On Shyr-Yu Theorem ${ }^{1}$

Pál DÖMÖSI

Faculty of Informatics, Debrecen University Debrecen, Egyetem tér 1., H-4032, Hungary
e-mail: domosi@inf.unideb.hu
and
Géza HORVÁTH
Institute of Informatics, Debrecen University
Debrecen, Egyetem tér 1., H-4032, Hungary
e-mail: geza@inf.unideb.hu
and

Laurent VUILLON

Laboratoire de Mathématiques, Université de Savoie CNRS UMR 5127, 73376 Le Bourget du Lac, France

Laurent.Vuillon@univ-savoie.fr

Abstract

An alternative proof of Shyr-Yu Theorem is given. Some generalizations are also considered using fractional root decompositions and fractional exponents of words.

Keywords: Combinatorics of words.

[^0]
1 Introduction

A word is primitive if it is not a power of another word. A well-known unsolved problem of theoretical computer science asks whether or not the language of all primitive words over a nontrivial alphabet is context-free or not $[4,5]$. Among others, this (in)famous problem motivates the study of the combinatorial properties of primitive words. In addition, they have special importance in studies of automatic sequences $[1,8]$. The Shyr-Yu Theorem [12] is a well-known classical result in this direction. The known proof of this result is rather involved [12]. The aim of this paper is to give a new simple proof of this well-known theorem, using some simple observations. In addition, we give the decomposition of words in the language $p^{+} q^{+}$, in particular we find fractional root decompositions and fractional exponents of the words appearing in the language.

2 Preliminaries

A word over Σ is a finite sequence of elements over some finite non-empty set Σ. If there is no danger of confusion, sometimes we omit the expression "over Σ ". We call the set Σ an alphabet, the elements of Σ letters. Σ is called trivial if it is a singleton. Otherwise we also say that Σ is nontrivial. We also define the empty word λ consisting of zero letters. The length $|w|$ of a word w is the number of letters in w, where each letter is counted as many times as it occurs. Thus $|\lambda|=0$. If $u=x_{1} \cdots x_{k}$ and $v=x_{k+1} \cdots x_{\ell}$ are words over an alphabet Σ (with $x_{1}, \ldots, x_{k}, x_{k+1}, \ldots, x_{\ell} \in \Sigma$) then their catenation (which is also called their product) $u v=x_{1} \cdots x_{k} x_{k+1} \cdots x_{\ell}$ is also a word over Σ. In addition, for every word $u=x_{1} \cdots x_{k}$ over Σ (with $\left.x_{1}, \ldots, x_{k} \in \Sigma\right), u \lambda=\lambda u=u\left(=x_{1} \cdots x_{k}\right)$. Moreover, $\lambda \lambda=\lambda$. Obviously, for every $u, v \in \Sigma^{*},|u v|=|u|+|v|$. Clearly, then, for every words u, v, w $($ over $\Sigma) u(v w)=(u v) w$. In other words, $u u^{\prime}=w^{\prime} w$ whenever $u^{\prime}=v w$ and $w^{\prime}=u v$. Therefore, catenation is an associative operation and the empty word λ is the identity with respect to catenation. Let u, v, w be words with $u=v w$. Then we say that v is a prefix of u and w is a suffix of u. Two words u, v are said to be conjugates if there exists a word w with $u w=w v$. In particular, a word z is called overlapping (or bordered) if there are $u, v, w \in \Sigma^{+}$with $z=u w=w v$. Otherwise we say that z is non-overlapping (or unbordered).

Proposition 2.1 [9] u, v are conjugates if and only if there are words p, q with $u=p q$ and $v=q p$.

Theorem 2.2 [9] Let $u, v \in \Sigma^{+}$with $u v=v u$. There exists $w \in \Sigma^{+}$with $u, v \in w^{+}$.

Lemma 2.3 [7] If $u v=p q$ and $|u| \leq|p|$ for some $u, v, p, q \in \Sigma^{+}$, then $p=u r$ and $v=r q$ for some $r \in \Sigma^{*}$.

Lemma 2.4 [9] If $u v=v q, u \in \Sigma^{+}, v, q \in \Sigma^{*}$, then $u=w z, v=(w z)^{k} w, q=$ $z w$ for some $w \in \Sigma^{*}, z \in \Sigma^{+}$and $k \geq 0$.

If u, v, w, z are words over Σ having $z=u v w$, then v is called a subword of z. The nonempty prefix, suffix, subword are also called a proper (or nontrivial) prefix, suffix, subword.

By the free monoid Σ^{*} generated by Σ we mean the set of all words (including the empty word λ) having catenation as multiplication. We set $\Sigma^{+}=\Sigma^{*} \backslash\{\lambda\}$, where the subsemigroup Σ^{+}of Σ^{*} is said to be the free semigroup generated by $\Sigma . \Sigma^{*}$ and Σ^{+}have left and right cancellation, i.e. for every elements u, v, w of Σ^{*} or $\Sigma^{+}, u v=u w$ implies $v=w$ and $u v=w v$ implies $u=w$.

Subsets of Σ^{*} are referred to as languages over Σ. In particular, subsets of Σ^{+}are referred to as λ-free languages over Σ.

Given a word u, we define $u^{0}=\lambda, u^{n}=u^{n-1} u, n>0, u^{*}=\left\{u^{n}: n \geq 0\right\}$ and $u^{+}=u^{*} \backslash\{\lambda\}$. Thus u^{n} with $n \geq 0$ is the n-th power of u, while u^{*} is the Kleene closure, moreover, u^{+}is the semigroup closure of u.

Given a list c_{1}, \ldots, c_{n} of integers, let $\operatorname{gcd}\left(c_{1}, \ldots, c_{n}\right)$ denote the greatest common divisor of c_{1}, \ldots, c_{n}.

Theorem $2.5[6]$ Let $u, v \in \Sigma^{*} . u, v \in w^{+}$for some $w \in \Sigma^{+}$if and only if there are $i, j \geq 0$ so that u^{i} and v^{j} have a common prefix (suffix) of length $|u|+|v|-\operatorname{gcd}(|u|,|v|)$.

A primitive word (over Σ, or actually over an arbitrary alphabet) is a nonempty word not of the form w^{m} for any nonempty word w and integer $m \geq 2$. Thus λ is a nonprimitive word because of $\lambda \lambda=\lambda$. The set of all primitive words over Σ will be denoted by $Q(\Sigma)$, or simply by Q if Σ is understood. Let $u \neq \lambda$ and let f be a primitive word with an integer $k \geq 1$ having $u=f^{k}$. We let $\sqrt{u}=f$ and call f the primitive root of the word u.

Theorem 2.6 [11] Let $u, v \in \Sigma^{*} . w^{i}=u v$ for some $w \in \Sigma^{*}, i \geq 1$ if and only if there are $p, q \in \Sigma^{*} w=p q,(q p)^{i}=v u$. Furthermore, $u v \in Q$ for some $u, v \in \Sigma^{*}$ if and only if $v u \in Q$.

The next statement shows that, for every nonempty word, the primitive root is unambiguously determined.

Theorem 2.7 [9] If $u \neq \lambda$, then there exists a unique primitive word f and a unique integer $k \geq 1$ such that $u=f^{k}$.

Let $a^{m} b^{n}=c^{k}$ be an equation such that $a, b, c \in \Sigma^{*}$ and $m, n, k \geq 2$. We say that $a^{m} b^{n}=c^{k}$ has only trivial solution if $a^{m} b^{n}=c^{k}$ holds only if there exists a $w \in \Sigma^{*}$ with $a, b, c \in w^{*}$.

Theorem 2.8 (Lyndon-Schützenberger Theorem) [9] The equation $a^{m} b^{n}=c^{k}$ with $a, b, c \in \Sigma^{*}$ has only trivial solutions.

We have a direct consequence of Theorem 2.8 as below.
Theorem 2.9 Let $f, g \in Q, f \neq g$. Then $f^{m} g^{n} \in Q$ for all $m \geq 2, n \geq 2$.

Lemma 2.10 [3] Let $u, v \in Q$, such that $u^{m}=v^{k} w$ for some $k, m \geq 2$, and $w \in \Sigma^{*}$ with $|w| \leq|v|$.

Then exactly one of the following conditions holds:
(i) $u=v$ and $w \in\{u, \lambda\}$;
(ii) $m=k=2$ and there are $p, q \in \Sigma^{+}, s \geq 1$ with $\sqrt{p} \neq \sqrt{q}$, $u=(p q)^{s+1} p^{2} q, v=(p q)^{s+1} p, w=q p^{2} q$.

Theorem 2.11 [3] Let $u, v \in Q$, such that $u^{m}=v^{k} w$ for some prefix w of v and $k, m \geq 2$. Then $u=v$ and $w \in\{u, \lambda\}$.

Theorem 2.12 (Shyr-Yu Theorem) [12] Let $f, g \in Q, f \neq g$. Then $\left|f^{+} g^{+} \cap \Sigma^{+} \backslash Q\right| \leq 1$. Moreover, if f and g are also non-overlapping, then $f^{+} g^{+}$contains only primitive words.

3 Results

The next statement is an extended version of the first part of Theorem 2.9.

Theorem 3.1 Let $f, g \in Q, f \neq g$ and $n \geq 1$. If $f g^{n} \notin Q$ then $f g^{n+k} \in Q$ for all $k \geq 1$.

Proof: Suppose the contrary and let $u^{i}=f g^{n}, v^{j}=f g^{n+k}$ for some $u, v \in$ $\Sigma^{+}, i, j>1, k \geq 1$. We may assume without any restriction $u, v \in Q$. By our conditions, $v^{j}=u^{i} g^{k}$.

First we assume $k \geq 2$. Hence, by Theorem 2.8, $\sqrt{v}=\sqrt{u}=\sqrt{g}$, i.e. $u=v=g$. By $u^{i}=f g^{n}$, this results $f=g^{i-n}$ leading to $\sqrt{f}=\sqrt{g}$. Then, by $f, g \in Q$, we have $f=g$, a contradiction.

Now we suppose $k=1$. By Theorem 2.6, there are $w, z \in Q$ with $w^{i}=$ $g^{n} f, z^{j}=g^{n} f g$. Then $z^{j}=w^{i} w_{1}$, where w_{1} is a prefix of w. Applying Theorem 2.11, $w=z$, which, by Theorem 2.6, implies $u=v$. But then $k=0$, a contradiction.

Proof of Theorem 2.12 : Let $f, g \in Q$ be distinct primitive words.
First we prove that the language $f^{+} g^{+}$contains at most one non-primitive word. Suppose $f^{m} g^{n} \notin Q$. By Theorem 2.9, $m, n \geq 2$ is impossible. Therefore, we may assume either $f^{m} g \notin Q$ for some $m \geq 1$ or $f g^{n} \notin Q$ for some $n \geq 1$.

By Theorem 3.1, there exists at most one pair $m, n \geq 1$ of positive integers with $f^{m} g, f g^{n} \notin Q$. In addition, if $f g \notin Q$, then $f^{m} g, f g^{n} \in Q$, $m, n \geq 2$. Therefore, it is enough to prove that for every pair $m, n \geq 2$, $f^{m} g \notin Q$ implies $f g^{n} \in Q$.

Suppose the contrary and let $f^{m} g=u^{i}, f g^{n}=v^{j}$ for some $m, n, i, j \geq$ $2, u, v \in Q$ and let, say, $|g| \leq|f|$. Using Lemma 2.10, this is possible only if $m=i=2$ and there are $p, q \in \Sigma^{+}, s \geq 1$ with $\sqrt{p} \neq \sqrt{q}$ and $u=(p q)^{s+1} p^{2} q$, $f=(p q)^{s+1} p, g=q p^{2} q$.

By Theorem 2.5 and $v^{j}=f g^{n}=(p q)^{s+1} p\left(q p^{2} q\right)^{n}$, this is impossible if either $|p q|+|v| \leq\left|(p q)^{s+1} p\right|+|q p|$, or $\left|q p^{2} q\right|+|v| \leq\left|\left(q p^{2} q\right)^{n}\right|$. On the other hand, if $|p q|+|v|>\left|q p(p q)^{s+1} p\right|$ and $\left|q p^{2} q\right|+|v|>\left|\left(q p^{2} q\right)^{n}\right|$ simultaneously hold, then using again $v^{j}=f g^{n}=(p q)^{s+1} p\left(q p^{2} q\right)^{n}$, we obtain $\left|v^{2}\right|+|p q|+$ $\left|q p^{2} q\right|>\left|v^{j}\right|+|q p|$. Hence $\left|v^{2}\right|>\left|v^{j}\right|-\left|q p^{2} q\right|$ which leads since $|q p p q|<$ $|v|$ to $j=2$. By $v^{2}=f g^{n}$, this implies $v^{2}=(p q)^{s+1} p\left(q p^{2} q\right)^{n}$. By the assumptions $|p q|+|v|>\left|q p(p q)^{s+1} p\right|$ and $\left|q p^{2} q\right|+|v|>\left|\left(q p^{2} q\right)^{n}\right|$, we can reach $\left|\left(q p^{2} q\right)^{n-2}\right|<\left|(p q)^{s+1} p\right|<\left|\left(q p^{2} q\right)^{n}\right|$. Thus $2 n-5 \leq s \leq 2 n-2$ which means $v=(p q)^{2 n-4} r_{1}=r_{2}\left(q p^{2} q\right)^{n-2},\left|r_{1}\right|=\left|r_{2}\right|$ such that $r_{1} r_{2}=$ $(p q)^{t} p\left(q p^{2} q\right)^{2}, t \in\{0,1,2,3\}$.

Note that, because of $v \in Q, \sqrt{p}=\sqrt{q}$ is impossible. We distinguish the following four cases.

Case 1. $t=0, r_{1}=p q p z_{1}, r_{2}=z_{2} p^{2} q, z_{1} z_{2}=p q^{2},\left|z_{1}\right|=\left|z_{2}\right|$. Then $v=(p q)^{2 n-4} p q p z_{1}=z_{2} p^{2} q\left(q p^{2} q\right)^{n-2}$. Thus z_{1} is a suffix and z_{2} is a prefix of $p q$. Hence, by $\left|z_{1}\right|=\left|z_{2}\right|=\frac{1}{2}|p|+|q|$, we get $z_{1}=p_{2} q, z_{2}=p_{1} q^{\prime}$ with $p=p_{1} p_{2},\left|q^{\prime}\right|=|q|,\left|p_{1}\right|=\left|p_{2}\right|$ for appropriate $q^{\prime}, p_{1}, p_{2} \in \Sigma^{+}$. Obviously,
then $z_{1} z_{2}=p_{2} q p_{1} q^{\prime}=p q^{2}$. This implies $p_{2}=p_{1}$ and $q^{\prime}=q$. This leads to $z_{1}=z_{2}=p_{1} q$. Thus $z_{1} z_{2}=\left(p_{1} q\right)^{2}=p_{1}^{2} q^{2}$ implying $q p_{1}=p_{1} q$. Applying Theorem 2.2, $\sqrt{p_{1}}=\sqrt{q}$. By $p=p_{1}^{2}$, this implies $\sqrt{p}=\sqrt{q}$, a contradiction.

Case 2. $t=1, r_{1}=(p q)^{2} z_{1}, r_{2}=z_{2} q p^{2} q, z_{1} z_{2}=p^{2} q,\left|z_{1}\right|=\left|z_{2}\right|$. Then $v=(p q)^{2 n-2} z_{1}=z_{2}\left(q p^{2} q\right)^{n-1}$. Thus z_{1} is a suffix and z_{2} is a prefix of of $p q$. Hence, by $\left|z_{1}\right|=\left|z_{2}\right|=|p|+\frac{1}{2}|q|$, we get $z_{1}=p^{\prime} q_{2}, z_{2}=p q_{1}$ with $q=q_{1} q_{2},\left|p^{\prime}\right|=|p|,\left|q_{1}\right|=\left|q_{2}\right|$ for appropriate $p^{\prime}, q_{1}, q_{2} \in \Sigma^{+}$.

Obviously, then $z_{1} z_{2}=p^{\prime} q_{2} p q_{1}=p^{2} q$. Hence we get $p^{\prime}=p$ and $q_{1}=q_{2}$. In other words, $z_{1} z_{2}=\left(p q_{1}\right)^{2}=p^{2} q_{1}^{2}$ leading to $q_{1} p=p q_{1}$. By Theorem 2.2, we get $\sqrt{q_{1}}=\sqrt{p}$ which is impossible because of $q=q_{1}^{2}$.

Case 3. $t=2, r_{1} r_{2}=(p q)^{2} p\left(q p^{2} q\right)^{2}$. Then $r_{1}=(p q)^{3} p_{1}, r_{2}=p_{2} p q^{2} p^{2} q$ with $p=p_{1} p_{2},\left|p_{1}\right|=\left|p_{2}\right|$. But then, either $n=2$ or $n>2, p_{2}$ is simultaneously a prefix and a suffix of p. Therefore, $p_{1}=p_{2}$ which implies $p=p_{1}^{2}$. Thus, we can write $v=\left(p_{1}^{2} q\right)^{2 n-4}\left(p_{1}^{2} q\right)^{3} p_{1}=p_{1}^{3} q^{2} p_{1}^{4} q\left(q p_{1}^{4} q\right)^{n-2}$ which implies $q p_{1}=p_{1} q$ either $n=2$ or $n>2$. By Theorem 2.2, this means $\sqrt{q}=\sqrt{p_{1}}$ such that $p=p_{1}^{2}$. Therefore, $\sqrt{p}=\sqrt{q}$, a contradiction.

Case 4. $t=3, r_{1} r_{2}=(p q)^{3} p\left(q p^{2} q\right)^{2}$. In this case, $r_{1}=(p q)^{3} p q_{1}, r_{2}=$ $q_{2} p^{2} q^{2} p^{2} q$ with $q=q_{1} q_{2},\left|q_{1}\right|=\left|q_{2}\right|$. We observe that, either $n=2$ or $n>2$, q_{1} is simultaneously a prefix and a suffix of q. Therefore, $q_{1}=q_{2}$ with $q=q_{1}^{2}$. Thus, we can write $v=\left(p q_{1}^{2}\right)^{2 n-4}\left(p q_{1}^{2}\right)^{3} p q_{1}=q_{1} p^{2} q_{1}^{4} p^{2} q_{1}^{2}\left(q_{1}^{2} p^{2} q_{1}^{2}\right)^{n-2}$ which implies $p q_{1}=q_{1} p$, if $n=2$ and $p q_{1}^{2} p q_{1}=q_{1} p^{2} q_{1}^{2}$, if $n>2$. Both equalities lead to $p q_{1}=q_{1} p$. By Theorem 2.2, this leads to $\sqrt{q_{1}}=\sqrt{p}$ such that $q=q_{1}^{2}$. Therefore, $\sqrt{p}=\sqrt{q}$, a contradiction.

It remains to show that, for every distinct pair $f, g \in Q$ of unbordered primitive words, $f^{+} g^{+} \subseteq Q$. By Theorem 2.9, $m, n \geq 2$ implies $f^{m} g^{n} \in Q$. Thus it is enough to prove that for every $m, n \geq 2, f^{m} g, f g^{n} \in Q$.

Suppose that, contrary of our statement, there are $u \in Q, i>1$ with $f^{m} g=u^{i}$. Consider $u_{1}, u_{2} \in \Sigma^{*}, j \geq 0$ with $u=u_{1} u_{2}$ such that $f^{m}=u^{j} u_{1}$ and $g=u_{2} u^{i-j-1}$. By Theorem 2.11, $j \leq 1$. If $j=0$, then $g=u_{2} u^{i-1}$ with $i-1>0$. Then g is bordered, a contradiction. Thus we get $j=1$. Therefore, $f^{m}=u_{1} u_{2} u_{1}, g=u_{2}\left(u_{1} u_{2}\right)^{i-2}$. If $u_{1} \neq \lambda$, then f is bordered, a contradiction. Hence $f^{m}=u_{2}, g=u_{2}^{i-1}$. Clearly, then $f=\sqrt{f}=\sqrt{u_{2}}=$ $\sqrt{g}=g$, a contradiction.

Now we assume that, contrary of our statement, $f g^{n}=v^{k}, v \in Q, k>1$. By Theorem 2.6, there exists a word $z \in Q$ having $g^{n} f=z^{k}$. We have already proved that this is impossible. This completes the proof.

Definition 3.2 Let w be a finite word over the alphabet Σ. We define the fractional root of w as the shortest word noted ${ }^{f} \sqrt{w}$ with the property that
$\left({ }^{f} \sqrt{w}\right)^{(n+\alpha)}=w$ where n is a positive integer and α is a positive rational number.

Example for $w=a b a a b a a b$, we find $(a b a)^{\left(2+\frac{2}{3}\right)}=a b a a b a a b$, thus the fractional root of $w=a b a a b a a b$ is ${ }^{f} \sqrt{w}=a b a$.

Definition 3.3 If $f \sqrt{w}=\sqrt{w}=w$ then we say that w is purely primitive (or aperiodic).

For example $w=a a b a b b b$ is purely primitive. The first part of Shyr-Yu Theorem could be refined in three cases according to the following statement:

Theorem 3.4 Consider the language of $p^{+} q^{+}$. Then
(i1) If there exists k such that $p=\left(x q^{k}\right)^{i-1} x$ then the non-primitive factor is $W^{i}=p q^{k}=\left(x q^{k}\right)^{i}$ or $W^{i}=p^{k^{\prime}} y\left(p^{k^{\prime}} y\right)^{i-1}$. For this case, we could find finite classes of primitive words with fractional roots constructed as $p q=\left(x q^{k}\right)^{i-1} x q, p q^{2}=\left(x q^{k}\right)^{i-1} x q^{2}, \cdots, p q^{k-1}$ or $p q=p y\left(p^{k^{\prime}} y\right)^{i-1}$, $p^{2} q=p^{2} y\left(p^{k^{\prime}} y\right)^{i-1}, \cdots, p^{k^{\prime}-1} q=p^{k^{\prime}-1} y\left(p^{k^{\prime}} y\right)^{i-1}$ which are primitive and not purely primitive. And infinite classes constructed by $p^{m}=p^{\prime} y$ and $q^{n}=y^{\prime} p^{\prime}$ with $\left|p^{\prime}\right|$ maximal and $m, n \geq 1$. Furthermore, if $\left|p^{\prime}\right|=0$ then the infinite classes have only purely primitive words.
(i2) There is a non-primitive word in the language and no finite class, thus we have infinite classes constructed by $p^{m}=p^{\prime} y$ and $q^{n}=y^{\prime} p^{\prime}$ with $\left|p^{\prime}\right|$ maximal and $m, n \geq 1$. Furthermore, if $\left|p^{\prime}\right|=0$ then the infinite classes have only purely primitive words.
(ii) There is no non-primitive word in the language, thus we have only infinite classes constructed by $p^{m}=p^{\prime} y$ and $q^{n}=y^{\prime} p^{\prime}$ with $\left|p^{\prime}\right|$ maximal and $m, n \geq 1$. Furthermore, if $\left|p^{\prime}\right|=0$ then the infinite classes are purely primitive.

In this variation of the first part of the Shyr-Yu Theorem, we find in each case an infinite class with words written in the form $w=(f \sqrt{w})^{\left(1+\frac{\left|p^{\prime}\right|}{|f \sqrt{w}|}\right)}$. In fact, if $\left|p^{\prime}\right|=0$ the form remains the one used in the Shyr-Yu theorem and we can deduce that $w=f \sqrt{w}$ thus each words are purely primitive words.

Examples :

1) $p=a$ and $q=b$ lead to only purely primitive words in the language $p^{+} q^{+}$.
2) $p=a b$ and $q=a b b$ lead also to purely primitive words.
3) $p=a b a$ and $q=a b a a b$ give a longest prefix of p^{m} which is also suffix of q^{n} namely abaab for $m=2$ and $n=1$.

That is for $m \geq 2$ and $n \geq 1$ the word $w=p^{m} q^{n}$ could be written as $w=p^{m} q^{n}=(f \sqrt{w})^{\left(1+\frac{\mid p^{\prime}}{|\sqrt{w}|}\right)}=\left(w\left[1 . .|w|-\left|p^{\prime}\right|\right]\right)^{\left(1+\frac{p^{\prime}}{\mid p^{\prime}}\right)}=(w[1 . .|w|-$ $5])^{\left(1+\frac{5}{|\sqrt{w}|}\right)}$. And for $m=n=1$ we find $p q=a b a a b a a b=(a b a)^{2+\frac{2}{3}}$.

Proof of Theorem 3.4: In case of (i1), we know that there exists a unique non-primitive word, namely W^{i}, in $p^{+} q^{+}$. We can write the general form of $W^{i}=\left(x q^{k}\right)^{i-1} x q^{k}$ or $W^{i}=p^{k^{\prime}} y\left(p^{k^{\prime}} y\right)^{i-1}$. Thus either $p=\left(x q^{k}\right)^{i-1} x$ or $q=$ $y\left(p^{k} y\right)^{i-1}$. And then either $W^{i}=p q^{k}$ or $W^{i}=p^{k^{\prime}} q$. In both cases we can find finite classes of words : $p q=\left(x q^{k}\right)^{i-1} x q, p q^{2}=\left(x q^{k}\right)^{i-1} x q^{2}, \cdots, p q^{k-1}=$ $\left(x q^{k}\right)^{i-1} x q^{i-1}$ or $p q=p y\left(p^{k^{\prime}} y\right)^{i-1}, \quad p^{2} q=p^{2} y\left(p^{k^{\prime}} y\right)^{i-1}, \cdots, p^{k^{\prime}-1} q$ $=p^{k^{\prime}-1} y\left(p^{k^{\prime}} y\right)^{i-1}$.

In each case, we can find an infinite class of words with the form $w=$ $\left(f \sqrt{w}^{\left(1+\frac{\left|p^{\prime}\right|}{|f \sqrt{w}|}\right)}\right.$ where $p^{m}=p^{\prime} y$ and $q^{n}=y^{\prime} p^{\prime}$ with $\left|p^{\prime}\right|$ maximal. We prove this fact by contradiction. Suppose that there is no p^{\prime} which is maximal. That is we have an infinite sequence of words indexed by distinct couples $\left(m_{i}, n_{i}\right)$ with increasing length of $p_{\left(m_{i}, n_{i}\right)}^{\prime}$ such that $p^{m_{i}}=p_{\left(m_{i}, n_{i}\right)}^{\prime} y$ and $q^{n_{i}}=y^{\prime} p_{\left(m_{i}, n_{i}\right)}^{\prime}$. As the sequence is infinite, we find a starting point in $q=s s^{\prime}$ such that we could extend the rigth part of the word to an infinite by $p^{\omega}=\left(s^{\prime} s\right)^{\omega}$. By using Theorem 2.5, we have that $p=z^{\ell}$ and $s^{\prime} s=z^{\ell^{\prime}}$. Thus p is not primitive. A contradiction.

References

[1] ALLOUCHE, J.-P.; SHALLIT, J. : Automatic sequences. Theory, applications, generalizations. Cambridge University Press, Cambridge, 2003.
[2] CHU, D. D., HSIANG-SHENG, T., Another proof on a theorem of Lyndon and Schützenberger in a free monoid. In: Schoochow Journal of Mathematics, 4 (1978), 143-146.
[3] DÖMÖSI, P., HORVÁTH, G. : Alternative proof of the LyndonSchützenberger Theorem. In : Theoret. Comput. Sci.,366 (2006), 194198.
[4] DÖMÖSI, P., HORVÁTH, S., ITO, M.: On the connection between formal languages and primitive words. In: Proc. First Session on Scientific Communication, Univ. of Oradea, Oradea, Romania, 6-8 June, 1991, Analele Univ. of Oradea, Fasc. Mat., 1991, 59-67.
[5] DÖMÖSI, P., HORVÁTH, S., ITO, M., Formal languages and primitive words. Publ. Math., Debrecen, 20 (1993), $315-321$.
[6] FINE, N. J., WILF, H. S., Uniqueness theorems for periodic functions. Proceedings of the American Mathematical Society, 16 (1965) 109-114.
[7] LEVI, F. W. : On semigroups. Bulletin of the Calcutta Mathematical Society, 36 (1944), 141-146.
[8] LOTHAIRE, M., Combinatorics on Words. Addison-Wesley, 1983.
[9] LYNDON, R. C., SCHÜTZENBERGER, M. P., The equation $a^{M}=$ $b^{N} c^{P}$ in a free group. Michigan Math. J. 9 (1962), 289-298.
[10] SHYR, H. J., Free Monoids and Languages. Ho Min Book Company, Taiwan, 1991.
[11] SHYR, H. J., THIERRIN, G., Disjunctive languages and codes, FCT'77, LNCS 56, Springer-Verlag (1977), 171-176.
[12] SHYR, H. J., YU, S. S., Non-primitive words in the language $p^{+} q^{+}$, Soochow J.Math. 20 (1994), 535-546.

[^0]: ${ }^{1}$ This work was supported by research grants of French National Foundation for Research (ÉGIDE) and Hungarian National Office for Research and Technology (NKTH) (Balaton F-30/04), and the Hungarian National Foundation for Scientific Research (OTKA 49409).

