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1 Introduction

A word is primitive if it is not a power of another word. A well-known
unsolved problem of theoretical computer science asks whether or not the
language of all primitive words over a nontrivial alphabet is context-free or
not [4, 5]. Among others, this (in)famous problem motivates the study of the
combinatorial properties of primitive words. In addition, they have special
importance in studies of automatic sequences [1, 8]. The Shyr-Yu Theorem
[12] is a well-known classical result in this direction. The known proof of
this result is rather involved [12]. The aim of this paper is to give a new
simple proof of this well-known theorem, using some simple observations.
In addition, we give the decomposition of words in the language p+q+, in
particular we find fractional root decompositions and fractional exponents
of the words appearing in the language.

2 Preliminaries

A word over Σ is a finite sequence of elements over some finite non-empty
set Σ. If there is no danger of confusion, sometimes we omit the expression
”over Σ”. We call the set Σ an alphabet, the elements of Σ letters. Σ is
called trivial if it is a singleton. Otherwise we also say that Σ is nontrivial.
We also define the empty word λ consisting of zero letters. The length |w|
of a word w is the number of letters in w, where each letter is counted as
many times as it occurs. Thus |λ| = 0. If u = x1 · · · xk and v = xk+1 · · · xℓ

are words over an alphabet Σ (with x1, . . . , xk, xk+1, . . . , xℓ ∈ Σ) then their
catenation (which is also called their product) uv = x1 · · · xkxk+1 · · · xℓ is
also a word over Σ. In addition, for every word u = x1 · · · xk over Σ (with
x1, . . . , xk ∈ Σ), uλ = λu = u (= x1 · · · xk). Moreover, λλ = λ. Obviously,
for every u, v ∈ Σ∗, |uv| = |u| + |v|. Clearly, then, for every words u, v,w
(over Σ) u(vw) = (uv)w. In other words, uu′ = w′w whenever u′ = vw
and w′ = uv. Therefore, catenation is an associative operation and the
empty word λ is the identity with respect to catenation. Let u, v,w be
words with u = vw. Then we say that v is a prefix of u and w is a suffix
of u. Two words u, v are said to be conjugates if there exists a word w
with uw = wv. In particular, a word z is called overlapping (or bordered)
if there are u, v,w ∈ Σ+ with z = uw = wv. Otherwise we say that z is
non-overlapping (or unbordered).

Proposition 2.1 [9] u, v are conjugates if and only if there are words p, q
with u = pq and v = qp. �
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Theorem 2.2 [9] Let u, v ∈ Σ+ with uv = vu. There exists w ∈ Σ+ with
u, v ∈ w+.

Lemma 2.3 [7] If uv = pq and |u| ≤ |p| for some u, v, p, q ∈ Σ+, then
p = ur and v = rq for some r ∈ Σ∗. �

Lemma 2.4 [9] If uv = vq, u ∈ Σ+, v, q ∈ Σ∗, then u = wz, v = (wz)kw, q =
zw for some w ∈ Σ∗, z ∈ Σ+ and k ≥ 0.

If u, v,w, z are words over Σ having z = uvw, then v is called a sub-
word of z. The nonempty prefix, suffix, subword are also called a proper (or
nontrivial) prefix, suffix, subword.

By the free monoid Σ∗ generated by Σ we mean the set of all words
(including the empty word λ) having catenation as multiplication. We set
Σ+ = Σ∗ \ {λ}, where the subsemigroup Σ+ of Σ∗ is said to be the free
semigroup generated by Σ. Σ∗ and Σ+ have left and right cancellation, i.e.
for every elements u, v,w of Σ∗ or Σ+, uv = uw implies v = w and uv = wv
implies u = w.

Subsets of Σ∗ are referred to as languages over Σ. In particular, subsets
of Σ+ are referred to as λ-free languages over Σ.

Given a word u, we define u0 = λ, un = un−1u, n > 0, u∗ = {un : n ≥ 0}
and u+ = u∗ \ {λ}. Thus un with n ≥ 0 is the n-th power of u, while u∗ is
the Kleene closure, moreover, u+ is the semigroup closure of u.

Given a list c1, . . . , cn of integers, let gcd(c1, . . . , cn) denote the greatest
common divisor of c1, . . . , cn.

Theorem 2.5 [6] Let u, v ∈ Σ∗. u, v ∈ w+ for some w ∈ Σ+ if and only if
there are i, j ≥ 0 so that ui and vj have a common prefix (suffix) of length
|u| + |v| − gcd(|u|, |v|). �

A primitive word (over Σ, or actually over an arbitrary alphabet) is a
nonempty word not of the form wm for any nonempty word w and integer
m ≥ 2. Thus λ is a nonprimitive word because of λλ = λ. The set of all
primitive words over Σ will be denoted by Q(Σ), or simply by Q if Σ is
understood. Let u 6= λ and let f be a primitive word with an integer k ≥ 1
having u = fk. We let

√
u = f and call f the primitive root of the word u.

Theorem 2.6 [11] Let u, v ∈ Σ∗. wi = uv for some w ∈ Σ∗, i ≥ 1 if and
only if there are p, q ∈ Σ∗ w = pq, (qp)i = vu. Furthermore, uv ∈ Q for
some u, v ∈ Σ∗ if and only if vu ∈ Q. �

3



The next statement shows that, for every nonempty word, the primitive
root is unambiguously determined.

Theorem 2.7 [9] If u 6= λ, then there exists a unique primitive word f and
a unique integer k ≥ 1 such that u = fk. �

Let ambn = ck be an equation such that a, b, c ∈ Σ∗ and m,n, k ≥ 2. We
say that ambn = ck has only trivial solution if ambn = ck holds only if there
exists a w ∈ Σ∗ with a, b, c ∈ w∗.

Theorem 2.8 (Lyndon-Schützenberger Theorem) [9] The equation
ambn = ck with a, b, c ∈ Σ∗ has only trivial solutions. �

We have a direct consequence of Theorem 2.8 as below.

Theorem 2.9 Let f, g ∈ Q, f 6= g. Then fmgn ∈ Q for all m ≥ 2, n ≥ 2. �

Lemma 2.10 [3] Let u, v ∈ Q, such that um = vkw for some k,m ≥ 2, and
w ∈ Σ∗ with |w| ≤ |v|.

Then exactly one of the following conditions holds:
(i) u = v and w ∈ {u, λ};

(ii) m = k = 2 and there are p, q ∈ Σ+, s ≥ 1 with
√

p 6= √
q,

u = (pq)s+1p2q, v = (pq)s+1p,w = qp2q. �

Theorem 2.11 [3] Let u, v ∈ Q, such that um = vkw for some prefix w of
v and k,m ≥ 2. Then u = v and w ∈ {u, λ}. �

Theorem 2.12 (Shyr-Yu Theorem) [12] Let f, g ∈ Q, f 6= g. Then
|f+g+ ∩ Σ+ \ Q| ≤ 1. Moreover, if f and g are also non-overlapping, then
f+g+ contains only primitive words.

3 Results

The next statement is an extended version of the first part of
Theorem 2.9.

Theorem 3.1 Let f, g ∈ Q, f 6= g and n ≥ 1. If fgn /∈ Q then fgn+k ∈ Q
for all k ≥ 1.
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Proof: Suppose the contrary and let ui = fgn, vj = fgn+k for some u, v ∈
Σ+, i, j > 1, k ≥ 1. We may assume without any restriction u, v ∈ Q. By our
conditions, vj = uigk.

First we assume k ≥ 2. Hence, by Theorem 2.8,
√

v =
√

u =
√

g, i.e.
u = v = g. By ui = fgn, this results f = gi−n leading to

√
f =

√
g. Then,

by f, g ∈ Q, we have f = g, a contradiction.
Now we suppose k = 1. By Theorem 2.6, there are w, z ∈ Q with wi =

gnf, zj = gnfg. Then zj = wiw1, where w1 is a prefix of w. Applying
Theorem 2.11, w = z, which, by Theorem 2.6, implies u = v. But then
k = 0, a contradiction. �

Proof of Theorem 2.12 : Let f, g ∈ Q be distinct primitive words.
First we prove that the language f+g+ contains at most one non-primitive

word. Suppose fmgn /∈ Q. By Theorem 2.9, m,n ≥ 2 is impossible. There-
fore, we may assume either fmg /∈ Q for some m ≥ 1 or fgn /∈ Q for some
n ≥ 1.

By Theorem 3.1, there exists at most one pair m,n ≥ 1 of positive
integers with fmg, fgn /∈ Q. In addition, if fg /∈ Q, then fmg, fgn ∈ Q,
m,n ≥ 2. Therefore, it is enough to prove that for every pair m,n ≥ 2,
fmg /∈ Q implies fgn ∈ Q.

Suppose the contrary and let fmg = ui, fgn = vj for some m,n, i, j ≥
2, u, v ∈ Q and let, say, |g| ≤ |f |. Using Lemma 2.10, this is possible only if
m = i = 2 and there are p, q ∈ Σ+, s ≥ 1 with

√
p 6= √

q and u = (pq)s+1p2q,
f = (pq)s+1p, g = qp2q.

By Theorem 2.5 and vj = fgn = (pq)s+1p(qp2q)n, this is impossible if
either |pq|+ |v| ≤ |(pq)s+1p| + |qp|, or |qp2q| + |v| ≤ |(qp2q)n|. On the other
hand, if |pq|+ |v| > |qp(pq)s+1p| and |qp2q|+ |v| > |(qp2q)n| simultaneously
hold, then using again vj = fgn = (pq)s+1p(qp2q)n, we obtain |v2| + |pq| +
|qp2q| > |vj | + |qp|. Hence |v2| > |vj | − |qp2q| which leads since |qppq| <
|v| to j = 2. By v2 = fgn, this implies v2 = (pq)s+1p(qp2q)n. By the
assumptions |pq| + |v| > |qp(pq)s+1p| and |qp2q| + |v| > |(qp2q)n|, we can
reach |(qp2q)n−2| < |(pq)s+1p| < |(qp2q)n|. Thus 2n − 5 ≤ s ≤ 2n − 2
which means v = (pq)2n−4r1 = r2(qp

2q)n−2, |r1| = |r2| such that r1r2 =
(pq)tp(qp2q)2, t ∈ {0, 1, 2, 3}.

Note that, because of v ∈ Q,
√

p =
√

q is impossible. We distinguish the
following four cases.

Case 1. t = 0, r1 = pqpz1, r2 = z2p
2q, z1z2 = pq2, |z1| = |z2|. Then

v = (pq)2n−4pqpz1 = z2p
2q(qp2q)n−2. Thus z1 is a suffix and z2 is a prefix

of pq. Hence, by |z1| = |z2| = 1
2 |p| + |q|, we get z1 = p2q, z2 = p1q

′ with
p = p1p2, |q′| = |q|, |p1| = |p2| for appropriate q′, p1, p2 ∈ Σ+. Obviously,
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then z1z2 = p2qp1q
′ = pq2. This implies p2 = p1 and q′ = q. This leads to

z1 = z2 = p1q. Thus z1z2 = (p1q)
2 = p2

1q
2 implying qp1 = p1q. Applying

Theorem 2.2,
√

p1 =
√

q. By p = p2
1, this implies

√
p =

√
q, a contradiction.

Case 2. t = 1, r1 = (pq)2z1, r2 = z2qp
2q, z1z2 = p2q, |z1| = |z2|. Then

v = (pq)2n−2z1 = z2(qp
2q)n−1. Thus z1 is a suffix and z2 is a prefix of of

pq. Hence, by |z1| = |z2| = |p| + 1
2 |q|, we get z1 = p′q2, z2 = pq1 with

q = q1q2, |p′| = |p|, |q1| = |q2| for appropriate p′, q1, q2 ∈ Σ+.
Obviously, then z1z2 = p′q2pq1 = p2q. Hence we get p′ = p and q1 = q2.

In other words, z1z2 = (pq1)
2 = p2q2

1 leading to q1p = pq1. By Theorem 2.2,
we get

√
q1 =

√
p which is impossible because of q = q2

1.
Case 3. t = 2, r1r2 = (pq)2p(qp2q)2. Then r1 = (pq)3p1, r2 = p2pq2p2q

with p = p1p2, |p1| = |p2|. But then, either n = 2 or n > 2, p2 is simulta-
neously a prefix and a suffix of p. Therefore, p1 = p2 which implies p = p2

1.
Thus, we can write v = (p2

1q)
2n−4(p2

1q)
3p1 = p3

1q
2p4

1q(qp
4
1q)

n−2 which implies
qp1 = p1q either n = 2 or n > 2. By Theorem 2.2, this means

√
q =

√
p1

such that p = p2
1. Therefore,

√
p =

√
q, a contradiction.

Case 4. t = 3, r1r2 = (pq)3p(qp2q)2. In this case, r1 = (pq)3pq1, r2 =
q2p

2q2p2q with q = q1q2, |q1| = |q2|. We observe that, either n = 2 or n > 2,
q1 is simultaneously a prefix and a suffix of q. Therefore, q1 = q2 with q = q2

1.
Thus, we can write v = (pq2

1)
2n−4(pq2

1)
3pq1 = q1p

2q4
1p

2q2
1(q

2
1p

2q2
1)

n−2 which
implies pq1 = q1p, if n = 2 and pq2

1pq1 = q1p
2q2

1, if n > 2. Both equalities
lead to pq1 = q1p. By Theorem 2.2, this leads to

√
q1 =

√
p such that q = q2

1.
Therefore,

√
p =

√
q, a contradiction.

It remains to show that, for every distinct pair f, g ∈ Q of unbordered
primitive words, f+g+ ⊆ Q. By Theorem 2.9, m,n ≥ 2 implies fmgn ∈ Q.
Thus it is enough to prove that for every m,n ≥ 2, fmg, fgn ∈ Q.

Suppose that, contrary of our statement, there are u ∈ Q, i > 1 with
fmg = ui. Consider u1, u2 ∈ Σ∗, j ≥ 0 with u = u1u2 such that fm = uju1

and g = u2u
i−j−1. By Theorem 2.11, j ≤ 1. If j = 0, then g = u2u

i−1

with i − 1 > 0. Then g is bordered, a contradiction. Thus we get j = 1.
Therefore, fm = u1u2u1, g = u2(u1u2)

i−2. If u1 6= λ, then f is bordered, a
contradiction. Hence fm = u2, g = ui−1

2 . Clearly, then f =
√

f =
√

u2 =√
g = g, a contradiction.

Now we assume that, contrary of our statement, fgn = vk, v ∈ Q, k > 1.
By Theorem 2.6, there exists a word z ∈ Q having gnf = zk. We have
already proved that this is impossible. This completes the proof. �

Definition 3.2 Let w be a finite word over the alphabet Σ. We define the
fractional root of w as the shortest word noted f

√
w with the property that
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( f
√

w)(n+α) = w where n is a positive integer and α is a positive rational
number.

Example for w = abaabaab, we find (aba)(2+
2

3
) = abaabaab, thus the

fractional root of w = abaabaab is f
√

w = aba.

Definition 3.3 If f
√

w =
√

w = w then we say that w is purely primitive
(or aperiodic).

For example w = aababbb is purely primitive. The first part of Shyr-Yu
Theorem could be refined in three cases according to the following statement:

Theorem 3.4 Consider the language of p+q+. Then

(i1) If there exists k such that p = (xqk)i−1x then the non-primitive
factor is W i = pqk = (xqk)i or W i = pk′

y(pk′
y)i−1. For this case, we

could find finite classes of primitive words with fractional roots constructed
as pq = (xqk)i−1xq, pq2 = (xqk)i−1xq2, · · · , pqk−1 or pq = py(pk′

y)i−1,
p2q = p2y(pk′

y)i−1, · · · , pk′
−1q = pk′

−1y(pk′
y)i−1 which are primitive and

not purely primitive. And infinite classes constructed by pm = p′y and
qn = y′p′ with |p′| maximal and m,n ≥ 1. Furthermore, if |p′| = 0 then the
infinite classes have only purely primitive words.

(i2) There is a non-primitive word in the language and no finite class,
thus we have infinite classes constructed by pm = p′y and qn = y′p′ with
|p′| maximal and m,n ≥ 1. Furthermore, if |p′| = 0 then the infinite classes
have only purely primitive words.

(ii) There is no non-primitive word in the language, thus we have only
infinite classes constructed by pm = p′y and qn = y′p′ with |p′| maximal
and m,n ≥ 1. Furthermore, if |p′| = 0 then the infinite classes are purely
primitive. �

In this variation of the first part of the Shyr-Yu Theorem, we find in each

case an infinite class with words written in the form w = ( f
√

w)
(1+ |p′|

| f√
w|

)
.

In fact, if |p′| = 0 the form remains the one used in the Shyr-Yu theorem
and we can deduce that w = f

√
w thus each words are purely primitive

words.
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Examples :
1) p = a and q = b lead to only purely primitive words in the language
p+q+.
2) p = ab and q = abb lead also to purely primitive words.
3) p = aba and q = abaab give a longest prefix of pm which is also suffix of
qn namely abaab for m = 2 and n = 1.

That is for m ≥ 2 and n ≥ 1 the word w = pmqn could be written as

w = pmqn = ( f
√

w)
(1+ |p′|

| f√
w|

)
= (w[1..|w| − |p′|])(1+

|p′|
| f√

w|
)

= (w[1..|w| −
5])

(1+ 5

| f√
w|

)
. And for m = n = 1 we find pq = abaabaab = (aba)2+

2

3 .

Proof of Theorem 3.4 : In case of (i1), we know that there exists a unique
non-primitive word, namely W i, in p+q+. We can write the general form of
W i = (xqk)i−1xqk or W i = pk′

y(pk′
y)i−1. Thus either p = (xqk)i−1x or q =

y(pky)i−1. And then either W i = pqk or W i = pk′
q. In both cases we can find

finite classes of words : pq = (xqk)i−1xq, pq2 = (xqk)i−1xq2, · · · , pqk−1 =
(xqk)i−1xqi−1 or pq = py(pk′

y)i−1, p2q = p2y(pk′
y)i−1, · · · , pk′

−1q
= pk′

−1y(pk′
y)i−1.

In each case, we can find an infinite class of words with the form w =

( f
√

w)
(1+ |p′|

| f√
w|

)
where pm = p′y and qn = y′p′ with |p′| maximal. We prove

this fact by contradiction. Suppose that there is no p′ which is maximal.
That is we have an infinite sequence of words indexed by distinct couples
(mi, ni) with increasing length of p′(mi,ni)

such that pmi = p′(mi,ni)
y and

qni = y′p′(mi,ni)
. As the sequence is infinite, we find a starting point in

q = ss′ such that we could extend the rigth part of the word to an infinite
by pω = (s′s)ω. By using Theorem 2.5, we have that p = zℓ and s′s = zℓ′ .
Thus p is not primitive. A contradiction. �
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