 

Chung 
Reynolds 

2 2

1

(x) ( )
D

i
i

F x
=
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11
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D n

i i
ii

f x x x
==
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2 1 1( ) 100( ) (1 )f x x x x= - + +  −10 ≤ xi ≤ 10 ( )  0f x * =  Unimodal 
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1 1

2

( ) ( 1) (2 )
D

i i
i

f x x i x x -
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D
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i
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1

1

( ) (100( ) (1 ) )
D

i i i
i
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Test functions or benchmark functions are important to validate and compare the 

performance of optimization algorithms [105]. Consequently, to verify achieved results, the 

results are compared with three above optimization algorithms. 

Each algorithm has been investigated in different conditions, i.e. changing the number of 

iteration (200, 1000, 1500), holding the iteration size constant 30, changing the iteration size 

(20, 30, 50), and holding the number of iteration constant 1000. It is noteworthy that the 

algorithms have been run 20 times for each of the abovementioned conditions on a 

benchmark function, and the final result has been obtained from the average of 20 times of 

running so that the rate of error decreases. Benchmark functions used in table 5-2 are divided 

into two groups: Unimodal and Multimodal.  

All of these test functions are presented here in order to examine the performance of 

global optimization methods. The behavior of these test functions to reach optimal result 

varies to cover most difficulties faced in the area of continuous global optimization. It is 

important to note that unimodal functions are appropriate for benchmarking exploitation and 

multimodal functions have many local optima with the number of increase exponentially 

along with different dimensions. This makes them suitable for benchmarking the exploration 

ability of an algorithm [85]. 

5.2.1. Results 

Although, the results are different in number of iteration and population size, the 

computational results showed that concerning unimodal functions like sphere and Chang 

Reynolds , which are simple functions with no local optima. If we have many or few 

iterations, large or small population size, hybrid algorithm outperforms other algorithms. This 

rule also applies to Schwefel 2/21 function because not only it is a simple function, but it also 

does not have any local optima. As results show in tables 5-3, 5-4, 5-5, 5-6, and 5-7, hybrid 

algorithm outperformed in comparison with all other algorithms in unimodal and multimodal 

functions. 
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Table 5-3: Result of benchmark functions in number of iteration 200  
and population size of 30 

Function Hybrid method GWO PSO BBO 
sphere 0 0 0.064355 0.045546 
Chung Reynolds 0 0 0 0.063455 
Schwefel 2/22 0 0.049545 0.035231 0.024245 
Schwefel 2/21 0.005634 0.015366 0.104434 0.223567 
Cube 0 0.094653 0.073244 0.083556 
Dixon & Price 0.064556 0.034444 0.042324 0.075743 
Griewank 0.034567 0.043433 0.047651 0.124456 
Rosenbrock 0.022345 0.022655 0.107431 0.144677 
Ackley 0.014238 0.072762 0.052764 0.034357 
Rastrigin 0.013251 0.094749 0.074321 0.073534 
Brown 0.025231 0.030769 0.060328 0.053567 

Table 5-4: Result of benchmark functions in number of iteration 1000  
and population size of 30 

Function Hybrid method GWO PSO BBO 
sphere 0 0 0 0 
Chung Reynolds 0 0 0 2.78E-04 
Schwefel 2/22 0 0 6.34E-03 3.31E-04 
Schwefel 2/21 0 0 0 0 
Cube 0.052115 0.115553 8.37E-03 6.22E-04 
Dixon & Price 0 0.025688 5.45E-02 7.82E-02 
Griewank 0 0.014521 0.012366 0.001343 
Rosenbrock 0 0.013483 0.010828 0.013231 
Ackley 0.003451 0.081342 0.017007 0.005432 
Rastrigin 0.004783 0.022348 0.010613 0.024389 
Brown 0.004532 0.038901 0.007164 0.043265 

Table 5-5: Result of benchmark functions in number of iteration 1500  
and population size of 30 

Function Hybrid method GWO PSO BBO 
sphere 0 0 0 0 
Chung Reynolds 0 0 0 0 
Schwefel 2/22 0 2.54E-07 0 0 
Schwefel 2/21 0 0 2.65E-07 0.005696 
Cube 0 10.55E-06 4.64E-08 8.57E-06 
Dixon & Price 0 6.35E-04 7.34E-04 0.007046 
Griewank 0 0 0.035662 0.070721 
Rosenbrock 0.002345 0.004236 0.000823 0.006457 
Ackley 0.003211 0.005673 0.007012 0.006542 
Rastrigin 0.002144 0.006578 0.070687 0.005465 
Brown 0.002754 0.004265 0.006423 0.003333 

 



Chapter 5: Computational and Simulation Results 

76 
 

Table 5-6: Result of benchmark functions in number of iteration 1000  
and population size of 20 

Function Hybrid method GWO PSO BBO 
sphere 0 0 0 0 
Chung Reynolds 0 0 0 0 
Schwefel 2/22 0 0 0 0 
Schwefel 2/21 0 0 6.84E-03 3.43E-04 
Cube 0 7.26E-05 5.34E-04 7.24E-03 
Dixon & Price 0 7.73E-03 0.06578 5.63E-03 
Griewank 0 0 0.053578 0.002556 
Rosenbrock 0 0.025335 0.012645 0.024674 
Ackley 0.003435 0.056322 0.012446 0.025467 
Rastrigin 0.007432 0.012467 0.013234 0.036456 
Brown 0.004562 0.025367 0.002355 0.045366 

Table 5-7: Result of benchmark functions in number of iteration 1000  
and population size of 50 

Function Hybrid method GWO PSO BBO 
sphere 0 0 0 0 
Chung Reynolds 0 0 0 0 
Schwefel 2/22 0 0 0 0 
Schwefel 2/21 0 0 6.42E-04 0 
Cube 0 8.25E-03 0 5.43E-05 
Dixon & Price 0 0 5.34E-03 6.43E-04 
Griewank 0 0.035654 0.025435 0.003656 
Rosenbrock 0 0.054353 0.025435 0.026545 
Ackley 0.008767 0.076544 0.014679 0.003765 
Rastrigin 0.006576 0.037654 0.017654 0.015434 
Brown 0.003757 0.027645 0.004868 0.025436 

 

 

Figure 5-1: Comparison of CPU time to reach optimum result 
 in different algorithms 
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According to the figure 5-1, results show comparing of the CPU time to reach the 

optimum in 4 algorithms, hybrid algorithm reaches the optimum, sooner than other 

algorithms in all life conditions. 

Generally speaking, hybrid algorithm is the best algorithm to solve a problem for the 

simple functions that do not have any local optima. Regarding Schwefel 2/22 function, hybrid 

algorithm delivered better results than other algorithms in almost all cases. This function is a 

bit more complex than Sphere function, for it contains both the sum and the product of 

variables. In addition, this function contains local optima. Therefore, hybrid algorithm could 

be used to solve the complex problems that contain local optima. Rosenbrock function is a 

rather complex function which does not have local optima or products of the variables. When 

we face the restriction of iterations, hybrid algorithm still yields better results. Yet, when 

there is no iterations restriction, Bees algorithm works better. In conclusion, in order to obtain 

better results from Bees algorithm for rather complex functions that do not contain local 

optima, more iterations and larger iteration are required. In Restring and Ackley functions 

that there are many local optima like Schwefel 2/22 which have local optima, hybrid 

algorithm outperforms than others in changing the number of generation and iteration size as 

well. In Griewank algorithm, which is a rather complex function, hybrid algorithm still 

delivers the best results on the condition that the iteration size and rate of iterations are small 

or big, low or high because this function does not contain local optima.  

The overall computational result shows the GWA is usually trapped in local optima. So, it 

is not suitable for the problems that contain local optima. Due to its high rate of convergence, 

this algorithm is an appropriate option for solving other problems. Unlike GWA, hybrid 

algorithm will not be trapped in local optima, and it seems that taking advantage of TLBO 

was appropriate to revise GWO algorithm. In general, for very complex problems the results 

show that proposed hybrid algorithm is suitable and will help us achieve the optimized result 

especially in resource allocation in cloud environments where there are many local optima.   
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5.3. Introducing assessment Index 

Load balancing is the process of allocation of the total load to cloud resources in order to 

improve energy efficiency by reducing virtual resources and eliminate a condition in which 

the numbers of nodes are heavily loaded, while others are idle. The impact of load balancing 

based on reducing the number of resources and load balancing is called load balancing index. 

The amount of efficiency of each resource Riefficiency is equivalent to the percent of resource 

that has been used compared to the total resource. 

Formally, the coefficient of variation of resource efficiency is called the lack of load 

balancing. This variable indicates the amount of deviation extent from productivity. 

According to statistical indicators, if this variable is zero, all resources absolutely will be 

used. This variable is equal to the division of standard deviation productivity    in resources 

on mean of the number of resources. If the variable is close to zero, the load balancing will be 

better done. The standard deviation in system is calculated as: 

 

1

21 ( )
N

i
efficiency iRi - mean R

N
s

=

= å                          (5-1) 

Therefore, load balancing factor (Flb) and load imbalance factor (NFlb) are introduced using 

following equations: 

 1...
( )i

NFlb i n
mean R

s
= =                                  (5-2) 

C
Flb

n

s-
=                                                           (5-3) 

Where C is the capacity of each resource or virtual machine. 

5.4. Simulation Results 

To assess the performance of proposed algorithm, we used two different probability 

distributions, uniform and normal distribution, which are considered as distribution of 

workload in cloud computing. Uniform distribution workloads represent the uniform amount 

of small, medium and large size of loads while normal distribution workloads show the 
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symmetrical fashion in the cloud environment. In all of the simulations, the following 

parameters were used for our proposed algorithm: 

a) MaxIt = 500;        % Maximum Number of Iterations 

b) nPop = 250;          %for each test must be updated Population Size 

c) Dim = number of variables (e.g.  a=0.0354,   b=38.3055,    c=1243.531 ) 

MaxIt is the number of iterations for the algorithm. Whatever it increases, the time needed 

to implement increases, and in some cases, accuracy increases, but increasing iteration 

always doesn't guarantee improvement of the solution. nPop is proportion of the number of 

package in bin packaging problem which is the same processes that can be processed by 

cloud resources. This amount according to the bin packing data set will be equal to 250, 500, 

1000 and etc. Coefficients a, b, c have been selected according to the resource [49]. Dim is 

the number of packets in the bin packaging dataset.  

5.4.1. Uniform distribution workload 

According to the assessment index, load imbalance and the number of resources allocated 

are compared with each other. In this case, bin packing problem is considered as a model of 

resource allocation in the cloud computing. The packages on the bin packing are considered 

as processes requests that are processed in the cloud virtual servers. We want to allocate the 

packages or processes with minimum number of boxes or servers. Fewer boxes cause the 

resources to be used in a better manner, load balancing can be done better, and fewer servers 

will be effective on costs and energy consumption. 

To produce random numbers, uniform distributed in the interval [0, 1] is considered, 

which in case of need for greater interval, it has become a larger scale. Experiments have 

been conducted on ready data sets called Falkenauer [106]. This data set is presented in eight 

categories, which the sets one to four are uniform, and they are displayed with the letter u. 

The next number after u indicates the number of packets. These sets have been distributed 

between 20 and 100 and the capacity of boxes is 150. The second series of sets five to eight 

are displayed with the letter t. The next number after t indicates the number of packets. This 
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set is called triplet, the packets are distributed between 25 and 50, and the size of the boxes is 

100. There are 60 packages in the dataset binpack5 with the capacity of 100 boxes, as 

follows: 

36.6000 26.8000 36.6000 43.0000 26.3000 30.7000 41.4000 
28.7000 29.9000 49.5000 25.1000 25.4000 47.4000 25.2000 
27.4000 37000 26.9000 36.1000 47.3000 25.2000 27.5000 
47.2000 25.9000 26.9000 44.4000 25.8000 29.8000 43.9000 
27.3000 28.8000 44.5000 27.2000 28.3000 41.9000 26.1000 
32.0000 36.3000 27.1000 36.6000 35.5000 27.3000 37.2000 
46.6000 26.2000 27.2000 35.7000 29.2000 35.1000 39.5000 
25.5000 35.0000 35.0000 30.3000 34.7000 45.0000 25.2000 
29.8000 41.0000 27.5000 31.5000    

The optimal solution to solve this problem is the allocation to the following form. The 

optimal solution of the allocation is 20 boxes. Our proposed method has achieved an 

approximate solution of 23. The solution has acted better than the GW and TLBO algorithms 

alone, it is shown in Table 5-8. 

Table 5-8: Allocation with the proposed algorithm in data set binpack5 

Optimal 
result 

Proposed 
method PSO BBO TLBO Gray wolf Dataset 

20 23 24 25 26 24 First part of  
binpck5 dataset 

 

Table 5-9: Allocation in boxes dataset binpack5 
Bin1 49.5,47.4, Bin13 35,35,29.9, 
Bin2 47.3,47.2, Bin14 34.7,32,31.5, 
Bin3 46.6,45, Bin15 30.7,30.3,29.8, 
Bin4 44.5,44.4, Bin16 29.8,28.8,28.7, 
Bin5 43.9,43, Bin17 28.3,27.5,27.4, 
Bin6 41.9,41.4, Bin18 27.3,27.3,27.2, 
Bin7 41,39.5, Bin19 27.2,26.9,26.9, 
Bin8 37.2,37,25.5, Bin20 26.8,26.2,26.1, 
Bin9 36.6,36.6,26.3, Bin21 25.9,25.8,25.4, 
Bin10 36.6,36.3,27.1, Bin22 25.2,25.2,25.2, 
Bin11 36.1,35.7,27.5, Bin23 25.1, 
Bin12 35.5,35.1,29.2,   

Table 5-9 shows the allocation of all packages of binpak5 dataset to 23 boxs. Each box is 

shown as a bin which numbers in front of that shows the packages weights (e.g. weights of 

49.5, 47.4 have placed in the first box). Other boxes have allocated to different packages in 
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the same manner. The percentage of unallocated free space in data set Binpack5 is 0.1304 or 

13.04% and load balancing (the space allocated) is equivalent to 0.8696.  

The best possible mode is the division of the sum of the packages' values to the space of 

100, which 20 is obtained as the optimal solution. Since the problem is a kind discrete type, 

there is the possibility of load imbalance in the optimal solution. In the following, the 

comparison of these methods is continued by different experiment datasets. Table 5-10 shows 

the results. 

This table shows that with increasing data, the accuracy of the proposed method reduces, 

but in total, in solving the resource allocation problem with bin packaging problem, our 

method has higher accuracy than other methods. In the second experiment, according to data 

dispersion and greater capacity of the box compared with the packages, it will be more 

difficult; however, the proposed method seems desirable and outperforms other methods. 

Figures 5-2 and 5-3 illustrate the results. 

Table 5-10: Differences between the proposed method and other methods  
in terms of solution of packages allocated  

Optimal 
solution Hybrid GWO TLBO Resource 

capacity 
No. of 
Jobs Dataset Exp. 

99 100 100 100 150 250 Binpack1-U250_00 First 
100 101 101 102 150 250 Binpack1-U250_01 First 
99 100 100 104 150 250 Binpack2-U250_00 First 

100 101 101 104 150 250 Binpack2-U250_01 First 
198 201 203 206 150 500 Binpack3-U500_00 First 
201 204 207 208 150 500 Binpack3-U500_01 First 
399 403 407 413 150 1000 Binpack4-U1000_00 First 
406 411 419 423 150 1000 Binpack4-u1000_01 First 
20 23 23 23 100 60 Binpack5-T60_00 Second 
20 23 23 23 100 60 Binpack5-T60_01 Second 
40 45 45 46 100 120 Binpack6-T120_00 Second 
40 45 45 47 100 120 Binpack6-T120_01 Second 
83 94 96 99 100 249 Binpack7-T249_00 Second 
83 95 98 103 100 249 Binpack7-T249_01 Second 

167 190 198 203 100 501 Binpack8-T501_00 Second 
167 191 201 207 100 501 Binpack8-T501_01 Second 
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Figure 5-2: Comparison of hybrid method with other methods in the first experiment  

to achieve optimal solution 
 

 
Figure 5-3: Comparison of hybrid method with other methods in the second experiment  

to achieve optimal solution 
 

According to recent articles [107-108], CGA-CGT and HI-BP methods have provided the 

best solution for bin packing problem. We compared the proposed method with these two 

methods in next experiment. In order to implement these methods, we also used Matlab 2016 

and performed the implemented program on the same machine which is used for all of the 

1 2 3 4 5 6 7 8
100

150

200

250

300

350

400

450

First Test (Data set Binpack1-Binpack4)

N
o 

# 
B

in
s

Compare Number of Allocated Bin's (Virtual Mavhine's)  in Different Methods

 

 
TLBO
GWO
Hybrid

1 2 3 4 5 6 7 8
20

40

60

80

100

120

140

160

180

200

220
Compare Number of Allocated Bin's (Virtual Mavhine's)  in Different Methods

second Test (Data set Binpack5-Binpack8)

N
o 

# 
B

in
s

 

 

TLBO
GWO
Hybrid



Chapter 5: Computational and Simulation Results 

83 
 

simulations as explained earlier (see Appendix).The proposed hybrid method shows 

outperforms than these two methods. Table 4-3 shows it. 

Table 5-11: Comparison of the proposed method with HI_BP and CGA-CGT 

Optimal 
solution Hybrid CGA-

CGT HI_BP Resource 
capacity 

No. of 
Job Dataset Exp. 

99 100 100 100 150 250 Binpack1-U250_00 First 
100 101 101 101 150 250 Binpack1-U250_01 First 
99 100 100 100 150 250 Binpack2-U250_00 First 

100 101 101 101 150 250 Binpack2-U250_01 First 
198 201 201 204 150 500 Binpack3-U500_00 First 
201 204 204 204 150 500 Binpack3-U500_01 First 
399 403 404 404 150 1000 Binpack4-U1000_00 First 
406 411 413 414 150 1000 Binpack4-u1000_01 First 
20 23 23 23 100 60 Binpack5-T60_00 Second 
20 23 23 23 100 60 Binpack5-T60_01 Second 
40 45 45 45 100 120 Binpack6-T120_00 Second 
40 45 45 47 100 120 Binpack6-T120_01 Second 
83 94 94 96 100 249 Binpack7-T249_00 Second 
83 95 97 101 100 249 Binpack7-T249_01 Second 

167 190 194 202 100 501 Binpack8-T501_00 Second 
167 191 199 204 100 501 Binpack8-T501_01 Second 

 

 

Figure 5-4: Difference between the proposed method and CGA-CGT,  
HI-BP, and optimal solution 

Figure 5-4 shows the difference between the approximate solutions with the optimal 

solution which the difference is within acceptable limits. Table 5-12 shows the calculating 
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load balancing in different tests. As the results show, with the increasing data, the proposed 

method has superior performance than the two other methods. 

Nflb index shows the lack of load balancing, which increasing its values demonstrate 

better load balancing. Increasing load imbalance shows that the maximum resource capacity 

is used. It means that the amount of empty capacity of the resources is low, so with increasing 

data, load balancing is performed better in the proposed algorithm. Table 5-12 shows load 

imbalance between the methods in the first and fourth experimental set. 

 

Table 5-12: Comparison of the load imbalance between the proposed algorithm  
and other algorithms 

Nflb-
Proposal 
method 

Nflb-
GWO 

Nflb-
TLBO 

Resource 
capacity 

No. of 
Job DataSet Exp. 

0.0145 0.0145 0.0145 150 250 Binpack1-U250_00 First 
0.0195 0.0195 0.0193 150 250 Binpack1-U250_01 First 
0.0145 0.0145 0.0138 150 250 Binpack2-U250_00 First 
0.0195 0.0195 0.0178 150 250 Binpack2-U250_01 First 
0.0170 0.0163 0.0159 150 500 Binpack3-U500_00 First 
0.0155 0.0147 0.0143 150 500 Binpack3-U500_01 First 
0.0113 0.0103 0.0097 150 1000 Binpack4-U1000_00 First 
0.140 0.0127 0.0119 150 1000 Binpack4-u1000_01 First 

0.1304 0.1304 0.1304 100 60 Binpack5-T60_00 Second 
0.1304 0.1304 0.1304 100 60 Binpack5-T60_01 Second 
0.1111 0.1111 0.1023 100 120 Binpack6-T120_00 Second 
0.1111 0.1111 0.1013 100 120 Binpack6-T120_01 Second 
0.1170 0.1090 0.1010 100 249 Binpack7-T249_00 Second 
0.1263 0.1226 0.1203 100 249 Binpack7-T249_01 Second 
0.1211 0.1139 0.1107 100 501 Binpack8-T501_00 Second 
0.1257 0.1231 0.1219 100 501 Binpack8-T501_01 Second 

 

Index of load imbalance acts in a reverse manner compared with load balancing index. 

With increasing NFLB, the performance of load balancing will be increased. Due to the 

incorrect understanding structure of training in the experiments, TLBO method doesn’t have 

a good load balancing with increasing data. The proposed method shows a good performance 

with increasing data in load balancing. Load balancing can be calculated by the lack of load 

balancing. Load balancing can show appropriate allocation. The second experiment in Table 
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5-12 confirms the performance of the proposed method in the fifth to eighth data set.The 

related charts have shown in figure 5-5 and 5-6. 

 

Figure 5-5: Load imbalance in the first test set 

 
Figure 5-6: Load imbalance in the second test set 

Variable of relative percentage changes in comparison with the best answer can 

demonstrate the accuracy of the algorithm. Therefore, in order to evaluate robustness of the 

proposed algorithm in next experiment we calculate RPD (Robust Parameter Design) 

1 2 3 4 5 6 7 8
0.008

0.01

0.012

0.014

0.016

0.018

0.02

Data set's for Binpack1 to Binpack4

N
on

 L
oa

d 
B

al
an

ci
ng

Non Load Balancing between Virtual Machines in cloud

 

 
TLBO
GWO
Hybrid

1 2 3 4 5 6 7 8
0.1

0.105

0.11

0.115

0.12

0.125

0.13

0.135

data set for Binpack5 to Binpack6

N
on

 L
oa

d 
B

al
an

ci
ng

Non Load Balancing in Virtual Machines in Cloud

 

 
TLBO
GWO
Hybrid



Chapter 5: Computational and Simulation Results 

86 
 

parameter which is a normalized change percentage than the best answer where fheuristic is 

meta-heuristic value and foptimal is the optimal value. 

100 heuristic optimal

optimal

f f
RPD

f

-
= ´                              (5-4) 

This criterion shows the performance and robustness of the algorithm with the increase of 

the data. Table 5-13 demonstrates comparison of RPD between proposed algorithm and 

optimal solution.  

Table 5-13: Comparison of RPD between proposed method and optimal solution 

RPD Optimal 
solution Hybrid Resource 

capacity 
No. of 

Job Dataset Exp. 

1/99 99 100 150 250 Binpack1-U250_00 First 
1/100 100 101 150 250 Binpack1-U250_01 First 
1/99 99 100 150 250 Binpack2-U250_00 First 

1/100 100 101 150 250 Binpack2-U250_01 First 
3/198 198 201 150 500 Binpack3-U500_00 First 
3/201 201 204 150 500 Binpack3-U500_01 First 
4/399 399 403 150 1000 Binpack4-U1000_00 First 
5/406 406 411 150 1000 Binpack4-u1000_01 First 
3/20 20 23 100 60 Binpack5-T60_00 Second 
3/20 20 23 100 60 Binpack5-T60_01 Second 
5/40 40 45 100 120 Binpack6-T120_00 Second 
5/40 40 45 100 120 Binpack6-T120_01 Second 

11/83 83 94 100 249 Binpack7-T249_00 Second 
12/83 83 95 100 249 Binpack7-T249_01 Second 

23/167 167 190 100 501 Binpack8-T501_00 Second 
22/167 167 191 100 501 Binpack8-T501_01 Second 

 
Figure 5-7: Comparison of RPD between GWO, optimal solution, and proposed algorithm 
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The results indicate that the proposed method has superior performance with increasing 

data. The average of relative percentage changes is increased in an appropriate way in 

experimental data and has a better flow in comparison with other algorithms. Figure 5-7 

indicates improvements of the RPD parameter in comparison with other results. The results 

show, with increasing data, the performance is observed to be stable in the proposed method. 

5.4.2. Normal distribution workload 

 In order to evaluate proposed algorithm using normal distribution workload, we used 

CloudSim simulator in two different environments. CloudSim has the capability to simulate 

for modelling cloud computing in the homogeneous and heterogeneous environment.  

Table 5-14: CloudSim setting for homogeneous and heterogeneous cloud environments 

Entities Parameters Values for 
homogeneous Env. 

Values for 
heterogeneous Env. 

User No. of Users 20 20 

CloudLet No. of CloudLets 120-800 120-800 

Host No. of host 5 5 

 Ram 4096MB 25GB 

 Storage 500GB 2TB 

Virtual Machines Network Bandwidth 5GB 10GB 

 No. of VMs 12 20 

 MIPS   

 RAM 2048MB 128MB to 15GM 

 Bandwidth  128MB to 15GM 

 VMM Xen Xen 

 Operation system Linux Linux 

 No. of CPUs 2 2 

 No. of Datacenters 2 2 
 

CloudSim toolkit is an open source framework that enables developers to model and 

different layers of cloud computing infrastructure and application services. Table 5-14 shows 

presents cloudlets, cloud users, virtual machines, and host and data center properties for two 
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different homogeneous and heterogeneous cloud environments respectively. The efficiency of 

the algorithm under uniform distribution through Falkenauer datasets was investigated. 

 

Figure 5-8: Performance evaluation between different algorithms  
in homogeneous environment  

 

Figure 5-9:  Performance evaluation between different algorithms  
in heterogeneous environment  

Figure 5-8, 5-9 show the performance between proposed algorithm, GWO, PSO, and BBO 

with using normal distribution workloads in homogeneous and heterogeneous environments 

in the cloud system respectively. The x-axis and y-axis are the numbers of virtual machines 

and number of loads respectively. The results clearly show that proposed algorithm has better 

performance for using maximum capacity of virtual machines. The figures show that 

proposed algorithm maximizes the utilization of resources. As it is clear, with increasing the 
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loads, the proposed algorithm uses the least number of virtual machines. It means the 

simulated cloud system using the proposed method can balance loads across virtual 

machines.  

 

Figure 5-10:  Comparison of makespan between different algorithms  

in homogeneous environment 

 

 

Figure 5-11:  Comparison of makespan between different algorithms  

in heterogeneous environment 

Figure 5-10 and 5-11 illustrates the comparison of makespan between proposed algorithm, 

GWO, PSO, and BBO with using normal distribution workloads in homogeneous and 

heterogeneous environments in the cloud system respectively. The x-axis and y-axis are the 

numbers of cloudlets and execution time respectively. The results clearly depict that proposed 
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algorithm outperforms in terms of time reduction. Reduction of the makespan has a direct 

effect on response time. The results indicate the algorithm has superior performance in both 

homogeneous and heterogeneous environments in comparison with other methods. 

The comparison of throughput between proposed algorithm, GWO, PSO, and BBO is 

shown in figures 5-12 and 5-13. This comparison is based on normal distribution workloads 

in both the heterogeneous and homogeneous environments in the cloud system. The 

measurement of this factor is calculated based on the number of the performed tasks and 

time. The results indicate that the number of performed tasks by proposed algorithm is 

impressive in comparison with other algorithms. The overall results reflect superiority of the 

proposed algorithm in comparison with other algorithms. 

 

Figure 5-12:  Comparison of throughput between different algorithms  

in homogeneous environment 

 

Figure 5-13:  Comparison of throughput between different algorithms  

in heterogeneous environment 
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6.1. Conclusions and Discussion  

The high workloads across virtual machines are one of the main challenges of the cloud 

computing. Therefore, appropriate resource allocation and load balancing techniques and 

methods are becoming increasingly vital for cloud environments. The requested tasks by a 

client have to wait for sending to the virtual machines where appropriate resources are 

available. These allocations are independent of the executive priority of the tasks. However, 

cloud client may offer larger value for its requests in order to raise his/her task priority and 

eventually may succeed in taking control over the resources needed. Current resource 

allocation methods such as FIFO and Round-Robin which is used in the clouds do greedy and 

unfair allocation regardless of priority between users’ jobs. 

This thesis designs a new method for dynamic resource allocation problem in cloud 

computing. This method is developed for the bin-packing problem, where the packages were 

introduced as workloads and each Bin introduced as a virtual machine in cloud computing 

environment. The ultimate goal of the problem solving was that the allocation of packages to 

Bins is done so that using the minimum number of Bins. 

A new combinatory meta-heuristic algorithm using gray wolf optimizer and teaching-

learning-base optimizer was introduced in this regard. The research issues and the major 

contributions which have been made in this thesis are summarized as follows: 

 In chapter 2, the concept of cloud computing and theoretical foundations in 

virtualized environments are introduced. This chapter further investigates the 

problem of resource allocation and explains that the load balancing leads to reduce 

traffic load in the cloud network, and as a result, energy consumption costs will be 

decreased. 

 Chapter 3 presents a comprehensive survey of the state-of-the-arts on resource 

allocation, load balancing and scheduling techniques, algorithms, and methods in 

cloud environments. In this chapter, we provide an overview of the related works of 

techniques related to resource allocation at different dimensions and levels such as 

objectives, optimization methods, simulation and implementation tools, and the 

executable environment. The main goal to organize the state-of-the-arts has been to 
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reach a deep and clear comprehension of the problem, to identify the key factors, 

issues, challenges in relation to existing related works. 

 Chapter 4 proposes a bin packing based approach for dynamic resource allocation 

and load balancing using two relatively new multi-objective optimization 

techniques. By an efficient allocation process, the number of rented virtual machines 

is reduced, and it causes decreasing number of cloud physical servers, and 

consequently, cost reduction in cloud infrastructures. Also, it has direct effects on 

reducing energy consumption. This process leads to maximize utilization of 

resources in virtual machines. Therefore, the amount of waste spaces is decreased 

across virtual machines and helps to increase load balancing in the cloud 

environment. The proposed algorithm is an approximation algorithm. 

 In chapter 5, in order to evaluate the performance of our method, the proposed 

algorithm is benchmarked on eleven test functions and a comparative study is 

conducted to verify the results with other existing algorithms. Also, the proposed 

algorithm is simulated in two different tools (Matlab and CloudSim) and the 

experimental results are presented. The evaluation results indicate that the proposed 

method in high workloads for resource allocation in Cloud Scheduler has better 

performance than other existing methods. The complexity of the algorithm is 

polynomial. The results of the load balancing experiments in two homogeneous and 

heterogeneous environment show that by applying uniform and normal workload 

distributions, the proposed method outperforms in comparison with other existing 

techniques. 

6.2. Future Research Directions 

Our main focus in this study was on suggesting a novel hybrid meta-heuristic algorithm to 

improve the performance of resource allocation process in cloud computing environments. 

Some issues related to resource allocation in cloud computing that needs further research, 

have not been addressed in this thesis. This practical study can be considered as the starting 
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point of the variety of researchers. The potential future directions of this research include the 

following:  

- Semi-automated admission control mechanisms for resource allocation in the cloud 

to decide which user requests to be accepted. This important issue is related to 

reservation of the cloud resource in advance. The main problem of traditional 

resource allocation techniques in the cloud is that requested resource by user's 

application may be not available in time and the related requests will be refused by 

the system. Advanced reservation request technique is used to guarantee the 

availability of required resources at the specified time. The aim is to integrate a 

semi-automated admission control mechanism with our algorithm to improve the 

optimality of our method. 

- Load forecasting techniques are extremely important in order to reduce energy 

consumption and predict overall workloads in cloud computing. Therefore, as future 

work, we can improve the stability and performance of our algorithm with 

forecasting algorithms. 

- One of the important usages of our proposed algorithm is to be integrated with 

OpenStack(see Appendix A). Therefore, implementation of proposed algorithm in 

order to provide an efficient resource allocation and scheduling policies to this cloud 

environment can be an important future work. 

- Most of the state-of-the-arts on resource allocation in cloud computing focus on 

workflows with independent tasks. Extension of the proposed algorithm for 

workflows with dependent jobs can be done in future. 

- Trying to extend proposed algorithm to different distributed environment. For 

example, simulating the algorithm for resource allocation problem in Apache 

Hadoop and evaluation of the algorithm for this environment. 

- The most of the research focus to present new resource allocation methods and 

techniques while there is no any resource allocation framework that is practical for 
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different cloud deployment models. Therefore, developing a resource allocation 

framework is needed. 

- The definition and calculation of energy and reducing network traffic through 

dynamic resource allocation, load balancing, and cloud scheduling using proposed 

algorithm can be another area for future research. 

- More accuracy in the calculation of choices by the teaching-learning-base algorithm 

can be another area of future research. Neural networks can be used in order to 

predict. Neural network doesn't guarantee the convergence, but the combination of 

our proposed method with neural network techniques can guarantee convergence 

and increase the speed. 

- Implementation of the proposed method with the real workloads in a real cloud 

environment can provide more accurate solutions for the future research and 

introduce more research areas for different types of clouds. 
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Appendix A 

OpenStack 

OpenStack Nova is the OpenStack compute project. It is a compute controller that pools 

computing resources like CPU, memory, etc... Nova provides API's to control on-demand 

scheduling of compute instances like virtual machines on multiple virtualization technologies, 

bare metal, or container technologies. Nova uses images to launch instances or VMs. In this 

chapter, we provide an explanation of the steps to create an instance with Nova in order to 

implement the proposed algorithm on OpenStack Nova as future work. 

1. Create a simple credential file: 

vi creds 
# Paste the following : 
export OS_TENANT_NAME = admin 
export OS_USERNAME = admin 
export OS_PASSWORD = admin_pass 
export OS_AUTH_URL =" http ://192.168.100.11:5000/ v2 .0/" 

 
2. Upload the cirros cloud image: 

source creds 
glance image - create --name "cirros -0.3.2 - x86_64 " --is - public true \ 
--container - format bare --disk - format qcow2 \ 
--location http :// cdn . download . cirros - cloud .net /0.3.2/ cirros -0.3.2 - x86_64 - disk . 
img 

 
3. List Images: 

glance image – list 
 
4. Create an external network: 

source creds 
# Create the external network : 



neutron net - create ext - net -- shared -- router : external = True 
# Create the subnet for the external network : 
neutron subnet - create ext - net --name ext - subnet \ 
--allocation - pool start =192.168.100.101 , end =192.168.100.200 \ 
--disable - dhcp -- gateway 192.168.100.1 192.168.100.0/24 

 
5. Create an internal (tenant) network: 

source creds 
# Create the internal network : 
neutron net - create int - net 
# Create the subnet for the internal network : 
neutron subnet - create int - net --name int - subnet \ 
--dns - nameserver 8.8.8.8 -- gateway 172.16.1.1 172.16.1.0/24 
 

6. Create a router on the internal network and attach it to the external network: 

source creds 
# Create the router : 
neutron router - create router1 
# Attach the router to the internal subnet : 
neutron router - interface -add router1 int - subnet 
# Attach the router to the external network by setting it as the gateway : 
neutron router - gateway - set router1 ext – net 

 
7. Generate a key pair: 

ssh – keygen 
 
8. Add the public key: 

source creds 
nova keypair - add --pub - key ~/. ssh / id_rsa .pub key1 

 
9. Verify the public key is added: 

nova keypair – list 
 
10. Add rules to the default security group to access your instance remotely: 

# Permit ICMP ( ping ): 
nova secgroup -add - rule default icmp -1 -1 0.0.0.0/0 
# Permit secure shell ( SSH ) access : 
nova secgroup -add - rule default tcp 22 22 0.0.0.0/0 



 
11. Launch your instance: 

NET_ID =$( neutron net - list | awk '/ int -net / { print $2 }') 
nova boot -- flavor m1. tiny --image cirros -0.3.2 - x86_64 --nic net -id= $NET_ID \ 
--security - group default --key - name key1 instance1 

 
12. Note: To choose the instance parameters these commands could be used: 

nova flavor - list : -- flavor m1. tiny 
nova image - list : --image cirros -0.3.2 - x86_64 
neutron net - list : --nic net -id= $NET_ID 
nova secgroup - list : --security - group default 
nova keypair - list : --key - name key1 

 
13. Check the status of your instance: 

nova list 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Appendix B 

All implemented algorithms and used dataset in this thesis are downloadable using the following 
link: 

https://drive.google.com/file/d/0B_YXoYhgc4BqZ2tJY1Jkc2MwZlU/view?usp=sharing 

 


