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Abstract
With the ever-growing demand of electric power, it is quite chal-
lenging to detect and prevent Non-Technical Loss (NTL) in power
industries. NTL is committed by meter bypassing, hooking from
the main lines, reversing and tampering the meters. Many coun-
tries suffer huge losses in billions of dollars due to NTL in power
supply companies. Manual on-site identification of NTL remains an
unattractive strategy due to the required manpower and associated
cost. The use of machine learning classifiers has been an attractive
option for NTL detection.

The literature review has identified the knowledge gap in NTL
detection. This gap is surrounded by first finding the best metrics
that can identify the top performing classifiers considering the re-
quirements of NTL detection. Secondly, using those metrics finding
the best classifiers and the types of the classifiers for NTL detection.
Finally, quantifying the impact of feature selection in a real dataset
for NTL detection.

Firstly, we compare 14 performance evaluation metrics across
the three classifiers and identify the key scientific relationships be-
tween them specifically related to NTL detection in a real dataset of
an electric supplier containing approximately 80, 000 monthly con-
sumption records. We concluded that recall is the best performance
measure for NTL detection. Secondly, we evaluate 15 existing ma-
chine learning classifiers for NTL detection across 9 different types.
Our work is validated using extensive simulations. Results show
that ensemble methods and Artificial Neural Network (ANN) out-
perform the other types of classifiers for NTL detection. Moreover,
we have also derived a procedure to identify the top-14 features out
of a total of 71 features, which are contributing in 77% of the predic-
tion in NTL.

In our next contribution, we propose the Incremental Feature Se-
lection (IFS) algorithm, which first uses feature importance to iden-
tify the most relevant features for NTL detection and then these fea-
tures are used to test the three classifiers namely CatBoost, Deci-
sion Tree (DT) Classifier and KNN for NTL detection. The results
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show that using the most relevant features identified by the IFS algo-
rithm, the three classifiers have the same or slightly better efficiency
as compared to using all features.

Overall, the thesis has contributed in three main processes of
NTL detection, i.e. the feature selection, the identification of suitable
machine learning classifiers and their types, and the identification of
suitable performance evaluation metrics for NTL detection.
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Chapter 1

Introduction

1.1 Introduction

Power companies are considered as one of the important ingredi-
ents of a country’s financial stability. In today’s world, without the
supply of electricity, a country can leap back big time in a matter of
few days. Therefore, it is not only necessary for the country for a
smooth and un-interrupted supply of electricity but it is also oblig-
atory for the company to supply the required amount of electricity
in its vicinity. At times, the company can not supply the required
electricity. The reason behind this can be interruption of operations
or unavailability of the required resources. Another reason is the
unexpected amount of electricity required. This is due to the techni-
cal and Non-Technical Loss (NTL) in power supply. These problems
lead to power load shedding. Line losses are the cause of technical
loss. However, NTL happens due to unnatural and criminal (most
of the time) attempts to bring down the noted consumed electricity
units. Multiple ways are adapted for NTL, like meter by-passing,
meter reversing, use of magnet in the meter and false meter reading.
The NTL does not only cause a huge monetary loss to the company
and the country but it also affects the progress of the country. For
example, India loses 4.5 billion USD every year on account of NTL.
This loss can range up to 50% of the total electricity produced in
developing countries (McDaniel and McLaughlin, 2009). The devel-
oped countries, including USA and UK, also suffer a loss of $1 – $6
billion annually (Alam et al., 2004). Similarly, Brazil suffers 4.5 bil-
lion dollars annually due to NTL (Bhat et al., 2016). Pakistan’s econ-
omy is also suffering from 0.89 billion dollars annually on account
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of NTL (Hussain et al., 2016).
Over the last decade, the research community has been actively

participating in an attempt to bring down the occurrences of NTL in
power industry. For this, the use of physical devices as well as the
data analytics on consumption patterns are major sources of NTL
detection schemes. Many developed countries have installed Ad-
vanced Metering Infrastructure (AMI) in their network. The AMI is
a smart metering system with a two-way communication between
the supplier and the consumer that helps in better management of
consumption history. The use of AMIs enables the company to record
the consumption history over a different intervals of time like hourly,
twelve-hourly, daily and bi-monthly consumption recordings. How-
ever, many under-developed countries still use the traditional me-
ters for which monthly manual meter reading is required. Due to
the use of old metering structure, the chances of NTL grow as the
use of meter by-passing, magnet and false meter reading is easy
in old metering infrastructure. In order to detect NTL, companies
have used separate physical observer devices in meters and distri-
bution poles which calculate the difference of energy supplied and
used. However, this approach incurs heavy monetary cost. An-
other widely adapted method for NTL detection is the use of ma-
chine learning classifiers on a dataset of hourly, daily or monthly
consumption records. These classifiers help in identifying potential
theft which otherwise is a costly manual effort. However, still there
is a need to improve the way we use classifiers and their evaluation
metrics for NTL detection. This knowledge gap is highlighted in the
next section.

1.2 Knowledge Gap in Existing Techniques
for NTL Detection

A substantial literature is available on the techniques used for NTL
detection. However, there are open challenges and knowledge gaps
which are still needed to be addressed. These challenges are dis-
cussed in the following subsection and represented in Figure 1.1.
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1.2.1 Identification of the Best Performance Evalua-
tion Metrics for NTL Detection

In a real dataset, the ratio of records with theft and normal consump-
tion is vastly imbalanced. That is, the number of records of normal
consumption is very high whereas the number of records of theft in-
stances are very small. The problem becomes interesting when the
focus is on least representative records, i.e the theft records. This
type of problem belongs to class imbalance problem where the ratio
of representation of the two classes is highly imbalanced. For this
reason, not every metric is useful in evaluating the performance of
the classifiers used. Keeping in mind the number of normal con-
sumption identified as theft and the number of theft records iden-
tified as normal, there is a need to prioritize the available metrics
which can best describe the performance of the classifiers used in
NTL detection.

1.2.2 Comparison of Performance of Different Types
of Classifiers for NTL Detection

A range of machine learning classifiers is available for training and
testing. These classifiers belong to different types. For e.g, Gaussian
Naive Bayes (John and Langley, 1995) and Bernoulli Naive Bayes
(McCallum, Nigam, et al., 1998) classifiers belong to the type of
Naive Bayes Classifiers. Similarly, Random forest (Breiman, 2001),
AdaBoost (Freund and Schapire, 1997) and CatBoost (Prokhorenkova
et al., 2018) belong to the type of ensemble methods. Efforts have
been made to compare different classifiers for NTL detection but
there is a need to compare not only the performance of the indi-
vidual classifiers but also the comparison of the types of the classi-
fiers for NTL detection in some real dataset. Also, a recently devel-
oped CatBoost, LGBoost and XGBoost classifiers are also needed to
be tested for NTL detection in a real dataset.
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1.2.3 Identification of Best Features for NTL Detec-
tion in a Real Dataset

Feature selection is an important process before the selected data is
used for the training and testing of the classifiers. Multiple tech-
niques for feature selection are available. For NTL detection, there
is a need to identify most relevant features in a real dataset. In other
words, the feature importance of every feature in participating in
NTL detection is needed to be precisely monitored and evaluated
for some real dataset. The performance of using only selected fea-
tures is also needed to be compared with the performance when all
features are used.

1.3 Aims of the Thesis

The main aim of the thesis is to first find the best metrics that can
evaluate classifiers considering the requirements of NTL detection.
Then, use those metrics for better evaluation of the classifiers and
the types of the classifiers. The objectives of the thesis are outlined
below:

1. Work on a real dataset for the identification of best metrics
which can evaluate different machine learning classifiers con-
sidering the requirements of NTL detection.

2. Compare the performance of the different machine learning
classifiers used for NTL detection.

3. Compare the performance of the types of machine learning
classifiers for NTL detection.

4. Compare the performance of the recently developed CatBoost,
LGBoost and XGBoost classifiers for NTL detection in a real
dataset.

5. Identify the most relevant features for NTL detection in a real
dataset.
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1.4 Thesis Overview

The thesis is comprised of six chapters. The details of the chapters
are discussed in the following subsections and the overview is pre-
sented in Figure 1.2.

1.4.1 Chapter 1

Many countries face huge financial losses on account of NTL in power
industry. Chapter 1 first introduces the problem of NTL detection
and its demand in today’s world. Then, it highlights the knowledge
gap in recent practices of NTL detection. It further discusses the con-
tributions of this dissertation to fill the knowledge gap in the field
of NTL detection. Lastly, it presents the aims and the outline of the
thesis.

1.4.2 Chapter 2

A comprehensive literature review is always helpful in finding the
latest trends and research contributions in a specific domain. Chap-
ter 2 presents the state of the art methodologies used in NTL detec-
tion. It presents a comprehensive taxonomy of the techniques used
and a detailed comparative study of those techniques. The tech-
niques involve data-oriented consumption and additional data pro-
filing, network oriented techniques and hybrid of data and network
based techniques. It also highlights the limitations of the current
on-going efforts in NTL detection. Lastly, this chapter discusses the
theoretical description of all the classifiers and the performance eval-
uation metrics used in this thesis.

1.4.3 Chapter 3

In order to contribute in the problem of NTL detection in power in-
dustry, a real-world dataset is necessary on which pre-processing
steps along with the training and testing of multiple machine learn-
ing techniques can be applied. Chapter 3 presents a detailed de-
scription of the real dataset and the necessary pre-processing steps
that are required in the proposed methodology. It also contains the
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features, their description and the transformation needed before the
dataset is used for training and testing the classifiers.

1.4.4 Chapter 4

As the problem of NTL detection belongs to the class imbalance do-
main, a bias is observed between the number of observations for
the normal consumption and the number of observations for the
theft cases. Therefore, considering the requirements of NTL detec-
tion, there is a need to identify the metrics that are best suited for
the performance evaluation of the classifiers. Chapter 4 compares
the performance of three classifiers using 15 performance evalua-
tion metrics. Finally, it presents a detailed analysis of the pros and
cons of each metric for NTL detection. Thus, it identifies the relation-
ship that exists between different metrics considering the specific re-
quirements of the NTL detection. This contribution was published
in (Ghori et al., 2020b).

1.4.5 Chapter 5

In recent years, different machine learning classifiers have been tested
in NTL detection. However, there is a need to identify the types of
the classifiers that perform best in NTL detection. Chapter 5 presents
this contribution in comparing not only the performance of the clas-
sifiers but also the performance of the types of the classifiers. It also
introduces the recently developed CatBoost, LGBoost and XGBoost
classifiers for NTL detection in the real dataset. Lastly, with the help
of extensive simulations, it highlights the best classifiers and the best
type of classifiers for NTL detection in the real dataset. In addi-
tion, this chapter compares the performance of deep learning with
the performance of the other classifiers. This contribution was pub-
lished in (Ghori et al., 2019).

1.4.6 Chapter 6

Not only the identification of the relevant records is important for
correctly identifying the potential theft but the identification of the
relevant features is equally important. This is because not all the
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features are relevant to the identification of NTL. Chapter 6 high-
lights this contribution of the identification of the best features for
NTL detection in a real dataset. It also introduces our proposed
Incremental Feature Selection (IFS) algorithm for feature selection.
Finally, it compares the success ratio of NTL detection using all fea-
tures with the success ratio of NTL detection using selected features
from the IFS algorithm. This contribution was published in (Ghori
et al., 2020a).

1.4.7 Chapter 7

Chapter 7 concludes with the summary of the contributions of this
work and discusses the future directions in the field of NTL detec-
tion.

1.5 Thesis Points

The thesis points are summarized below:

1. The thesis contains a comprehensive literature review which
has enabled to identify the limitations of recent works in NTL
detection. (See Chapter 2).

2. A total of 14 performance evaluation metrics are analyzed for
NTL detection using different classifiers. We found that recall
should be given higher priority for NTL detection, and ran-
dom forest is the better algorithm for it having the highest re-
call. (See Chapter 4).

3. We have performed the testing of 15 machine learning classi-
fiers belonging to 9 different types. The MLP classifier was
found the best individual classifier with respect to recall, and
ANN was found the best type of the classifiers for NTL detec-
tion. (See Chapter 5).

4. We proposed a novel framework to identify relevant features
for NTL detection by using the Incremental Feature Selection
(IFS) algorithm, which identifies the most relevant features for
NTL detection in a real dataset using feature importance. The
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results have shown that with the use of the IFS algorithm, re-
call and F-Measure of KNN is increased by 120% and 60%, re-
spectively, while the training time of KNN is reduced by 90%.
(See Chapter 6).
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Chapter 2

State of the Art Methodologies
in NTL Detection

2.1 Literature Review

Big data analytics is frequently used in diverse domains of every-
day life. It strives to solve realistic problems by applying machine
learning algorithms and data mining approaches. The applications
include fraud detection (Jain and Gupta, 2019), problem handling of
unstructured data (Amalina et al., 2019), disease comorbidity predic-
tion (Lakshmi and Vadivu, 2019), Internet of Things (IoT) (Rehman
et al., 2019), Industrial Internet of Things (IIoT) (Rehman et al., 2018),
real-time anomaly detection (Ariyaluran Habeeb et al., 2019; “Real-
time big data processing for anomaly detection: A Survey” 2019),
preventive medicine using big data (Razzak, Imran, and Xu, 2019),
and event detection (Saeed et al., 2019).

During the last few years, the research community has paid at-
tention to the problem of NTL detection. To encounter this prob-
lem, supervised, unsupervised and semi-supervised learning meth-
ods have been used. Some of the authors have used customers’ con-
sumption history while others have used the grid and network data.
Effort has also been made to use both types of data, i.e. consumers’
consumption profile as well as the grid data which may contain cur-
rent and voltage information supplied to different areas. At times,
some additional data are also merged to the consumption data to
see the effect of hit ratio of NTL detection. This additional data may
comprise of environmental and temperature readings.



Chapter 2. State of the Art Methodologies in NTL Detection 12

NTL identification is an application of fraud detection (Han and
Xiao, 2019). A survey of the existing techniques to detect NTL can be
found in (Papadimitriou et al., 2017). The study has categorized the
techniques handling NTL into data-oriented, network oriented and
hybrid techniques. The data-oriented techniques use consumers’
consumption patterns to predict NTL. These techniques can further
be divided into supervised, semi-supervised and unsupervised learn-
ing paradigms. Supervised learning methods are used when the
class label of fraud and non-fraud is provided. Example of super-
vised learning is SVM. Semi-supervised learning methods are used
when only one class label is known and the other label is not def-
inite. Example of semi-supervised learning is anomaly detection.
Unsupervised learning methods are used when the class labels are
not used at all. Clustering algorithms are the examples of unsuper-
vised learning. Network-oriented techniques include usage of the
network data and smart meters, which are used to check electric bal-
ance with respect to the grid. The authors of (Papadimitriou et al.,
2017) have stated that network-oriented techniques are good at de-
tecting NTL in a specific area but fail to identify specific fraudulent
consumers. Hybrid techniques use advantages of both techniques
where network data is used to locate the fraudulent area and con-
sumption data is used to identify fraudulent consumers. They have
listed TP, TN, FP, FN, recall, FPR, recognition rate and Bayesian de-
tection rate as the main performance evaluation metrics. Alongside,
they have discussed the roles and responsibilities of the concerned
authorities to tackle NTL.

Another comprehensive survey for the challenges of NTL de-
tection can be found in (Glauner et al., 2016b). The authors have
compared multiple techniques which are applied in NTL detection.
These include expert system, machine learning, SVM, Neural net-
work, fuzzy logic, genetic algorithm, optimum path forest, and rough
sets. They have also compared different search techniques for fea-
ture selection of customers’ master data. The paper identifies some
challenges which are still needed to be thoroughly dealt with. For
example, the identification of a correct percentage of under sampling
of majority class, a need of a thorough comparative study for dif-
ferent techniques dealing imbalance domain, a need of a metric to
compare regression with classification problems and creation of a
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benchmark dataset.
Another survey on NTL detection can be found in (Messinis and

Hatziargyriou, 2018). The authors of this paper have also catego-
rized the techniques used in NTL into Data Oriented, Network Ori-
ented and Hybrid Techniques. They have categorized the consump-
tion data into multiple categories like time series data, raw data and
geographical data. The authors have also discussed the classifica-
tion and clustering techniques used for NTL and the performance
evaluation metrics used to evaluate them.

On the basis of the type of data used to detect NTL, the strategies
can be categorized into three main types namely Data-Based Tech-
niques, Hybrid Techniques and Network-Based Techniques. The
Data-Based Techniques are further divided into two sub-types namely
Additional Data Profile and Consumption Profile while the Network-
Based Techniques are divided into three sub-types namely state ex-
amination, current flow examination and sensor installation. Hybrid
is a combination of the two techniques, that is, Data-Based Tech-
niques and Network-Based Techniques. Consumption profile in-
volves detecting NTL using only the consumption data collected
from the meters installed at the consumer end. The consumption
data can take monthly, daily, hourly or half hourly readings. Ad-
ditional data based techniques not only use consumption data but
they also use data from outside of the system, for example, climate
and temperature data. Network based techniques involve detecting
NTL using the difference between the total electricity supplied and
the total electricity billed. These techniques also use the grid data.
Efforts have been made in every category to detect NTL. A complete
categorical division of the types of strategies and algorithms used in
NTL is shown in Figure 2.1.

2.1.1 Data-Based Techniques

Two different types of data profiles are used for NTL detection. Con-
sumption profile contains half hourly, hourly, daily or monthly con-
sumption records of consumers which is used to detect a potential
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NTL. Additional data profile is also merged with consumption pro-
file in an effort to increase accuracy in predicting NTL. The addi-
tional data profile may contain environmental and temperature fea-
tures.

2.1.1.1 Consumption Profile

To address the problem of NTL, the research community has used
unsupervised, supervised, semi-supervised and even a combination
of supervised, unsupervised and semi-supervised learning meth-
ods. Research contributions of some of them are discussed below.

Unsupervised Learning

The authors of (León et al., 2011) have used consumption data col-
lected from Endesa Distribucion, a power supply company in Spain.
They have used association rule mining to cluster a group of cus-
tomers responsible for electricity theft. The use of association rule
mining has enabled them to perform an on-site inspection of a fil-
tered few hundred consumers out of thousands of consumers. They
have used support, confidence, TP, TN, FP and FN metrics to eval-
uate their result. They have claimed a 7% to 20% increase in detect-
ing NTL. However, the paper has not discussed about the strategy
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used for feature selection process. In (Singh and Yassine, 2018), the
authors have also used association rule mining by proposing an al-
gorithm of their own which generates frequent patterns of the use
of appliances. They have claimed to find associations between ap-
pliances of home and time series. Their work can further lead to
NTL detection by filtering out those instances which disobey fre-
quent patterns of a specific household area. They have stated that
their results outperformed SVM and Multi-layer perceptron (MLP).

Benford curve, hierarchical clustering and Multi-dimensional scal-
ing (MDS) are used in (Sánchez-Zuleta, Fernández-Gutiérrez, and
Piedrahita-Escobar, 2017) to study the characteristics of consump-
tion for a better detection of NTL in two companies. One of their
findings is that in company 1, fraudsters have a different curve as
compared to normal consumers with respect to Benford curve. No
such indication is observed in company 2. This behavior is also in-
dicated by the fact that using decision trees, company 1 has a good
classification for fraudsters as compared to company 2.

Sharma et al. (Sharma et al., 2017) have used the concept of local
outlier factor (LOF) in density-based spatial clustering of applica-
tions with noise (DBSCAN) clustering algorithm to identify unusual
load patterns in two datasets from USA and India. LOF is the ratio
of density of a data point to the density of its k-nearest neighbors. A
higher value of LOF shows that there is a noticeable difference be-
tween the densities of the point and its neighbors reflecting the point
to be suspicious. They have used Silhouette coefficient and Davies
Bouldin index to evaluate their technique but did not compare them
with other clustering algorithms. A similar approach is used in
(Zheng et al., 2017). The authors have proposed a distance ma-
trix to observe the unusual profiles of consumers. They have used
Area Under ROC Curve (AUC), accuracy and F1 measures to eval-
uate their proposed model and compared it with Gaussian mixture
model (GMM), k-means and DBSCAN. Their results show that their
technique outperformed the already known techniques. A signal
processing technique is used in (Avila, Figueroa, and Chu, 2018) for
feature extraction and selection in the same dataset. In addition, a
smoothing spline function is used for outlier detection in consumers
data. The paper has also proposed an undersampling boosting al-
gorithm for NTL detection. Using seven performance evaluation
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metrics, the paper has argued that the proposed framework has per-
formed better than the available NTL detection techniques. How-
ever, the paper does not discuss the features representing the real
data. In (Sharma and Singh, 2015), the authors have also proposed
a density based clustering algorithm called DBMSCAN. It identi-
fies low and peak loads which in turn help in detection of irregular
consumption. The algorithm encounters anomalies by introducing
irregularity variance. The authors have used silhouette coefficient
for the comparison of DBMSCAN with the traditional DBSCAN and
stated that their algorithm has outperformed DBSCAN.

Another unsupervised method, Optimum-path forest (OPF), is
used in (Júnior et al., 2016) to detect NTL in a Brazilian electric-
ity dataset. The authors have also used semi-supervised learning
method of anomaly detection that has the information of only one
class. They have compared the accuracy of both techniques with
SVM, GMM, k-means, one-class SVM, Birch and affinity propaga-
tion. Accuracy, F-Measure and standard deviation are used as effi-
ciency measure for the classifiers. The paper stated that OPF and
anomaly detection techniques (i.e. semi-supervised learning) out-
performed others. The paper however does not discuss any feature
selection technique. Yeckle et al. (Yeckle and Tang, 2018) have used
seven different outlier detection techniques to identify the occur-
rence of NTL in an Irish dataset. They have also performed k-means
clustering algorithm in the pre-processing step to cut off the number
of transactions per day to three. They have tested the performance
of the outlier detection techniques using AUC and claimed that re-
ducing the number of meter readings by using k-means clustering
has helped improving the performance of AUC.

It is important to identify the best combination of features that
can participate in predicting NTL. For this, different feature selec-
tion techniques have to be deployed to the dataset before it is used
for NTL detection. In (Ramos et al., 2016), the authors have used
the Black Hole Algorithm (BHA) for feature selection in two differ-
ent datasets taken from the Brazilian electric supply company. The
datasets contain commercial and industrial consumption records.
They have used mean accuracy rates for each class to compare the
results of NTL detection with feature selection and without feature
selection. The paper concludes that with feature selection, the hit
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ratio increased by 20% for industrial records and 6% for commer-
cial records. However, the paper does not discuss feature relevance
of each feature with respect to the target variable. In order to find
the most relevant features for NTL detection, a strategy is needed
that can systematically add features and evaluate their performance
in the feature selection process. Ramos et al. (Ramos et al., 2011b)
have used a combination of harmony search algorithm and Opti-
mum Path Forest (OPF) for feature selection in a detaset of an elec-
tric supplier from Brazil. They have used commercial and industrial
datasets with eight features which were identified after the feature
selection process. The paper states that their approach has not only
reduced the overall execution time but also has identified useful fea-
tures. Accuracy is the only metric used for the evaluation despite the
data being imbalanced (a situation where accuracy is not the right
measure for evaluation). In their next contribution (Ramos et al.,
2011a), they have compared three evolutionary techniques for fea-
ture selection namely harmony search, particle swarm optimization
(PSO) and gravitational search. The dataset used is the same as in
(Ramos et al., 2011b). The authors have concluded that using a com-
bination of PSO-OPF, the feature recognition rate can be improved
from 92% to 98%. In the latter contribution, the authors have not
described the details of classifiers and their performance evaluation
for NTL detection.

Supervised Learning

Similar attention is made in dealing NTL detection through super-
vised learning techniques. For example, Zheng et al. (Zheng et al.,
2018) have experimented wide and deep convolutional neural net-
work (CNN) in a dataset collected from a Chinese electricity com-
pany. Wide framework of the neural networks handles the 1-D con-
sumption records of each consumer, while the deep framework main-
tains weekly consumption. They have used AUC as the evaluation
metric to compare their work with existing classifiers like SVM, lo-
gistic regression, random forest, and three sigma rule (TSR). They
observed that their model outperforms these classifiers. In (Ford,
Siraj, and Eberle, 2014), artificial neural networks have been used
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to predict electric theft detection in a relatively smaller dataset col-
lected from the Irish Social Science Data Archive Center. The au-
thors have trained the neural network on three different situations
and consequently have stated three observations. One of the obser-
vations is that consumers’ consumption behavior can be predicted
a year ahead. The other observation is that the training of a neu-
ral network on the data of three consecutive weeks can predict con-
sumer’s consumption behavior for the fourth week. Their final ob-
servation is that the consumption patterns can also be predicted in
the same weather season. They have used TP, TN, FP and FN to mea-
sure the performance of the neural network. The authors extended
their work in (Cody, Ford, and Siraj, 2015) to train and test the Irish
dataset using M5P decision tree on the same situations. They have
used root mean square error (RMSE) to measure the closeness of pre-
dicted and actual values. RMSE values are found within the thresh-
old for all three situations.

The authors of (Coma-Puig et al., 2016) have used a dataset of
a company providing electricity and gas in Spain. They have used
a combination of different machine learning techniques to predict
NTL in electricity and theft attempts in gas sector. This includes
Naive Bayes, KNN, decision trees, neural networks, SVM, random
forest and AdaBoost. Their framework has a feature which auto-
updates the results of on-field inspection in the database resulting
the framework to be adaptive to new theft patterns over a period of
time. They have used precision as the only performance evaluation
metric.

During the last few years, advancements in deep learning have
opened a lot of application areas (Hayat et al., 2019). One of its ap-
plication areas which still needs attention of research community is
NTL detection. The authors of (Bhat et al., 2016) have tested convo-
lutional neural network, auto encoders and long short-term memory
networks for NTL detection in a relatively smaller dataset contain-
ing occurrences of NTL. Experimental results demonstrate that deep
learning-based strategies have outperformed decision trees, random
forest, and neural networks in terms of various performance met-
rics such as precision, recall, F1 and receiver operating characteristic
(ROC) curve.

In (Chatterjee et al., 2017), the authors have used deep recurrent
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neural networks to identify NTL. The data used is related to ad-
vanced metering infrastructure (AMI). It is taken from Australian
Governments Department of Industry, Innovation and Science. As
AMI’s data is sequential with respect to time, so recurrent neural
network is applied to it. The metric used to evaluate the perfor-
mance is accuracy which is measured to be 65.3% for a neighbor-
hood. However, it does not use any other performance evaluation
metric which may help for a better understanding of NTL detection.

Fuzzy logic is used in (Spirić, Stanković, and Dočić, 2018) to de-
tect potential electricity theft consumption. The authors have used
consumption data from 2003 to 2017 in a series of five decades in-
crementing a year every time starting from 2003. Fuzzy suspicions
are created based on the relationship of consumption between time-
series data. Fuzzy logic is then used to calculate suspicion value for
each consumer. If it passes a certain threshold, the consumer is con-
sidered a suspicious consumer. This work has shown a 14% of suc-
cess percentage in finding the theft cases but it claims that the per-
centage of success will be increased after on-site inspection. A sim-
ilar type of work is presented in (Viegas, Esteves, and Vieira, 2018)
where authors have used fuzzy-based distance to check whether a
consumer’s distance has significantly crossed a consumption proto-
type. They have used consumption records of four thousand Irish
households. The authors have claimed a true positive rate of 63.6%
and a false positive rate of 24.3%. Glauner et al. (Glauner et al.,
2016a) have used Boolean rules, fuzzy logic and SVM to detect NTL
in a dataset of around a million customers while analyzing their
monthly consumption patterns. The results show that optimized
fuzzy logic and SVM outperformed Boolean rules. They have com-
pared the classifiers with performance evaluation metrics like true
positive, true negative, false positive, false negative, recall and speci-
ficity. However, the relationships that may exist between these met-
rics regarding NTL detection are not sufficiently discussed.

Recently developed ensemble methods namely CatBoost, LGBoo-
st and XGBoost are tested in (Punmiya and Choe, 2019). The authors
have used an Irish dataset that contains half-hourly meter readings
for 420 days. They have generated six theft cases in the dataset to
balance out the minority class. They have concluded that LGBoost
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and CatBoost outperformed XGBoost with respect to detection ra-
tio, while LGBoost performed better than CatBoost and XGBoost
with respect to False Positive Rate (FPR). However, they have not
compared the three classifiers with other known classifiers. More-
over, their dataset is synthesized with equal positive and negative
class representations. This, of course, does not reflect the real-world
scenario where observations of positive class are very small as com-
pared to the negative class. There is a need that these classifiers
should also be tested on a real-world dataset. A set of classifiers have
been used as ensembles to detect frauds in an electricity supply com-
pany in Uruguay by Di Martino et al. (Di Martino et al., 2012). They
have claimed that a one-class SVM, CS-SVM, Optimum Path Forest
(OPF) and C4.5 combined as ensembles have given good measures
as compared to applying them individually. The classifiers are com-
pared using accuracy, recall, precision and F value. However, this
paper does not discuss the impact of using these metrics for NTL
detection.

A more widely used set of techniques for NTL detection belong
to the traditional data mining and machine learning classifiers. For
example, a dataset of an electric supplier from Honduras is used in
two research contributions. Figueroa et al. (Figueroa et al., 2017)
have used random oversampling and undersampling in the pre-
processing step to handle the imbalance behavior of the target vari-
able. They have used three classifiers namely linear SVM, non-linear
SVM and a multi-layer perceptron neural network for NTL detection
in a dataset collected from an electric company operating in Hon-
duras. They have used under-sampling and over-sampling strate-
gies to handle the imbalance ratio of fraud and non-fraud instances.
Additionally, eight performance evaluation metrics are used to com-
pare performances of the classifiers. The metrics include accuracy,
recall, precision, specificity, AUC, Fβ, F1 and Matthews Correlation
Coefficient (MCC). However, the paper does not discuss the rela-
tionships between these metrics specifically for NTL detection. These
relationships may be used to find appropriate combination of met-
rics for NTL detection. A total of 49 features are used to test the
classifiers but the paper does not discuss any feature selection strat-
egy deployed. The paper concluded that the oversampling strategy
produced better results. The authors of (Nagi et al., 2010) have used
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SVM to identify NTL in a dataset that is having a highly uneven dis-
tribution of class labels. They have claimed a hit rate increase from
3% to 60%. This work is focused on identification of NTL where
abrupt changes of users’ consumption patterns are found but does
not discuss situations where changes are observed gradually. It com-
pares the results of NTL using accuracy and hit rate but does not
discuss any relation between them.

Hybrid of Supervised and Unsupervised Learning

Some of the authors have applied supervised and unsupervised learn-
ing as a sequence of operations to deal with NTL. For example, in
(Guerrero et al., 2018), the authors have taken a dataset of a Span-
ish electricity supply company and performed two modules. In the
first module, they have used artificial neural networks to filter the
consumers in a pre-processing step. In the next module, they have
tested classification and regression tree (supervised learning) along
with Self Organizing Maps (SOM), which is a technique used in un-
supervised learning. The authors have claimed a three times rise of
accuracy as compared with manual inspection. Similarly, authors
of (Peng et al., 2016) have performed a mixture of unsupervised and
supervised learning techniques in a dataset collected from a Chinese
electric company. In the first step, they have performed k-means
clustering algorithm to form different clusters of consumers based
on their consumption patterns. In the second step, they have per-
formed a reclassification step by applying decision tree, random for-
est, SVM and KNN to the filtered consumers obtained from the first
step. The paper concludes that the classification step overcomes the
weaknesses that appeared in the clustering step.

A score-based approach is used in (Terciyanli et al., 2017), which
combines fuzzy clustering and fuzzy classification. The authors have
used three steps for the detection of NTL. The first step comprises of
assigning three different scores to each consumer using fuzzy clus-
tering. The second score represents the change in the usage trend for
the consumer. This change is recorded using membership matrices.
The third score represents the deviation of the monthly consump-
tion from the expected consumption. If the difference between the
expected and real consumption profile passes a specific threshold,
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the consumer is shortlisted as a potential fraudster and an on-site
inspection is recommended for a possible NTL detection. This work
is performed on a small dataset of an electric supplier in Turkey.
However, the paper does not use any of the known performance
evaluation metrics.

2.1.1.2 Additional Data Profile

Some authors have also tested merging consumption data with some
additional data like data related to environment and temperature.
For example, in (Hartmann et al., 2015), the authors have merged
weather data with different consumption profiles which are based
on time and type of customers (i.e., residential or industrial). This
work is performed on a dataset collected from Creos Luxembourg,
the electricity operator in Luxembourg. The authors have created
multiple consumption profiles for each customer based on time, e.g,
monthly, weekly and daily profiles and used them in live machine
learning for consumer classification. Based on probability distribu-
tion and confidence rate, if a customer’s consumption value sur-
passes the threshold, the system generates an alert for a possible
NTL detection. The authors have claimed that the additional data
coupled with live machine learning and maintaining multiple con-
sumer profiles has helped reduce false positive rate (FPR). The re-
sults are evaluated using accuracy, precision, recall and F1 score.

2.1.2 Network-Based Techniques

Some interest has been developed in using network data to identify
potential NTL. For example, Chauhan et al. (Chauhan, 2015) have
proposed a framework to monitor current between poles. Given a
constant voltage, the current between the poles will remain almost
the same. If there is a large difference between the current readings
of two poles, then it indicates that there is a possible unlawful con-
nection between the poles. To some extent, this method can iden-
tify unlawful meter bypassing but it can not detect NTL which is
caused by slowing down meters or wrong meter readings. The au-
thors have not used any performance evaluation metric. A similar
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strategy is proposed in (Han and Xiao, 2014). The paper has pro-
posed to install an observer meter for a community. A mathematical
expression is also proposed, which calculates the difference between
the billed amount of electricity and the total amount of consumed
electricity. The observer meter is used to calculate the total electric-
ity provided. This approach can be applied in AMI systems as well
as in traditional grid systems. The authors have argued that this
can help in detecting tempered meters from non-tempered meters.
However, this solution can filter a locality where NTL is occurring
but it fails to identify the specific consumers responsible for NTL.

In (Mutupe et al., 2017), the authors have proposed to remotely
detect NTL by monitoring the difference between the electricity dis-
tributed and the electricity consumed. The electricity consumed at
the consumer end is monitored by radio transceivers and communi-
cated back to the distribution pole using Wi-Fi space. If the differ-
ence between the distributed and used electricity passes a certain
threshold, a potential NTL is identified for an on-site inspection.
This work is implemented in Eskom, the electric supply company in
South Africa. However, this framework fails to identify NTL caused
by meter bypassing. Moreover, a heavy cost is also associated with
the installation of radio transceivers at every consumer’s meter.

Another approach to detect NTL in neighborhood area for smart
grids is discussed in (Xia et al., 2015). The authors have proposed
a difference comparison-based inspection algorithm which uses bi-
nary inspection tree to calculate the difference in the amount of elec-
tricity stolen from a node to its child. The characteristics of binary
search tree enables the algorithm to skip large amount of nodes which
are useless to check. This helps in quickly identifying malicious me-
ters. The algorithm keeps track of stolen electricity in the associated
sub-tree of a node which helps in probing the next node.

2.1.3 Hybrid Techniques

Efforts have been made to combine the consumption data and net-
work data in a bid to better achieve NTL detection results. In (Meira
et al., 2017), the features are divided into four categories with re-
spect to time, geography, similarity of consumption profile and in-
frastructure. Random forest, logistic regression and SVM are tested
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with different proportion of NTL ranging from 10% to 90% across
all four categories. Results are compared using area under the curve
(AUC). The results obtained from the consumption category are bet-
ter than the results obtained from the infrastructure category. The
paper concludes that predicting NTL using the raw data from con-
sumption profile is better than using a combination of consumption
and network data. The authors have also claimed that consumption
downfall is not the only pattern of NTL rather an increasing con-
sumption pattern can still be a good candidate for NTL. As AUC is
the only metric used to evaluate performance of the classifiers, the
relationships between different metrics can not be identified for NTL
detection. In (Buevich et al., 2016), the authors have discussed two
different techniques that separate NTL from the overall losses in an
electric grid. One of them, the model-driven technique considers
the examination of state of meters and the grid, packet losses and
line losses. A large deviation of a specific meter in the regression
indicates a possibility of NTL. The other technique, the data-driven,
evaluates NTL using a classifier SVM on a synthetic data of different
households. The authors have used true positive rate (TPR) and true
negative rate (TNR) as the performance evaluation metrics. The au-
thors have argued that the first technique helps to evaluate the grid,
while the second technique gives an estimation of true positive rates
(TPR) and true negative rates (TNR) with respect to different levels
of NTL. The paper concluded that consumption data requires less
configuration, which makes it relatively easier to implement.

Zhou et al. (Zhou et al., 2014) proposed a load profiling tech-
nique, which uses advantages of the two approaches for customer
classification. One of the approaches is based on geographical loca-
tion. Customers are grouped together on the basis of similar locality.
The other approach is based on similar consumption patterns ex-
hibited by the customers. These customers are then grouped in the
same category. The authors have combined these two approaches
to categorize customers on the basis of similar customers on sim-
ilar region using the firefly algorithm (Yang et al., 2008) to detect
NTL. They have performed experiments on the data collected from
a power supply company in China. Accuracy is the only metric used
to evaluate the performance. Thus, no comparison can be made with
other metrics used for NTL detection.
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2.2 Taxonomy and Summary of the Literature
Review

Some of the contributions of the thesis is the derivation of a complete
taxonomy for the strategies of NTL detection as described in Figure
2.2 and the literature review which is summarized in Table 2.1. The
table contains the category, the referenced paper, the technique used,
the performance evaluation metric used and limitations of the cited
paper, if any.

TABLE 2.1: Summary of the Literature Review

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

Un-
Sup.
Learn-
ing

(León et
al., 2011)

Association
rule min-
ing

support,
confi-
dence, TP,
TN, FP
and FN

The paper has
not discussed
about the strat-
egy used for
feature selec-
tion process

(Singh
and Yas-
sine, 2018)

Association
rule min-
ingresults
outper-
formed
SVM and
MLP

(Sánchez-
Zuleta,
Fernández-
Gutiérrez,
and
Piedrahita-
Escobar,
2017)

Benford
curve, hi-
erarchical
clustering
and MDS
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TABLE 2.1: Summary of the Literature Review (Cont.)

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

(Sharma et
al., 2017)

LOF,
DBSCAN

Silhouette
coeffi-
cient and
Davies
Bouldin
index

has not com-
pared results
of metrics with
other clustering
algorithms

(Zheng et
al., 2017)

Distance
matrix,

AUC,
accuracy
and F1
measures

(Avila,
Figueroa,
and Chu,
2018)

Signal
processing
technique,
a smooth-
ing spline
function,
under-
sam-
pling and
outlier
detection

Seven per-
formance
metrics

(Sharma
and Singh,
2015)

DBMSCAN Silhouette
coefficient

(Júnior et
al., 2016)

OPF,
anomaly
detection

Accuracy,
F-Measure
and stan-
dard
deviation

has not dis-
cussed any
feature selec-
tion technique

(Yeckle
and Tang,
2018)

Seven dif-
ferent out-
lier detec-
tion tech-
niques

AUC
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TABLE 2.1: Summary of the Literature Review (Cont.)

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

(Ramos et
al., 2016)

BHA Mean
accuracy
rates

has not dis-
cussed feature
relevance of
each feature

(Ramos et
al., 2011b)

Harmony
search and
OPF

Accuracy Accuracy for
Imabalanced
dataset is not a
good metric

(Ramos et
al., 2011a)

Harmony
search,
PSO and
gravi-
tational
search

The authors
have not de-
scribed the
details of clas-
sifiers and their
performance
evaluation for
NTL detection

Sup.
Learn-
ing

(Zheng et
al., 2018)

Wide and
deep CNN

AUC

(Ford,
Siraj, and
Eberle,
2014)

ANN TP, TN, FP
and FN

(Cody,
Ford, and
Siraj, 2015)

M5P deci-
sion tree

RMSE
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TABLE 2.1: Summary of the Literature Review (Cont.)

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

(Coma-
Puig et al.,
2016)

Naive
Bayes,
KNN,
decision
trees,
neural
networks,
SVM,
random
forest and
AdaBoost

Precision

(Bhat et
al., 2016)

CNN,
auto en-
coders
and long
short-term
memory
networks

precision,
recall, F1
and ROC

(Chatterjee
et al.,
2017)

RNN Accuracy Accuracy for
Imabalanced
dataset is not a
good metric

(Spirić,
Stanković,
and Dočić,
2018)

Fuzzy
logic

TP Only percent-
age success is
the metric used

(Viegas,
Esteves,
and
Vieira,
2018)

Fuzzy
logic

TPR and
FPR
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TABLE 2.1: Summary of the Literature Review (Cont.)

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

(Glauner
et al.,
2016a)

Boolean
rules,
fuzzy
logic and
SVM

TP, TN, FP,
FN, recall
and speci-
ficity

The relation-
ships that may
exist between
these metrics
regarding NTL
detection are
not sufficiently
discussed.

(Punmiya
and Choe,
2019)

CatBoost,
LGBoost
and XG-
Boost

FPR The dataset is
synthesized
with equal
positive and
negative class
representations

(Di Mar-
tino et al.,
2012)

Ensemble
of one-
class
SVM, CS-
SVM, OPF
and C4.5

accuracy,
recall, pre-
cision and
F value

Has not dis-
cussed the
impact of using
these met-
rics for NTL
detection

(Figueroa
et al.,
2017)

Random
oversam-
pling and
under-
sampling,
linear
SVM,
non-linear
SVM and
MLP

accuracy,
recall,
precision,
specificity,
AUC, Fβ,
F1 and
MCC

Has not dis-
cussed any
feature selec-
tion strategy

(Nagi et
al., 2010)

SVM Hit ratio
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TABLE 2.1: Summary of the Literature Review (Cont.)

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

Semi-
Sup.
Learn-
ing

(Júnior et
al., 2016)

OPF,
anomaly
detection

Accuracy,
F-Measure
and stan-
dard
deviation

has not dis-
cussed any
feature selec-
tion technique

Hybrid
of
Super-
vised
and
Unsu-
per-
vised
Learn-
ing

(Guerrero
et al.,
2018)

ANN,
regression
tree and
SOM

Accuracy

(Peng et
al., 2016)

K-means
clustering
with DT,
RF, SVM
and KNN

Load
curves,
cluster
evaluation
indices
and com-
puting
time

(Terciyanli
et al.,
2017)

Fuzzy
clustering
and fuzzy
classifica-
tion

No metric
is used

The results
are not eval-
uated using
any known
performance
evaluation
metric
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TABLE 2.1: Summary of the Literature Review (Cont.)

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

Add.
Data
Profile

(Hartmann
et al.,
2015)

Live ma-
chine
learning
on merged
data of
electric-
ity and
weather

Probability
distribu-
tion, con-
fidence
rate, FPR,
precision,
recall and
F1

Network-
Based
Tech-
niques

(Chauhan,
2015)

Monitoring
of current
flow be-
tween
poles

No metric
is used

NTL caused
by slowing
down meters
or wrong meter
reading can not
be identified

(Han
and Xiao,
2014)

Installation
of ob-
server
meter

It can filter the
locality of NTL
but fails to pin-
point specific
consumer

(Mutupe
et al.,
2017)

Installation
of radio
transceivers
and Wi-Fi
space

IT can not
detect NTL
caused by me-
ter by-passing.
Heavy cost is
also associated

(Xia et al.,
2015)

Binary
inspection
tree

Comparison
of inspec-
tion steps

Hybrid
Tech-
niques

(Meira et
al., 2017)

RF, lo-
gistic
regres-
sion and
network
data

AUC
curve

The relation-
ships between
different met-
rics can not be
identified for
NTL detection
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TABLE 2.1: Summary of the Literature Review (Cont.)

Category Articles Classifiers
/ Strategy

Eval.
Measures

Limitations

(Buevich
et al.,
2016)

State ex-
amination
of meters
with SVM

TPR and
TNR

(Zhou et
al., 2014)

Firefly
algorithm
uses geo-
graphical
infor-
mation
and con-
sumption
profile

Accuracy No comparison
can be made
with other met-
rics used for
NTL detection

2.2.1 Limitations

There have been many attempts to bring down NTL in different
companies, regions and countries. A good success in identifying
NTL is achieved by applying different machine learning classifiers.
Different performance metrics are used to evaluate how good or bad
the classifier is in predicting NTL. However, not much has been dis-
cussed about the relationships that exist between these performance
metrics with respect to NTL. There is still a need to highlight perfor-
mance evaluation metrics that are specifically suitable in evaluating
machine learning classifiers for NTL problem.

One of the most important ingredients in solving a machine learn-
ing problem is the data used to solve the problem. Not only rele-
vant records are important for correctly predicting the class labels
but identifying relevant features are equally important. For NTL
detection, efforts have been made in identifying and representing
relevant records by addressing the issue of class imbalance but no
such focus has been made in identifying relevant features. There is a
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FIGURE 2.2: Taxonomy for strategies of NTL detec-
tion



Chapter 2. State of the Art Methodologies in NTL Detection 34

need to develop a strategy that can systematically identify and select
relevant features in the dataset before it is used for NTL detection.

A detailed comparative study of the machine learning classifiers
on some real dataset for NTL detection is still missing. It should
not only cover the impact of using the real dataset but it should also
contain comparative results on the performance of different metrics
using different machine learning classifiers.

2.2.2 Terms and Definitions

This section contains a detailed theoretical description of all the clas-
sifiers and the performance evaluation metrics used in this thesis.

2.2.2.1 Naive Bayes Classifiers

All classifiers belonging to this type use Bayes’ algorithm along with
a ‘Naive’ assumption regarding the class conditional independence.
The definition of Bayes’ theorem as described in (Rish et al., 2001) is
as follows:

P(C = i|X = x) =
P(X = x|C = i)P(C = i)

P(X = x)
(2.1)

where P(C = i|X = x) is the class posterior probability given the
feature vector X. Notice that P(X = x) is the same for all classes and
thus can be ignored. Thus, Equation 2.1 is reduced to the following
equation:

P(C = i|X = x) = P(X = x|C = i)P(C = i) (2.2)

When the number of features is too many, computing P(X = x|C =
i) becomes exponentially expensive. For this reason, assumption of
the class conditional independence is made. This assumption states
that the features are independent of each other, which means that
the values of one feature is not dependent on the values of any other
feature. This assumption simplifies the Equation 2.2 to the following
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equation:

P(C = i|X = x) =
n

∏
j=1

P(Xj = xj|C = i)P(C = i) (2.3)

Although this assumption is over-simplified, Naive Bayes (NB) still
performs better on many real datasets. Zhang et al. (Zhang, 2004a)
have explained why NB performs better with such an over-simplified
assumption. They have argued that for a dataset with features hav-
ing a high class conditional dependencies, NB can still perform bet-
ter as long as the dependencies are well distributed among classes or
if they cancel out each other. Different classifiers use NB approach,
while the difference between them is the assumption they use for
finding the posterior probability P(Xj = xj|C = i), where xj is the
jth feature and C = i is the ith class label. We have used Gaussian
Naive Bayes (John and Langley, 1995) and Bernoulli Naive Bayes
(McCallum, Nigam, et al., 1998) classifiers in our simulation.

2.2.2.2 LDA and QDA

Linear Discriminant Analysis (LDA) and Quadratic Discriminant
Analysis (QDA) (Srivastava, Gupta, and Frigyik, 2007), (Balakrish-
nama and Ganapathiraju, 1998) belong to a separate type of super-
vised machine learning classifiers. As their names suggest, LDA
generates linear decision boundaries and QDA generates quadratic
decision boundaries. These classifiers are used in practice due to
their advantage of multi-class support, computationally less expen-
sive with no requirement of hyper-parameter tuning.

The difference between the two classifiers is that LDA uses the
same co-variance matrix for all classes while QDA computes sepa-
rate co-variance matrix for each class. Thus, at one hand, QDA is
computationally expensive as compared to LDA but on the other
hand it is more flexible and informative with respect to decision
boundaries. In general, LDA works better with a small training set
and thus has a low variance, while QDA performs better with a large
training set and thus has a high variance.
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2.2.2.3 Generalized Linear Models

In this type, we have chosen logistic regression to simulate on our
data. Unlike its name, logistic regression is used for classification
instead of regression. The mathematical notation for logistic regres-
sion model (Ng, 2004) is given in Equation 2.4.

ŷ(w, x) = w0 + w1x1 + ... + wnxn (2.4)

where ŷ is the predicted value, x = (x1, x2, ..., xn) is the feature vec-
tor, w = (w1, w2, ..., wn) is the coefficient vector and w0 is the inter-
cept.

For a binary classification, the value of ŷ must be between 0 and
1. For this, a conversion function sigmoid is used. The mathematical
notation of sigmoid is given in Equation 2.5.

s = σ(w0 + w1x1 + ... + wnxn) = σ(z) =
1

1 + e−z (2.5)

where s is the sigmoid function. For a large positive value of z, s = 1
and for a small or large negative value of z, s = 0 and for z = 0,
s = 0.5. The objective of logistic regression is to minimize the error
between actual and predicted values. To quantify this error, a loss
function is used, which is further regularized by different regular-
izing schemes in order to minimize the error. Detailed analysis on
regularizing schemes can be found in (Ng, 2004).

2.2.2.4 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD) (Zhang, 2004b) is a type of lin-
ear models that has a support of classification as well as regression.
SGD is particularly attractive for problems having large number of
observations and large number of features. Despite dealing with
large data and high dimensionality, SDC is efficient and offers many
options for tuning parameters like number of iterations and regu-
larization parameters. However, one of the prerequisites of using
SGD is that the data must be normalized before use which means it
is sensitive to scaling. We have used SGD classifier in our simula-
tion, which offers a lot of options for loss functions and their penal-
ties. A training sample looks like (x1, y1), (x2, y2), ..., (xn, yn), where
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xi ∈ Rm and yi ∈ {−1, 1}. Let us take a linear function which we
want to learn

f (x) = wTx + b (2.6)

where w ∈ Rm and b ∈ R is the intercept. The training error, as
described in (Zou and Hastie, 2005), is evaluated using Equation
2.7:

E(w, b) =
1
n

n

∑
i=1

L(yi, f (xi)) + αR(w) (2.7)

where L is the loss function that estimates the difference between
the expected and the actual output, R is a regularization step used
to penalize on occurrence of error and α > 0 is a hyper-parameter.
The two most commonly used regularization choices are L1 and L2
regularizations, given in Equations 2.8 and 2.9:

L1 Regularization =
n

∑
i=1
|wi| (2.8)

L2 Regularization =
1
2

n

∑
i=1

w2
i (2.9)

2.2.2.5 Support Vector Machine

Vapinik has proposed the Support Vector Machine (SVM) classifier
(Hearst et al., 1998) that creates a margin between the two classes
and tries to maximize this margin. This type of classifier is a set of
machine learning methods which offers support for outlier detec-
tion, regression and classification. SVMs are widely used in the field
of data mining (Awais, Badruddin, and Drieberg, 2017; Raza et al.,
2019) due to their high predicting power and reliability in super-
vised machine learning problems. The main strengths of SVM are
its effectiveness on high dimensional data and on datasets where
the number of features is greater than the number of observations,
less memory consumption due to the use of support vector (which is
a subset of training observations and not the whole training set) and



Chapter 2. State of the Art Methodologies in NTL Detection 38

the use of a variety of kernel functions which are used in the deci-
sion function. However, for a dataset where the difference between
the number of features and number of observations is too big, SVM
tends to overfit the model. Another associated disadvantage is that
probability estimates are not calculated by SVM directly rather they
can be calculated by some other costly operations.

SVM constructs an optimal decision function f (x) that can pre-
dict unseen instances with high accuracy as given in Equation 2.10
where sgn(g(x)) is the boundary between the positive and negative
classes (Vapnik, 1999).

f (x) = sgn(g(x)) (2.10)

The expected error in classification is calculated using Expression
2.11 where R is the expected error, t is the training errors, n is the
number of training samples, h is the dimension of the set of hyper-
planes and η is the confidence metric (Vapnik, 1998).

R <
t
n
+

√
h
(
ln
(2n

h
)
+ 1
)
− ln

( η
4

)
n

(2.11)

SVM needs a comparatively smaller number of training samples.
Therefore, unlike neural networks (Cao and Tay, 2003), it is less
prone to getting struck with the problem of overfitting. Mapping
of input to higher dimensions requires setting up of kernel for only
a few thousands of training samples (Chang and Lin, 2011). This is a
major concern in dealing with big datasets. To overcome this prob-
lem, linear SVC (Pedregosa et al., 2011a) uses linear kernel settings
to make the data linearly separable. We have used linear SVC in our
simulations.

2.2.2.6 Decision Trees

Decision Trees (DT) are a set of machine learning methods used in
classification and regression. The data provided to the decision tree
is used to infer if-then-else rules. These rules become complex with
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the increase in depth of the tree. The strength of decision trees in-
clude its simple interpretation of the rules, no requirement of data
normalization, computationally less expensive and handling of nu-
merical as well as categorical data. However, its weaknesses include
creation of over-complex tree in some cases resulting in overfitting,
instability of the tree when new data is added and the problem of
NP-completeness for an optimal decision tree. Different flavors of
decision trees are available like ID3, C4.5, C5.0 and CART. These
algorithms differ in handling categorical and numerical data along
with pruning of if-then-else rules (Tsang et al., 2011).

2.2.2.7 Neural Network Model

The Neural Network (NN) model offers Multi-layer Perceptron (MLP)
classifier which is vastly used for classification. The objective of
MLP classifier is to learn a function f (.) : Rm → Rn with a feature
set X = x1, x2, ...xm and an output y where m is the number of fea-
tures and n is the number of values for the output y. The difference
between MLP classifier and logistic regression is that MLP classifier
can have one or more hidden layers between input and output lay-
ers. The input layer transforms the input to the hidden layers where
a linear summation like w1x1 + w2x2 + ... + wmxn occurs. The out-
put layer takes the input from the hidden layer and converts it to
the output values using the sigmoid function. The main advantage
of using the MLP classifier is its compatibility with non-linear mod-
els. However, it requires a number of hyper-parameters to be tuned
(Rumelhart, Hinton, Williams, et al., 1988).

2.2.2.8 Nearest Neighbors

This type belongs to a set of supervised and unsupervised machine
learning methods which are based on calculating distances from the
neighbors (Goldberger et al., 2005). This technique is widely used in
solving many real-world problems like physical activity classifica-
tion (Awais, Palmerini, and Chiari, 2016). In nearest neighbors, both
classification and regression are supported. The key idea of near-
est neighbors is to find a predefined (k) number of training obser-
vations which are closest to the new observation and then find the
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value of the output variable y for this new observation based on the
nearest neighbors. There are many metrics used to find the distance
between neighbors. The most commonly used metric is standard
Euclidean method. Generally, the success ratio of nearest neighbors
is high for classification problems having irregular decision bound-
aries.

The main functionality of this classifier works slightly different
than other learning techniques. KNN does not use the parameter
of weight rather it is a record-based approach which uses k nearest
training samples to predict the value of the target variable.

Let p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) be the two sam-
ples.

The distance between the two samples is calculated using Equa-
tion 2.12.

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2 (2.12)

A test sample is assigned the class which is the most frequent in
the K-nearest samples. The disadvantage associated with KNN is
that as it is a record-based learning procedure, with the increase of k
the time required to predict a test sample increases. The advantage
of using KNN is that it does not depend on any other element, thus
the runtime for prediction can be decreased by allocating different
cores or nodes for parallel execution (Altman, 1992).

2.2.2.9 Ensemble Methods

Ensemble methods combine the predicted results of multiple base
estimators. This way the results are improved as compared to some
individual estimator. There are two main streams of ensemble meth-
ods. The first stream includes techniques which take into account
results from many individual estimators and combine their results
using average. This way the combined results of individual esti-
mators turn out to be better as compared to the results of individual
estimators. Examples of this stream are bagging and random forests.
The second stream includes techniques which combine many weak
estimators in order to get a powerful result of an ensemble. This in
turn also reduces the bias. Examples of this stream are AdaBoost,
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CatBoost, LightGBM and XGBoost. To test the behaviors of both
streams, we have experimented with random forest, AdaBoost, Cat-
Boost, LightGBM and XGBoost in our simulations.

AdaBoost is a technique to repeatedly apply new data to weak
estimators (Freund and Schapire, 1997). This includes increasing
weights for the training observations that had wrong predictions
and decreasing weights for the training observations that had cor-
rect predictions. This way, with every new iteration, the estimator
is restricted to concentrate on those training observations that had
wrong predictions in the previous iteration.

A random forest comprises of multiple individual decision trees
(Liaw, Wiener, et al., 2002a). For each tree, a separate set of train-
ing examples is selected. Using this approach, the problem of over
fitting in imbalance datasets is avoided. On the testing phase, the
final outcome of a sample is evaluated by using the majority voting
scheme from among all the individual decision trees. Another ad-
vantage of using this approach is that as different training examples
are used in every decision tree, variable number of nodes or cores
can be used for training (Ho, 1995).

Derived from the terms ’Category’ and ’Boosting’, CatBoost is
an open-source machine learning algorithm (Prokhorenkova et al.,
2018). The term ’Category’ refers to the fact that it handles cat-
egorical features on its own. Other machine learning techniques
require pre-processing steps to convert categorical data into num-
bers but CatBoost requires only the indices of categorical features.
It then automatically performs one-hot encoding to transform the
categorical data into numerical data (Dorogush, Ershov, and Gulin,
2018). The term ’Boost’ refers to the fact that it is based on gradient
boosting algorithm which itself is widely used in different machine
learning problems like recommendation systems, fraud detection,
forecasting, etc. Moreover, unlike deep learning, CatBoost does not
require huge datasets for extensive training. Despite having a num-
ber of hyper-parameters like regularization, learning rate, number of
trees, tree depth, etc., CatBoost does not require exhaustive hyper-
parameter tuning which reduces the likelihood of overfitting.

CatBoost uses three steps to transform categorical features hav-
ing a number of categories greater than a specified number into nu-
merical features.
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1. The set of input observations are randomly permuted multiple
number of times.

2. The label values are transformed from categorical or floating
point to integer values.

3. The categorical features are transformed to numerical features
using the formula given in Equation 2.13:

Average_target =
InClassCounter + Prior

TotalCounter + 1
(2.13)

where InClassCounter represents the number of times the class label
is 1 for all those records having the current feature value. Prior is the
starting value for the numerator and is defined during initialization
of parameters. TotalCounter is the total number of records (up to the
previous record) having the same categorical value as that of the
current categorical value.

Suppose Class-Bill is a feature that contains categorical values
representing the category of the consumer. The feature can contain
three categories namely home, industrial or government. Table 2.2
shows the observations after applying random permutation. Table
2.3 shows the transformed categorical values of Class-Bill into nu-
merical values using Equation 2.13. In this case, we have set Prior to
0.05.

TABLE 2.2: Observations after applying random
permutation

Records Class-Bill Class Label
1 Home 0
2 Industrial 0
3 Home 1
4 Home 1
5 Government 1
6 Industrial 1
7 Home 0

Light Gradient Boosting Machine (LGBoost) is another gradient-
based boosting algorithm which uses decision trees (Ke et al., 2017).
Like CatBoost, it is used in many machine learning problems in-
volving classification and prediction. Instead of level-by-level tree
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TABLE 2.3: Observations after transforming cate-
gorical data into numerical values

Records Class-Bill Class Label
1 0.05 0
2 0.05 0
3 0.025 1
4 0.35 1
5 0.05 1
6 0.025 1
7 0.5125 0

growth, LightGBM uses depth-first approach in splitting the tree
which may cause an increase in complexity and overfitting. To avoid
this disadvantage, maximum depth of the tree can also be set. The
training time of LightGBM is significantly improved as it converts
continuous feature values into discrete bins using a histogram ap-
proach. However, it is not advisable to use LightGBM for smaller
datasets as it tends to overfit them.

Extreme Gradient Boost (XGBoost) (Chen and Guestrin, 2016) is
another boosting-based machine learning algorithm. Unlike Cat-
Boost, it does not transform categorical data into numbers by its
own. Consequently, before applying XGBoost, a pre-processing step
must include encoding techniques like one-hot encoding, mean en-
coding or label encoding to convert categorical features into numeri-
cal features. It also has a built-in feature of handling missing values.
A specific parameter is reserved to supply a different value than the
usual values which is used by the algorithm when it encounters a
missing value.

Table 2.4 shows a comprehensive comparison between KNN, SVM
and random forest. These three classifiers, used in Chapter 4, are
compared on the basis of the number of training samples, the us-
age of distance function, hyper plane or decision trees, and parallel
processing.

2.2.3 Evaluation Metrics

This section contains a detailed theoretical description and formulae
of all the performance evaluation metrics used in this thesis.
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TABLE 2.4: Comparison of KNN, SVM and ran-
dom forest

KNN SVM Random forest
No. of training samples Very Small Small Large
Uses distance function

√
× ×

Construct a hyper plane ×
√

×
Uses decision trees × ×

√

Occurrence of over fitting
√

× ×
Parallel processing

√
×

√

One of the most common performance evaluation metric used
for classifiers is accuracy. It gives a measure that how accurately the
classifier has predicted TP and TN. It tends to get failed for imbal-
anced datasets where the user preference is towards the FP and FN.
For example, talking about NTL, 99% of electric consumption is a
normal usage and only 1% of consumption is a theft case. Now if
a classifier correctly predicts all 99% of normal usage and does not
predict the remaining 1% of theft usage, accuracy will be measured
as 99%. In reality, the classifier was not performing well because it
failed to predict the theft class. Equation 2.14 is used to calculate
accuracy.

Accuracy =
TP + TN

TP + FN + FP + TN
(2.14)

Due to lack of handling measure of predicting FP and FN, other mea-
sures are derived which either take care of both classes separately or
handle the least represented class more accurately. These are dis-
cussed through Equations 2.15-2.20.

TruePositiveRate(Recall) =
TP

TP + FN
(2.15)

TrueNegativeRate(Speci f icity) =
TN

TN + FP
(2.16)

FalsePositiveRate =
FP

TN + FP
(2.17)

FalseNegativeRate =
FN

FN + TP
(2.18)
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PositivePredictiveValue(PPV)orPrecision =
TP

TP + FP
(2.19)

NegativePredictiveValue(NPV) =
TN

TN + FN
(2.20)

True Positive Rate (TPR) or recall is the measure of total number of
thieves correctly classified as thieves by the classifier. Recall is also
called as sensitivity. As we want to minimize FN, by Equation 2.15
minimizing FN will maximize recall. This gives an indication that
NTL requires a high recall model. The higher the recall, the better it
is for NTL. On the other hand, by equation 2.19 we see that if pre-
cision is low, the model can still tolerate because it does not need a
high precision. True Negative Rate (TNR) is also called as specificity.
It is a measure that shows how many of the total negative instances
were correctly classified as negative. False Positive Rate (FPR) is the
measure of total number of normal consumers wrongly predicted
as thieves. False Negative Rate (FNR) is a measure that out of to-
tal positive instances how many were wrongly classified as nega-
tive. Positive Predictive Value (PPV) or precision is the measure that
out of the total predicted positive class instances how many were
classified correctly as positive. Negative Predictive Value (NPV) is
the measure that out of total predicted negative class instances how
many were correctly classified as negative.

Fβ =

(
1 + β2) Recall × Precision
β2 × Precision + Recall

(2.21)

Fβ, as shown in 2.21, is another metric that is used for evaluation
of classifiers in imbalance datasets (“A Survey of Predictive Mod-
eling on Imbalanced Domains”). It uses recall (completeness) and
precision (exactness) where β is a coefficient used to set the priority
between recall and precision. For β = 1, both recall and precision
have the same priority. If β is set to a value greater than 1, recall gets
the high weightage and if it is set to a value smaller than 1, precision
gets the high weightage. Usually people use value 1 when dealing
with imbalance domain. We have tested two different values of β,
i.e. with β = 1 and with β = 1.5. The latter case sets the priority
of recall higher than precision. When both recall and precision are
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high, the value for Fβ becomes high.

ArithmeticMean =
(Precision + Recall)

2
(2.22)

HarmonicMean =
2× Precision× Recall

Precision + Recall
(2.23)

G−Mean =
√

Sensitivity× Speci f icity (2.24)

Arithmetic mean is the average of precision and recall measure as
shown in Equation 2.22. It is rarely used as evaluation metric for
imbalance datasets as it does not give an insight to the two perfor-
mance measures. Instead, harmonic mean is preferred which is pre-
sented in Equation 2.23. Seeing the equation, it is obvious that it is
always less than the arithmetic mean of the two. In fact, harmonic
mean is closer to the smaller of the two values. So if harmonic mean
is high, that is an indication that both precision and recall are high
(Sun et al., 2007). Fβ = 1 is the harmonic mean of precision and re-
call. Geometric mean (G-Mean), presented in Equation 2.24, is used
when performance measure of both TPR and TNR is of concern. It
is a measure that how good the classifier is for both classes.

Dominance = TPR− TNR (2.25)

In (García, Mollineda, and Sánchez, 2008), a new performance mea-
sure, dominance, was proposed. It gives a measure of dominance
between the positive and the negative classes. Seeing Equation 2.25,
it can be deduced that it ranges between −1 and +1. A value close
to +1 indicates good accuracy of the classifier for the positive class
and a value close to −1 depicts good accuracy of the classifier for
the negative class.

2.2.4 Summary

In this chapter, we discussed a thorough literature survey in NTL
detection. The activities performed in recent years were highlighted
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and summarized in a summary table. Moreover, a complete taxon-
omy for the strategies of NTL detection was also presented. More-
over, it highlighted the limitations identified in NTL detection. Fi-
nally, the chapter included the theoretical description and the nec-
essary mathematical representation of all the classifiers and the per-
formance evaluation metrics used in this thesis.
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Chapter 3

Data Collection and
Pre-Processing

3.1 Proposed Methodology

A set of certain pre-processing steps are required in order to trans-
form the raw data into a form suitable for data analytics. This in-
cludes data collection, data munging, feature selection, data merg-
ing and feature scaling. In the following sub-sections, a description
of every step can be found. The methodology is presented in Figure
3.1.

Data Munging/ 

Record Selection

Selected 

Features

PRC Data about 

Risky Customers

Feature Selection

Merged data

Scaling for 

Feature 

Normalization

Pre-

processed 

Data

Data Merging

Monthly 

Consumption 

Records

Raw Data

FIGURE 3.1: Proposed methodology for NTL detec-
tion
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3.1.1 Data Collection

Relevant data is the most important ingredient for a success or a
failure of a solution to a problem. Percentage of success is increased
with the increase of relevancy of data. For NTL detection problem, a
major constraint is access to real data. For a power supply company,
the client’s data must be secured. For this reason, no real data is
freely available from power supply companies. For NTL detection,
access to real data becomes more important due to the fact that only
real data can give real insights to the occurrences of NTL. On the
other hand, synthesized data has its own limitations as it does not
represent real instances. There have been many attempts for NTL
detection in synthesized data. The techniques used to synthetically
produce instances of NTL include decreasing the units consumed or
decreasing the amount billed. However, in real-life, many factors
affect the occurrences of NTL like the neighborhood area, amount of
load shedding, the billed amount, etc. These factors are ignored in
synthetically built data.

We have collected a dataset from an electric supply company in
Pakistan. The collected data contains monthly consumption records
of consumers which range between January 2015 and March 2016.
It comprises of 80, 244 monthly consumption records. For privacy
reasons, we have changed the feature names and have omitted the
clients’ details. The dataset is randomly split into train and test sets
with the ratio of 80% and 20%, respectively. The training set con-
tains 64, 195 records out of which 61, 456 are normal records with no
theft and 2, 739 are abnormal records where the users have commit-
ted stealing of electricity. The test set contains 16, 049 records out
of which 15, 366 are normal consumption records and 683 records
contain NTL. The percentage of NTL in both sets is 4%.

As the number of normal users is always much greater than the
number of abnormal users (thieves), this data is considered imbal-
anced and biased towards major representation of normal users.
This behavior is shown in Figure 3.2 and a detailed characteristic
chart of train and test data is presented in Table 3.1.
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96%

4%

Training Set

Normal Consumption Theft cases

96%

4%

Test Set

Normal Consumption Theft cases

FIGURE 3.2: Imbalanced Data Representation

TABLE 3.1: Data Characteristic Chart

Sr. No Parameter Unit
1 Number of observations 80244
2 Number of features 71
3 Train percent split 80%
4 Test percent split 20%
5 Train size 64195
6 Test size 16049
7 Normal consumption in Train set 61456
8 Theft cases in Train set 2739
9 Normal consumption in Test set 15366
10 Theft cases in Test set 683
11 Percentage theft in Train set 4.45%
12 Percentage theft in Test set 4.44
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3.1.2 Data Munging

Not every consumption record is useful in identifying NTL. Some
records may contain many NULL entries while others may contain
data which is not suitable for the identification of NTL. For this rea-
son, a subset of records should be built before it is used in NTL de-
tection. Data munging is the process which performs the creation of
the subset.

The data obtained from the electric company is in a comma sep-
arated values (CSV) file. Initially, the raw data collected from the
power supply company contained 110 features. Some of the features
are redundant and useless. For example, the feature ’Postal Code’
contains the same code for all records, the feature ’Meter Number’
and ’Registration Number’ are both used for unique identification,
and the feature ’Write-Off’ contains any relief of dues which actually
contains all zero entries. After filtering out the useless features, the
feature set is reduced to 71 features.

The selected features need further transformation from a raw for-
mat into a form suitable for downstream analytic processing. This
includes conversion of string types to numerical types, conversion of
Not-a-Number (NaN) type to numeric and conversion of date data
type. The transformation of every feature value is shown in Table
3.2.

The feature ‘Category-Rate’ records different categories of bill
like residential, commercial, industrial, etc. The string values are
transformed to numbers ranging from 0 to 15. ‘Date-Last Discon-
nection’ records the dates on which a connection was disconnected.
Any entry of date represents that the connection was disconnected
at some time. So, all the date entries are transformed to 1 and NaN
values are transformed to 0. The feature ‘Last Discon Reason’ stores
the reason disconnection was performed. This could be due to non-
payment of bill, empty house or NTL detection. NaN’s are con-
verted to 0. The feature ‘Class-Bill’ records the bill class according
to the type of customers. The string values and NaNs are trans-
formed to numeric values. The feature ‘DC Ordinary IP’ records
the details of direct current (DC) to industries or normal users while
‘Ordinary IP’ records the details of alternate current (AC). The string
values are transformed to numeric values. The feature ‘Conn Phase’
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records the connection phase granted like single or three phase etc.
Their corresponding string values are transformed to numeric val-
ues. The feature ‘Bill Day’ records the day of month the reading
was taken. The original values are retained with no transformation.
The features ‘Meter Reading Unit’, ‘Load Sanctioned’ and ‘Load-
Connection’ record units consumed, load allowed and load used,
respectively. Original values are retained for these three features.
The feature ’Status’ records current status of the connection which
could be either of active, in-active or disconnected. The string val-
ues are transformed to numeric values.

The feature ‘Type-Premise’ records the type of premise in which
the electricity connection is provided. A variety of premise types
are found in the data, e.g. shop, house, flat, school, mosque, bank,
etc. All the string values are converted into numeric values rang-
ing from 0 to 42. The feature ‘Code-Set-Aside’ records the code for
any disputed amount and the feature ‘Amount-Set Aside’ records
the disputed amount. The disputed amount is unchanged while
the string codes are transformed to numeric codes. The feature ‘In-
stallementNo’ stores the installment number whereas the feature
‘Amount - Installement’ stores the installment amount, if any. Only
NaN values are transformed to 0 while other data is retained with
no transformation being performed. The feature ‘Type-Bill’ records
the type of bill, e.g. residential, commercial, etc. The string values
are transformed to numeric values. The feature ‘Type-Consumer’
records the detail of consumer connection like single phase, 3 phase,
low tension (LT) and high tension (HT). The string values are trans-
formed to numeric values.

Class of industry is categorized in the feature ‘Industry Class’
with an LT, HT or normal connection. Their corresponding string
values are transformed to numeric values. The feature ‘Date-Last
Payment’ records the date last payment was made. The original
dates are retained while NaN values are transformed to a default
date of 1/1/2001. The feature ‘Amount-Last Payment’ records the
last amount paid. The original values are retained while NaN val-
ues are transformed to 0. There are many manufacturers of meters
which are recorded in the feature ‘Meter Company’. Their string
codes are transformed to numeric values ranging from 1 to 49. A
feature value with no meter information is recorded as 0. There are a
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total of 15 meter categories recorded in the feature ‘Meter Category’.
Their categories are transformed to numeric values. The information
of Security Intelligence Report (SIR) is stored in features ‘Last SIR
No’ and ‘Last SIR Date’. This information is retained with no trans-
formation. The feature ‘Month-Billing’ records billing month. No
transformation is performed for this feature. The feature ‘Category-
DC Rate’ records different rates applied to DC connection. These
rates can be regular, revised or irregular. The string categories are
transformed to numeric values.

The features ‘Units-Normal’, ‘Units-Average’, ‘Amount-Average’
record normal units consumed, average units consumed and aver-
age amount paid. Average units are recorded due to non-reading
of meter. Original data is retained for these features. The feature
‘Units-Adjusted’ records some adjusted units from previous month
and the feature ‘Amount-Adjusted’ records the adjusted amount from
previous month. Original data is retained for these features. The
feature ‘Units-Regular’ records the sum of all units while the feature
‘Amount-Regular’ records the payable amount for regular units. No
transformation is performed for these features. The feature ‘Units-
Current’ records a sum of regular and irregular units while ‘Amount-
Current’ records the amount of current units. Original data is re-
tained for these features. The feature ‘Units-12MonthsAvg’ records
average of units consumed during the last 12 months while ‘Amount-
12MonthsAvg’ records the amount based on average units consumed
during the last 12 months. The feature ’BilledUnit-YTD’ records
total billed units in the current year. The feature ‘Units-12Monts’
records total units consumed during the last 12 months while the
feature ‘Amount-12Months’ records the total amount paid during
the last 12 months. Original data of all these features is retained.
The feature ‘Balance-Opening’ records the credit amount when the
bill was issued. The feature ‘BilledAmount’ records the bill of the
current month. The feature ‘Billed-LPS’ records late payment sur-
charge. The feature ‘Amount-LPSWaived’ records the waived amount
of late payment surcharge. The feature ‘BankComm’ records the
commission charged by the bank. The feature ‘Payment Received’
records the received payment from the consumer. The feature ‘Amou-
nt - Adjustement’ records the adjusted amount for the next month.
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Original data is retained for all these features. The feature ‘Request-
Installement’ records installment request which is mostly 0. The fea-
ture ‘Amount Clearing’ records amount stored for clearing account.
The NaN values are transformed to 0. The feature ‘Balance-Closing’
records the credit amount after a bill is issued. The NaN values are
transformed to 0. Late payment surcharge is stored for different time
period ranging from 1 month to 5 years. This is stored in their re-
spective features like ‘1 Month LPS’ and ‘1− 2MonthLPS’, etc. Origi-
nal values are retained for these features while NaN values are trans-
formed to 0. The feature ‘Amount-GrossBilledYTD’ records the total
gross bill in current year while the feature ‘Amount-NetCreditYTD’
records the total credit of consumers in current year. The feature
‘BilledAmount-12MonthsGross’ records the total payment made by
the consumer during 12 moths while the feature ‘Amount-12Months
NetCredit’ records the total credit amount of customers during the
last 12 months. Original values are retained for these features while
NaN values are transformed to 0. The feature ‘Amount-12MonthsAvg
GrossBilled’ records the average of gross amount for the last 12 mont-
hs while the feature ‘Amount-12MonthsAvgNetCredit’ records the
average of credit amount for last the 12 months.

The company has provided a separate detail of NTL occurrences
of consumers. This data is merged with the available features. The
merging process is described in Section 3.1.4. The NTL occurrence
is measured with the help of a feature ‘NTL’. This feature has 16
different identifications of consumers out of which three are catego-
rized as thieves. These are ‘IRB (THEFT)-IBC’, ‘Assessed’ and ‘ITG
- Irregular Bill against Tariff Revi’. We have transformed these to 1
showing an NTL occurrence (Theft) while the remaining are trans-
formed to 0 showing a normal consumption (No-Theft). The Python
code for the pre-processing steps is shown in Appendix C.

TABLE 3.2: Transformation of Feature values

Feature Name Original Value Trans.
Value

Category-Rate NaN 0
A1-R 1
A2-C_RET 2
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

A2-C 3
B-2 4
B-1 5
A1-R_EM_BE 6
E-1_I 7
E-1_II 8
A2-C_B 9
B-3_TOD 10
E-2_I 11
A2-C_B_RET 12
MIX 13
D-1 14
B-2_TOD 15

Type-Bill NaN 0
A2-C 3
A1-R 1
B-2 4
E-1_II 8
B-1 5
E-2_II_A 16
E-2_I 11
C-1 17
B-3 18

Date-Last Disconnec-
tion

All dates 1

NaN 0
Last Discon Reason NaN 0

0 1
3 2
4 3

Class-Bill NaN 0
A1-R 1
A2-C 2
B 3
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

E 4
MIX 5
D 6

DC Ordinary IP NaN 0
ORD 1
IND 2

Ordinary IP NaN 0
ORD 1
IND 2

Conn Phase NaN 0
SINGLE 1
POLY<20 2
POLY20TO90 3

Bill Day Original Data None
Metre Reading Unit Original Data None
Load-Sanctioned Original Data None
Load-Connection Original Data None
Status ACT 1

DIS 2
MOC 3

Type-Premise NaN 0
HOUSE 1
SHOP 2
FLAT 3
INDUSTRY 4
UNKNOWN 5
SCHOOL 6
TELECOM TOWER / PTCL 7
MOSQUE 8
BANK 9
NOT AVAILABLE 10
MARRIAGE HALL 11
GODOWN 12
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

HOSPITAL - PRIVATE 13
CNG STATION 14
PETROL PUMP 15
OFFICE - PRIVATE /
LAWYERS / SOLICITORS

16

MADARSA 17
RESTAURANT 18
HOTEL 19
DISPENSARY / CLINIC /
LABORATORY -GOVT

20

FACTORY 21
SOFTWARE HOUSE 22
SHOPS 23
DISPENSARY / CLINIC /
LABORATORY- PVT

24

OFFICE - GOVT 25
CHARITABLE INSTITUTE
/ NGO / WELFARE

26

MOBILE TOWER 27
TUBE WELL - FISH FARM,
NURSERIES, FISH H

28

IMAM BARGAH 29
PARKS / PLAYGROUND 30
HOSPITAL - GOVT 31
GRAVEYARD 32
NEON 33
OFFICE 34
STREET LIGHT 35
GRID STATION 36
WATER PUMP 37
OFFICES 38
HOSPITALS / DIS-
PENSERIES

39

COLLEGE 40
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

POST OFFICE 41
FISH HATCHERIES 42

Code-Set Aside NaN 0
8 8
7 7
Y 1
4 4
K 2
J 3
G 5

Amount-Set Aside NaN 0
Original Data None

InstallementNo NaN 0
Original Data None

Amount-Installement NaN 0
Original Data None

Type-Consumer NaN 0
DOL Connection 1
DOL Connection 3 phase
(mostly)

2

Bulk LT Connection 3
HT Connection 4

Industry Class NaN 0
Small Industy 1
Low Tension - Large Indus-
try

2

High Tension - Large Indus-
try

3

Partner NaN 0
EVALUATION GRID PRI-
VATE LIMITED

1

Date-Last Payment NaN 1/1/2001
Original Data None
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

Amount-Last Pay-
ment

NaN 0

Original Data None
Meter Company NaN 0

SBL 1
PEL 2
CHA 3
EAC 4
EPL 5
DKB 6
KRZ 7
SPC 8
USR 9
TEC 10
KOR 11
DMT 12
GNZ 13
DTM 14
DEP 15
EEC 16
CAH 17
KBK 18
INT 19
MTI 20
ISK 21
Unknown 22
IND 23
DSB 24
LAG 25
ACT 26
PAF 27
SSW 28
EMC 29
CEL 30
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

POL 31
HTL 32
PRI 33
SRH 34
SBS 35
DPE 36
SBE 37
UHR 38
ABB 39
MPV 40
BEM 41
LG 42
VER 43
SPT 44
AIS 45
BIC 46
CRE 47
DIN 48
ELS 49

Meter Category NaN 0
METER; ENERGY SINGLE
PHASE 10-40A

1

METER; STATIC SINGLE
PHASE

2

METER; ENERGY 3 PHASE
15-90A

3

METER; STATIC THREE
PHASE

4

METER; 3PH DOL AMR
GPRS/3G W/DC SW

5

METER; HT CT/PT&LT
OPERATED W/GPRS
MODEM

6
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

METER; STATIC LT C.T.O
PROG.

7

METER; ENERGY SINGLE
PHASE (REFURBISHED)

8

METER; 1PH DOL AMR
GPRS/3G W/DC SW

9

METER; ENERGY C.T OP-
ERATED 100/5A

10

METER; ENERGY THREE
PHASE (REFURBISHED)

11

METER;DIRECT ON-
LINE W/GPRS MODEM 3
PHASE

12

METER E 42 F-D/M
400/5A, 66000/100 V

13

USED METER E 42 F-DM
400/5A, 66000/100 V

14

USED METER; STATIC LT
C.T.O PROG.

15

Last SIR No NaN 0
Original Data None

Last SIR Date NaN 0
Original Data None

Month-Billing Original Data None
Category-DC Rate Regular 1

IRB-Detection 2
IRB-Revised 3

Units-Normal Original Data None
Units-Average Original Data None
Amount-Average Original Data None
Units-Adjusted Original Data None
Amount-Adjusted Original Data None
Units-Regular Original Data None
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

Amount-Regular Original Data None
Units-Current Original Data None
Amount-Current Original Data None
Units-12MonthsAvg Original Data None
Amount-
12MonthsAvg

Original Data None

BilledUnit-YTD Original Data None
Units-12Months Original Data None
Amount-12Months Original Data None
Balance-Opening Original Data None
BilledAmount Original Data None
Billed-LPS Original Data None
Amount-LPSWaived Original Data None
BankComm Original Data None
Payment Received Original Data None
Amount-Adjustment Original Data None
Allowance-
PreviousYear

NaN 0

Original Data None
Request-Installement NaN 0

Original Data None
Amount-Clearing NaN 0

Original Data None
Balance-Closing NaN 0

Original Data None
Amount-
OutStanding

NaN 0

Original Data None
1YearorAboveLPS NaN 0

Original Data None
1 yearorLessLPS NaN 0

Original Data None
1 Month LPS NaN 0
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

Original Data None
1-2MonthLPS NaN 0

Original Data None
2-3MonthLPS NaN 0

Original Data None
3-6MonthLPS NaN 0

Original Data None
6-12MonthLPS NaN 0

Original Data None
1-2YearLPS NaN 0

Original Data None
2-3YearLPS NaN 0

Original Data None
3-4YearLPS NaN 0

Original Data None
4-5YearLPS NaN 0

Original Data None
Above5YearLPS NaN 0

Original Data None
Amount-
GrossBilledYTD

NaN 0

Original Data None
Amount-
NetCreditYTD

NaN 0

Original Data None
BilledAmount-
12MonthsGross

NaN 0

Original Data None
Amount-
12MonthsNetCredit

NaN 0

Original Data None
Amount-
12MonthsAvgGrossBilled

NaN 0
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TABLE 3.2: Transformation of Feature values (cont.)

Feature Name Original Value Trans.
Value

Original Data None
Amount-
12MonthsAvgNetCredit

NaN 0

Original Data None
NTL IRB (THEFT) - IBC 1

Normal 0
Assessed 1
Adjusted 0
Average 0
ITG - Irregular Bill against
Tariff Revi

1

IBC -Wrong Tariff 0
RB (MC DISCREPANCY) -
IBC

0

IRB (OTHER) REVISION 0
IBC - Assessed Bill Revision 0
WRONG TARIFF 0
WRONG READING /
PUNCHING / POSTING /
MMF / CALCU

0

Extra GST and/or Further
GST Revision

0

MIDDLE BILL 0

3.1.3 Feature Selection

From the set of 71 features, a subset of useful features can be short-
listed using feature importance. It is a measure of finding the impor-
tance of each feature (Breiman, 2001). A feature has an importance
if the model’s error of prediction is increased with the shuffling of
the value of the feature. The increase in the model’s prediction error
indicates that the model relies on that feature. Thus, the feature is
important. Conversely, a feature has less importance if the model’s
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error of prediction is not changed with the shuffling of the value of
the feature. The stability in the model’s prediction error indicates
that the model does not rely on that feature. Thus, the feature is not
important. This way, we can not only find the optimum combina-
tion of features but it can also significantly reduce the computational
time of the classifiers. The details of feature selection strategies used
and their advantages are discussed separately in the contributions
listed in Chapters 4, 5 and 6.

3.1.4 Data Merging

Additionally, the company also provided the data of potential risky
consumers (PRC). These consumers are identified during on-site in-
spection. This data is useful in assigning the values of class labels as
true or false. A class label of true indicates an instance of a theft and
a class label of false indicates an instance of a normal consumption.
This process is shown in Figure 3.3. The PRC data is merged with
the data shortlisted from the feature selection module.

PRC Data for 

Risky Consumers

Assign label F to all 

transactions containing 

this consumer

Risky 

Consumer

?

Yes

Assign label T to all 

transactions containing 

this consumer

No

Selected 

Features
Merged Data

FIGURE 3.3: Data Merging
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3.1.5 Feature Scaling

The data from the selected features is needed to be normalized be-
fore applying training and testing. The purpose of applying nor-
malization is to bring all the numerical features in the same scale
without disturbing the range differences. The normalized scale for
each feature is obtained using Equation 3.1, where FV is the current
feature value, min(FV) is the minimum feature value in the current
feature and max(FV) is the maximum feature value in the current
feature.

NS =
FV −min (FV)

max (FV)−min (FV)
(3.1)

3.1.6 Summary

Testing different machine learning classifiers in NTL detection re-
quires a real-world dataset. This chapter introduced our dataset
with the explanation of each feature. The pre-processing steps re-
quire the data to be transformed into a form suitable for down stream
analytical processing. This chapter also explained each transforma-
tion step in detail. Lastly, it also highlighted the feature selection,
data merging and feature scaling process.
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Chapter 4

Performance Analysis of
Machine Learning Classifiers
for Non-Technical Loss
Detection

4.1 Introduction

The process of on-site inspection for a potential detection of NTL
incurs a heavy cost to the company and it is practically impossible
to inspect a large number of households. This can only be fruitful if
the inspection results in a large number of NTL detection. In reality,
the ratio of number of NTL detection to the number of inspections
is generally very low for companies (Coma-Puig et al., 2016). This
can also be explained due to the fact that people may have got their
second homes, or they may be on long vacations, etc. Shortlisting
them for the inspection will only increase the inspection cost.

Over the past decade, the research community has paid atten-
tion to detecting NTL with the collaboration of electric suppliers us-
ing machine learning classifiers. This includes using Support Vec-
tor Machine (SVM), Optimum Path Forest (OPF), random forest,
multi-layer perceptron neural network (NN), K-Nearest Neighbors
(KNN), Adaboost, naive bayes, decision trees and deep learning.
Training sets containing records of NTLs are used to train the models
and test sets are used to evaluate them. The list of fraudsters identi-
fied by the classifiers is then used for on-site inspection. The hit ratio
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of NTL detection using machine learning classifiers is very promis-
ing as compared to random guessing of potential fraudsters. To
compare the performance of these classifiers, different performance
evaluation metrics are used. These metrics can help in shortlisting
the classifiers for NTL detection under given scenarios.

A detailed comparative study of performance evaluation metrics
is still needed to diagnose the relationship between different metrics
when used for NTL detection. These relationships have not been
discussed sufficiently in the literature of NTL and can be proved to
be a baseline for the selection of appropriate performance evalua-
tion metrics for NTL detection. In Pakistan, electric supply compa-
nies perform random on-site inspection to identify theft cases. This
is the prime reason for a very small success on NTL detection. Our
contribution in this regard helps to improve the hit ratio in an elec-
tric supply company in Pakistan by identifying and shortlisting the
potential theft cases for on-site inspection using machine learning
classifiers. This work is performed on a real dataset which is thor-
oughly explained in Chapter 3. It will also help to reduce the on-site
inspection cost of the company. Due to the success of random for-
est, KNN and linear SVM in the class imbalance domain, this work
first uses these three classifiers to predict the occurrences of NTL in
the dataset. Then, it computes 14 performance evaluation metrics
across the three classifiers to identify the key scientific relationships
between these performance metrics with respect to NTL detection.
For the appropriate selection of the classifiers, these relationships
are crucial. Therefore, we have focused on identifying the key sci-
entific relationships between performance evaluation metrics in the
domain of NTL detection as shown in Figure 4.1. This work can
further be extended to predict potential theft in the gas sector. Us-
ing the consumption pattern of gas consumers, this set of classifiers
along with the performance metrics can be used for the identifica-
tion of gas theft attempts.

The objectives of this chapter are as follows:

1. Categorize the state of the art NTL detection schemes and present
their comprehensive taxonomy.
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FIGURE 4.1: The NTL Architecture comprising of data
collection, feature selection, training and testing of
machine learning classifiers and analytics. Note that
existing research works mostly focus on NTL detec-
tion while analytics of performance evaluation met-

rics have often been overlooked.

2. Identify the strengths and weaknesses of the state of the art
methods for NTL detection and identify a pool of performance
metrics commonly used for NTL detection.

3. Apply machine learning classifiers for NTL detection, and com-
pute and validate their performances on a real dataset contain-
ing approximately 80, 000 monthly records of electricity con-
sumption.

4. Investigate a pool of the identified performance metrics for
NTL detection and highlight those metrics that can best de-
scribe the identification of NTL.
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4.2 Methodology

In this section, we first describe the proposed methodology used for
NTL detection in the electric distribution company. Then, we outline
the need of separate performance evaluation metrics for NTL detec-
tion. Finally, we discuss a number of such existing metrics which
proved to be good for NTL detection. The proposed methodology
consists of seven steps which are described in the following sub-
sections. The first step is data collection from the company. The
data contains monthly consumption records of electric consumers.
The data is collected in a comma separated values (CSV) file which
needs to be converted into a form suitable for analytical processing.
Data munging performs this functionality along with steps like du-
plicate removal and dealing with NULL values, etc. Not all features
are useful for the analytic process. Feature selection step shortlists
the features which are most useful in predicting NTL. The company
separately maintains the data of risky consumers. The data merg-
ing step combines the selected features with the data of risky con-
sumers. Once the features and the records are finalized, the next step
is to normalize all features. This is done by the scaling step. Next,
training and testing of the classifiers is performed. On the basis of
the results obtained from testing, different performance evaluation
metrics are then calculated which form a strong foundation in iden-
tifying different criterion for the selection of suitable classifiers for
NTL detection. The complete methodology is shown in Figure 4.2,
while Figure 3.1 shows the pre-processing steps only.

Data Munging/ 

Record Selection

Selected 

Features

PRC Data about 

Risky Customers
Feature Selection

Merged data
Post Processing 

and NTL 

Detection

Scaling for 

Feature 

Normalization

Training 

and Testing 

Classifiers

Performance 

Evaluation 

Metrics

Data Merging

Monthly 

Consumption 

Records

Raw Data

FIGURE 4.2: The proposed methodology for NTL de-
tection
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4.2.1 Data Collection and Data Munging

NTL detection cannot be thoroughly studied without a real dataset.
We have collected a dataset from an electric supply company in Pak-
istan. The details of the collected data and the data munging step are
thoroughly discussed in Sections 3.1.1 and 3.1.2 in Chapter 3, respec-
tively.

4.2.2 Feature Selection

From the set of 71 features, a subset of 14 useful features is short-
listed using feature importance. It is a measure of finding the impor-
tance of each feature (Breiman, 2001). A feature has an importance if
the model’s error of prediction is increased with the shuffling of the
value of the feature. The increase in model’s prediction error indi-
cates that the model relies on that feature. Thus, the feature is impor-
tant. Conversely, a feature has less importance if the model’s error
of prediction is not changed with the shuffling of the value of the
feature. The stability in the model’s prediction error indicates that
the model does not rely on that feature. Thus, the feature is not im-
portant. To obtain the list of useful features, the 71 features are first
listed in descending order with respect to feature importance. Then,
using the Gini Index, a threshold for the optimum number of fea-
tures is selected beyond which including any other feature should
not affect the F-measure. This way, we have not only found the opti-
mum combination of features for which the F-measure is best but it
also has significantly reduced the computational time of the classi-
fiers. The list of shortlisted features, their description and the feature
importance is enlisted in Table 4.1.

4.2.3 Data Merging and Scaling

The details of data merging and scaling steps are discussed in Sec-
tions 3.1.4 and 3.1.5 in Chapter 3, respectively.
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TABLE 4.1: Feature Description and Feature Im-
portance of Selected Features, Sorted by their Im-

portances in Descending Order

Feature Description Importances
Units-12Months Units consumed during last 12 months 0.141807732008
Amount-12Months Total amount billed during last 12 months 0.116774856878
BilledUnit-YTD Units billed in current year 0.116751907486
BilledAmount Amount billed in current month 0.092791430138
1 year LPS Late payment surcharge in last one year 0.057126632724
Amount-12MonthsAvg Average monthly amount in last 12 months 0.040861765397
BilledAmount-12MonthsGross Total payment made in last 12 months 0.038509950395
Units-12MonthsAvg Average monthly units in last 12 months 0.032045710111
Amount-GrossBilledYTD Total payment made in current year till date 0.029088274439
Amount-12MonthsAvgGrossBilled Total average monthly payment made in last 12 months 0.028248805369
Amount-Regular Payable amount for regular units 0.023397470434
1 Month LPS Late payment surchare in last 30 days 0.022879096842
Month-Billing Month of billing 0.016062708402
InstallementNo Number of installements 0.015831709285

4.2.4 Training and Testing

The normalized data obtained from scaling steps is used for train-
ing and testing of the three classifiers namely KNN, random forest
and SVM. The theoretical details of these classifiers can be found in
Section 2.2.2.

4.2.5 Post-Processing and NTL Detection

For the last few years the research community has been paying at-
tention on deriving methods which focus on representing the evalu-
ation of classes separately. Table 4.2 shows the basic confusion ma-
trix, which is used to formulate more complex metrics for datasets
containing imbalanced class distribution. For NTL, True Positive
(TP) is the instances of theft cases correctly classified by the classi-
fier and True Negative (TN) is the instances of normal cases correctly
classified by the classifier. False Positive (FP) indicates instances of
normal cases identified as theft by the classifier and False Negative
(FN) indicates the instances of theft cases identified as normal by
the classifier. The metrics are then used to calculate more complex
metrics like accuracy, recall, precision, TNR, FPR, FNR, NPV, Fβ,
arithmetic mean, harmonic mean, G-Mean and dominance. These
metrics are discussed in Section 4.2.6. These metrics yield a set of
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TABLE 4.2: Confusion Matrix

Predicted Positive Predicted Negative
Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

comprehensive observations particularly related with NTL detec-
tion. The observations are discussed in Section 4.3.

4.2.6 Evaluation Metrics

Datasets from electric industry have a strong imbalanced distribu-
tion of target variable. Doing predictive modeling in these datasets
is a challenging task due to the fact that distribution of classes (target
variable Y) is non-uniform. It could be a case that training and test-
ing samples contain 99% of total samples belonging to the normal
class and the remaining 1% belong to the thief class. The scenario
becomes more complex when the user’s choice is biased towards
the least represented class, i.e. the thief class. Performance metrics
that are used for the balanced datasets can not be efficiently used for
datasets with imbalance distribution of target variable as these met-
rics tend to ignore the thief class for which the performance measure
is actually needed. Thus, giving the performance measures against
the unwanted and the most repeated class is not helpful in accessing
the performance of the least represented class predictions. There-
fore, accuracy and error rate are not the right measures as they are
biased towards the normal class (Manning, Raghavan, and Schütze,
2008). In fact, we need measures which evaluate the correctness of
the normal and the thief class separately. For this, a basic confu-
sion metric is used to calculate True Positive (TP), True Negative
(TN), False Positive (FP) and False Negative (FN). The basic con-
fusion metric is further used to evaluate more complex metrics in-
cluding precision, recall, arithmetic mean, harmonic mean, NPV, Fβ,
G-mean, dominance, TPR, TNR, FPR and FNR. The details of these
metrics are presented in Section 2.2.3.
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4.3 Results and Analysis

In this section, we first perform extensive simulation of the random
forest, KNN and SVM on training and test data. The three classifiers
are chosen due to their success in the imbalance datasets. The ex-
periments are performed using Python’s open source library, scikit-
learn (Pedregosa et al., 2011b). Then, we discuss a detailed analy-
sis of the comparison of performance evaluation metrics across the
three classifiers along with the comparison of the classifiers. A list
of simulation parameters is also presented in Table 4.3

TABLE 4.3: List of Simulation Parameters

Classifier Simulation Parameters
Linear SVC penalty=’l2’, loss=’squared_hinge’, dual=True, tol=0.0001, C=1.0,

multi_class=’ovr’, fit_intercept=True, intercept_scaling=1, class_weight=None,
verbose=0, random_state=None, max_iter=1000

KNN n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, met-
ric=’minkowski’, metric_params=None, n_jobs=None

Random Forest n_estimators=’warn’, criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=None,
random_state=None, verbose=0, warm_start=False, class_weight=None

4.3.1 Experimental Setup

The experiments were performed on a 64-bit Windows server with
Intel Xeon 2.2 GHz processor and 32 GB RAM. All the algorithms
were implemented in Python 3.6. The total number of transaction
records is 80, 244 out of which 64, 195 are selected for training the
three classifiers namely random forest, KNN and SVM. The remain-
ing 16, 049 records are selected for testing the classifiers. The per-
centage representation of the training set is 80% while for the test
set, it is 20%. The training time for random forest, KNN and SVM is
recorded as 22 seconds, 2 seconds and 30 seconds, respectively. The
training time is represented in Table 4.4.

The values of TP, TN, FP and FN for the test set across the three
classifiers are listed in Table 4.5. The values of the other complex per-
formance metrics for the three classifiers are listed in Table 4.6. The
performance of the classifiers can vary with the change of dataset as
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TABLE 4.4: Training Time of Random Forest, KNN
and SVM

Classifier Training Time
Random Forest 22 Seconds
K-Nearest Neighbors 2 Seconds
Support Vector Machine 30 Seconds

it depends on the selected features. A different dataset with a differ-
ent set of features can result in increase or even decrease of perfor-
mance. So, the better the feature set, the higher the performance will
be.

TABLE 4.5: TP, TN, FP and FN values across ran-
dom forest, KNN and SVM

Random Forest K-Nearest Neighbors Support Vector Machine
TP 677 678 672
TN 15,347 15,343 15,338
FP 19 23 28
FN 6 5 11
Total 16,049 16,049 16,049

KNN outperformed random forest and SVM in terms of TP. It
has the maximum instances of theft detection which is 678. For ran-
dom forest, TP is 677 and for SVM, it is 672. Accuracy for the three
classifiers are approximated to 99% but seeing precision, it is ob-
served that random forest performed better than KNN and SVM,
while KNN outperformed random forest and SVM on the basis of
recall as it has the best recall of 99.27%. Random forest has the high-
est arithmetic mean and harmonic mean.

4.3.2 Comparison of precision and recall

An important observation regarding the problem of NTL detection
is that the model which has a high recall is most suitable for theft de-
tection. In order to understand this relation, consider the cases of FP
and FN. False Positives are those normal users that have been pre-
dicted by the classifier as thieves whereas False Negatives are those
thieves that are predicted by the classifier as normal users. Con-
sidering the two cases, having a large FP value will only result in
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TABLE 4.6: Other complex metrics for the three
classifiers

Random Forest K-nearest Neighbors Support Vector Machine
Accuracy (%) 99.84% 99.83% 99.76%
Precision (%) 97.27% 96.71% 96.0%
Recall (%) 99.12% 99.27% 98.39%
Arithmetic Mean (%) 98.20% 98.0% 97.19%
Harmonic Mean (%) 98.19% 97.98% 97.18%
NPV 1.0 1.0 0.999
Fβ (for β = 1) 98.2 98.0 97.2
Fβ (for β = 1.5) 98.5 98.5 97.6
G-Mean 99.50 99.56 99.10
Dominance -0.008 -0.006 -0.014
TPR 0.991 0.993 0.984
TNR 0.999 0.999 0.998
FPR 0.001 0.001 0.002
FNR 0.009 0.007 0.016

increasing the manual effort of on-site inspections whereas a high
FN value will result in the failure of the classifier to correctly iden-
tify the thieves. Therefore, for NTL it is recommended to promote
the classifier which has a low FN value. Now, considering the Equa-
tion 2.15, it can be observed that recall increases with the decrease
of FN. This gives a nice measure of the selection of the classifier for
NTL detection that both the precision and the recall should not have
equal priority. In fact, for NTL detection, classifiers with high recall
are most suitable regardless of what the precision value is. In Table
4.5, it is observed that KNN has the lowest number of FN, i.e. 5.
Consequently, it has the highest recall among the three classifiers as
shown in Figure 4.3. The lowest recall is observed for SVM, which
is 98.39%. Thus, the percent increase of recall from using SVM to
KNN is 0.89%. This gives a clear indication that for our real dataset,
KNN is the better choice for NTL detection. For two classifiers hav-
ing the same recall but different precision values, the classifier with
a high precision should be selected. Precision will increase with the
decrease in FP. So, when the two classifiers have equal recalls, the
classifier having the lowest FP should be given preference. This ob-
servation can be verified by Equation 2.19. For all the three clas-
sifiers, recall is observed higher than their corresponding precision
values. It is further observed that SVM has the lowest precision and
recall among the three classifiers as shown in Figure 4.3.
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FIGURE 4.3: Comparison of precision and recall

4.3.3 Comparison of accuracy, FPR and FNR

Total normal users that are predicted as thieves is measured by FPR.
A high FPR increases the on-site inspection for theft verification,
which consequently results in increase of manual efforts. On the
other hand, a high FPR also indicates the success of the classifier in
identifying thieves that are categorized as normal users in the com-
pany. Another measure that gives a close insight of the number of
thieves that are wrongly classified as normal users is FNR. A low
FNR is desirable in NTL detection. Seeing the accuracy measure, all
the three classifiers looked to be performing exceptionally well but
observing FPR and FNR, it is found that accuracy is not depicting
the facts about FP and FN. Figure 4.4 shows that FPR is very low
for the three classifiers. For KNN, FNR is the least among the three
classifiers showing that it has the lowest FN value and thus, KNN is
found to be a good choice for NTL in our real dataset. Among the
three classifiers, the highest FNR is observed for SVM showing that
it has the highest value of FN which can also be verified in Table 4.5.
Thus, for our real dataset, SVM turns out to be the last choice for
NTL detection.
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4.3.4 Comparison of F-Measures

Fβ=1 and Fβ=1.5 are close to each other in all classifier readings. Both
are high for the three classifiers depicting that both precision and re-
call values for the classifiers are considerably high. The lowest read-
ing for the two metrics are observed for SVM showing that precision
and recall values for SVM are lower as compared to their counter-
parts, which can also be verified using Table 4.6. Thus, SVM is the
last choice for NTL detection in this real dataset. For Fβ=1, random
forest has a higher value than KNN and for Fβ=1.5, random forest
and KNN have equal values. Considering Fβ=1, random forest has
performed better than KNN and considering Fβ=1.5, both random
forest and KNN have equal performance. Given that recall has a
high weightage in Fβ=1.5, for all the classifiers, Fβ=1.5 is high as com-
pared to the corresponding Fβ=1. This indicates that recall is high for
all the classifiers as compared to precision. The percentage increase
from precision to recall in random forest, KNN and SVM is 1.9%,
2.65%, and 2.49%, respectively. The highest increase in percentage
is observed for KNN and thus, it also has the highest difference of
values between Fβ=1 and Fβ=1.5, i.e. 0.5. This indicates that KNN
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outperformed random forest and SVM. Also, Fβ values are observed
to be between recall and precision values for all classifiers as shown
in Figure 4.5. This shows that Fβ of precision and recall behaves just
like the harmonic mean. As discussed in Section 4.3.2, for NTL de-
tection recall should be given high priority as compared to precision.
This can be achieved by using Fβ measure with β value greater than
1.
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4.3.5 Harmonic mean

For all the classifiers, harmonic mean is lower than the arithmetic
mean. Harmonic mean is also observed to be closer to the smaller
of the precision and recall for all classifiers. Random forest has the
highest harmonic mean. This indicates that not only the precision
and recall values for random forest are high but also they are close
to each other. This can be verified by the fact that random forest has
the smallest percentage increase from precision to recall, i.e. 1.9%.
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Harmonic mean for SVM is lowest among the three classifiers show-
ing that the corresponding values of precision and recall for SVM are
also low, as shown in Figure 4.6. Therefore, instead of maintaining
both the precision and the recall, harmonic mean can also be used
for the evaluation of the classifiers in NTL detection.
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4.3.6 Comparison of TPR, TNR and G-Mean

For all the classifiers, G-Mean is high. This indicates that TPR and
TNR for the three classifiers are also high. G-Mean for SVM is low-
est among the three classifiers indicating that its TPR is also lowest
as shown in Figure 4.7. Therefore, it can be deduced that for NTL
detection, a classifier with a high G-Mean value is preferable over a
classifier with a low G-Mean value. Thus, KNN outperformed ran-
dom forest and SVM.
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4.3.7 Comparison of TPR, TNR and dominance

A classifier having dominance close to −1 depicts that it has a high
TNR but a low TPR. In contrast, a classifier having dominance close
to 0 indicates that it is good in predicting both classes for NTL de-
tection. For NTL detection, TPR and TNR give close insight of the
performance of a classifier. Combining TPR and TNR, dominance
gives a good choice of a performance evaluation metric for NTL de-
tection. For our dataset, comparison of TPR, TNR and dominance
is shown in Figure 4.8. It is observed that among the three classi-
fiers, KNN has the dominance closest to 0. This shows that for our
dataset, KNN is the best in predicting both classes.

4.3.8 Comparison of NPV and FNR

For NTL detection, occurrence of theft instances is rare while nor-
mal consumers are in huge number. As NPV indicates the number
of normal consumers only and ignores the theft cases, therefore for
NTL detection, NPV is not a suitable metric. It is observed that for
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all the classifiers, NPV is close to 100%. A clear reason for this is
that NPV is ignoring theft cases and considering normal consumers
only. In contrast, FNR is a measure of number of thieves that are pre-
dicted as normal consumers. For NTL detection, this ratio is needed
to be as low as possible. It is observed that KNN has the lowest
FNR. Thus, KNN is a good choice for NTL detection. For the three
classifiers, FNR is shown in Figure 4.9. The figure shows that SVM
has the highest FNR and thus, for our dataset, it is the last option for
NTL detection.

4.4 Conclusion and Future Work

This work has used a real-world dataset of an electric supply com-
pany in Pakistan to identify the non-technical loss by applying three
classifiers namely random forest, K-nearest neighbors and linear sup-
port vector machine. The classifiers are chosen due to their success
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FIGURE 4.9: FNR of Random Forest, KNN and SVM

in class imbalance domain. The aim of the study is to use these clas-
sifiers to first identify existing NTL attempts and then predict new
theft cases.

It further uses 14 different metrics to perform an in-depth per-
formance analysis of the three classifiers. One of the core findings
of this contribution is that for NTL detection, both the precision and
recall should not have equal precedence. In fact, the classifier with
a higher recall is better. The percent increase of recall from using
KNN to random forest is 1.24%. This clearly depicts that random
forest is the better choice for NTL detection as it has the higher re-
call. This analysis can be used as a baseline for the accurate selection
of the classifiers in NTL detection. This work will vastly benefit the
electric supplier in detecting NTL. It will not only improve their abil-
ities for NTL detection, but will also save huge amount of monetary
losses which they are already bearing.

There is a need to further extend the use of performance evalua-
tion metrics that can estimate and compare error rates on the basis
of which a combination of classifiers can be selected for a specified
dataset for NTL detection. Currently, there is a small range of graph-
ical metrics used for performance analysis. This includes receiver
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operating characteristic (ROC) and area under ROC curve (AUC)
(“A Survey of Predictive Modeling on Imbalanced Domains”). There
is also a need of further exploration in the usage of graphical per-
formance metrics. Furthermore, the performance of classifiers with
respect to their categories is another future direction for NTL detec-
tion.
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Chapter 5

Analyzing Types of ML
Classifiers for NTL Detection

5.1 Introduction

NTL detection involves training different machine learning classi-
fiers with existing data that contains observations from both positive
and negative classes. After training, the classifiers are then tested on
a different set of test data. The test results are then evaluated using
performance evaluation metrics. The use of machine learning classi-
fiers for NTL detection has been an ongoing and interesting activity
in the research community that has now span for over two decades.
There are many types of the classifiers that have been tested for NTL
detection. These include decision trees, ensemble methods, gen-
eralized linear models, linear and quadratic discriminant analysis,
Naive Bayes, nearest neighbors, neural network models, stochastic
gradient descent and support vector machines.

Machine learning classifiers are by far the most flexible way of
NTL detection for many reasons. Unlike manual on-site inspec-
tion, machine learning requires some technically skilled profession-
als who can work on real datasets to identify the occurrence of theft.
The shortlisted theft cases can then be verified by manual inspection.
Adding new theft cases to the learning models makes the models
learn new cases. In this way, the performance of the classifiers keeps
improving. These machine learning methods are also useful to iden-
tify real culprits unlike other network-based techniques which are
only able to identify an area where NTL is committed but fail to pin-
point the theft cases. Furthermore, a much less cost is incurred in
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using machine learning methods as compared to other procedures
like manual on-site inspection. Automation of the NTL detection
procedure is another added advantage of using machine learning.
This advantage can not be gained while using other NTL detection
schemes like manual on-site inspection.

The main problem is that a detailed comparative study of the ma-
chine learning classifiers on some real dataset is still missing. This
work contributes in identifying NTL in a real dataset taken from a
power supply company in Pakistan. A comprehensive explanation
of the dataset is presented in Chapter 3. NTL in power sector is given
less importance in Pakistan and less effort is done for its detection.
That is why an on-site inspection is the only measure deployed for
the detection of NTL. In this chapter, our objectives are as follows:

1. Present a taxonomy of the NTL detection techniques and cat-
egorize the strategies of NTL detection with respect to data,
network, a combination of both and additional data. More-
over, identify and focus on a number of solutions based on un-
supervised, supervised, semi-supervised and hybrid learning.

2. For NTL detection, use a real dataset taken from a power sup-
ply company in Pakistan. The contributions which use synthe-
sized data for NTL detection generally contain equal distribu-
tion of classes that do not depict the natural class distribution.
As our dataset is real, the ratio between positive and negative
classes is imbalanced which represents the natural behavior.

3. Investigate the performance of different types of machine learn-
ing classifiers which are based on the algorithms they use and
identify the type that perform best in NTL detection. The types
involve ensemble methods, Neural Networks (NN), Decision
Trees (DT), Nearest Neighbors, Stochastic Gradient Descent
(SGD), Generalized Linear Models, Linear Discriminant Anal-
ysis (LDA) and Quadratic Discriminant Analysis (QDA), Sup-
port Vector Machine (SVM) and Naive Bayes. Moreover, iden-
tify a threshold of features beyond which adding more features
does not affect the efficiency of the classifiers.

4. Perform extensive simulations and find the classifier that is
dominating in terms of F-measure and Recall as compared to



Chapter 5. Types of ML Classifiers for NTL Detection 87

counterparts. It will open a potentially new area where NTL
detection can be worked on.

5.2 Methodology

This section outlines the data collection, feature selection strategy
and the metrics used to evaluate the performance of the classifiers.

5.2.1 Data Collection

For NTL detection, a real dataset is collected from a power supply
company in Pakistan. The details of the collected data and the data
munging step are thoroughly discussed in Sections 3.1.1 and 3.1.2 in
Chapter 3, respectively.

5.2.2 Pre-Processing

Initially, a set of 71 features is selected that span across six major cat-
egories as illustrated in Appendix A. These include normal amount,
normal units, additional amount, additional units, bill info and extra
info. A detailed explanation of each feature is described in Chapter
3.

5.2.3 Selecting Top-k Features

One of the contributions of this paper is to find the optimum number
of k features that can provide best theft prediction in a real dataset. It
is observed that not every feature has an equal or comparable partic-
ipation in predicting NTL. Some features have a high role while oth-
ers have a negligible role. Also, using all 71 features to predict NTL
will increase the computational complexity of the classifiers. It turns
out that there should be a threshold for the contributing features be-
yond which including or excluding features should not affect the
efficiency of the classifier. For this, we first sort the feature set in
descending order with respect to feature importance (Liaw, Wiener,
et al., 2002b). It is a measure that uses accuracy to filter attributes
which are most suitable for correctly identifying the target variable.
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Thus, it gives an insight to the relative importance of every feature
with respect to the target variable. For a theoretical definition of fea-
ture importance, the reader can refer to (Breiman, 2001). Then, we
apply Gini Index to find the top-k number of features for which the
F-measure is the highest where k ranges from 1 to 71. As described
in (Han, Kamber, and Pei, 2011), the Gini Index is used to quantify
the impurity of data partition D. The mathematical representation of
Gini Index is given in Equation 5.1.

Gini(D) = 1−
m

∑
i=1

p2
i (5.1)

where pi is the probability estimate of a record belonging to the class
Ci out of a total of m classes. Finally, the kth value for which the best
F-measure is found is selected. For our dataset, the value of k with
best F-measure is 14. This indicates that using this set of top 14 fea-
tures to find NTL has the same behavior as using all 71 features. This
simulation has not only identified key features that are participating
in predicting NTL in the real dataset but it also has helped to signif-
icantly reduce the execution time of the classifiers. Table A.1 lists 71
features and their corresponding feature importance. The cumula-
tive percentage of feature importance of top 14 features is presented
in Figure 5.1, which shows that the contribution of top 14 features in
predicting NTL is 77%.

5.2.4 NTL and Evaluation Metric

NTL detection is an application of imbalance problem domain. It
is a problem where the dataset is highly biased towards one of the
outcomes of the target variable while the other outcome(s) remains
least representative. Interestingly, the focus is on the least repre-
sentative outcome. This leads to the requirement of an appropriate
selection of the evaluation metric. Taking the example of NTL de-
tection, most of the users are not thieves (True Negative), while few
are thieves (True Positive). Now, selecting accuracy as an evalua-
tion metric would be a wrong choice as the results will be highly
biased towards the most representative class, i.e. TN. In fact, we
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FIGURE 5.1: Cumulative Percentage of Feature Im-
portance of Top 14 Features

need a measure which should comprehensively give an insight to
the actual number of thieves (recall) as well as the actual number
of predicted thieves (precision) along with the combination of the
two. For this, F-measure is used, which combines precision and re-
call. In this work, we have used precision, recall and F-measure as
our performance evaluation metrics. The details of these metrics are
presented in Section 2.2.3.

5.2.5 Models

A variety of different machine learning algorithms are tested for
NTL detection which also include recently developed ensemble meth-
ods namely CatBoost, LGBoost and XGBoost. We investigated the
types of classifiers mentioned in Figure 5.2 to find the best classifiers
for NTL detection. The figure represents the classifiers and their
types that are used in our experiments. The description of each clas-
sifier and its type is presented in Section 2.2.2.
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5.3 Experimental Results

In this section, we validate our work by performing extensive simu-
lations using Python 3.6 on a 64-bit Windows Server with hardware
specification including an Intel Xeon 2.2 GHz processor and 32 GB
RAM. Other than CatBoost, LGBoost and XGBoost, all the classifiers
are trained and tested using the scikit-learn (Pedregosa et al., 2011b)
open source library for Python. CatBoost 1 (Prokhorenkova et al.,
2018), LGBoost 2 (Ke et al., 2017) and XGBoost 3 (Chen and Guestrin,
2016) are also open source libraries which are available on GitHub
for Python. Then, we perform a detailed analysis of the results of the
classifiers which span across 9 different types. A list of simulation
parameters of the classifiers is presented in Appendix B.

1https://github.com/catboost/catboost
2https://github.com/microsoft/LightGBM
3https://github.com/dmlc/xgboost/tree/master/python-package
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5.3.1 Performance Analysis of Various Types of Clas-
sifiers on Reduced Feature-Set

The top-14 features identified in feature selection process are used
to calculate the confusion matrix, precision, recall and F-measure of
different machine learning classifiers. The confusion matrix for all
classifiers is presented in Table 5.1.

TABLE 5.1: TP, TN, FP and FN of all classifiers

Type of Classifier Classifiers TP TN FP FN

Naive Bayes BernoulliNB 1 15365 1 682
GaussianNB 58 15249 117 625

LDA and QDA LDA 230 15302 64 453
QDA 566 15167 199 117

Generalized Linear Models LogisticRegression 453 15351 15 230
SGD SGDClassifier 639 15336 30 44
Support Vector Machine LinearSVC 672 15338 28 11
Decision Tree DecisionTreeClassifier 672 15346 20 11
Neural Network Models MLPClassifier 679 15341 25 4
Nearest Neighbors KNeighborsClassifier 678 15343 23 5

Ensemble Methods

AdaBoostClassifier 660 15350 16 23
RandomForestClassifier 677 15347 19 6
LGBoost 606 15356 10 77
XGBClassifier 674 15349 17 9
CatBoostClassifier 677 15352 14 6

One of our contributions is that we compare the results of the
classifiers with respect to the types of the classifiers. Another con-
tribution is that we compare the efficiency of the recently devel-
oped CatBoost, LightGBM and XGBoost with other supervised ma-
chine learning classifiers including Gaussian Naive Bayes, Bernoulli
Naive Bayes, Quadratic Discriminant Analysis (QDA), Stochastic
Gradient Descent (SGD), Decision Trees, Random Forest, K-Nearest
Neighbors (KNN), Adaboost, Multi-Layer Perceptron (MLP) classi-
fier, Linear SVC, Logistic regression and Linear Discriminant Anal-
ysis (LDA). The precision, recall and F-measure for all the classifiers
are presented in Table 5.2.

5.3.1.1 Performance Analysis of Classifiers with Respect to their
Types

It is interesting to observe that considering F-measure as the classi-
fiers’ efficiency measure, ensemble methods outperformed all other
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TABLE 5.2: Precision, Recall and F-measure of all
classifiers

Type of Classifier Classifiers Pre. Recall F-M

Naive Bayes BernoulliNB 0.500 0.001 0.003
GaussianNB 0.331 0.085 0.135

LDA and QDA LDA 0.782 0.337 0.471
QDA 0.740 0.829 0.782

Generalized Linear Models LogisticRegression 0.968 0.663 0.787
SGD SGDClassifier 0.955 0.936 0.945
Support Vector Machine LinearSVC 0.960 0.984 0.972
Decision Tree DecisionTreeClassifier 0.971 0.984 0.977
Neural Network Models MLPClassifier 0.964 0.994 0.979
Nearest Neighbors KNeighborsClassifier 0.967 0.993 0.980

Ensemble Methods

AdaBoostClassifier 0.976 0.966 0.971
RandomForestClassifier 0.973 0.991 0.982
LGBoost 0.984 0.887 0.933
XGBClassifier 0.975 0.987 0.981
CatBoostClassifier 0.980 0.991 0.985

types of classifiers. In fact, the top three classifiers having the best
F-measures belong to the ensemble methods namely CatBoost, Ran-
dom Forest and XGBoost, while Naive Bayes performed worst with
lowest two F-measures. A reason for this behavior is that ensemble
methods are robust to overfitting as compared to Naive Bayes classi-
fiers which tend to overfit the model. Thus, any method which over-
fits the model will suffer. Two classifiers are experimented in ’LDA
and QDA’ type. The F-measure of LDA is quite low, that is, 0.471
while the F-measure of QDA is observed to be 0.782 which shows
a percent increase in the performance of 66% while the percent in-
crease in the performance from Naive Bayes to ’LDA and QDA’ type
is 248%. The type ’Generalized Linear Models’ performed no bet-
ter than the type ’LDA and QDA’. The F-measure obtained from its
classifier, that is, Logistic Regression, is 0.787. The percent increase
in the performance from ’LDA and QDA’ to the type of ’Generalized
Linear Models’ is only 0.64%. One classifier from each of SGD, SVM,
DT, NN and Nearest Neighbors is tested. Their F-measures are ob-
served as 0.945, 0.972, 0.977, 0.979 and 0.980, respectively. Notably,
all these readings are above 0.90. LGBoost has the worst F-measure
among ensemble methods which is 0.933 while the F-measure of Ad-
aBoost is 0.971. The percent increase in the performance from the
worst to the best classifier in the ensemble methods is only 5.5%,
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FIGURE 5.3: Comparison of Different Types of Classi-
fiers using F-measure

which shows that the performance of all classifiers in ensemble meth-
ods is close to each other. The comparison of all types of classi-
fiers using F-measure is shown in Figure 5.3 where T-1 to T-9 cor-
respond to the types of Naive Bayes, LDA and QDA, Generalized
Linear Models, SGD, SVM, DT, NN, Nearest Neighbors and Ensem-
ble Methods, respectively.

Considering recall as the efficiency measure of the classifiers,
NN outperformed other types with MLP Classifier having a recall
of 0.994. The worst two recalls are observed for the Naive Bayes.
For the type ’LDA and QDA’, LDA has a recall as low as 0.337,
while the recall of QDA is 0.829, which shows a performance in-
crease of 146%. The type ’Generalized Linear Models’ performed
no better than ’LDA and QDA’. The classifier used for this type is
Logistic Regression. Its recall is 0.663. An interesting point is that
the counterpart of logistic regression, that is, MLP Classifier which
belongs to the type of NN, has the highest recall. Thus, the percent-
age increase in performance from the Logistic Regression to MLP
Classifier is 50%. The only difference between the two classifiers
is the number of hidden layers between the input and the output
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FIGURE 5.4: Comparison of Different Types of Classi-
fiers using Recall

layer. This observation has led us to a new future direction of test-
ing deep learning in our real dataset. The recalls of each of the
classifiers from SGD, SVM, DT and Nearest Neighbors are observed
as 0.936, 0.984, 0.984 and 0.993, respectively. The recalls of ensem-
ble methods are 0.966, 0.991, 0.887, 0.987 and 0.991. These recalls are
for the classifiers AdaBoost, Random Forest, LGBoost, XGBoost and
CatBoost, respectively. Other than LGBoost, the recalls of all en-
semble methods are above 0.960, which shows that the performance
of ensemble methods is very good for our data. The percent in-
crease from the worst to the best classifier in the ensemble methods
is 11.7%. The comparison of different types of classifiers using recall
is shown in Figure 5.4.

Considering precision as the efficiency measure of the classifiers,
all the classifiers used in ensemble methods outperformed rest of
the types. LGBoost has the best precision of 0.984, which interest-
ingly also has the lowest recall and F-measure among the ensemble
methods. This indicates that LGBoost has the lowest FP. The other
classifiers of AdaBoost, Random Forest, XGBoost and CatBoost from
ensemble methods have precision reading as 0.976, 0.973, 0.975 and
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0.980, respectively. There is an increase of only 1.1% of the per-
formance from the worst to the best classifier among the ensemble
methods. This shows that not only all classifiers in this type per-
formed better but also their performance is very close to each other.
The worst two precisions are for the type ’Naive Bayes’. The two
classifiers from the type ’LDA and QDA’ has the precision of 0.782
and 0.740. This shows an increase of 48% in the performance from
Naive Bayes type to ’LDA and QDA’ type. Each of the classifiers
from the types of Generalized Linear Models, SGD, SVM, DT, NN
and Nearest Neighbors has precision readings as 0.968, 0.955, 0.960,
0.971, 0.964 and 0.967, respectively.

5.3.1.2 Best Performing Classifiers for NTL Detection

We have used precision, recall and F-measure as the performance
evaluation metrics. The best F-measure is 0.985 for CatBoost classi-
fier, which narrowly outperforms Random Forest and KNN. These
three classifiers have corresponding high precision and recall values
indicating small FP and small FN values, respectively.

The F-measure of LGBoost classifier is 0.933, which is compara-
tively less than the F-measure of CatBoost classifier, i.e 0.985, while
the corresponding figure for XGBoost is 0.981. There is an increase of
5.6% in the F-measure from LGBoost to CatBoost. Overall, precision
and recall obtained for CabBoost, XGBoost and LGBoost classifiers
are above 0.97 except that the recall of LGBoost is 0.887.

The F-measures is significantly increased from 0.471 to 0.782 when
choosing QDA instead of LDA, which indicates that QDA outper-
forms LDA. This is because when multiple classes have a different
co-variance relationship then LDA suffers while QDA remains a bet-
ter option. This gives an insight to the characteristics of features of
this real dataset, that is, for NTL, there is a room to explore more
about the co-variance relationship for individual classes.

5.3.2 Performance Analysis of Deep Learning on Re-
duced Feature-Set

In addition to finding the best classifiers and the types of the classi-
fiers for NTL detection, a separate experiment is performed on the
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TABLE 5.3: TP, TN, FP, FN, Precision, Recall and F-
Measure of Neural Networks with Different Lay-

ers

Layers Units TP TN FP FN Pre. Recall F-M
2 100 648 15352 14 35 0.979 0.949 0.964
3 100 683 15319 47 0 0.936 1.000 0.967
4 100 647 15349 17 36 0.974 0.947 0.961
5 100 676 15347 19 7 0.973 0.990 0.981
10 100 682 15328 38 1 0.947 0.999 0.972

same dataset with different layers of neural network (MLP) while
each layer consists of 100 units. Five MLPs are tested with layers of
2, 3, 4, 5, and 10, respectively. Other than different layers, all other
parameters of MLP is kept same as presented in Appendix B. The
TP, TN, FP and FN values of each MLP is presented in Table 5.3. As
depicted in Figure 5.5, the maximum precision of 0.979 is observed
for the MLP with 2 layers while the maximum recall of 1 is observed
for the MLP with 3 layers. Considering recall, the MLP with 3 layers
has outperformed all the other classifiers. The maximum F-measure
of 0.981 is observed for the MLP with 5 layers which is comparable
to the F-measures of the other classifiers. These results have encour-
aged us for experimenting an exploratory analysis of deep learning
with different parameters in NTL detection using a real dataset.

5.4 Conclusion and Future Work

This contribution has used a real-world dataset of a power sup-
ply company in Pakistan for NTL detection. The dataset contains
approximately 80, 000 monthly consumption records along with 71
features. We have tested 15 machine learning classifiers, which span
across 9 types for a potential detection of NTL. The classifiers also in-
clude recently developed ensemble methods namely CatBoost, LG-
Boost and XGBoost. As the dataset belongs to the imbalance do-
main, we have used precision, recall and F-measure as the perfor-
mance evaluation metric.
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One of our findings of this work is that, with respect to F-measure,
ensemble methods outperformed other types and with respect to Re-
call, ANN outperformed other types of the classifiers. Considering
individual classifier analysis, CatBoost outperformed all other clas-
sifiers when taking F-measure into account, while MLP Classifier
performed best when considering Recall as the performance evalu-
ation metric. One of the observations is that recall increases by 50%
when MLP Classifier is used instead of Logistic Regression. This
shows that testing deep learning with many hidden layers can be a
potential future contribution in NTL detection. Another important
observation is that not all the features in a real dataset are useful in
detecting NTL. Using feature importance along with Gini Index, we
have derived a mechanism to identify the top-14 features, out of 71
features, which are contributing 77% in NTL detection. This has not
only significantly reduced the execution time but also has identified
useful features for NTL detection in a real dataset. This analysis can
be used as a baseline for future work to obtain the best combination
of features in a real dataset considering all classifiers.

Another contribution of this work is that it has analyzed the re-
sults of all classifiers with respect to their types. As a result, it has
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outlined significant observations about the types of the classifiers
with respect to NTL detection. This contribution has opened a new
area for the research community working in NTL detection.

There is still a need for creating a benchmark dataset which can
widely be used in NTL detection. Another future direction is us-
ing penalized machine learning models in which weighted classi-
fiers (Awais et al., 2019) are used. The best classifiers identified in
this study can also be implemented on different feature selection ap-
proaches.
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Chapter 6

Impact of Feature Selection on
Non-Technical Loss Detection

6.1 Introduction

An important consideration about the problem of NTL detection is
that it belongs to imbalance domain. It is a specific type of prob-
lem where there is an imbalance in the distribution of classes. The
normal consumers (negative class) are too many whereas the rep-
resentation of the thieves (positive class) is too small. Interestingly,
we are more focused in finding the instances of the least represen-
tative class (Awais, Palmerini, and Chiari, 2016), i.e. the positive
class. This imbalanced distribution of classes has made the prob-
lem of NTL detection somewhat a unique problem. The research
community has proposed solutions to deal with imbalance datasets
like oversampling the minority class (Chawla et al., 2002) or random
under-sampling of the majority class (Liu, Wu, and Zhou, 2008).

One of the most important ingredients in solving a machine learn-
ing problem is the data used to solve the problem. Not only rele-
vant records are important for correctly predicting the class labels
but identifying relevant features are equally important. For NTL de-
tection, efforts have been made in identifying and representing rele-
vant records by addressing the issue of class imbalance but no such
focus has been made in identifying relevant features. In this section,
we focus on identifying relevant features for NTL detection with re-
spect to the target variable. Then, using those features we derive
a mechanism to filter out features which are best suitable for dif-
ferent classifiers using our proposed Incremental Feature Selection
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(IFS) algorithm. Our proposed methodology is based on four main
steps: (1) data collection and pre-processing, (2) extraction of fea-
ture importance, (3) use of the IFS algorithm for classification given
feature importance, and (4) use of performance evaluation metrics.
Initially, the data contained 112 features out of which 71 useful fea-
tures are shortlisted after pre-processing. Out of the 71 features, a
further most relevant features for NTL detection are identified by
the IFS algorithm.

In summary, we propose a novel solution for the selection of the
most relevant features in a real dataset for different classifiers used
for NTL detection in a bid to minimize the overall execution time of
classification. Our contribution to the literature is the following:

1. We use feature importance to compare and order each feature
with respect to its relevancy to the target variable. No such
work has been done before for NTL detection.

2. We propose the Incremental Feature Selection (IFS) algorithm,
which systematically adds new features and calculates perfor-
mance evaluation metrics of different classifiers for NTL detec-
tion.

3. From a list of 71 features, we have identified 9 features having
almost the same accuracy measures as was achieved with 71
features.

4. Unlike other techniques, we have used three evaluation met-
rics which are best suitable to evaluate the classifiers used for
class imbalance domain.

6.2 Data Collection and Pre-Processing

For the experimentation of feature selection, we have used the same
dataset as referred in Chapter 4 and 5. The summarized characteris-
tics of this dataset is that it is used for a classification problem hav-
ing class labels of ‘Yes’ or ‘No’ for theft and non-theft cases, respec-
tively. The Class ‘Yes’ contains only 4% of the representation while
the class ‘No’ contains 96% of the representation. This characteristic
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has made the real dataset a perfect case of class imbalance prob-
lem where representation of one class out-weights the other class.
The data is then divided into training and test sets in the ratio of
80% : 20%, respectively. However, it was made sure that the origi-
nal distribution ratio of theft and non-theft is retained in the training
and the test set. A complete description of the dataset is presented
in Chapter 3.

6.3 The Need for Feature Selection

A total of 71 features are initially shortlisted from the dataset of the
electricity supplier. Some features are more important in predicting
the theft cases while others remain irrelevant. Making the models
learn on irrelevant features causes a decrease in the accuracy. More-
over, there is also an occurrence of duplicate features which causes
overall performance deterioration. To overcome this problem and to
find which features are more relevant in theft prediction, a feature
selection technique is required. For this, we have used feature im-
portance. It is a numerical score associated with each feature in the
dataset. The higher the score, the more relevant is the feature to the
target variable. A theoretical explanation of feature importance is
described in (Breiman, 2001).

6.4 Machine Learning Classifiers

In order to predict the NTL in our real dataset, we have tested three
machine learning classifiers namely CatBoost (Prokhorenkova et al.,
2018), k-Nearest Neighbors (KNN) (Goldberger et al., 2005) and De-
cision Tree (DT) Classifier. The classifiers are selected due to their
success in class imbalance problems. The details of these classifiers
are presented in Section 2.2.2.

6.5 Evaluation Metric

The classifiers used in class imbalance problems have an interesting
property that they can not be evaluated with the metrics that are
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used in normal classification problem. For example, accuracy is not
the right measure for the evaluation of classifiers in imbalance do-
main as it is dominated by the number of non-theft cases correctly
classified by the classifier (True Negative), which in our case is 96%.
For this reason, we have chosen F-Measure as the evaluation metric,
which uses precision and recall. The details of precision, recall and
F-Measure are presented in Section 2.2.3.

6.6 The Incremental Feature Selection Algo-
rithm

In this section, we present our Incremental Feature Selection (IFS)
algorithm for selecting the best features across multiple classifiers.
The IFS is listed in Algorithm 1. The set of selected features are first
sorted in reverse order with respect to the Gini index value (Raileanu
and Stoffel, 2004) (feature importance). A theoretical description of
Gini Index can be found in Section 5.2.3. This is shown in step 1 of
the IFS algorithm. As a result, the feature with the highest informa-
tion gain comes in the first place, the feature with the second high-
est information gain comes in the second place, and so on. The list
of classifiers is stored in List_o f _classi f iers. A new list, f _selected,
which is initially empty, is incrementally appended by adding the
next feature from the List_o f _ f eatures. For every new feature set,
the data is split into training and test set. Once the training and the
test sets are ready for the features in f _selected, we do the following
for every classifier in List_o f _classi f iers. First, train the classifier
with the training set. Second, test the classifier with the test set.
Third, compute the confusion matrix containing TP, True Negative
(TN), False Positive (FP) and FN values. Finally, compute precision,
recall and F-Measure. After complete execution of the algorithm, the
F-Measure for the selected classifiers is obtained with initially only
first feature, then with first two features, and so on. It continues
until all features from List_o f _ f eatures are selected.
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6.6.1 Early Stopping

In our simulation, we have set an early stopping criterion for the
IFS algorithm which is when the difference of performance metrics
using selected features, as compared to all features, is reduced to
−1% or less, the algorithm terminates without adding new features
to the list.

Algorithm 1 Incremental Feature Selection (IFS) algorithm

Input: List_o f _ f eatures, Gini_index, List_o f _classi f iers
Output: precision, recall, f measure {2-D arrays having accuracy val-

ues}
1: f s← reverse_sort(List_o f _ f eatures, Gini_index)
2: f _selected← [ ]
3: precision← [ ][ ]
4: recall ← [ ][ ]
5: f measure← [ ][ ]
6: for f in f s do
7: f_selected.append ( f )
8: x_train, y_train, x_test, y_test← split( f _selected)
9: for c in List_o f _classi f iers do

10: model ← train_classi f ier(c, x_train, y_train)
11: y_predict← test_classi f ier(model, x_test)
12: TP, FP, FN, TN ← con f usion_matrix(y_test, y_predict)
13: precision[c, f _selected]← TP/(TP + FP)
14: recall[c, f _selected]← TP/(TP + FN)

15: f measure[c, f _selected]← 2×precision[c, f _selected]×recall[c, f _selected]
precision[c, f _selected]+recall[c, f _selected]

16: end for
17: end for
18: return precision, recall, f measure

6.6.2 Experimental Setup

The simulation of the IFS algorithm was carried out with Python’s
open source library scikit-learn (Pedregosa et al., 2011b) using a 64-
bit Windows server with Intel Xeon 2.2 GHz processor and 32 GB
RAM. The learning rate for CatBoost was set to 0.047 and the logloss
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FIGURE 6.1: Precision of CatBoost, KNN and Decision
Tree Classifier with 9 Features

function was used as a loss function. Gini was used as a measure of
information gain for the Decision Tree Classifier. For KNN, K was
set to 5 and the distance metric used was Minkowski.

6.7 Results and Discussions

The performance of the proposed framework has been analyzed by
computing precision, recall and F-Measure of recently developed
CatBoost (Prokhorenkova et al., 2018), KNN (Goldberger et al., 2005)
and Decision Tree Classifier (Mingers, 1989). Figure 6.1 shows the
precision, Figure 6.2 shows the recall and Figure 6.3 shows the F-
Measure of the three classifiers. The figures represent the top-9 fea-
tures as identified by the IFS algorithm. These features are incre-
mentally added with respect to their feature importance.

A significant increase in overall performance is observed for all
classifiers with the inclusion of the 3rd and 6th features. The total
number of units consumed in current year is stored in the 3rd feature,
while the 6th feature records average amount paid during the last 12
months. Performance of the Decision Tree Classifier is boosted with
the addition of the 3rd feature, while the 6th feature has a significant
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FIGURE 6.2: Recall of CatBoost, KNN and Decision
Tree Classifier with 9 Features

impact on recall and F-Measure of KNN. With the inclusion of the
9th feature, the precision, recall and F-Measure of the three classi-
fiers achieved near optimum values which are comparative to the
corresponding figures when all features are included.

TABLE 6.1: Precision, Recall and F-Measure of
CatBoost, Decision Tree Classifier and KNN for

9 and 71 features

Features CatBoost DT KNN

Precision 71 98.11% 97.23% 94.18%
9 97.40% 96.83% 96.58%

Recall 71 99.27% 97.80% 45.10%
9 98.68% 98.24% 99.12%

F-Measure 71 98.69% 97.51% 61.00%
9 98.04% 97.53% 97.83%

An interesting observation about the performance of the three
classifiers is that it is comparative or slightly better when the fea-
tures are selected using the IFS algorithm as compared to when all
the features are selected. This can be verified in Table 6.1, where
selecting the top 9 features using the IFS algorithm, the precision,
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FIGURE 6.3: F-Measure of CatBoost, KNN and Deci-
sion Tree Classifier with 9 Features

TABLE 6.2: Execution Time of CatBoost, Decision Tree
Classifier and KNN for 9 and 71 features

Features CatBoost DT KNN

Training Time
71 149s 7s 5s
9 94s 2s 0.5s

Percentage Save-Up Time 37% 71% 90%
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recall and F-Measure achieved their near optimum. In some cases,
the performance with selected features using the IFS algorithm is
slightly better than the performance achieved using all features. Ta-
ble 6.1 depicts that performance of CatBoost is slightly deteriorated
with the use of the IFS algorithm. Precision and F-Measure of Cat-
Boost using the IFS algorithm is decreased by 1% while recall re-
mained the same. On the other hand, there is a major decrease in the
training time of CatBoost with the use of the IFS algorithm as shown
in Table 6.2. The training time of CatBoost with all features included
is 149 sec and with the use of the IFS algorithm, it is reduced to 94
sec, which is a 37% reduction. Analyzing the three metrics, one can
observe that the performance of KNN is improved significantly us-
ing the IFS algorithm. For KNN, precision is increased by 3%, while
recall and F-Measure are increased by 120% and 60%, respectively.
The training time of KNN using the IFS algorithm is also reduced
by 90%. For decision tree, the performance remains almost the same
with the use of the IFS algorithm. Its precision is decreased by 0.5%,
recall is increased by 0.5%, while F-Measure remained the same but
the training time is reduced by 71%. This shows that the IFS algo-
rithm has not only identified key features which are participating in
NTL detection but it has also significantly reduced the overall train-
ing time of classifiers.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation mainly focused on the problem of NTL detection
on a real dataset. The dataset is taken from a power supply company
in Pakistan. The dataset contains approximately 80, 000 monthly
consumption records during a span of January 2015 to March 2016.

The objective of the dissertation was to first identify the open
challenges and the knowledge gap in NTL detection through exten-
sive literature review and then address those challenges by applying
recently developed tools and techniques in a real dataset.

The contributions of the dissertation are listed below:

1. We presented a comprehensive literature review of NTL. This
review is presented in Table 2.1 of Chapter 2.

2. Based on the literature review, we identified the limitations of
recent work in NTL detection. The limitations are outlined be-
low:

(a) There is a need to identify the suitable performance eval-
uation metrics for NTL detection considering the specific
requirements of NTL detection.

(b) The identification of the types of the classifiers which are
best suited for NTL detection in a real dataset.

(c) The identification of the individual classifiers which are
best suited for NTL detection in a real dataset.

(d) It is highly likely that not all the features are good in par-
ticipating in the detection of NTL. So, there is a need to
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identify the most relevant features in a real dataset that
can be used in the identification of NTL.

These limitations and gaps identified in the literature review
were addressed by the identification of performance evalua-
tion metrics that are best suitable for NTL detection, the com-
parison of the classifiers and the types of the classifiers for NTL
detection and the impact of feature selection in NTL detection.

3. The problem of NTL detection should be dealt with consid-
erations that the number of fraudulent attempts are negligi-
ble as compared to the number of normal consumption. This
means that the problem belongs to the class imbalance do-
main. This biasness in the class distribution emphasises on
the point that care must be taken in not only applying the ma-
chine learning classifiers but also in the performance evalua-
tion metrics that are used in identifying potential NTL. The
dissertation contributes in analyzing 14 performance evalua-
tion metrics and identifying the suitable ones for NTL detec-
tion. The datasets that are used in the problem of NTL detec-
tion have a high imbalanced ratio of the positive class and the
negative class. Adding the importance of finding True Posi-
tives (TP), False Negatives (FN) and False Positives (FP) to the
problem of NTL detection, it is necessary to first identify the
requirements of NTL detection and then select the best metrics
for performance evaluation while taking care of the specific re-
quirements of NTL detection. One of our findings is that pre-
cision and recall should not be given equal priority for NTL
detection. Rather, recall should be given higher priority. We
have tested KNN, random forest and linear SVM classifiers for
the identification of NTL attempts. The percent increase of re-
call from using KNN to random forest was observed as 1.24%.
So, we concluded that random forest is the better choice as it
has the highest recall. This analysis can be used as a baseline
for the accurate selection of the classifiers in NTL detection. A
complete description of the contribution is presented in Chap-
ter 4.
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4. The dissertation contributes in testing 15 machine learning clas-
sifiers which belong to 9 different types of the classifiers which
also includes the recently developed CatBoost, LGBoost and
XGBoost classifiers. In this contribution, not only individual
classifiers are compared for NTL detection but the types of the
classifiers are also compared. As a result, it has outlined sig-
nificant observations about the types of the classifiers with re-
spect to NTL detection. Based on the findings of the best eval-
uation metric in our previous contribution, the MLP classifier
was found as the best individual classifier with respect to re-
call and ANN was found as the best type of the classifiers for
NTL detection. A complete description of the contribution is
presented in Chapter 5.

5. The dissertation proposes a novel framework to identify rele-
vant features for NTL detection. This framework is composed
of our proposed Incremental Feature Selection (IFS) algorithm,
which first identifies the most relevant features for NTL detec-
tion in a real dataset using feature importance. Then, it incre-
mentally adds features with respect to their scores of impor-
tance to test the listed classifiers. Finally, it calculates perfor-
mance evaluation metrics for the selected classifiers. In this
contribution, CatBoost, Decision Tree Classifier and KNN are
tested for NTL detection due to their success in imbalance do-
main. The results have shown that with the use of the IFS al-
gorithm, recall and F-Measure of KNN is increased by 120%
and 60%, respectively, while the training time of KNN is re-
duced by 90%. The performance achieved using a shortlisted
set of features by the IFS algorithm is comparable to the perfor-
mance achieved using all the features of the dataset. Moreover,
this framework has also considerably minimized the execution
time of all the classifiers. A complete description of the contri-
bution is present in Chapter 6.

7.2 Future Work

There is a need to further extend the use of performance evalua-
tion metrics that can estimate and compare error rates on the basis
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of which a combination of classifiers can be selected for a specified
dataset for NTL detection. Currently, there is a small range of graph-
ical metrics used for performance analysis. This includes receiver
operating characteristic (ROC) and area under ROC curve (AUC).
There is also a need of further exploration in the usage of graphical
performance metrics.

The problem of NTL detection is a global problem. In order to
provide the research community a chance to further extend their
contributions in this field, there is a need of a benchmark dataset
which can widely be used in NTL detection. Due to the highly sen-
sitive nature of the data, currently no such benchmark dataset is
available. There is a possible future direction of the creation of a
real as well as a synthetic dataset for the problem of NTL detection.
Another related future direction can be a comparison of the results
achieved in this study with the experimental results performed on a
different real or synthesized dataset.

Another future direction is using penalized machine learning mod-
els in which weighted classifiers are used. The best classifiers iden-
tified in this study can also be implemented on different feature se-
lection approaches.

Moreover, with the amount of success deep learning has been
receiving in the last few years, there is also a need to test the perfor-
mance of deep learning in NTL detection using selected feature set
and all feature set. Moreover, deep learning can also be tested in fea-
ture selection for a real dataset. Over sampling and under sampling
techniques have shown good results in many problems. NTL de-
tection can also be thoroughly tested with over sampling and under
sampling techniques with a real dataset.

Power industries face a closely related problem of defaulters.
The defaulters do not pay the bill for many months. The dataset
used in NTL detection can also be used in the prediction of default-
ers. Rather, an interesting fact finding research activity can be pro-
ceeded which finds the co-relation between the defaulters and the
NTL fraudsters.

The datasets used in NTL detection can also be merged with
some external data representing the features of environment like
temperature, humidity and climate readings. This way a seasonal
comparison of NTL occurrences can also be made. This work can
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further be extended for the seasonal comparison of NTL with the
seasonal comparison of defaulters. This way, the impact of seasonal
changes on the occurrences of NTL and defaulters prediction can be
measured.
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Appendix A

Feature Set

The list of 71 features along with their categories, feature description
and feature importance values is described in Table A.1.
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TABLE A.1: Feature Set

FID Feature Description Category F. Importance
1 Units-12Months Units consumed during last 12 months Normal units 0.141807732008
2 Amount-12Months Total amount billed during last 12 months Normal amount 0.116774856878
3 BilledUnit-YTD Units billed in current year Normal units 0.116751907486
4 BilledAmount Amount billed in current month Normal amount 0.092791430138
5 1 year LPS Late payment surcharge in last one year Additional amount 0.057126632724
6 Amount-12MonthsAvg Average monthly amount in last 12 months Normal amount 0.040861765397
7 BilledAmount-12MonthsGross Total payment made in last 12 months Normal amount 0.038509950395
8 Units-12MonthsAvg Average monthly units in last 12 months Normal units 0.032045710111
9 Amount-GrossBilledYTD Total payment made in current year till date Normal amount 0.029088274439

10 Amount-
12MonthsAvgGrossBilled

Total average monthly payment
made in last 12 months Normal amount 0.028248805369

11 Amount-Regular Payable amount for regular units Normal amount 0.023397470434
12 1 Month LPS Late payment surchare in last 30 days Additional amount 0.022879096842
13 Month-Billing Month of billing Bill info 0.016062708402
14 InstallementNo Number of installements Additional amount 0.015831709285
15 Units-Regular Sum of all units Normal units 0.015017339757
16 Billing-MonthYear Month and year of billing Bill info 0.014896074379
17 6-12MonthLPS Late payment surcharge in last 6-12 months Additional amount 0.013971961284
18 3-6MonthLPS Late payment surcharge in last 3-6 months Additional amount 0.012784735142
19 Billed-LPS Late payment surcharge billed Additional amount 0.011929939987
20 Amount-Installement Amount of installements Additional amount 0.011181126362
21 2-3MonthLPS Late payment surcharge in last 2-3 months Additional amount 0.010289314501
22 Bill Day Day of billing Bill info 0.009823534830
23 1-2MonthLPS Late payment surchrge in last 1-2 months Additional amount 0.009627897668
24 Balance-Closing Current month bill dues Normal amount 0.009071362880
25 Date-Last Payment Date of last payment received Bill info 0.008636211093
26 Balance-Opening Previous month bill dues Normal amount 0.008609312214
27 Date-Last Disconnection Date of last disconnection Extra info 0.006633772523
28 1-2YearLPS Late payment surcharge in last 1-2 years Additional amount 0.006118613036
29 2-3YearLPS Late payment surcharge in last 2-3 years Additional amount 0.005575965464
30 Class-Bill Bill class as per type of customer Bill info 0.005432932386
31 Amount-Last Payment Amount of last payment received Normal amount 0.005270394928
32 Meter Company Meter manufacturer company Extra info 0.004691091511
33 Amount-12MonthsNetCredit Total credit amount in 12 months Normal amount 0.004654967355
34 Amount-12MonthsAvgNetCredit Average monthly credit amount in 12 months Normal amount 0.004596220721
35 4-5YearLPS Late payment surcharge in last 4-5 years Additional amount 0.004532165693
36 3-4YearLPS Late payment surcharge in last 3-4 years Additional amount 0.004304066086
37 Above5YearLPS Late payment surcharge before 5 years Additional amount 0.003930719617
38 Amount-NetCreditYTD Amount received in current year till date Additional amount 0.003590748039
39 Last Discon Reason Reason for last disconnection Extra info 0.003512856482
40 Partner Partner agency Extra info 0.003249072825
41 Type-Premise House hold type like house, flats, market etc. Bill info 0.003050005819
42 Meter Category Meter category Extra info 0.002990504483
43 Category-Rate Category for rate like resedential, commercial etc. Bill info 0.002828424755
44 Load-Sanctioned Allowed load Extra info 0.002666668370
45 BankComm Bank commission Normal amount 0.002146206356
46 LoadConnected Actual load Extra info 0.001827458080
47 Industry Class Type of industry Extra info 0.001569211472
48 Payment Received Payment received by customer Additional amount 0.001457066958
49 Conn Phase Connection phase Extra info 0.001277748626
50 Amount-LPSWaived Waived amount of late payment surcharge Additional amount 0.001175315316
51 Amount-Adjustment Pending bill adjustment Additional amount 0.000894321102
52 Amount-Normal Amount against consumed untis Normal amount 0.000798917360
53 Units-Normal Consumed units Normal units 0.000554570642
54 Ordinary IP Type of power supply in ordinary industry (AC) Extra info 0.000542179330
55 Amount-Set Aside Disputed amount Additional amount 0.000473512563
56 DC Ordinary IP Type of power supply in ordinary industry (DC) Extra info 0.000418416649
57 Type-Consumer Connection type Bill info 0.000393096677
58 Code-Set Aside Code for disputed amount Additional amount 0.000386602460
59 Units-Adjusted Adjusted units for previous month Additional units 0.000138101530
60 Allowance-PreviousYear Any allowance for previous year Additional amount 0.000136395061
61 Units-Average Guessed units written for any month Normal units 0.000084363601
62 Amount-Average Amount against guessed units Normal amount 0.000062844597
63 Amount-Adjusted Amount for adjusted units Additional amount 0.000015937667
64 Amount-Clearing Amount needed to clear account Additional amount 0.000001677576
65 Connection-Status State of connection like in-active, active Extra info 0.000000006279
66 Type-Bill Type of bill Bill info 0.000000000000
67 Category-DC Rate Rate category of DC Extra info 0.000000000000
68 Request-Installement Installement request Additional amount 0.000000000000
69 Amount-DownPayment Down payment amount Additional amount 0.000000000000
70 Amount-OutStndDPayment Remaining down payment Additional amount 0.000000000000
71 1YearLPS Late payment surcharge in last 1 year Additional amount 0.000000000000
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Appendix B

Simulation Parameters

Table B.1 contains the list of parameters of the classifiers used in the
simulation.
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TABLE B.1: List of Simulation Parameters

Classifier Simulation Parameters
BernoulliNB alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None
GaussianNB priors=None, var_smoothing=1e-09
LDA solver=’svd’, shrinkage=None, priors=None, n_components=None,

store_covariance=False, tol=0.0001
QDA priors=None,reg_param=0.0, store_covariance= False,tol=0.0001
Logistic Regression penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, inter-

cept_scaling=1, class_weight=None, random_state=None, solver=’warn’,
max_iter=100, multi_class=’warn’, verbose=0, warm_start=False,
n_jobs=None, l1_ratio=None

SGD Classifier loss=’hinge’, penalty=’l2’, alpha=0.0001, l1_ratio=0.15, fit_intercept=True,
max_iter=1000, tol=0.001, shuffle=True, verbose=0, epsilon=0.1,
n_jobs=None, random_state=None, learning_rate=’optimal’,
eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1,
n_iter_no_change=5, class_weight=None, warm_start=False, aver-
age=False

Linear SVC penalty=’l2’, loss=’squared_hinge’, dual=True, tol=0.0001,
C=1.0, multi_class=’ovr’, fit_intercept=True, intercept_scaling=1,
class_weight=None, verbose=0, random_state=None, max_iter=1000

DT Classifier criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2,
min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, class_weight=None, presort=False

MLP Classifier hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’, alpha=0.0001,
batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001,
power_t=0.5, max_iter=200, shuffle=True, random_state=None,
tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nes-
terovs_momentum=True, early_stopping=False, validation_fraction=0.1,
beta_1=0.9, beta_2=0.999, epsilon=1e-08, n_iter_no_change=10

KNN n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2,
metric=’minkowski’, metric_params=None, n_jobs=None

AdaBoost base_estimator=None, n_estimators=50, learning_rate=1.0, algo-
rithm=’SAMME.R’, random_state=None

Random Forest n_estimators=’warn’, criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, bootstrap=True, oob_score=False,
n_jobs=None, random_state=None, verbose=0, warm_start=False,
class_weight=None

LGBoost application=’binary’, is_unbalance=’true’,objective=’binary’, learn-
ing_rate=0.003, boosting_type=’gbdt’,metric=binary_logloss,num_leaves=10,
min_data=50, max_depth=10

XGBoost base_score=0.5,booster=’gbtree’,colsample_bylevel=1,colsample_bytree=1,
gamma=0, learning_rate=0.1, max_delta_step=0,max_depth=3,
min_child_weight=1, missing=None, n_estimators=100,n_jobs=1,
nthread=None, objective=’binary:logistic’, random_state=0,reg_alpha=0,
reg_lambda=1, scale_pos_weight=1, seed=None,silent=True, subsample=1

CatBoost learning_rate=0.047, depth=9, loss_function=’Logloss’
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Appendix C

Pre-Processing, Training and
Testing Code

Following is the Python 3.6 code of pre-processing, training and test-
ing.

%Importing Libraries

import pandas as pd
import numpy as np
import pandas_ml as pdml

%Reading File
File=pd.read_csv("File.csv", low_memory=False)

File.BCM[(File['AssessedAmount']>0) & (File['IRBDetectionAmount']>0)] = 'Theft'

%Data Munging
File.BCM.replace(['IRB (THEFT) - IBC','Theft', 'Normal', 'Assessed', 'Average',

'Adjusted', 'ITG - Irregular Bill against Tariff Revi',
'IRB (MC DISCREPANCY) - IBC','IBC -Wrong Tariff',
'IBC - Assessed Bill Revision', 'WRONG TARIFF', 'IRB (OTHER) REVISION',
'WRONG READING/PUNCHING/POSTING/MMF/CALCU','Extra GST and/or Further GST Revision',
'MIDDLE BILL'], [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0], inplace=True)

File['Last DC Date']= File['Last DC Date'].fillna ('01-Jan-2001')
File['Last Payment Date']= File['Last DC Date'].fillna('01-Jan-2001')
File['Last DC Date']=pd.to_datetime (File['Last DC Date'],

infer_datetime_format = True)
File['Last Payment Date'] = pd.to_datetime (File[ 'Last Payment Date'],

infer_datetime_format = True)
SFile=File[['AccountContract', 'Billing Class', 'Rate Category', 'DC OIP',

'DC Rate Category', 'OIP', 'Phase', 'Cycle Day', 'Sanctioned Load',
'Connected Load', 'Status', 'Last DC Date', 'Last DC Reason', 'Premise Type',
'Set Aside Amount', 'Set Aside Code', 'Installement Number', 'Installement Amount',
'Consumer Type', 'Industry Classification', 'Agency', 'Last Payment Date',
'Last Payment Amount', 'Meter Make', 'Device Category', 'Last SIR Number',
'Last SIR CreatedOn' , 'BillingMonth', 'BillType', 'NormalUnits', 'NormalAmount',
'AverageUnits', 'AverageAmount', 'AdjustedUnits', 'AdjustedAmount', 'RegularUnits',
'RegularAmount', 'CurrentUnits', 'CurrentAmount', '12MonthsAvgUnits',
'12MonthsAvgAmount', 'UnitBilledYTD', '12MonthsUnits', '12MonthsAmount',
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'OpeningBalance', 'AmountBilled', 'LPSBilled' , 'LPSWaived', 'BankCharges',
'Payment', 'Adjustment', 'PreviousYearAllowance', 'DownPaymentRequest',
'DownPayment', 'ClearingAmount', 'ClosingBalance', 'OutstandingDownPayment',
'A <=(366)', 'B (365)-(1)', 'C 0-30', 'D 31-60', 'E 61-90', 'F 91-180', 'G 181-365',
'H 366-730', 'I 731-1095', 'J 1096-1460', 'K 1461-1825', 'L >=1826',
'GrossBilledYTD', 'NetCreditYTD', '12MonthsGrossBilled', '12MonthsNetCredit',
'12MonthsAvgGrossBilled', '12MonthsAvgNetCredit', 'MonthYearSelection',
'Assessed Amount', 'CurrentAmount', 'IRBDetectionAmount', 'BCM']]

SFile['Last DC Reason']=SFile['Last DC Reason'].replace([0,3,4],[1,2,3])
SFile['Last DC Reason']=SFile['Last DC Reason'].fillna(0)
SFile['DC Rate Category']=SFile['DC Rate Category'].fillna(0)
SFile['Rate Category']=SFile['Rate Category'].replace(['A1-R','A2-C_RET',

'A2-C','B-2','B-1','A1-R_EM_BE','E-1_I','E-1_II','A2-C_B','B-3_TOD',
'E-2_I', 'A2-C_B_RET', 'MIX', 'D-1','B-2_TOD'],
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])

SFile['Rate Category']=SFile['Rate Category'].fillna(0)
SFile['Billing Class']=SFile['Billing Class'].replace (['A1-R', 'A2-C',

'B', 'E', 'MIX','D'], [1,2,3,4,5,6])
SFile['Billing Class']=SFile['Billing Class'].fillna(0)
SFile['DC OIP']=SFile['DC OIP'].replace(['ORD','IND'],[1,2])
SFile['DC OIP']=SFile['DC OIP'].fillna(0)
SFile['OIP']=SFile['OIP'].replace(['ORD','IND'],[1,2])
SFile['OIP']=SFile['OIP'].fillna(0)
SFile['Phase']=SFile['Phase'].replace(['SINGLE','POLY<20','POLY20TO90'],[1,2,3])
SFile['Phase']=SFile['Phase'].fillna(0)
SFile['Cycle Day']=SFile['Cycle Day'].interpolate()
SFile.dropna(subset=['BillingMonth'],how='all' ,inplace=True)
SFile['Status']=SFile['Status'].replace(['ACT','DIS','MOC'],[1,2,3])
SFile['Premise Type']=SFile['Premise Type'].replace(['HOUSE','SHOP', 'FLAT',

'INDUSTRY', 'UNKNOWN', 'SCHOOL','TELECOM TOWER / PTCL', 'MOSQUE', 'BANK',
'NOT AVAILABLE','MARRIAGE HALL', 'GODOWN', 'HOSPITAL - PRIVATE', 'CNG STATION',
'PETROL PUMP', 'OFFICE - PRIVATE / LAWYERS / SOLICITORS', 'MADARSA', 'RESTAURANT',
'HOTEL', 'DISPENSARY / CLINIC / LABORATORY -GOVT', 'FACTORY', 'SOFTWARE HOUSE',
'SHOPS','DISPENSARY / CLINIC / LABORATORY- PVT', 'OFFICE - GOVT',
'CHARITABLE INSTITUTE / NGO / WELFARE', 'MOBILE TOWER',
'TUBE WELL - FISH FARM, NURSERIES, FISH H', 'IMAM BARGAH', 'PARKS / PLAYGROUND',
'HOSPITAL - GOVT', 'GRAVEYARD', 'NEON', 'OFFICE', 'STREET LIGHT', 'GRID STATION',
'WATER PUMP', 'OFFICES', 'HOSPITALS / DISPENSERIES','COLLEGE', 'POST OFFICE',
'FISH HATCHERIES'], [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22,23,24,25,26,27, 28, 29, 30,31, 32, 33,34, 35, 36, 37, 38,39,40,41,42])

SFile['Premise Type']=SFile['Premise Type'].fillna(0)
SFile['Set Aside Amount']=SFile['Set Aside Amount'].fillna(0)
SFile['Set Aside Code']=SFile['Set Aside Code'].fillna(0)
SFile['Installement Number']=SFile['Installement Number'].fillna(0)
SFile['Installement Amount']=SFile['Installement Amount'].fillna(0)
SFile['Consumer Type']=SFile['Consumer Type'].replace(['DOL Connection',

'DOL Connection, 3 phase (mostly)', 'Bulk LT Connection','HT Connection'],
[1,2,3,4])

SFile['Consumer Type']=SFile['Consumer Type'].fillna(0)
SFile['Industry Classification']=SFile['Industry Classification'].replace(

['Small Industry', 'Low Tension Large Industry','High Tension Large Industry'],
[1,2,3])

SFile['Industry Classification']=SFile['Industry Classification'].fillna(0)
SFile['Agency']=SFile['Agency'].replace(['EVALUATION GRID PRIVATE LIMITED'],[1])
SFile['Agency']=SFile['Agency'].fillna(0)
SFile['Last Payment Amount']=SFile['Last Payment Amount'].fillna(0)
SFile['Meter Make']=SFile['Meter Make'].replace(['SBL', 'PEL','CHA', 'EAC',

'EPL','DKB','KRZ', 'SPC', 'USR','TEC', 'KOR','DMT', 'GNZ','DTM', 'DEP',
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'EEC','CAH','KBK', 'INT','MTI','ISK', 'Unknown', 'IND', 'DSB', 'LAG',
'ACT','PAF', 'SSW','EMC','CEL', 'POL','HTL','PRI', 'SRH','SBS', 'DPE',
'SBE','UHR', 'ABB','MPV', 'BEM','LG','VER', 'SPT','AIS', 'BIC','CRE',
'DIN', 'ELS'],[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,
25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49])

SFile['Meter Make']=SFile['Meter Make'].fillna(0)
SFile['Device Category']= SFile['Device Category'].replace (

['METER; ENERGY SINGLE PHASE 10-40A', 'METER; STATIC SINGLE PHASE',
'METER; ENERGY 3 PHASE 15-90A', 'METER; STATIC THREE PHASE',
'METER; 3PH DOL AMR GPRS/3G W/DC SW',
'METER; HT CT/PT&LT OPERATED W/GPRS MODEM', 'METER; STATIC LT C.T.O PROG.',
'METER; ENERGY SINGLE PHASE (REFURBISHED)', 'METER; 1PH DOL AMR GPRS/3G W/DC SW',
'METER; ENERGY C.T OPERATED 100/5A', 'METER; ENERGY THREE PHASE (REFURBISHED)',
'METER;DIRECT ONLINE W/GPRS MODEM 3 PHASE', 'METER E 42 F-D/M 400/5A,66000/100 V',
'USED METER E 42 F-DM 400/5A, 66000/100 V', 'USED METER; STATIC LT C.T.O PROG.'],
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])

SFile['Device Category']=SFile['Device Category'].fillna(0)
SFile['Last SIR Number']=SFile['Last SIR Number'].fillna(0)
SFile['Last SIR CreatedOn']=SFile['Last SIR CreatedOn'].fillna(0)
SFile['BillType']=SFile['BillType'].replace(['Regular','IRB-Detection',

'IRB-Revised'],[1,2,3])
SFile['PreviousYearAllowance']=SFile['PreviousYearAllowance'].fillna(0)
SFile['DownPaymentRequest']=SFile['DownPaymentRequest'].fillna(0)
SFile['ClearingAmount']=SFile['ClearingAmount'].fillna(0)
SFile['ClosingBalance']=SFile['ClosingBalance'].fillna(0)
SFile['OutstandingDownPayment']=SFile['OutstandingDownPayment'].fillna(0)
SFile['A <=(366)']=SFile['A <=(366)'].fillna(0)
SFile['B (365)-(1)']=SFile['B (365)-(1)'].fillna(0)
SFile['C 0-30']=SFile['C 0-30'].fillna(0)
SFile['D 31-60']=SFile['D 31-60'].fillna(0)
SFile['E 61-90']=SFile['E 61-90'].fillna(0)
SFile['F 91-180']=SFile['F 91-180'].fillna(0)
SFile['G 181-365']=SFile['G 181-365'].fillna(0)
SFile['H 366-730']=SFile['H 366-730'].fillna(0)
SFile['I 731-1095']=SFile['I 731-1095'].fillna(0)
SFile['J 1096-1460']=SFile['J 1096-1460'].fillna(0)
SFile['K 1461-1825']=SFile['K 1461-1825'].fillna(0)
SFile['L >=1826']=SFile['L >=1826'].fillna(0)
SFile['GrossBilledYTD']=SFile['GrossBilledYTD'].fillna(0)
SFile['NetCreditYTD']=SFile['NetCreditYTD'].fillna(0)
SFile['12MonthsGrossBilled']=SFile['12MonthsGrossBilled'].fillna(0)
SFile['12MonthsNetCredit']=SFile['12MonthsNetCredit'].fillna(0)
SFile['12MonthsAvgGrossBilled']=SFile['12MonthsAvgGrossBilled'].fillna(0)
SFile['12MonthsAvgNetCredit']=SFile['12MonthsAvgNetCredit'].fillna(0)
SFile['Set Aside Code']=SFile['Set Aside Code'].replace(

['Y','K','J','G','8','7','4'],[1,2,3,5,8,7,4])
SFile['OpeningBalance']=SFile['OpeningBalance'].fillna(0)
SFile['AmountBilled']=SFile['AmountBilled'].fillna(0)
SFile['LPSBilled']=SFile['LPSBilled'].fillna(0)
SFile['LPSWaived']=SFile['LPSWaived'].fillna(0)
SFile['BankCharges']=SFile['BankCharges'].fillna(0)
SFile['Payment']=SFile['Payment'].fillna(0)
SFile['Adjustment']=SFile['Adjustment'].fillna(0)
SFile['DownPayment']=SFile['DownPayment'].fillna(0)

%Train Test Split:
from sklearn.model_selection import train_test_split
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train, test = train_test_split(SFile, test_size=0.2)

train['BCM'].value_counts(dropna=False)
test['BCM'].value_counts(dropna=False)
train.to_csv('i.csv', index=False)
train_set['BCM'].value_counts(dropna=False)
test_set['BCM'].value_counts(dropna=False)
train_set.to_csv('F:\\train_data.csv', index=False)
test_set.to_csv('F:\\test_data.csv', index=False)

%Training and testing of CatBoost Classifier:

from catboost import CatBoostClassifier

TrainFile=pd.read_csv("F:\\train_data.csv", low_memory=False)
Theft_x=TrainFile[[all feature names]]
Theft_y=TrainFile.BCM
CB_Theft_Model = CatBoostClassifier(learning_rate=0.047, depth=9,

loss_function='Logloss')
CB_Theft_Model.fit(Theft_x,Theft_y,cat_features=[])
TestFile = pd.read_csv('F:\\Phd\Data\\Assessed Data\\test_data.csv',

low_memory=False)
Theft_x_test=TestFile[[all feature names]]
Theft_y_test=TestFile.BCM
Theft_CB_cat=CB_Theft_Model.predict(Theft_x_test)

%Building Accuracy Matrix

CB_cat_Theft_accuracy=(metrics.accuracy_score(Theft_y_test,Theft_CB_cat)*100)
CB_cat_conf_theft=metrics.confusion_matrix(Theft_y_test, Theft_CB_cat)
CB_cat_tp_theft=CB_cat_conf_theft[1,1]
CB_cat_tn_theft=CB_cat_conf_theft[0,0]
CB_cat_fp_theft=CB_cat_conf_theft[0,1]
CB_cat_fn_theft=CB_cat_conf_theft[1,0]

print('CB True Positive Theft=',CB_cat_tp_theft)
print('CB True Negative Theft=',CB_cat_tn_theft)
print('CB False Positive Theft=',CB_cat_fp_theft)
print('CB False Negative Theft=',CB_cat_fn_theft)

CB_cat_percision_theft=CB_cat_tp_theft/(CB_cat_tp_theft+CB_cat_fp_theft)*100
CB_cat_recall_theft=CB_cat_tp_theft/(CB_cat_tp_theft+CB_cat_fn_theft)*100
CB_cat_fmeasure_theft=2 * CB_cat_percision_theft * CB_cat_recall_theft /

(CB_cat_percision_theft + CB_cat_recall_theft)
CB_cat_accuracy_theft=(CB_cat_tp_theft + CB_cat_tn_theft) /

(CB_cat_tp_theft + CB_cat_tn_theft + CB_cat_fp_theft + CB_cat_fn_theft)

print("CB Percision for thieves : "+str(CB_cat_percision_theft)[:5]+"%")
print("CB Recall for thieves : "+str(CB_cat_recall_theft)[:5]+"%")
print("CB FMeasure for thieves : "+str(CB_cat_fmeasure_theft)[:5]+"%")
print("CB Accuracy for thieves : "+str(CB_cat_accuracy_theft)[:5])
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Following is the publication list of International Journal papers:

• Ghori, KM., Abbasi, RA., Awais, M., Imran M., Ullah, A., Sza-
thmary, L. (2019). "Performance analysis of different types of
machine learning classifiers for non-technical loss detection".
In: IEEE Access, pp. 16033–16048. Impact Factor: 3.745 (2019).

• Ghori, KM., Imran, M., Nawaz, A., Abbasi, RA., Ullah, A.,
Szathmary, L. (2020). "Performance analysis of machine learn-
ing classifiers for non- technical loss detection". In: Journal of
Ambient Intelligence and Humanized Computing, pp. 1–16. Im-
pact Factor: 4.594 (2019).

D.2 Conference Proceedings

Following is the conference proceeding:

• Ghori, KM., Abbasi, RA., Awais, M., Imran, M., Ullah, A.,
Szathmary, L. (2020). "Impact of Feature Selection on Non-
technical Loss Detection". In: 2020 6th Conference on Data Sci-
ence and Machine Learning Applications (CDMA), pp. 19–24.
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D.3 Other Publications

• Rahman, S., Irfan, M., Mohsin, M., Ghori, KM., Shumayla, Y.,
Awais, M. (2020). "Performance analysis of boosting classifiers
in recognizing activities of daily living". In: International Jour-
nal of Environmental Research and Public Health, pp. 1082. Im-
pact Factor: 2.849 (2019).
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