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Abstract

An alternative proof of Shyr-Yu Theorem is given. Some generaliza-

tions are also considered using fractional root decompositions and frac-
tional exponents of words.
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1 Introduction

A word is primitive if it is not a power of another word. A well-known
unsolved problem of theoretical computer science asks whether or not the
language of all primitive words over a nontrivial alphabet is context-free or
not [4, 5]. Among others, this (in)famous problem motivates the study of the
combinatorial properties of primitive words. In addition, they have special
importance in studies of automatic sequences [1, 8]. The Shyr-Yu Theorem
[12] is a well-known classical result in this direction. The known proof of
this result is rather involved [12]. The aim of this paper is to give a new
simple proof of this well-known theorem, using some simple observations.
In addition, we give the decomposition of words in the language pTq¢*, in
particular we find fractional root decompositions and fractional exponents
of the words appearing in the language.

2 Preliminaries

A word over ¥ is a finite sequence of elements over some finite non-empty
set Y. If there is no danger of confusion, sometimes we omit the expression
“over 7. We call the set X an alphabet, the elements of X letters. X is
called trivial if it is a singleton. Otherwise we also say that 3 is nontrivial.
We also define the empty word A consisting of zero letters. The length |w|
of a word w is the number of letters in w, where each letter is counted as
many times as it occurs. Thus [A| =0. f u =21 -z and v = Tp1 -2y
are words over an alphabet ¥ (with x1,..., 2k, Tky1,...,2¢ € X) then their
catenation (which is also called their product) wv = @1 -+ TxXpy1 - Ty 1S
also a word over X. In addition, for every word u = x; - -- x over ¥ (with
Tiyeo o, Tk € X), uA = Au = u (= x1--- k). Moreover, AX = A. Obviously,
for every u,v € ¥*, |uv| = |u| + |v|. Clearly, then, for every words u, v, w
(over ) u(vw) = (uv)w. In other words, uu' = w'w whenever v = vw
and w' = wv. Therefore, catenation is an associative operation and the
empty word A is the identity with respect to catenation. Let u,v,w be
words with © = vw. Then we say that v is a prefiz of u and w is a suffix
of u. Two words u,v are said to be conjugates if there exists a word w
with uw = wv. In particular, a word z is called overlapping (or bordered)
if there are u,v,w € X7 with z = uw = wv. Otherwise we say that z is
non-overlapping (or unbordered).

Proposition 2.1 [9] u,v are conjugates if and only if there are words p,q
with u = pq and v = gp. O



Theorem 2.2 [9] Let u,v € ¥ with uv = vu. There exists w € X7 with
u,v € wt.

Lemma 2.3 [7] If uwv = pq and |u| < |p| for some u,v,p,q € I, then
p=wur and v = rq for some r € ¥*. O

Lemma 2.4 [9] Ifuv = vq,u € ©1,v,q € X%, thenu = wz,v = (wz)*w,q =
2w for some w € ¥*, 2 € X1 and k > 0.

If u,v,w,z are words over Y having z = wvw, then v is called a sub-
word of z. The nonempty prefix, suffix, subword are also called a proper (or
nontrivial) prefix, suffix, subword.

By the free monoid X* generated by 3 we mean the set of all words
(including the empty word \) having catenation as multiplication. We set
Yt = 3*\ {A}, where the subsemigroup X1 of ¥* is said to be the free
semigroup generated by X. ¥* and X have left and right cancellation, i.e.
for every elements u, v, w of ¥* or ¥, uv = ww implies v = w and wv = wv
implies u = w.

Subsets of 3X* are referred to as languages over X. In particular, subsets
of ¥ are referred to as \-free languages over .

Given a word u, we define u® = X\, u" = v tu, n > 0, u* = {u" : n > 0}
and u™ = u* \ {\}. Thus u" with n > 0 is the n-th power of u, while u* is
the Kleene closure, moreover, u™ is the semigroup closure of u.

Given a list ¢y, ..., ¢, of integers, let ged(cq, ..., c,) denote the greatest
common divisor of ¢y, ..., c,.

Theorem 2.5 [6] Let u,v € X*. u,v € wh for some w € X7 if and only if
there are i,j > 0 so that u' and v/ have a common prefir (suffiz) of length
ul + [v] — ged(Jul, [v]). O

A primitive word (over ¥, or actually over an arbitrary alphabet) is a
nonempty word not of the form w™ for any nonempty word w and integer
m > 2. Thus A is a nonprimitive word because of AA = A. The set of all
primitive words over 3 will be denoted by Q(X), or simply by @ if ¥ is
understood. Let u # X and let f be a primitive word with an integer k£ > 1
having u = f*. We let \/u = f and call f the primitive root of the word w.

Theorem 2.6 [11] Let u,v € ¥*. w' = uv for some w € X*,i > 1 if and
only if there are p,q € ¥* w = pq, (qp)* = vu. Furthermore, uv € Q for
some u,v € X* if and only if vu € Q. O



The next statement shows that, for every nonempty word, the primitive
root is unambiguously determined.

Theorem 2.7 [9] If u # A, then there exists a unique primitive word f and
a unique integer k > 1 such that u = f*. O

Let a™b" = ¢* be an equation such that a,b,c € £* and m,n, k > 2. We
say that a™b™ = ¢ has only trivial solution if a™b™ = ¢* holds only if there
exists a w € ¥* with a, b, c € w*.

Theorem 2.8 (Lyndon-Schiitzenberger Theorem) [9] The equation
amb" = & with a,b,c € £* has only trivial solutions. O

We have a direct consequence of Theorem 2.8 as below.

Theorem 2.9 Let f,g € Q,f # g. Then fg" € Q for allm >2,n > 2.0

Lemma 2.10 [3] Let u,v € Q, such that u™ = v*w for some k,m > 2, and
w € X with |w| < |vl.
Then exactly one of the following conditions holds:
(i) u=v and w € {u, \};
(i) m =k =2 and there are p,q € 1,5 > 1 with \/p # /4,

u = (pq)**'p%q, v = (pq)*'p,w = qp’q. 0

Theorem 2.11 [3] Let u,v € Q, such that u™ = vFw for some prefiz w of
v and k,m > 2. Then u=v and w € {u, \}. O

Theorem 2.12 (Shyr-Yu Theorem) [12] Let f,g € Q,f # g. Then
lfTgt Nt \ Q| < 1. Moreover, if f and g are also non-overlapping, then
fTgT contains only primitive words.

3 Results

The next statement is an extended version of the first part of
Theorem 2.9.

Theorem 3.1 Let f,g € Q,f #¢g andn > 1. If fg" ¢ Q then fg"t* € Q
for all k > 1.



Proof: Suppose the contrary and let v’ = fg", v/ = fg"** for some u,v €
¥, 4,5 > 1,k > 1. We may assume without any restriction u,v € Q). By our
conditions, v/ = u'gF.

First we assume k > 2. Hence, by Theorem 2.8, \/v = u = /g, i.e.
uw=1v=g. By u' = fg", this results f = ¢~ leading to /f = V9. Then,
by f,g € Q, we have f = g, a contradiction.

Now we suppose k = 1. By Theorem 2.6, there are w, z € @ with w' =
g"f,27 = g"fg. Then 2/ = w'w;, where w; is a prefix of w. Applying
Theorem 2.11, w = z, which, by Theorem 2.6, implies v = v. But then
k = 0, a contradiction. O

Proof of Theorem 2.12 : Let f,g € @) be distinct primitive words.

First we prove that the language f g™ contains at most one non-primitive
word. Suppose f"¢g" ¢ Q. By Theorem 2.9, m,n > 2 is impossible. There-
fore, we may assume either g ¢ @ for some m > 1 or fg" ¢ @ for some
n > 1.

By Theorem 3.1, there exists at most one pair m,n > 1 of positive
integers with f™g, fg" ¢ Q. In addition, if fg ¢ @, then f™g, fg" € Q,
m,n > 2. Therefore, it is enough to prove that for every pair m,n > 2,
Mg & Q implies fg" € Q.

Suppose the contrary and let f™g = u’, f¢g" = v’ for some m,n,i,j >
2,u,v € Q and let, say, |g| < |f|. Using Lemma 2.10, this is possible only if
m =i = 2 and there are p,q € X%, s > 1 with \/p # /g and u = (pq)*™'pq,
f=(pa)**'p,g = ap’q.

By Theorem 2.5 and v/ = fg" = (pq)**'p(gp?q)™, this is impossible if
cither [pg| + [v] < |(pg)**'p| + |gpl, or |gp*q| + [v| < |(gp*q)"|- On the other
hand, if [pg| + |v] > |gp(pq)**'p| and |gp*q| + [v] > |(gp*q)"| simultaneously
hold, then using again v/ = fg" = (pq)**1p(qp*q)", we obtain |[v?| + |pq| +
lgp*q| > [v7] + |gp|. Hence [v?| > |v7] — |gp*q| which leads since [gppg| <
lv] to j = 2. By v?2 = fg", this implies v> = (pq)**'p(qp*q)". By the
assumptions [pg| + [v| > |gp(pg)*™'p| and |gp®q| + [v] > |(gp*q)"|, we can
reach |(gp*q)" 2| < |(pg)*"'p| < [(gp*q)"|. Thus 2n —5 < s < 2n — 2
which means v = (pq)*"~*r; = ro(qp?q)"~2,|r1| = |r2| such that riry =
(pq)'p(qp®q)*,t € {0,1,2,3}.

Note that, because of v € Q, \/p = /q is impossible. We distinguish the
following four cases.

Case 1. t = 0,ry = pqpz1,m2 = 22p°q, 2122 = pq>,|z1| = |22|. Then
v = (pg)?" *pgpz1 = 22p?q(qp?q)" 2. Thus z; is a suffix and 2y is a prefix
of pq. Hence, by [21] = |zao| = 3lp| + lgl, we get z1 = pag, z0 = p1g’ with
p = p1p2,1¢'| = lql,Ip1| = |p2| for appropriate ¢',p1,pa € XF. Obviously,



then z129 = pagpi1qd’ = pg®. This implies ps = p; and ¢’ = ¢. This leads to
21 = 23 = p1q. Thus 2122 = (p1q)? = p?q¢? implying gp1 = p1q. Applying
Theorem 2.2, \/p1 = /q. By p= p%, this implies \/p = /¢, a contradiction.

Case 2. t = 1,71 = (pq)?z1,70 = 20qp?q, 2122 = P°q, |21| = |22|. Then
v = (pq)*" 221 = 29(qp*q)"~!. Thus z; is a suffix and 2o is a prefix of of
pg. Hence, by |21] = |2a| = [p| + Llal, we get 21 = plga, 2o = pay with
q = q192,|p'| = |pl, lq1| = |g2| for appropriate p’,q1,q2 € XT.

Obviously, then 2120 = p'qapq1 = p?q. Hence we get p’ = p and ¢1 = ¢o.
In other words, 2122 = (pq1)? = p?¢? leading to q1p = pq1. By Theorem 2.2,
we get /q1 = /p which is impossible because of ¢ = q%.

Case 3. t = 2,r175 = (pq)*p(qp*q)*. Then r1 = (pq)*p1,72 = P2prg*p*q
with p = p1pe, [p1| = |p2|. But then, either n = 2 or n > 2, py is simulta-
neously a prefix and a suffix of p. Therefore, p; = p2 which implies p = p?.
Thus, we can write v = (p2q)?"~*(p?q)3p1 = p3¢®plqa(gpiq)” 2 which implies
gp1 = p1q either n = 2 or n > 2. By Theorem 2.2, this means \/q = \/p1
such that p = p%. Therefore, \/p = ,/q, a contradiction.

Case 4. t = 3,r1ir2 = (pq)®p(qp*q)*. In this case, r1 = (pq)*pqr,r2 =
2P’ ¢*p?q with ¢ = q1q2, |q1| = |q2|. We observe that, either n =2 or n > 2,
q1 is simultaneously a prefix and a suffix of g. Therefore, ¢; = g2 with g = ¢3.
Thus, we can write v = (pg7)*"~*(pa})*pa1 = qp*qip*ai(¢ip*e7)"~? which
implies pq1 = ¢1p, if n = 2 and pq%pql = qlpzq%, if n > 2. Both equalities
lead to pg1 = q1p. By Theorem 2.2, this leads to \/q1 = |/p such that ¢ = .
Therefore, \/p = ,/q, a contradiction.

It remains to show that, for every distinct pair f,g € @ of unbordered
primitive words, fT¢g* C Q. By Theorem 2.9, m,n > 2 implies f™g" € Q.
Thus it is enough to prove that for every m,n > 2, f™g, f¢" € Q.

Suppose that, contrary of our statement, there are u € @, > 1 with
fmg = u. Consider uy,us € £*,j > 0 with u = ujus such that f™ = u/u,
and g = uou’™7~!. By Theorem 2.11, j < 1. If j = 0, then g = uou’™!
with ¢ — 1 > 0. Then g is bordered, a contradiction. Thus we get j = 1.
Therefore, f™ = ujugui,g = us(uiu) 2. If uy # A, then f is bordered, a
contradiction. Hence ™ = ug,g = u’é_l. Clearly, then f = /f = Juz =
\/9 = g, a contradiction.

Now we assume that, contrary of our statement, fg" = v*,v € Q,k > 1.
By Theorem 2.6, there exists a word z € @ having ¢"f = zF. We have
already proved that this is impossible. This completes the proof. O

Definition 3.2 Let w be a finite word over the alphabet . We define the
fractional root of w as the shortest word noted '+/w with the property that



( [y/w)t®) = w where n is a positive integer and o is a positive rational
number.

Example for w = abaabaab, we find (aba)(2+%) = abaabaad, thus the
fractional root of w = abaabaab is '\/w = aba.

Definition 3.3 If f\/w = \/w = w then we say that w is purely primitive
(or aperiodic).

For example w = aababbb is purely primitive. The first part of Shyr-Yu
Theorem could be refined in three cases according to the following statement:

Theorem 3.4 Consider the language of p™q*. Then

(i1) If there exists k such that p = (x¢¥)""'a then the non-primitive
factor is W' = pg* = (x¢*) or Wi = pFy(pF'y)'=1. For this case, we
could find finite classes of primitive words with fractional roots constructed
as pg = (zq")aq, pi® = (x¢*)"'wg?, - pd"! or pg = py(p"y)?
p2q = p2y(¥y)t, - pF g = pF Ty (P Y)Y which are primitive and
not purely primitive. And infinite classes constructed by p™ = p'y and
q" = y'p" with |p'| maximal and m,n > 1. Furthermore, if |p'| = 0 then the
infinite classes have only purely primitive words.

)

(i2) There is a non-primitive word in the language and no finite class,
thus we have infinite classes constructed by p™ = p'y and ¢q" = y'p’ with
|p| mazimal and m,n > 1. Furthermore, if |p'| = 0 then the infinite classes
have only purely primitive words.

(ii) There is no non-primitive word in the language, thus we have only
infinite classes constructed by p™ = p'y and ¢ = y'p’ with |p'| mazimal
and m,n > 1. Furthermore, if |p’| = 0 then the infinite classes are purely
primitive. O

In this variation of the first part of the Shyr-Yu Theorem, we find in each

e : : : 1+l
case an infinite class with words written in the form w = ( / \/13)( v

In fact, if [p’| = 0 the form remains the one used in the Shyr-Yu theorem
and we can deduce that w = f y/w thus each words are purely primitive
words.



Examples :
p = a and ¢ = b lead to only purely primitive words in the language

q

1)

gt

2)p= ab and g = abb lead also to purely primitive words.

3) p = aba and q = abaab give a longest prefix of p™ which is also suffix of
q" namely abaab for m =2 and n = 1.

That is for m > 2 and n > 1 the word w = pmq could be written as

w = g = (L) T = (wftfu] — )T = (wlLfu] -
3y T b

2
| f 3,

—~

. And for m = n = 1 we find pq = abaabaab = (aba)**

Proof of Theorem 3.4 : In case of (i1), we know that there exists a unique
non-primitive word, namely W7, in pt¢T. We can write the general form of
Wt = (z¢®)ag¢® or W = pk,y(p y)’ 1 Thus elther p=(x¢*) 'z or ¢ =
y(pky)i_l. And then either W* = pgF or W = pF q. In both cases we can find

finite classes of words : pq = (z¢")'zq, p¢® = (x¢®)'x¢?, -, pg*~! =

(2q")lag™ or pg =yl pe = P
= pFy(pF'y) .
In each case, we can find an infinite class of words with the form w =

( f\/_) | ff\) where p™ = p'y and ¢" = y'p’ with |p| maximal. We prove
this fact by contradiction. Suppose that there is no p’ which is maximal.
That is we have an infinite sequence of words indexed by distinct couples
(m;,n;) with increasing length of p/(mi’ni) such that p™ = p(m i)Y and
qr = y’p/(mi’ni). As the sequence is infinite, we find a starting point in
q = ss’ such that we could extend the rigth part of the word to an infinite

by p* = (s's)*. By using Theorem 2.5, we have that p = 2 and s's = 2¢'.
Thus p is not primitive. A contradiction. O
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