On Shyr-Yu Theorem¹

Pál DÖMÖSI

Faculty of Informatics, Debrecen University Debrecen, Egyetem tér 1., H-4032, Hungary e-mail: domosi@inf.unideb.hu

and

Géza HORVÁTH

Institute of Informatics, Debrecen University Debrecen, Egyetem tér 1., H-4032, Hungary e-mail: geza@inf.unideb.hu

and

Laurent VUILLON

Laboratoire de Mathématiques, Université de Savoie CNRS UMR 5127, 73376 Le Bourget du Lac, France Laurent.Vuillon@univ-savoie.fr

Abstract

An alternative proof of Shyr-Yu Theorem is given. Some generalizations are also considered using fractional root decompositions and fractional exponents of words.

Keywords: Combinatorics of words.

 1 This work was supported by research grants of French National Foundation for Research (ÉGIDE) and Hungarian National Office for Research and Technology (NKTH) (Balaton F-30/04), and the Hungarian National Foundation for Scientific Research (OTKA 49409).

1 Introduction

A word is primitive if it is not a power of another word. A well-known unsolved problem of theoretical computer science asks whether or not the language of all primitive words over a nontrivial alphabet is context-free or not [4, 5]. Among others, this (in)famous problem motivates the study of the combinatorial properties of primitive words. In addition, they have special importance in studies of automatic sequences [1, 8]. The Shyr-Yu Theorem [12] is a well-known classical result in this direction. The known proof of this result is rather involved [12]. The aim of this paper is to give a new simple proof of this well-known theorem, using some simple observations. In addition, we give the decomposition of words in the language p^+q^+ , in particular we find fractional root decompositions and fractional exponents of the words appearing in the language.

2 Preliminaries

A word over Σ is a finite sequence of elements over some finite non-empty set Σ . If there is no danger of confusion, sometimes we omit the expression "over Σ ". We call the set Σ an *alphabet*, the elements of Σ *letters*. Σ is called *trivial* if it is a singleton. Otherwise we also say that Σ is *nontrivial*. We also define the *empty word* λ consisting of zero letters. The *length* |w|of a word w is the number of letters in w, where each letter is counted as many times as it occurs. Thus $|\lambda| = 0$. If $u = x_1 \cdots x_k$ and $v = x_{k+1} \cdots x_\ell$ are words over an alphabet Σ (with $x_1, \ldots, x_k, x_{k+1}, \ldots, x_\ell \in \Sigma$) then their catenation (which is also called their product) $uv = x_1 \cdots x_k x_{k+1} \cdots x_\ell$ is also a word over Σ . In addition, for every word $u = x_1 \cdots x_k$ over Σ (with $x_1, \ldots, x_k \in \Sigma$), $u\lambda = \lambda u = u$ (= $x_1 \cdots x_k$). Moreover, $\lambda \lambda = \lambda$. Obviously, for every $u, v \in \Sigma^*$, |uv| = |u| + |v|. Clearly, then, for every words u, v, w(over Σ) u(vw) = (uv)w. In other words, uu' = w'w whenever u' = vwand w' = uv. Therefore, catenation is an associative operation and the empty word λ is the identity with respect to catenation. Let u, v, w be words with u = vw. Then we say that v is a *prefix* of u and w is a *suffix* of u. Two words u, v are said to be *conjugates* if there exists a word w with uw = wv. In particular, a word z is called *overlapping* (or *bordered*) if there are $u, v, w \in \Sigma^+$ with z = uw = wv. Otherwise we say that z is non-overlapping (or unbordered).

Proposition 2.1 [9] u, v are conjugates if and only if there are words p, q with u = pq and v = qp.

Theorem 2.2 [9] Let $u, v \in \Sigma^+$ with uv = vu. There exists $w \in \Sigma^+$ with $u, v \in w^+$.

Lemma 2.3 [7] If uv = pq and $|u| \leq |p|$ for some $u, v, p, q \in \Sigma^+$, then p = ur and v = rq for some $r \in \Sigma^*$.

Lemma 2.4 [9] If uv = vq, $u \in \Sigma^+$, $v, q \in \Sigma^*$, then u = wz, $v = (wz)^k w$, q = zw for some $w \in \Sigma^*$, $z \in \Sigma^+$ and $k \ge 0$.

If u, v, w, z are words over Σ having z = uvw, then v is called a *sub-word* of z. The nonempty prefix, suffix, subword are also called a *proper* (or *nontrivial*) prefix, suffix, subword.

By the free monoid Σ^* generated by Σ we mean the set of all words (including the empty word λ) having catenation as multiplication. We set $\Sigma^+ = \Sigma^* \setminus {\lambda}$, where the subsemigroup Σ^+ of Σ^* is said to be the free semigroup generated by Σ . Σ^* and Σ^+ have left and right cancellation, i.e. for every elements u, v, w of Σ^* or Σ^+ , uv = uw implies v = w and uv = wvimplies u = w.

Subsets of Σ^* are referred to as *languages* over Σ . In particular, subsets of Σ^+ are referred to as λ -free languages over Σ .

Given a word u, we define $u^0 = \lambda$, $u^n = u^{n-1}u$, n > 0, $u^* = \{u^n : n \ge 0\}$ and $u^+ = u^* \setminus \{\lambda\}$. Thus u^n with $n \ge 0$ is the *n*-th power of u, while u^* is the Kleene closure, moreover, u^+ is the semigroup closure of u.

Given a list c_1, \ldots, c_n of integers, let $gcd(c_1, \ldots, c_n)$ denote the greatest common divisor of c_1, \ldots, c_n .

Theorem 2.5 [6] Let $u, v \in \Sigma^*$. $u, v \in w^+$ for some $w \in \Sigma^+$ if and only if there are $i, j \ge 0$ so that u^i and v^j have a common prefix (suffix) of length |u| + |v| - gcd(|u|, |v|).

A primitive word (over Σ , or actually over an arbitrary alphabet) is a nonempty word not of the form w^m for any nonempty word w and integer $m \geq 2$. Thus λ is a nonprimitive word because of $\lambda \lambda = \lambda$. The set of all primitive words over Σ will be denoted by $Q(\Sigma)$, or simply by Q if Σ is understood. Let $u \neq \lambda$ and let f be a primitive word with an integer $k \geq 1$ having $u = f^k$. We let $\sqrt{u} = f$ and call f the primitive root of the word u.

Theorem 2.6 [11] Let $u, v \in \Sigma^*$. $w^i = uv$ for some $w \in \Sigma^*, i \ge 1$ if and only if there are $p, q \in \Sigma^*$ $w = pq, (qp)^i = vu$. Furthermore, $uv \in Q$ for some $u, v \in \Sigma^*$ if and only if $vu \in Q$. The next statement shows that, for every nonempty word, the primitive root is unambiguously determined.

Theorem 2.7 [9] If $u \neq \lambda$, then there exists a unique primitive word f and a unique integer $k \geq 1$ such that $u = f^k$.

Let $a^m b^n = c^k$ be an equation such that $a, b, c \in \Sigma^*$ and $m, n, k \ge 2$. We say that $a^m b^n = c^k$ has only trivial solution if $a^m b^n = c^k$ holds only if there exists a $w \in \Sigma^*$ with $a, b, c \in w^*$.

Theorem 2.8 (Lyndon-Schützenberger Theorem) [9] The equation $a^m b^n = c^k$ with $a, b, c \in \Sigma^*$ has only trivial solutions.

We have a direct consequence of Theorem 2.8 as below.

Theorem 2.9 Let $f, g \in Q, f \neq g$. Then $f^m g^n \in Q$ for all $m \ge 2, n \ge 2$. \Box

Lemma 2.10 [3] Let $u, v \in Q$, such that $u^m = v^k w$ for some $k, m \ge 2$, and $w \in \Sigma^*$ with $|w| \le |v|$.

Then exactly one of the following conditions holds:

- (i) u = v and $w \in \{u, \lambda\}$;
- (ii) m = k = 2 and there are $p, q \in \Sigma^+, s \ge 1$ with $\sqrt{p} \ne \sqrt{q}$, $u = (pq)^{s+1}p^2q, v = (pq)^{s+1}p, w = qp^2q.$

Theorem 2.11 [3] Let $u, v \in Q$, such that $u^m = v^k w$ for some prefix w of v and $k, m \geq 2$. Then u = v and $w \in \{u, \lambda\}$.

Theorem 2.12 (Shyr-Yu Theorem) [12] Let $f, g \in Q, f \neq g$. Then $|f^+g^+ \cap \Sigma^+ \setminus Q| \leq 1$. Moreover, if f and g are also non-overlapping, then f^+g^+ contains only primitive words.

3 Results

The next statement is an extended version of the first part of Theorem 2.9.

Theorem 3.1 Let $f, g \in Q, f \neq g$ and $n \geq 1$. If $fg^n \notin Q$ then $fg^{n+k} \in Q$ for all $k \geq 1$.

Proof: Suppose the contrary and let $u^i = fg^n, v^j = fg^{n+k}$ for some $u, v \in \Sigma^+, i, j > 1, k \ge 1$. We may assume without any restriction $u, v \in Q$. By our conditions, $v^j = u^i g^k$.

First we assume $k \ge 2$. Hence, by Theorem 2.8, $\sqrt{v} = \sqrt{u} = \sqrt{g}$, i.e. u = v = g. By $u^i = fg^n$, this results $f = g^{i-n}$ leading to $\sqrt{f} = \sqrt{g}$. Then, by $f, g \in Q$, we have f = g, a contradiction.

Now we suppose k = 1. By Theorem 2.6, there are $w, z \in Q$ with $w^i = g^n f, z^j = g^n fg$. Then $z^j = w^i w_1$, where w_1 is a prefix of w. Applying Theorem 2.11, w = z, which, by Theorem 2.6, implies u = v. But then k = 0, a contradiction.

Proof of Theorem 2.12 : Let $f, g \in Q$ be distinct primitive words.

First we prove that the language f^+g^+ contains at most one non-primitive word. Suppose $f^mg^n \notin Q$. By Theorem 2.9, $m, n \geq 2$ is impossible. Therefore, we may assume either $f^mg \notin Q$ for some $m \geq 1$ or $fg^n \notin Q$ for some $n \geq 1$.

By Theorem 3.1, there exists at most one pair $m, n \ge 1$ of positive integers with $f^m g, fg^n \notin Q$. In addition, if $fg \notin Q$, then $f^m g, fg^n \in Q$, $m, n \ge 2$. Therefore, it is enough to prove that for every pair $m, n \ge 2$, $f^m g \notin Q$ implies $fg^n \in Q$.

Suppose the contrary and let $f^m g = u^i, fg^n = v^j$ for some $m, n, i, j \ge 2, u, v \in Q$ and let, say, $|g| \le |f|$. Using Lemma 2.10, this is possible only if m = i = 2 and there are $p, q \in \Sigma^+, s \ge 1$ with $\sqrt{p} \ne \sqrt{q}$ and $u = (pq)^{s+1}p^2q$, $f = (pq)^{s+1}p, g = qp^2q$.

By Theorem 2.5 and $v^j = fg^n = (pq)^{s+1}p(qp^2q)^n$, this is impossible if either $|pq| + |v| \le |(pq)^{s+1}p| + |qp|$, or $|qp^2q| + |v| \le |(qp^2q)^n|$. On the other hand, if $|pq| + |v| > |qp(pq)^{s+1}p|$ and $|qp^2q| + |v| > |(qp^2q)^n|$ simultaneously hold, then using again $v^j = fg^n = (pq)^{s+1}p(qp^2q)^n$, we obtain $|v^2| + |pq| + |qp^2q| > |v^j| + |qp|$. Hence $|v^2| > |v^j| - |qp^2q|$ which leads since |qppq| < |v| to j = 2. By $v^2 = fg^n$, this implies $v^2 = (pq)^{s+1}p(qp^2q)^n$. By the assumptions $|pq| + |v| > |qp(pq)^{s+1}p|$ and $|qp^2q| + |v| > |(qp^2q)^n|$, we can reach $|(qp^2q)^{n-2}| < |(pq)^{s+1}p| < |(qp^2q)^n|$. Thus $2n - 5 \le s \le 2n - 2$ which means $v = (pq)^{2n-4}r_1 = r_2(qp^2q)^{n-2}, |r_1| = |r_2|$ such that $r_1r_2 = (pq)^t p(qp^2q)^2, t \in \{0, 1, 2, 3\}$.

Note that, because of $v \in Q$, $\sqrt{p} = \sqrt{q}$ is impossible. We distinguish the following four cases.

Case 1. $t = 0, r_1 = pqpz_1, r_2 = z_2p^2q, z_1z_2 = pq^2, |z_1| = |z_2|$. Then $v = (pq)^{2n-4}pqpz_1 = z_2p^2q(qp^2q)^{n-2}$. Thus z_1 is a suffix and z_2 is a prefix of pq. Hence, by $|z_1| = |z_2| = \frac{1}{2}|p| + |q|$, we get $z_1 = p_2q, z_2 = p_1q'$ with $p = p_1p_2, |q'| = |q|, |p_1| = |p_2|$ for appropriate $q', p_1, p_2 \in \Sigma^+$. Obviously,

then $z_1z_2 = p_2qp_1q' = pq^2$. This implies $p_2 = p_1$ and q' = q. This leads to $z_1 = z_2 = p_1q$. Thus $z_1z_2 = (p_1q)^2 = p_1^2q^2$ implying $qp_1 = p_1q$. Applying Theorem 2.2, $\sqrt{p_1} = \sqrt{q}$. By $p = p_1^2$, this implies $\sqrt{p} = \sqrt{q}$, a contradiction.

Theorem 2.2, $\sqrt{p_1} = \sqrt{q}$. By $p = p_1^2$, this implies $\sqrt{p} = \sqrt{q}$, a contradiction. *Case 2.* $t = 1, r_1 = (pq)^2 z_1, r_2 = z_2 q p^2 q, z_1 z_2 = p^2 q, |z_1| = |z_2|$. Then $v = (pq)^{2n-2} z_1 = z_2 (qp^2q)^{n-1}$. Thus z_1 is a suffix and z_2 is a prefix of of pq. Hence, by $|z_1| = |z_2| = |p| + \frac{1}{2}|q|$, we get $z_1 = p'q_2, z_2 = pq_1$ with $q = q_1q_2, |p'| = |p|, |q_1| = |q_2|$ for appropriate $p', q_1, q_2 \in \Sigma^+$.

Obviously, then $z_1 z_2 = p' q_2 p q_1 = p^2 q$. Hence we get p' = p and $q_1 = q_2$. In other words, $z_1 z_2 = (pq_1)^2 = p^2 q_1^2$ leading to $q_1 p = pq_1$. By Theorem 2.2, we get $\sqrt{q_1} = \sqrt{p}$ which is impossible because of $q = q_1^2$.

Case 3. $t = 2, r_1r_2 = (pq)^2 p(qp^2q)^2$. Then $r_1 = (pq)^3 p_1, r_2 = p_2 pq^2 p^2 q$ with $p = p_1 p_2, |p_1| = |p_2|$. But then, either n = 2 or $n > 2, p_2$ is simultaneously a prefix and a suffix of p. Therefore, $p_1 = p_2$ which implies $p = p_1^2$. Thus, we can write $v = (p_1^2q)^{2n-4}(p_1^2q)^3p_1 = p_1^3q^2p_1^4q(qp_1^4q)^{n-2}$ which implies $qp_1 = p_1q$ either n = 2 or n > 2. By Theorem 2.2, this means $\sqrt{q} = \sqrt{p_1}$ such that $p = p_1^2$. Therefore, $\sqrt{p} = \sqrt{q}$, a contradiction. Case 4. $t = 3, r_1r_2 = (pq)^3p(qp^2q)^2$. In this case, $r_1 = (pq)^3pq_1, r_2 = p_1^2$.

Case 4. $t = 3, r_1r_2 = (pq)^3 p(qp^2q)^2$. In this case, $r_1 = (pq)^3 pq_1, r_2 = q_2p^2q^2p^2q$ with $q = q_1q_2, |q_1| = |q_2|$. We observe that, either n = 2 or n > 2, q_1 is simultaneously a prefix and a suffix of q. Therefore, $q_1 = q_2$ with $q = q_1^2$. Thus, we can write $v = (pq_1^2)^{2n-4}(pq_1^2)^3pq_1 = q_1p^2q_1^4p^2q_1^2(q_1^2p^2q_1^2)^{n-2}$ which implies $pq_1 = q_1p$, if n = 2 and $pq_1^2pq_1 = q_1p^2q_1^2$, if n > 2. Both equalities lead to $pq_1 = q_1p$. By Theorem 2.2, this leads to $\sqrt{q_1} = \sqrt{p}$ such that $q = q_1^2$. Therefore, $\sqrt{p} = \sqrt{q}$, a contradiction.

It remains to show that, for every distinct pair $f, g \in Q$ of unbordered primitive words, $f^+g^+ \subseteq Q$. By Theorem 2.9, $m, n \geq 2$ implies $f^mg^n \in Q$. Thus it is enough to prove that for every $m, n \geq 2$, $f^mg, fg^n \in Q$.

Suppose that, contrary of our statement, there are $u \in Q, i > 1$ with $f^m g = u^i$. Consider $u_1, u_2 \in \Sigma^*, j \ge 0$ with $u = u_1 u_2$ such that $f^m = u^j u_1$ and $g = u_2 u^{i-j-1}$. By Theorem 2.11, $j \le 1$. If j = 0, then $g = u_2 u^{i-1}$ with i - 1 > 0. Then g is bordered, a contradiction. Thus we get j = 1. Therefore, $f^m = u_1 u_2 u_1, g = u_2 (u_1 u_2)^{i-2}$. If $u_1 \ne \lambda$, then f is bordered, a contradiction. Hence $f^m = u_2, g = u_2^{i-1}$. Clearly, then $f = \sqrt{f} = \sqrt{u_2} = \sqrt{g} = g$, a contradiction.

Now we assume that, contrary of our statement, $fg^n = v^k, v \in Q, k > 1$. By Theorem 2.6, there exists a word $z \in Q$ having $g^n f = z^k$. We have already proved that this is impossible. This completes the proof. \Box

Definition 3.2 Let w be a finite word over the alphabet Σ . We define the fractional root of w as the shortest word noted ${}^{f}\sqrt{w}$ with the property that

 $(f_{\sqrt{w}})^{(n+\alpha)} = w$ where n is a positive integer and α is a positive rational number.

Example for w = abaabaab, we find $(aba)^{(2+\frac{2}{3})} = abaabaab$, thus the fractional root of w = abaabaab is $\sqrt{w} = aba$.

Definition 3.3 If ${}^{f}\sqrt{w} = \sqrt{w} = w$ then we say that w is purely primitive (or aperiodic).

For example w = aababbb is purely primitive. The first part of Shyr-Yu Theorem could be refined in three cases according to the following statement:

Theorem 3.4 Consider the language of p^+q^+ . Then

(i1) If there exists k such that $p = (xq^k)^{i-1}x$ then the non-primitive factor is $W^i = pq^k = (xq^k)^i$ or $W^i = p^{k'}y(p^{k'}y)^{i-1}$. For this case, we could find finite classes of primitive words with fractional roots constructed as $pq = (xq^k)^{i-1}xq$, $pq^2 = (xq^k)^{i-1}xq^2, \dots, pq^{k-1}$ or $pq = py(p^{k'}y)^{i-1}$, $p^2q = p^2y(p^{k'}y)^{i-1}, \dots, p^{k'-1}q = p^{k'-1}y(p^{k'}y)^{i-1}$ which are primitive and not purely primitive. And infinite classes constructed by $p^m = p'y$ and $q^n = y'p'$ with |p'| maximal and $m, n \ge 1$. Furthermore, if |p'| = 0 then the infinite classes have only purely primitive words.

(i2) There is a non-primitive word in the language and no finite class, thus we have infinite classes constructed by $p^m = p'y$ and $q^n = y'p'$ with |p'| maximal and $m, n \ge 1$. Furthermore, if |p'| = 0 then the infinite classes have only purely primitive words.

(ii) There is no non-primitive word in the language, thus we have only infinite classes constructed by $p^m = p'y$ and $q^n = y'p'$ with |p'| maximal and $m, n \ge 1$. Furthermore, if |p'| = 0 then the infinite classes are purely primitive.

In this variation of the first part of the Shyr-Yu Theorem, we find in each case an infinite class with words written in the form $w = \left({}^{f}\sqrt{w} \right)^{\left(1 + \frac{|p'|}{||f|\sqrt{w}|}\right)}$. In fact, if |p'| = 0 the form remains the one used in the Shyr-Yu theorem and we can deduce that $w = {}^{f}\sqrt{w}$ thus each words are purely primitive words.

Examples :

1) p = a and q = b lead to only purely primitive words in the language p^+q^+ .

2) p = ab and q = abb lead also to purely primitive words.

3) p = aba and q = abaab give a longest prefix of p^m which is also suffix of q^n namely *abaab* for m = 2 and n = 1.

That is for $m \ge 2$ and $n \ge 1$ the word $w = p^m q^n$ could be written as $w = p^m q^n = (\sqrt[f]{f\sqrt{w}})^{(1+\frac{|p'|}{|f\sqrt{w}|})} = (w[1..|w| - |p'|])^{(1+\frac{|p'|}{|f\sqrt{w}|})} = (w[1..|w| - 5])^{(1+\frac{5}{|f\sqrt{w}|})}$. And for m = n = 1 we find $pq = abaabaab = (aba)^{2+\frac{2}{3}}$.

Proof of Theorem 3.4 : In case of (i1), we know that there exists a unique non-primitive word, namely W^i , in p^+q^+ . We can write the general form of $W^i = (xq^k)^{i-1}xq^k$ or $W^i = p^{k'}y(p^{k'}y)^{i-1}$. Thus either $p = (xq^k)^{i-1}x$ or $q = y(p^ky)^{i-1}$. And then either $W^i = pq^k$ or $W^i = p^{k'}q$. In both cases we can find finite classes of words : $pq = (xq^k)^{i-1}xq$, $pq^2 = (xq^k)^{i-1}xq^2, \cdots, pq^{k-1} = (xq^k)^{i-1}xq^{i-1}$ or $pq = py(p^{k'}y)^{i-1}$, $p^2q = p^2y(p^{k'}y)^{i-1}, \cdots, p^{k'-1}q = p^{k'-1}y(p^{k'}y)^{i-1}$.

In each case, we can find an infinite class of words with the form $w = (f\sqrt{w})^{(1+\frac{|p'|}{|f\sqrt{w}|})}$ where $p^m = p'y$ and $q^n = y'p'$ with |p'| maximal. We prove this fact by contradiction. Suppose that there is no p' which is maximal. That is we have an infinite sequence of words indexed by distinct couples (m_i, n_i) with increasing length of $p'_{(m_i, n_i)}$ such that $p^{m_i} = p'_{(m_i, n_i)}y$ and $q^{n_i} = y'p'_{(m_i, n_i)}$. As the sequence is infinite, we find a starting point in q = ss' such that we could extend the rigth part of the word to an infinite by $p^{\omega} = (s's)^{\omega}$. By using Theorem 2.5, we have that $p = z^{\ell}$ and $s's = z^{\ell'}$. Thus p is not primitive. A contradiction.

References

- [1] ALLOUCHE, J.-P.; SHALLIT, J. : Automatic sequences. Theory, applications, generalizations. Cambridge University Press, Cambridge, 2003.
- [2] CHU, D. D., HSIANG-SHENG, T., Another proof on a theorem of Lyndon and Schützenberger in a free monoid. In: Schoochow Journal of Mathematics, 4 (1978), 143-146.

- [3] DÖMÖSI, P., HORVÁTH, G. : Alternative proof of the Lyndon-Schützenberger Theorem. In : Theoret. Comput. Sci.,366 (2006), 194-198.
- [4] DÖMÖSI, P., HORVÁTH, S., ITO, M.: On the connection between formal languages and primitive words. In: Proc. First Session on Scientific Communication, Univ. of Oradea, Oradea, Romania, 6-8 June, 1991, Analele Univ. of Oradea, Fasc. Mat., 1991, 59–67.
- [5] DÖMÖSI, P., HORVÁTH, S., ITO, M., Formal languages and primitive words. Publ. Math., Debrecen, 20 (1993), 315 – 321.
- [6] FINE, N. J., WILF, H. S., Uniqueness theorems for periodic functions. Proceedings of the American Mathematical Society, 16 (1965) 109-114.
- [7] LEVI, F. W. : On semigroups. Bulletin of the Calcutta Mathematical Society, 36 (1944), 141-146.
- [8] LOTHAIRE, M., Combinatorics on Words. Addison-Wesley, 1983.
- [9] LYNDON, R. C., SCHÜTZENBERGER, M. P., The equation $a^M = b^N c^P$ in a free group. *Michigan Math. J.* **9** (1962), 289–298.
- [10] SHYR, H. J., Free Monoids and Languages. Ho Min Book Company, Taiwan, 1991.
- [11] SHYR, H. J., THIERRIN, G., Disjunctive languages and codes, FCT'77, LNCS 56, Springer-Verlag (1977), 171–176.
- [12] SHYR, H. J., YU, S. S., Non-primitive words in the language p^+q^+ , Soochow J.Math. **20** (1994), 535–546.