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Abstract

Multi-type inhomogeneous Galton–Watson process with immigration is investigated, where
the offspring mean matrix slowly converges to a critical mean matrix. Under general conditions
we obtain limit distribution for the process, where the coordinates of the limit vector are not
necessarily independent.
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1 Introduction

A zero start single-type inhomogeneous Galton–Watson branching process with immigration (GWI
process) (Xn)n∈Z+

is defined as

{
Xn =

∑Xn−1

j=1 ξn,j + εn, n ∈ N,

X0 = 0,

where {ξn,j, εn : n, j ∈ N} are independent random variables with non-negative integer values such
that for each n ∈ N, {ξn,j : j ∈ N} are identically distributed. We can interpret Xn as the number
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of individuals in the nth generation of a population, ξn,j is the number of offsprings produced by
the jth individual belonging to the (n− 1)th generation, and εn is the number of immigrants in the
nth generation. A zero start one-dimensional inhomogeneous integer-valued autoregressive (INAR)
time series is a special single-type GWI process, such that the offspring distributions are Bernoulli.

Assume that ̺n := Eξn,1 < ∞ and mn := Eεn < ∞. A one-dimensional inhomogeneous GWI
process (Xn)n∈Z+

is called nearly critical if ̺n → 1 as n → ∞. Györfi et al. [11] investigated
the asymptotic behavior of nearly critical one-dimensional INAR processes with ̺n < 1, under the
assumption

∑∞
n=1(1 − ̺n) = ∞, i.e. the convergence ̺n → 1, n → ∞, is not too fast. In the

followings any non-specified limit relation is meant as n → ∞. It turns out in Theorem 1 [11] that
in case of Bernoulli immigration the process Xn converges in distribution to a Poisson distribution
with parameter λ, when mn/(1 − ̺n) → λ. That is, if there is a balance between the immigration
mn and the extinction effect 1 − ̺n, then a non-trivial limit distribution exists. Moreover, in [11]
general immigration distributions are investigated: when the factorial moments of the immigration
at generation n is of order 1 − ̺n then compound Poisson limit appears. These investigations
were extended by Kevei [15] for general GWI processes, that is the Bernoulli assumption on the
offsprings was relaxed. In the present paper we investigate the multi-type version of the previous
problem.

In a multi-type homogeneous Galton–Watson process (without immigration) the main data
of the process is the spectral radius ̺(B) of the mean matrix B, where ̺(B) := max{|λ| :
λ is an eigenvalue of B}. By classical results, a positively regular, non-singular multi-type Galton–
Watson process dies out almost surely if and only if ̺(B) ≤ 1. The process is called subcritical,
critical or supercritical if ̺ < 1, = 1 or > 1, respectively. In the multi-type setup we also consider
nearly-critical processes, that is we assume that the sequence of offspring mean matrices converge
to a critical limit matrix. However, contrary to the one-dimensional case, there are a lot of critical
matrices, and thus a lot of nearly-critical processes. The formal definition comes below.

An inhomogeneous multi-type GWI process with d types

Xn = (Xn,1, . . . ,Xn,d), n ∈ Z+,

defined as {
Xn =

∑Xn−1,1

j=1 ξn,j,1 + . . .+
∑Xn−1,d

j=1 ξn,j,d + εn, n ∈ N,

X0 = 0,

where {ξn,j,i, εn : n, j ∈ N, i ∈ {1, . . . , d}} are independent d-dimensional random vectors with
non-negative integer coordinates such that for each n ∈ N and i ∈ {1, . . . , d}, {ξn,j,i : j ∈ N} are
identically distributed, and 0 is the zero vector. Then Xn,i is the number of i-type individuals in
the nth generation of a population, ξn,j,i is the number of offsprings produced by the jth individual

of type i belonging to the (n − 1)th generation, and εn is the number of immigrants. When the
offsprings are Bernoulli distributed (see Section 2 for the definition of multidimensional Bernoulli
distribution) we obtain the d-dimensional inhomogeneous INAR time series.
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Suppose that the offspring and immigration means are finite. Let us denote the offspring mean
matrix and the immigration mean vector in the nth generation by

Bn =




Eξn,1,1
...

Eξn,1,d


 ∈ R

d×d
+ , Eεn = mn ∈ R

d
+,

where the elements of R
d
+ are d-dimensional row vectors with non-negative coordinates. Then

(Bn)i,j is the expected number of type-j offsprings of a single type-i particle in generation n. Then
we have the recursion

EXn = (EXn−1)Bn +mn, n ∈ N, (1.1)

since

E(Xn | Xn−1) = E

(Xn−1,1∑

j=1

ξn,j,1 + . . . +

Xn−1,d∑

j=1

ξn,j,d + εn

∣∣∣∣Xn−1

)

=

Xn−1,1∑

j=1

Eξn,j,1 + . . .+

Xn−1,d∑

j=1

Eξn,j,d + Eεn

= Xn−1,1 Eξn,1,1 + . . .+Xn−1,d Eξn,1,d + Eεn = Xn−1Bn +mn.

The sequence (Bn)n∈N of the offspring mean matrices plays a crucial role in the asymptotic behavior
of the sequence (Xn)n∈Z+

as n → ∞. A d-dimensional inhomogeneous Galton–Watson process
(Xn)n∈Z+

is called nearly critical if Bn → B and ̺(B) = 1. We will investigate the asymptotic
behavior of nearly critical GWI processes.

Homogeneous multi-type GWI processes have been introduced and studied by Quine [21, 22].
In [21] necessary and sufficient condition is given for the existence of stationary distribution in
the subcritical case. A complete answer is given by Kaplan [14]. Also Mode [20] gives a sufficient
condition for the existence of a stationary distribution, and in a special case he shows that the
limiting distribution is a multivariate Poisson with independent components.

Branching process models are extensively used in various parts of natural sciences, among others
in biology, epidemiology, physics, computer sciences. In particular, multi-type GWI processes were
used to determine the asymptotic mean and covariance matrix of deleterious genes and mutant
genes in a stationary population by Gladstien and Lange [9], and in non-stationary population
by Lange and Fan [18]. Another rapidly developing area where multi-type GWI processes can be
applied is the theory of polling systems. Resing [23] pointed out that a large variety of polling
models can be described as a multi-type GWI process. Resing [23], van der Mei [19], Boon [2],
Boon et al. [3] and Altman and Fiems [1] investigated several communication protocols applied in
info-communication networks with differentiated services. There are different quality of services,
for example, some of them are delay sensitive (telephone, on-line video, etc.), while others tolerate
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some delay (e-mail, internet, downloading files, etc.). Thus, the services are grouped into service
classes such that each class has an own transmission protocol like priority queueing. In the papers
mentioned above the d-type Galton–Watson process has been used, where the process was defined
either by the sizes of the active user populations of the d service classes, or by the length of the
d priority queues. For the general theory and applications of multi-type Galton–Watson processes
we refer to Mode [20] and Haccou et al. [13].

The INAR time series as a particular case of GWI processes with Bernoulli offspring distribution
have been investigated by several authors, see e.g. the survey of Weiß [24]. Heterogeneous INAR(1)
models have been considered by Böckenholt [4] for understanding and predicting consumers’ buying
behavior, and Gourieroux and Jasiak [10] for modeling the premium in bonus-malus scheme of car
insurance. Note that the higher order INAR(p) times series introduced by Du and Li [6] has state
space representation by a multivariate INAR(1) model which is a particular case of the multi-type
GWI process, see Franke and Subba Rao [7].

The paper is organized as follows. In Section 2 general sufficient conditions are given for the
mean matrices Bn to get a non-trivial limit distribution for the sequence Xn. In Section 3 we spell
out the general theorems for some special cases of the mean matrices. We investigate here the case
when the limit matrix B = I, and when Bn = ̺nB. The proofs are gathered in Section 4.

2 General results

First we introduce some notation. Boldface lower case letters x,y,k, ℓ,m,λ stand for d-dimensional
(row) vectors, boldface upper case letters A,B stand for d×d real matrices, (x)i is the i

th element
of x, (A)i,j is the element of A in the ith row and jth column. For the usual basis in R

d we use the
notation

e1 = (1, 0, . . . , 0), . . . ,ed = (0, 0, . . . , 1),

and for the constant zero and constant one vector we put

0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1).

Inequalities between vectors, and between matrices are meant elementwise. For a vector x ∈ R
d

its norm is denoted by ‖x‖, where the norm is an arbitrary norm on the linear space R
d. As an

abuse of notation ‖A‖ is the operator-norm of the matrix A, induced by the norm ‖ · ‖ on the
linear space R

d, i.e. ‖A‖ = supx : ‖x‖≤1 ‖xA‖. Therefore, all the following statements are meant
as: If there exist a norm ‖ · ‖, such that the conditions of the statement hold with that norm, then
the conclusion holds. See the example after Proposition 1.

The distribution of a random vector ξ will be denoted by L(ξ). For p = (p1, . . . , pd) ∈ [0, 1]d

with p1 + . . . + pd ≤ 1, let Be(p) denote the d-dimensional Bernoulli distribution with means
p1, . . . , pd defined by

Be(p)({e1}) = p1, . . . , Be(p)({ed}) = pd, Be(p)({0}) = 1− p1 − . . . − pd.

4



If ξ = (ξ1, . . . , ξd) is a random vector with L(ξ) = Be(p) then ξ1, . . . , ξd are random variables
with L(ξi) = Be(pi), i ∈ {1, . . . , d} (thus Eξ = p), but ξ1, . . . , ξd are not independent, hence
Be(p) 6= Be(p1)× . . .× Be(pd).

When the offspring distributions are Bernoulli, each particle has at most one offspring. In this
case (Xn)n∈Z+

is an inhomogeneous INAR process, such that L(ξn,1,i) = Be(eiBn). Note that in
this case Bn is substochastic matrix.

For λ = (λ1, . . . , λd) ∈ [0,∞)d, the d-dimensional Poisson distribution with parameter λ is
defined by Po(λ) := Po(λ1) × . . . × Po(λd). In other words, ξ = (ξ1, . . . , ξd) is a random vector
with L(ξ) = Po(λ) whenever ξ1, . . . , ξd are independent random variables with L(ξi) = Po(λi),
i ∈ {1, . . . , d}. Note that Eξ = λ.

Introduce the generating functions

Fn(x) = ExXn , Gn,i(x) = Exξn,1,i , Gn(x) = (Gn,1(x), . . . , Gn,d(x)),

Hn(x) = Exεn , x ∈ [0, 1]d,
(2.1)

where xk = xk11 . . . xkdd . Conditioning argument shows the recursion Fn(x) = Fn−1(Gn(x))Hn(x),
n ≥ 2. Let denote Gn+1,n(x) = x, and if Gj+1,n is defined then Gj,n(x) = Gj(Gj+1,n(x)). With
this notation Quine [21] proved (simple induction argument shows) that we have

Fn(x) =

n∏

j=1

Hj(Gj+1,n(x)). (2.2)

It turns out that due to the near-criticality under general conditions Hj(Gj+1,n(x)) ≈ 1, for
each j, thus

Hj(Gj+1,n(x)) ≈ exp
{
Hj(Gj+1,n(x))− 1

}
,

therefore it is reasonable to define the accompanying compound Poisson probability generating
function

F̃n(x) = exp





n∑

j=1

[
Hj(Gj+1,n(x))− 1

]


 . (2.3)

We prove in Lemma 3 that under some conditions

lim
n→∞

(Fn(x)− F̃n(x)) = 0.

Therefore to determine the asymptotic properties of Xn we have to investigate the sum

n∑

j=1

[
Hj(Gj+1,n(x))− 1

]
.
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We can compute explicitly the generating function when both the immigration and the offsprings
have Bernoulli distribution. Indeed, when L(εn) = Be(mn), the immigration generating function
is

Hn(x) = Exεn = mn,1x1 + . . .+mn,dxd + 1− (mn,1 + . . .+mn,d) = 1 + (x− 1)m⊤
n ;

when the offspring distributions are also Bernoulli thenGn(x) = 1+(x−1)B⊤
n , and soGj+1,n(x) =

1+ (x− 1)B⊤
[j,n], where

B[j,n] :=

{
Bj+1 . . .Bn, for 0 ≤ j ≤ n− 1,

I, for j = n.

Note that in this paper the multivariate Bernoulli distribution is defined in such a way that its
generating function is a first order polynomial which is a particular case of a more general definition
of the multivariate Bernoulli distribution, see Krummenauer [17, Definition 1]. Thus (2.3) reads as

F̃n(x) = exp





n∑

j=1

[
(x− 1)B⊤

[j,n]m
⊤
j

]


 .

Observe that the recursion (1.1) implies

EXn =
n∑

j=1

mj B[j,n]. (2.4)

This can be obtained also by differentiating Fn in (2.2). Putting

Aj,n = (B −Bj)B[j,n], n ∈ N, j ∈ {1, . . . , n}, (2.5)

we may rewrite (2.4) as

EXn =
n∑

j=1

mj(B −Bj)
−1Aj,n,

whenever the inverse (B −Bj)
−1 exists for each j = 1, . . . , n.

These computations shows the necessity for a summability method defined by the offspring
mean matrices. We will make of use of the following matrix version of Toeplitz theorem (see, e.g.,
in Fritz [8]).

Lemma 1. Let Aj,n ∈ R
d×d, n ∈ N, j = 1, 2, . . . , n be matrices such that

lim
n→∞

max
1≤j≤n

‖Aj,n‖ = 0, (2.6)

lim
n→∞

n∑

j=1

Aj,n = A, (2.7)

sup
n∈N

n∑

j=1

‖Aj,n‖ < ∞. (2.8)
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Then for any convergent sequence of vectors xn → x

n∑

j=1

xjAj,n → xA.

In fact, the Lemma holds with the weaker assumption ‖Aj,n‖ → 0, for all j ∈ N, instead of
(2.6). However, for the proof of Lemma 3 the stronger version is needed.

Lemma 2. Assume that the sequence of mean matrices (Bn)n∈N satisfies the following conditions:

(B1) limn→∞Bn = B, for some matrix B;

(B2) ‖Bn‖ ≤ 1 and B −Bn is invertible whenever n ≥ n0 for some n0;

(B3) limn→∞ ‖B[j,n]‖ = 0 for any fixed j;

(B4) limn→∞
∑n

j=1(B −Bj)B[j,n] = A for some limit matrix A;

(B5) supn
∑n

j=1 ‖(B −Bj)B[j,n]‖ < ∞.

Then the triangular matrix array (Aj,n = (B −Bj)B[j,n])j,n satisfies the conditions of Lemma 1.

The following two general theorems give sufficient condition for the convergence of Xn. It
turns out that in case of Bernoulli offspring and immigration only conditions (2.6)–(2.8) have to be
assured. Note that when the offspring distribution is Bernoulli, then the limit matrix B in (B1) is
necessarily substochastic.

Theorem 1. Let (Xn)n∈Z+
be an inhomogeneous GWI process such that both the offspring and

the immigration have Bernoulli distribution and (B1)–(B5) hold. If

(M) limn→∞mn(B −Bn)
−1 = λ,

then
Xn

D−→ Po(λA),

where A is given in (B4).

The Bernoulli distribution of the offsprings and the immigration is a very restrictive condition.
In the following theorems we weaken these assumptions.

The interesting new feature in the following theorem is that the components of the limit are
dependent in general. We need some further notation.

For a multi-index j = (j1, . . . , jd) ∈ Z
d
+ let denote mn,j the jth factorial moment of the immi-

gration εn = (εn,1, . . . , εn,d), that is

mn,j = E

(
d∏

i=1

εn,i(εn,i − 1) . . . (εn,i − ji + 1)

)
= DjHn(1),
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where for a multi-index j

DjHn(1) =
∂|j|

∂j1x1 . . . ∂jdxd
Hn(1),

|j| = j1 + . . .+ jd, and the derivatives are meant as the left derivatives.
We cannot circumvent the fairly inconvenient notation below and in Lemma 4, because formulas

(2.10) and (2.11) are not easily translated to the multi-index notation.

Theorem 2. Let (Xn)n∈Z+
be an inhomogeneous GWI process with Bernoulli offspring distribu-

tions, such that (B1)–(B5) hold. Moreover, assume that for some k ≥ 2

lim
n→∞

‖(B −Bn)
−1‖ max

|j|=k
DjHn(1) = 0, (2.9)

and for each i = 1, 2, . . . , k − 1, for each 1 ≤ ℓi+1, . . . , ℓ2i ≤ d, the limit

lim
n→∞

n∑

j=1

1

i!

d∑

ℓ1,...,ℓi=1

∂iHj(1)

∂xℓ1 . . . ∂xℓi

(
B[j,n]

)
ℓ1,ℓi+1

. . .
(
B[j,n]

)
ℓi,ℓ2i

=: Λi;ℓi+1,...,ℓ2i (2.10)

exists. Then
Xn

D−→ Y ,

where

ExY = exp





k−1∑

i=1

d∑

ℓi+1,...,ℓ2i=1

Λi;ℓi+1,...,ℓ2i(xℓi+1
− 1) . . . (xℓ2i − 1)



 . (2.11)

Note that if (2.10) holds, then necessarily Λi;· is symmetric in the sense that for any permutation
π we have Λi;ℓ1,ℓ2,...,ℓi = Λi;ℓπ1,ℓπ2,...,ℓπi

. In particular, Λ2;j,k = Λ2;k,j, we use this in Example 1.
A simple sufficient condition which guarantees (2.9) is that there are at most k− 1 immigrants

in any generation. The other condition is more difficult to check, however for i = 1, 2 we can write
it in a simpler form.

For i = 1 condition (2.10) is just the convergence

n∑

j=1

mjB[j,n] → λ = (λ1, . . . , λd),

with Λ1;ℓ = λℓ. Since the matrix array (Aj,n) satisfies the conditions of Lemma 1 we see that the
convergence above follows from condition (M). As a consequence we obtain

Corollary 1. Let (Xn)n∈Z+
be an inhomogeneous GWI process with Bernoulli offspring distribu-

tions, such that (B1)–(B5) hold. Moreover, assume (M) and

lim
n→∞

E‖εn‖2 ‖(B −Bn)
−1‖ = 0. (2.12)

Then
Xn

D−→ Po(λA).
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For i = 2 condition (2.10) takes the form

1

2

n∑

j=1

B⊤
[j,n]∆jB[j,n] → Λ2,

with Λ2;k,ℓ = (Λ2)k,ℓ, where ∆j = ∆Hj(1) is the Hesse-matrix of the immigration generating

function at 1; i.e. (∆Hj(1))k,ℓ =
∂2

∂xk∂xℓ
Hj(1).

Example 1. The following simple example shows that the limit may have dependent components
even in a simple case. Let d = 2, L(ξn,1,i) = Be((1 − n−1)ei), i = 1, 2, and P(εn = 0) = 1 − n−1,

P(εn = 1) = n−1 for all n ∈ N, that is in the nth generation each particle survives with probability
1−n−1, and with probability n−1 a type-1 and a type-2 particle immigrate together. Then we have

Bn =

(
1− 1

n

)
I, and Hn(x1, x2) = 1− 1

n
+

x1x2
n

.

Clearly condition (2.9) holds with k = 3. The relevant quantities are B = I, mn = 1
n(1, 1),

∆n =
1

n

[
0 1

1 0

]
, mn(B −Bn)

−1 =
1

n
(1, 1)nI = (1, 1),

and
n∑

j=1

B⊤
[j,n]∆jB[j,n] =

n∑

j=1

j

n2

[
0 1

1 0

]
→ 1

2

[
0 1

1 0

]
.

We see that Λ1;1 = Λ1;2 = 1 and Λ2;1,2 = Λ2;2,1 = 1/4, Λ2;1,1 = Λ2;2,2 = 0. Thus

Xn
D−→ Y , where ExY = exp

{
x1 − 1 + x2 − 1 +

(x1 − 1)(x2 − 1)

2

}
.

Let U, V,W be independent Poisson random variables with parameters λ1, λ2, µ, respectively. The
generating function of (U +W,V +W ) is given by

ExU+W
1 xV+W

2 = ExU1 Ex
V
2 E(x1x2)

W

= exp {λ1(x1 − 1) + λ2(x2 − 1) + µ(x1x2 − 1)} ,

therefore the distribution of the limit Y is the distribution of the vector (U + W,V + W ) where
U, V,W are iid Poisson(1/2). The distribution is called bivariate Poisson distribution, with param-
eters λ1, λ2, and µ, see Johnson et al. [12] p.124, or Kocherlakota et al. [16].
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In general, when in the exponent in (2.11) none of the terms are divisible with x2i for any i
(e.g. at most 1 particle immigrates for any given type), then the components of the limit Y in
Theorem 2 can be represented as the sum of independent Poisson random variables. Assume that
the conditions of Theorem 2 hold, with k = 3 in (2.9), and for the limits in (2.10) Λ2;i,i = 0 for all
i. Then the limit random vector Y = (Y1, . . . , Yd) can be represented as

Yi = Ui +
∑

j 6=i

Ui,j, i = 1, . . . , d,

where (Ui)
d
i=1 and (Ui,j)1≤i<j≤d are independent Poisson random variables, with parameters ai and

ai,j respectively, with

ai = Λ1;i − 2
d∑

j=1

Λ2;i,j, i = 1, . . . , d, ai,j = 2Λ2;i,j , 1 ≤ i < j ≤ d,

and Ui,j := Uj,i for i > j. It is not difficult to show that (2.9) with k = 3 and (2.10) imply that the
coefficients above are non-negative. Simple computation shows that the generating function of Y
agrees with the one given in Theorem 2. Clearly, this construction extends for k ≥ 3. The appearing
limiting distributions are the so-called multivariate Poisson distributions; for further properties see
[12], p.139. Note that this multivariate Poisson distribution appears as a limit in the multivariate
version of the law of small numbers, see Krummenauer [17, Theorem 1]. Hence, Theorem 2 can
be interpreted as a general law of small numbers for inhomogeneous GWI processes. Also note
the difference between the multivariate Poisson distribution introduced here and the d-dimensional
Poisson distribution defined before (2.1).

In the next theorem the condition on the offspring distribution is relaxed, though (2.14) means
that the offspring distribution has to be very close to a Bernoulli distribution. Note that in this case
we assume that the limit matrix is the unit matrix I, in which case condition (B4) automatically
holds, with limit matrix A = I. We return to this question in Subsection 3.1. To state the theorem
we introduce the notation

m2(n) = max
1≤i,j,l≤d

∂2

∂xj∂xl
Gn,i(1). (2.13)

Theorem 3. Let (Xn)n∈Z+
be an inhomogeneous GWI process with Bernoulli immigration, such

that B = I and (B1)–(B5) hold. Moreover, assume (M) and

lim
n→∞

m2(n)‖(I −Bn)
−1‖ = 0. (2.14)

Then
Xn

D−→ Po(λ).
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In the single-type case general immigration distribution is investigated and convergence to a
compound Poisson distribution is proved in Theorem 4 in [11], and in Theorem 3 in [15]. In case
of more general offspring distribution existence of negative binomial limit is showed in Theorem 5
in [15]. However, in our multi-type scenario the computations with general immigration or (and)
with general offspring distribution become intractably complicated.

Finally, we note that if
∏∞

n=1 Bn exists and is not the 0 matrix, then the process Xn converges
when

∑∞
n=1mn is finite. This case can be handled similarly as in the single-type scenario in [15].

3 Special cases and examples

In what follows we investigate some special cases for the sequence of mean matrices, and we give
sufficient conditions for the existence of the distributional limit, which are easier to handle than
the ones given in Theorem 1.

3.1 The case B = I

When the critical limit matrix is the identity matrix then one of the most complicated assumption,
(B4) in Theorem 1, holds automatically. In this case Aj,n = B[j,n] −B[j−1,n], and so

∑n
j=1Aj,n is

a telescopic sum.

Proposition 1. Suppose that

(I1) limn→∞Bn = I;

(I2) there is an n0 such that ‖Bn‖ < 1 for all n ≥ n0;

(I3) limn→∞ ‖B[j,n]‖ = 0 for all j ∈ N;

(I4) there is an n0 such that sup
n≥n0

‖I−Bn‖
1−‖Bn‖ < ∞ or Aj,n ∈ R

d×d
+ for all n ≥ n0 and all j ∈ {1, . . . , n}.

Then the triangular matrix array (Aj,n)j,n satisfies the conditions of Lemma 1.

Note that condition (I2) guarantees the existence of the inverse (I −Bn)
−1 in (M) for n ≥ n0.

As we mentioned, the norm can be arbitrary operator norm. It is easy to construct examples,
such that some conditions hold in one operator norm, and fail in another. For instance, let

Bn =

[
1− 1

n
1
n

0 1− 2
n

]
.

Then in column sum norm (induced by the ℓ∞ norm on R
d) condition (I2) and (I4) hold, while in

the row sum norm (induced by the ℓ1 norm on R
d) even condition (I2) fails.

For jointly diagonalizable offspring mean matrices a better result is available, namely, condition
(I4) above can be omitted.
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Proposition 2. Suppose that conditions (I1)–(I3) of Proposition 1 hold, and the offspring mean
matrices are of the form

Bn = U diag(̺n,1, . . . , ̺n,d)U
⊤, n ∈ N,

where U ∈ R
d×d is an orthogonal matrix. Then the triangular matrix array (Aj,n)j,n satisfies the

conditions of Lemma 1.

As a consequence we obtain that the corresponding versions of Theorem 1 and 2 can be stated.
For example the following holds.

Theorem 4. Let (Xn)n∈Z+
be an inhomogeneous GWI process with Bernoulli offspring and immi-

gration distributions. Assume that either conditions of Proposition 1 or Proposition 2 are satisfied,
and for the immigration (M) holds. Then

Xn
D−→ Po(λ).

Remark 1. The statement of Proposition 2 for the special case Bn = ̺nI, n ∈ N, with ̺n ∈ [0, 1],
n ∈ N, also follows from Proposition 1; in this case Theorem 4 imply the appropriate results for
one-dimensional inhomogeneous INAR processes due to Györfi et al. [11].

Note that under the assumption of Proposition 2 conditions (I1)–(I3) of Proposition 1 are
equivalent to

(I1’) lim
n→∞

̺n,i = 1 for all i ∈ {1, . . . , d};

(I2’) max
1≤i≤d

̺n,i < 1 for all n ≥ n0;

(I3’)
∞∏
n=j

̺n,i = 0 for all j ∈ N and all i ∈ {1, . . . , d},

respectively. Remark that conditions (I3) and (I3’) are also equivalent to

(I3”)
∞∑
n=1

(1− ̺n,i) = +∞ for all i ∈ {1, . . . , d}.

The following example shows that Proposition 2 can really perform better for jointly diagonal-
izable offspring mean matrices than Proposition 1.

Example 2. Let d = 2, ̺n,1 = 1− 1/n, ̺n,2 = 1− 1/
√
n,

U =
1√
2

[
1 −1

1 1

]
, hence Bn =

[
1−

√
n+1
2n

√
n−1
2n√

n−1
2n 1−

√
n+1
2n

]
.

12



Then conditions (I1)–(I3) of Proposition 1 are trivially satisfied, but condition (I4) of Proposition
1 fails to hold. Indeed,

An,n = I −Bn =

[ √
n+1
2n −

√
n−1
2n

−
√
n−1
2n

√
n+1
2n

]
/∈ R

2×2
+ , ‖Bn‖ =

∥∥∥∥diag
(
1− 1

n
, 1− 1√

n

)∥∥∥∥ = 1− 1

n

and

‖I −Bn‖ =

∥∥∥∥U
(
I − diag

(
1− 1

n
, 1− 1√

n

))
U⊤
∥∥∥∥ =

∥∥∥∥I − diag

(
1− 1

n
, 1− 1√

n

)∥∥∥∥

=

∥∥∥∥diag
(
1

n
,

1√
n

)∥∥∥∥ =
1√
n

imply sup
n≥n0

‖I−Bn‖
1−‖Bn‖ = ∞. Here we used the simple fact that the norm of a normal element in a

C∗-algebra is equal to its spectral radius.

3.2 The case Bn = ̺nB

In this subsection we assume that Bn = ̺nB, for all n ∈ N, where B is a substochastic matrix,
and ̺n < 1, ̺n → 1 and

∑∞
n=1(1 − ̺n) = ∞. In this special case B[j,n] = ̺[j,n]B

n−j, with

̺[j,n] = ̺j+1 . . . ̺n. Put aj,n = ̺[j,n](1− ̺j), then Aj,n = B[j,n](B −Bj) = aj,nB
n−j+1.

To apply Theorem 1 or 2 in this case, the missing condition is again (B4). In the following
statement we give a rather general condition for the existence of the limit matrix. The key point
is a slight modification of the proof of Theorem 5.2.1 in Doob [5].

Proposition 3. Let (̺n)n∈N be a sequence, such that ̺n < 1, ̺n → 1,
∑∞

n=1(1 − ̺n) = ∞ and
(1− ̺n)/(1− ̺n+1) → 1. Then for any matrix B such that ‖B‖ ≤ 1 the limit

lim
n→∞

n∑

k=1

̺[k,n](1− ̺k)B
n−k = A

exists, and BA = AB = A = A2.

It will be clear from the proof that whenever B is stochastic the limit A is stochastic too.
Note that in the single-type case no additional assumption is needed on the sequence (̺n)n∈N,

see [11] or [15]. Indeed, the condition
∑∞

n=1(1 − ̺n) = ∞ implies that the numerical triangular
array (aj,n = ̺[j,n](1− ̺j)) satisfies the following conditions, which are the 1-dimensional analog of
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(2.6), (2.7) and (2.8):

lim
n→∞

max
1≤j≤n

aj,n = 0,

lim
n→∞

n∑

j=1

aj,n = 1,

sup
n≥1

n∑

j=1

|aj,n| < ∞.

(3.1)

The following example shows that when dealing with matrices the additional assumption is in
fact necessary.

Example 3. Let

̺n =

{
1, if n is odd,

1− 2
n , if n is even,

and

B =

[
0 1

1 0

]
.

Then ̺[k,n] = [k/2]/[n/2], where [·] stands for the (lower) integer part, and so

̺[k,n](1− ̺k) =

{
0, if k is odd,

1
[n/2] , if k is even.

Thus we obtain
2n∑

k=1

Ak,2n =

2n∑

k=1

B2n−k+1̺[k,2n](1− ̺k) →
[
0 1

1 0

]
,

while
2n+1∑

k=1

Ak,2n+1 =
2n+1∑

k=1

B2n−k+2̺[k,2n+1](1− ̺k) →
[
1 0

0 1

]
,

thus the limit does not exist.

Using Proposition 3 and Theorem 2 we obtain the following

Theorem 5. Assume that the mean matrix of the Bernoulli offspring distribution has the form

Bn = ̺nB,
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where B is an invertible substochastic matrix, and ̺n < 1, ̺n → 1,
∑∞

k=1(1 − ̺n) = ∞ and
(1− ̺n)/(1− ̺n+1) → 1. Moreover, assume that for some k ≥ 2

lim
n→∞

max|j|=k D
jHn(1)

1− ̺n
= 0, lim

n→∞
mn

1− ̺n
= λ,

and for each i = 2, . . . , k − 1, for each 1 ≤ ℓi+1, . . . , ℓ2i ≤ d the limit

lim
n→∞

n∑

j=1

(̺[j,n])
i

i!

d∑

ℓ1,...,ℓi=1

∂iHj(1)

∂xℓ1 . . . ∂xℓi

(
Bn−j

)
ℓ1,ℓi+1

. . .
(
Bn−j

)
ℓi,ℓ2i

=: Λi;ℓi+1,...,ℓ2i

exists. Then
Xn

D−→ Y ,

where

ExY = exp



(x− 1)(λA)⊤ +

k−1∑

i=2

d∑

ℓi+1,...,ℓ2i=1

Λi;ℓi+1,...,ℓ2i(xℓi+1
− 1) . . . (xℓ2i − 1)



 ,

where the matrix A is given by Proposition 3.

The next theorem gives more freedom on the mean matrix Bn, however stronger assumption
on the limit matrix B is needed. The inequality for the matrices are meant elementwise.

Theorem 6. Assume that for the mean matrix of the Bernoulli offspring distribution

ϑnB ≤ Bn ≤ ̺nB

holds, where ϑn ≤ ̺n < 1, ϑn → 1, ̺n → 1,
∑∞

n=1(1− ̺n) = ∞, and (̺n − ϑn)/(1 − ̺n) → 0, and
for the immigration

mn(B −Bn)
−1 → λ.

If either (a) Bn → A for some matrix A or (b) ‖B‖ ≤ 1 and (1− ̺n+1)/(1− ̺n) → 1 holds then

Xn
D−→ Po(λA),

where in case (b) the matrix A is given in Proposition 3.
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4 Proofs

Before the proofs, we gather some simple inequalities, which we use frequently without further
reference. If ak, bk ∈ [−1, 1], k = 1, . . . , n, then

∣∣∣∣∣

n∏

k=1

ak −
n∏

k=1

bk

∣∣∣∣∣ ≤
n∑

k=1

|ak − bk|.

For x ∈ (−1, 1) we have |ex − 1− x| ≤ x2.
For a vector-vector function H : Rd → R

d the symbol ∇H denotes




∂
∂x1

H1 . . . ∂
∂xd

H1

...
...

∂
∂x1

Hd . . . ∂
∂xd

Hd


 .

By the multivariate mean-value theorem, and the monotonicity of the derivatives, for a vector of
generating functions G = (G1, . . . ,Gd), for x ∈ [0, 1]d

1−G(x) ≤ (1− x)∇G(1)⊤. (4.1)

4.1 Proofs for Section 2

Since ‖B[j,n]‖ → 0 for any j, we may and do assume that n0 = 1 in conditions (B2), (I2) and (I4).

Proof of Lemma 2. Condition (2.6) simply follows from (B1), (B2) and (B3). Conditions (2.7)
and (2.8) are the same as (B4), and (B5), respectively. �

Remark 2. It is worth to note that after rearranging the sum in (B4) and using (B3) we obtain
that (B4) is equivalent to the convergence

lim
n→∞

n∑

j=1

B[j,n] = B̃,

where the relation between A and B̃ is given by (B − I)B̃ +B = A.

Recall the definitions (2.2) and (2.3).

Lemma 3. Assume conditions (B1)–(B5), (M). Then for any x ∈ [0, 1]d we have

lim
n→∞

|Fn(x)− F̃n(x)| = 0.
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Proof. Since Bn = ∇Gn(1) we have

∇Gj+1,n(1) = ∇Gj+1(1)∇Gj+2(1) . . .∇Gn(1) = B[j,n].

By the scalar version of (4.1) we have

|Fn(x)− F̃n(x)| ≤
n∑

j=1

∣∣∣eHj(Gj+1,n(x))−1 − 1− (Hj(Gj+1,n(x))− 1)
∣∣∣

≤
n∑

j=1

(
Hj(Gj+1,n(x))− 1

)2

≤
n∑

j=1

(
(1−G[j+1,n](x))m

⊤
j

)2

≤
n∑

j=1

(
(1− x)B⊤

[j,n]m
⊤
j

)2
.

Since ∣∣∣(1− x)B⊤
[j,n]m

⊤
j

∣∣∣ ≤ ‖1‖ · ‖Aj,n‖max
k≥1

‖mk(B −Bk)
−1‖,

by (2.6), (2.8) and (M) the sum above converges to 0, as stated. �

Proof of Theorem 1. Since the generating function of Po(λ) = Po(λ1) × . . . × Po(λd) has the
form

eλ1(x1−1) . . . eλd(xd−1) = e(x−1)λ⊤

, x ∈ [0, 1]d,

by Lemma 3 we only have to show that

n∑

j=1

mjB[j,n] → λA,

for all x ∈ [0, 1]d. This holds according to Lemma 1 and our assumption. �

Since DjHn(1) = mn,j, the multivariate Taylor expansion gives the following.

Lemma 4. If E(‖εn‖k) < ∞ for some k ∈ N then for all x ∈ [0, 1]d

Hn(x) =
∑

ℓ∈Zd
+
, |ℓ|<k

mn,ℓ

ℓ!
(x− 1)ℓ +Rn,k(x)

= 1 +

k−1∑

i=1

1

i!

d∑

ℓ1,...,ℓi=1

∂iHn(1)

∂xℓ1 . . . ∂xℓi
(xℓ1 − 1) . . . (xℓi − 1) +Rn,k(x),
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where ℓ! := ℓ1! . . . ℓd! for ℓ = (ℓ1, . . . , ℓd) ∈ Z
d
+, and

|Rn,k(x)| ≤
∑

ℓ∈Zd
+
, |ℓ|=k

mn,ℓ

ℓ!
(1− x)ℓ ≤ dk‖1− x‖k max

|ℓ|=k
DℓHn(1).

Proof of Theorem 2. Since the offsprings are Bernoulli distributed

Gj+1,n(x) = 1+ (x− 1)B⊤
[j,n],

therefore by Lemma 3 it is enough to show that the convergence

n∑

j=1

[
Hj(Gj+1,n(x))− 1

]
→

k−1∑

i=1

d∑

ℓi+1,...,ℓ2i=1

Λi;ℓi+1,...,ℓ2i(xℓi+1
− 1) . . . (xℓ2i − 1)

holds. Using Lemma 4 we may write

n∑

j=1

[
Hj(Gj+1,n(x))− 1

]
=

n∑

j=1

k−1∑

i=1

1

i!

d∑

ℓ1,...,ℓi=1

∂iHj(1)

∂xℓ1 . . . ∂xℓi

(
(x− 1)B⊤

[j,n]

)
ℓ1
. . .
(
(x− 1)B⊤

[j,n]

)
ℓi

+
n∑

j=1

Rj,k

(
1+ (x− 1)B⊤

[j,n]

)
.

Since, for m ∈ {1, . . . , i}
(
(x− 1)B⊤

[j,n]

)

ℓm
=

d∑

ℓi+m=1

(
B[j,n]

)
ℓm,ℓi+m

(xℓi+m
− 1),

by (2.10) the first term converges for any i ∈ {1, . . . , k − 1},

lim
n→∞

1

i!

n∑

j=1

d∑

ℓ1,...,ℓi=1

∂iHj(1)

∂xℓ1 . . . ∂xℓi
((x− 1)B⊤

[j,n])ℓ1 . . . ((x− 1)B⊤
[j,n])ℓi

=

d∑

ℓi+1,...,ℓ2i=1

Λi;ℓi+1,...,ℓ2i(xℓi+1
− 1) . . . (xℓ2i − 1).

Using Lemma 4 for the second term we have

n∑

j=1

|Rj,k(1+ (x− 1)B⊤
[j,n])| ≤

n∑

j=1

dk max
|ℓ|=k

DℓHj(1)‖B[j,n]‖k

≤ dk
n∑

j=1

max
|ℓ|=k

DℓHj(1)‖(B −Bj)
−1‖ · ‖Aj,n‖,

which goes to 0, due to (2.9). �
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4.2 Proofs for Section 3

We start with the case when the limit matrix is the identity.

Lemma 5. For any d ≥ 1 there exists positive constant Cd such that

n∑

j=1

‖Aj‖ ≤ Cd

∥∥∥∥∥∥

n∑

j=1

Aj

∥∥∥∥∥∥

for all n ∈ N and for all matrices Aj ∈ R
d×d
+ , j ∈ {1, . . . , n}.

Proof. The norms of a finite dimensional vector space are equivalent, hence there are positive
constants cd, c̃d such that

cd

d∑

i=1

d∑

k=1

|ai,k| ≤ ‖A‖ ≤ c̃d

d∑

i=1

d∑

k=1

|ai,k|

for all matrices A = (ai,j)i,j∈{1,...,d} ∈ R
d×d. Put (Aj)i,k = aj;i,k. Consequently,

n∑

j=1

‖Aj‖ ≤ c̃d

n∑

j=1

d∑

i=1

d∑

k=1

|aj;i,k| = c̃d

n∑

j=1

d∑

i=1

d∑

k=1

aj;i,k

= c̃d

d∑

i=1

d∑

k=1

n∑

j=1

aj;i,k = c̃d

d∑

i=1

d∑

k=1

∣∣∣∣∣∣

n∑

j=1

aj;i,k

∣∣∣∣∣∣
≤ c̃d

cd

∥∥∥∥∥∥

n∑

j=1

Aj

∥∥∥∥∥∥
.

�

Proof of Proposition 1. Condition (2.6) follows from (I1), (I2) and (I3), as in the general case.
As we already mentioned (2.7) is automatic, since

n∑

j=1

Aj,n =

n∑

j=1

(
B[j,n] −B[j−1,n]

)
= I −B[0,n] → I as n → ∞

by condition (I3).
If

C := sup
j≥1

‖I −Bj‖
1− ‖Bj‖

< ∞

then for all n ≥ j ≥ 1,

‖Aj,n‖ ≤ ‖I −Bj‖ · ‖B[j,n]‖ ≤ C(1− ‖Bj‖) ‖B [j,n]‖.
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Since B[n,n] = I we have ‖B[n,n]‖ = 1, and

‖B[j,n]‖ ≤
n∏

k=j+1

‖Bk‖

for all n > j, thus

n∑

j=1

‖Aj,n‖ ≤ C(1− ‖Bn‖) + C
n−1∑

j=1

(1− ‖Bj‖)
n∏

k=j+1

‖Bk‖

= C

(
1−

n∏

k=1

‖Bk‖
)

≤ C,

and we deduce (2.8).
Otherwise, if Aj,n ∈ R

d×d
+ for all n ≥ 1 and all j ∈ {1, . . . , n} then by Lemma 5

n∑

j=1

‖Aj,n‖ ≤ Cd

∥∥∥∥∥

n∑

j=1

Aj,n

∥∥∥∥∥,

and (2.7) implies (2.8). �

Proof of Proposition 2. We have to check only (2.8), since (2.6) and (2.7) follow from conditions
(I1)–(I3). In this case

B[j,n] = Bj+1 . . .Bn = U diag
(
̺[j,n],1, . . . , ̺[j,n],d

)
U⊤,

where ̺[j,n],i = ̺j+1,i . . . ̺n,i. Using again that the norm of a normal element in a C∗-algebra equal
to its spectral radius, we have

‖Aj,n‖ = ‖U(diag(̺[j,n],1, . . . , ̺[j,n],d)− diag(̺[j−1,n],1, . . . , ̺[j−1,n],d))U
⊤‖

= ‖diag((1 − ̺j,1)̺[j,n],1, . . . , (1− ̺j,d)̺[j,n],d)‖
= max

1≤i≤d
(1− ̺j,i)̺[j,n],i.

Thus (2.8) follows from
∑n

j=1(1− ̺j,i)̺[j,n],i = 1− ̺1,i . . . ̺n,i ≤ 1, i ∈ {1, . . . , d}. �

Next we turn to the proofs when Bn = ̺nB. A slight modification of the proof of Theorem
5.2.1 in Doob [5] gives

Lemma 6. Assume that (aj,n) satisfies (3.1),
∑n−1

j=1 |aj+1,n−aj,n| → 0, and let B be a matrix such
that ‖B‖ ≤ 1. Then there exists a matrix A, such that

lim
n→∞

n∑

j=1

aj,nB
j = A.

Moreover AB = BA = A = A2.
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Proof. Since for every j the matrix ‖Bj‖ ≤ 1, the sequence
∑n

j=1 aj,nB
j is bounded, so there is

a subsequence nk and a limit A such that

nk∑

j=1

aj,nk
Bj → A as k → ∞.

Multiplying by B we obtain

nk∑

j=1

aj,nk
Bj+1 → BA = AB as k → ∞.

Writing n instead of nk, the difference between the two limits is

n∑

j=1

aj,nB
j+1 −

n∑

j=1

aj,nB
j = an,nB

n+1 − a1,nB +

n∑

j=2

(aj−1,n − aj,n)B
j.

Using that Bj is bounded, a1,n → 0, an,n → 0 and that
∑n−1

j=1 |aj+1,n − aj,n| → 0 we obtain that
AB = BA = A. And so 


n∑

j=1

aj,nB
j


A =

n∑

j=1

aj,nA

gives that for any other subsequential limit C, AC = CA = A. Since the roles are interchangeable,
we obtain that there is only one limit matrix, which is idempotent. �

Using the lemma above it is easy to prove Proposition 3.

Proof of Proposition 3. We only have to check that for aj,n = ̺[j,n](1 − ̺j) the condition∑n−1
j=1 |aj+1,n − aj,n| → 0 satisfied. We have

aj+1,n − aj,n = ̺[j+1,n] [(1− ̺j+1)− ̺j+1(1− ̺j)] ,

thus
n−1∑

j=1

|aj+1,n − aj,n| =
n−1∑

j=1

|(1− ̺j+1)− ̺j+1(1− ̺j)|
1− ̺j+1

̺[j+1,n](1− ̺j+1),

which goes to 0, since

|(1− ̺n+1)− ̺n+1(1− ̺n)|
1− ̺n+1

=

∣∣∣∣1− ̺n+1
1− ̺n
1− ̺n+1

∣∣∣∣→ 0.

�

Proof of Theorem 6. To prove the theorem we only have to show that condition (2.7) holds for
Aj,n = (B −Bj)B[j,n].
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By the monotonicity assumptions

B[j,n] = Bj+1 . . .Bn ≤ ̺j+1B . . . ̺nB = ̺[j,n]B
n−j

and similarly
B[j,n] ≥ ϑ[j,n]B

n−j.

Keeping in mind that each element of B −Bj is non-negative, we have

(1− ̺j)ϑ[j,n]B
n−j+1 ≤ Aj,n ≤ (1− ϑj)̺[j,n]B

n−j+1.

After summation
n∑

j=1

Bn−j+1ϑ[j,n](1− ̺j) ≤
n∑

j=1

Aj,n ≤
n∑

j=1

Bn−j+1̺[j,n](1− ϑj). (4.2)

First we show that the sequences (ϑ[j,n](1 − ̺j)) and (̺[j,n](1 − ϑj)) satisfy conditions (3.1).
According to the assumptions

n∑

j=1

ϑ[j,n](1− ϑj) → 1 and
n∑

j=1

̺[j,n](1− ̺j) → 1. (4.3)

Since ̺n ≥ ϑn we have

0 ≤
n∑

j=1

ϑ[j,n](̺j − ϑj) =

n∑

j=1

̺j − ϑj

1− ϑj
(1− ϑj)ϑ[j,n] → 0, (4.4)

as
̺j − ϑj

1− ϑj
≤ ̺j − ϑj

1− ̺j
→ 0.

Similarly

0 ≤
n∑

j=1

̺[j,n](̺j − ϑj) =
n∑

j=1

̺j − ϑj

1− ̺j
(1− ̺j)̺[j,n] → 0. (4.5)

Noting that ϑ[j,n](1− ̺j) = ϑ[j,n][(1−ϑj)− (̺j −ϑj)] and ̺[j,n](1−ϑj) = ̺[j,n][(1− ̺j)+ (̺j −ϑj)],
(4.3) combined with (4.4) and with (4.5) shows that conditions (3.1) indeed hold.

When the convergence Bn → A holds, both the upper and the lower estimation in (4.2) tends
to A, and the statement follows.

In case (b) the extra condition assures the convergence of the bounds in (4.2) by Lemma 6, and
the equality of the limits readily follows. �

Proof of Theorem 3. By Lemma 3 we have to check that

n∑

j=1

(Gj+1,n(x)− 1)m⊤
j → (x− 1)λ⊤.
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By (4.1) we have
1−Gj+1,n(x) ≤ (1− x)∇Gj+1,n(1)

⊤ = (1− x)B⊤
[j,n], (4.6)

therefore
n∑

j=1

(Gj+1,n(x)− 1)m⊤
j ≥

n∑

j=1

(x− 1)B⊤
[j,n]m

⊤
j → (x− 1)λ⊤,

where the last convergence holds under the assumptions of the theorem.
According to (4.6) Gj+1,n(x) ∈ [1 − 1B⊤

[j,n],1], for all x ∈ [0, 1]d. Again by the mean value
theorem and by the monotonicity of the derivatives

1−Gj(y) ≥ (1− y)∇Gj(1− 1B⊤
[j,n])

⊤ =: (1− y)Θ⊤
j,n,

for y ∈ [1− 1B⊤
[j,n],1], in particular

1−Gj(Gj+1,n(x)) ≥ (1−Gj+1,n(x))Θ
⊤
j,n,

and so induction gives

1−Gj+1,n(x) ≥ (1− x)Θ⊤
n,nΘ

⊤
n−1,n . . .Θ

⊤
j+1,n =: (1− x)Θ⊤

[j,n],

so
n∑

j=1

(Gj+1,n(x)− 1)m⊤
j ≤

n∑

j=1

(x− 1)Θ⊤
[j,n]m

⊤
j .

We have to check under what conditions

n∑

j=1

mjΘ[j,n] → λ.

Clearly Θj,n ↑ Bj as n → ∞. Introduce Cj,n = (I −Bj)Θ[j,n]. Since by definition the elements
of Cj,n are less then or equal to the elements of Aj,n, so the only assumption we have to check in
order to guarantee the convergence above is

n∑

j=1

Cj,n → I.

We have

n∑

j=1

Cj,n = (I −B1)Θ[1,n] + (I −B2)Θ[2,n] + . . .+ (I −Bn−1)Θ[n−1,n] + I −Bn

= I −
[
(Bn −Θn,n) + (Bn−1 −Θn−1,n)Θ[n−1,n] + . . . + (B2 −Θ2,n)Θ[2,n] +B1Θ[1,n]

]
.
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We show that the sum in the brackets (note that every term is nonnegative) converge to the 0
matrix. Let us estimate the (i, k)-th element of Bj − Θj,n. The mean value theorem and the
monotonicity of the derivatives imply

(Bj −Θj,n)i,k =
∂

∂xk
Gj,i(1)−

∂

∂xk
Gj,i(1− 1B⊤

[j,n])

≤ (1B⊤
[j,n])

(
∂2

∂xk∂x1
Gj,i(1), . . . ,

∂2

∂xk∂xd
Gj,i(1)

)⊤
,

thus
(Bj −Θj,n)i,k ≤ d ‖1‖m2(j).

So finally we obtain

n∑

j=1

(Bj −Θj,n)Θ[j,n] ≤ d ‖1‖
n∑

j=1

m2(j)




1 . . . 1
...

. . .
...

1 . . . 1


B[j,n],

which goes to the 0 matrix, whenever ‖(I −Bn)
−1‖m2(n) → 0. �
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