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The results described in the dissertation and this thesis have been
published in the papers [12, 13, 14, 15] and accepted for publication
in the papers [16, Mathematica Bohemica journal] and [18, Periodica
Mathematica Hungarica journal]. Indeed, the main theme of our re-
sults is Diophantine equations involving linear recurrences sequences.
We also note that we have a different result in [17] (that is accepted
for publication in the journal ”Rad HAZU, Matematičke znanosti”) in
which we use the frequency analysis technique to break a public key
cryptosystem called ITRU, which is a variant of NTRU (N th Degree
Truncated Polynomial Ring) cryptosystem. However, to keep the pre-
sentation coherent, this result is not included in the dissertation and
this thesis.

Introduction

This thesis has a detailed summary about the main areas that are
touched by the three chapters of the dissertation. After a historical
survey related to Diophantine equations, in the first chapter we mainly
mention some types of Diophantine equations with their related re-
sults that appear throughout the dissertation. Then we recall some im-
portant concepts and notations related to linear recurrence sequences
which we use with our main results. Furthermore, we recite some
recent results related to the solutions of some Diophantine equations
connected to linear recurrence sequences. Our main results are mainly
described in the second and third chapters. In order to present our
results, we start by recalling some standard notations, definitions and
properties concerning linear recurrence sequences.

A sequence {Gn} is called a linear recurrence relation of order k
if the recurrence

Gn+k = a1Gn+k−1 + a2Gn+k−2 + . . . + akGn + f(n)
holds for all n ≥ 0 with the coefficients a1, a2, . . . , (ak ≠ 0) ∈ C and
f(n) a function depending on n only. If f(n) = 0 such a recurrence re-
lation is called homogeneous, otherwise it is called nonhomogeneous.

For the homogeneous recurrence relation, the polynomial

F (X) =Xk − a1Xk−1 − . . . − ak =
s

∏
i=1

(X − αi)ri ∈ C[X],
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whereα1, α2, . . . , αs and r1, r2, ..., rs are respectively the distinct roots
of F (X) and their corresponding multiplicities, is called the charac-
teristic polynomial of {Gn}. Thus, if F (X) ∈ Z[X] has k distinct
roots, then there exist constants c1, c2, . . . , ck ∈ Q(α1, α2, . . . , αk)
such that

Gn =
k

∑
i=1
ciα

n
i

holds for all the nonnegative values of n. If k = 3, then the sequence
is called a ternary linear recurrence sequence. Most of the well known
ternary linear recurrence sequences are the Tribonacci sequence and
Berstel’s sequence, which are respectively defined by

T0 = T1 = 0, T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn,
B0 = B1 = 0,B2 = 1, Bn+3 = 2Bn+2 − 4Bn+1 + 4Bn,

for n ≥ 0. On the other hand, if k = 2, then {Gn} represents a bi-
nary recurrence sequence. In the following we recall some types of
binary linear recurrence sequences with their properties. Let P and
Q be nonzero relatively prime integers and Un = Un(P,Q) and Vn =
Vn(P,Q) be defined by the following recurrence relations with their
initials:

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 for n ≥ 2,

V0 = 2, V1 = P, Vn = PVn−1 −QVn−2 for n ≥ 2.

The characteristic polynomial of the recurrences is given by

X2 − PX +Q,
which has the roots

α = P +
√
D

2
and β = P −

√
D

2
,

with α ≠ β,α + β = P,α ⋅ β = Q and (α − β)2 =D, where D is called
the discriminant such that D = P 2 − 4Q. The sequences {Un} and
{Vn} are called the (first and second kind) Lucas sequences with the
parameters (P,Q), respectively, and the terms of these sequences are
the generalized Lucas numbers. The terms of Lucas sequences of the
first and second kind satisfy the identity

V 2
n =DU2

n + 4Qn. (1)
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Moreover, the Lucas sequences of the first and second kind can be re-
spectively written by the following formulas that are known as Binet’s
formulas:

Un =
αn − βn
α − β and Vn = αn + βn for n ≥ 0. (2)

If the ratio ζ = α
β

is a root of unity, then the sequences {Un} and {Vn}
are said to be degenerate, and non-degenerate otherwise. Indeed, we
mainly deal with non-degenerate linear recurrence sequences. Further-
more, the Lucas sequences for some values of P and Q have specific
names such as the sequences of Fibonacci numbers, Pell numbers, Lu-
cas numbers, Jacobsthal numbers and balancing numbers, which are
given by

F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2,

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2 for n ≥ 2,

L0 = 2, L1 = 1, Ln = Ln−1 +Ln−2 for n ≥ 2,

J0 = 0, J1 = 1, Jn = Jn−1 + 2Jn−2 for n ≥ 2,

B0 = 0,B1 = 1, Bn = 6Bn−1 −Bn−2 for n ≥ 2,

respectively.

Diophantine equations related to reciprocals and repdigits with
linear recurrence sequences

The aim of Chapter 2 is to study the solutions of some Diophan-
tine equations involving reciprocals and repdigits with certain linear
recurrence sequences, respectively. We first extend the result of Tengely
[37] in which he determined all the integer solutions (n,x) with x ≥ 2
of the equation

1

Un(P,Q) =
∞
∑
k=1

Uk−1(P,Q)
xk

.

In other words, we firstly determine the integral solutions (n,x)
of the equation

1

Un(P2,Q2)
=

∞
∑
k=1

Uk−1(P1,Q1)
xk

, (3)
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for certain given pairs (P1,Q1) ≠ (P2,Q2). Here, we consider se-
quences with 1 ≤ P ≤ 3 and Q = ±1. We also obtain the integral
solutions (x, y) of the equation

∞
∑
k=1

Uk−1(P,Q)
xk

=
∞
∑
k=1

Rk−1
yk

, (4)

where the parameters of the Lucas sequence of the first kind repre-
sented by 1 ≤ P ≤ 3 and Q = ±1, and the sequence {Rn} is a ternary
linear recurrence sequence represented by the Tribonacci sequence
{Tn} or Berstel’s sequence {Bn}. Furthermore, we provide general
results related to the integral solutions (x, y) of the equations

∞
∑
k=1

Uk−1(P1,Q1)
xk

=
∞
∑
k=1

Uk−1(P2,Q2)
yk

, (5)

with arbitrary pairs (P1,Q1) ≠ (P2,Q2), and

∞
∑
k=1

Tk−1(a2, a1, a0)
xk

=
∞
∑
k=1

Tk−1(b2, b1, b0)
yk

, (6)

where the triples (a2, a1, a0) ≠ (b2, b1, b0) and Tn denotes the general
term of the generalized Tribonacci sequence that is given by

T0(p, q, r) = T1(p, q, r) = 0, T2(p, q, r) = 1 and

Tn(p, q, r) = pTn−1(p, q, r) + qTn−2(p, q, r) + rTn−3(p, q, r),
for n ≥ 3. Then we apply these results to completely resolve some con-
crete equations. Here, our main results also extend many former re-
sults obtained by e.g. Stancliff [35], Winans [39], Hudson and Winans
[19], Long [24] and De Weger [8]. Before presenting our main results,
we first define the following. Let the set S be defined as follows

S = {u1(n) = Un(1,−1), u2(n) = Un(2,−1), u3(n) =
Un(3,−1), u4(n) = Un(3,1)}.

Moreover, in general we assume that the positive integers x, y in the
investigated equations (3)–(6) satisfy the conditions of the following
lemmas due to the results of Köhler [23]:
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LEMMA. Let A,B, a0, a1 be arbitrary complex numbers. Define
the sequence {an} by the recursion an+1 = Aan + Ban−1. Then the
formula

∞
∑
k=1

ak−1
xk

= a0x −Aa0 + a1
x2 −Ax −B

holds for all complex x such that ∣x∣ is larger than the absolute values
of the zeros of x2 −Ax −B.

LEMMA. Let arbitrary complex numbers A0,A1, . . . ,Am,a0, a1,
. . . , am be given. Define the sequence {an} by the recursion

an+1 = A0an +A1an−1 +⋯ +Aman−m.
Then for all complex z such that ∣z∣ is larger than the absolute values
of all zeros of q(z) = zm+1 −A0z

m −A1z
m−1 −⋯−Am, the formula

∞
∑
k=1

ak−1
zk

= p(z)
q(z)

holds with p(z) = a0zm+b1zm−1+⋯+bm, where bk = ak−∑k−1i=0 Aiak−1−i
for 1 ≤ k ≤m.

Then we prove the following theorems, that appear in the papers
[13, 14].

THEOREM. The equation

1

uj(n)
=

∞
∑
k=1

ui(k − 1)
xk

,

has the following solutions with 1 ≤ i, j ≤ 4, i ≠ j
(i, j, n, x) ∈ {(1,2,1,2), (1,2,3,3), (1,2,5,6), (1,3,1,2), (1,3,5,11),
(1,3,7,35), (1,4,1,2), (1,4,5,8), (2,1,3,3), (2,1,9,7), (3,1,4,4),
(3,1,14,21), (3,4,2,4), (3,4,7,21), (4,1,{1,2},3), (4,1,5,4), (4,
1,10,9), (4,1,11,11), (4,2,1,3), (4,2,3,4), (4,2,5,7), (4,3,1,3),
(4,3,5,12), (4,3,7,36)}.

THEOREM. Let t ∈ N such that t ≥ 2. The complete list of solu-
tions of the equation

∞
∑
k=1

uj(k − 1)
xk

=
∞
∑
k=1

Rk−1
yk

,
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with un ∈ S,Rn ∈ {Bn, Tn} and positive integers x, y is as follows

un Rn (x, y) un Rn (x, y)
u1 Bn {(25,9)} u1 Tn {(2,2)}
u2 Bn {} u2 Tn {(t(t2 − 2) + 1, t2 − 1)}
u3 Bn {(6,3), (18,7)} u3 Tn {}
u4 Bn {(26,9)} u4 Tn {(3,2)}

THEOREM. Let P1,Q1, P2,Q2 be non-zero integers such that
(P1,Q1) ≠ (P2,Q2). If (P 2

2 − P 2
1 ) + 4(Q1 − Q2) = d1d2 ≠ 0 and

d1 − d2 ≡ −2P1 (mod 4), d1 + d2 ≡ −2P2 (mod 4), then the positive
integral solutions x, y of

∞
∑
k=1

Uk−1(P1,Q1)
xk

=
∞
∑
k=1

Uk−1(P2,Q2)
yk

satisfy

x =d1 − d2 + 2P1

4
>m(x2 − P1x +Q1),

y =d1 + d2 + 2P2

4
>m(x2 − P2x +Q2).

If (P 2
2 −P 2

1 )+4(Q1−Q2) = 0 and P1 ≡ P2 (mod 2), then the positive
integral solutions x, y of

∞
∑
k=1

Uk−1(P1,Q1)
xk

=
∞
∑
k=1

Uk−1(P2,Q2)
yk

satisfy

x >m(x2 − P1x +Q1), y = ±x + P2 ∓ P1

2
>m(x2 − P2x +Q2),

where Q2 = Q1 + P 2
2 −P 2

1

4
, and m(f) = max{∣x∣ ∶ f(x) = 0, where

f(x) is a given polynomial over integers}.

THEOREM. If (x, y) is an integral solution of the equation
∞
∑
k=1

Tk−1(a2, a1, a0)
xk

=
∞
∑
k=1

Tk−1(b2, b1, b0)
yk

,
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for given (a2, a1, a0) ≠ (b2, b1, b0), then either

9 (a22 − b22 + 3a1 − 3 b1)y + 2a32 − 3a22b2+
b32 + 9a1a2 − 9a1b2 + 27a0 − 27 b0 = 0

or in case of ∣y∣ > B we have

∣3x − 3y − a2 + b2∣ < C,

where B,C are constants depending only on ai, bi, i = 0,1,2.

As applications to the latter two theorems, we provide the follow-
ing examples, that are described in [14].

EXAMPLE. Let (P1,Q1) = (1,−1) and (P2,Q2) = (18,1), then
the solutions are as follows

∞
∑
k=1

Uk−1(1,−1)
2k

=
∞
∑
k=1

Uk−1(18,1)
18k

= 1,

∞
∑
k=1

Uk−1(1,−1)
7k

=
∞
∑
k=1

Uk−1(18,1)
20k

= 1

41
,

∞
∑
k=1

Uk−1(1,−1)
10k

=
∞
∑
k=1

Uk−1(18,1)
22k

= 1

89
,

∞
∑
k=1

Uk−1(1,−1)
15k

=
∞
∑
k=1

Uk−1(18,1)
26k

= 1

209
,

∞
∑
k=1

Uk−1(1,−1)
26k

=
∞
∑
k=1

Uk−1(18,1)
36k

= 1

649
,

∞
∑
k=1

Uk−1(1,−1)
79k

=
∞
∑
k=1

Uk−1(18,1)
88k

= 1

6161
.

EXAMPLE. In case of (P1,Q1) = (1,−1) and (P2,Q2) = (2t +
1, t2 + t − 1) for some t ∈ Z, we get that

∞
∑
k=1

Uk−1(1,−1)
xk

=
∞
∑
k=1

Uk−1(2t + 1, t2 + t − 1)
(x + t)k = 1

x2 − x − 1

for x ≥ 2.
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EXAMPLE. Consider the positive integral solutions x, y of the
equation

∞
∑
k=1

Tk−1(−1,7,3)
xk

=
∞
∑
k=1

Tk−1(5,−5,−3)
yk

.

We obtain that the only integral solutions are given by

(x, y) ∈ {(−1,1), (−3,3), (−2,4)}.
Thus, we do not get positive integral solutions.

EXAMPLE. Let us consider the equation
∞
∑
k=1

Tk−1(−4,−5,−6)
xk

=
∞
∑
k=1

Tk−1(1,8,18)
yk

.

Here, we get that the only positive solution is given by (x, y) = (9,11),
that is we have

∞
∑
k=1

Tk−1(−4,−5,−6)
9k

=
∞
∑
k=1

Tk−1(1,8,18)
11k

= 1

1104
.

EXAMPLE. Finally, we provide an example in which we obtain
infinitely many solutions. Let (a2, a1, a0) = (1,6,5) and (b2, b1, b0) =
(4,1,1). Indeed, the integral solutions are given by (x, y) = (x,x+1)
for all x ≥ 4, that is we have

∞
∑
k=1

Tk−1(1,6,5)
xk

=
∞
∑
k=1

Tk−1(4,1,1)
(x + 1)k = 1

x3 − x2 − 6x − 5
, x ≥ 4.

In case of repdigits, we firstly use a direct approach to obtain a
general finiteness result for the Diophantine equation

Gn = B ⋅ (g
lm − 1

gl − 1
), (7)

where n,m, g, l and B are positive integers such that m > 1, g > 1, l
is even, 1 ≤ B ≤ gl − 1, and Gn denotes the general term of an integer
linear recurrence sequence represented by Un(P,Q) and Vn(P,Q),
with Q ∈ {−1,1}. Indeed, the first finiteness result for equation (7),
in case of (Gn)n≥1 is an integer linear recurrence sequence and l is a
positive integer, was given by Marques and Togbé [29] in which they
used heavy computations followed by a result due to Matveev [30] on
the lower bound on linear forms of logarithms of algebraic numbers to
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obtain bounds for n and m. As these bounds could be very high, they
used a result due to Dujella and Pethő [9] on the Baker-Davenport
reduction to reduce these bounds. Then they applied this result to
determine all the solutions of the Diophantine equations

Fn = B ⋅ (10lm − 1

10l − 1
) and Ln = B ⋅ (10lm − 1

10l − 1
) (8)

in positive integers m,n and l, with m > 1,1 ≤ l ≤ 10 and 1 ≤ B ≤
10l − 1, which are (m,n, l) = (2,10,1) and (m,n, l) = (2,5,1) in
the Fibonacci and Lucas cases, respectively. It is clear that these equa-
tions have solutions only with l = 1. Here, one may ask the following
natural questions:

● Is there another approach that is easier to apply to such con-
crete equations?

● Do the equations in (8) have solutions in any base g other
than 10, say g ≥ 2, in the case of l = 1?

In fact, here we answer the above questions positively. More precisely,
our approach of obtaining a general finiteness result for equation (7) is
mainly based on producing biquadratic elliptic curves of the following
form (from combining equation (7) with identity (1)),

y2 = ax4 + bx2 + c,
with integer coefficients a, b, c and discriminant

∆ = 16ac(b2 − 4ac)2 ≠ 0.

The finiteness of the number of the integral points on the latter curve
is guaranteed by Baker’s result [4] presented by the following theorem
and its best improvement concerning the solutions of elliptic equations
over Q, that is due to Hajdu and Herendi [11].

THEOREM. If the polynomial on the right of the Diophantine
equation

y2 = a0xn + a1xn−1 + . . . + an,
where n ≥ 3 and a0 ≠ 0, a1, . . . , an ∈ Z, possesses at least three simple
zeros, then all of its solutions in integers x, y satisfy

max(∣x∣ , ∣y∣) < exp exp exp{(n10nH)n
2

},
where H = max0≤i≤n ∣ai∣.
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Also, the integral points of such curves can be determined using
an algorithm implemented in Magma [6] as SIntegralLjunggren
Points() (based on results obtained by Tzanakis [38]) or an al-
gorithm described by Alekseyev and Tengely [2] in which they gave
an algorithmic reduction of the search for integral points on such a
curve by solving a finite number of Thue equations. As applications
of our result, we apply our method on the sequences of Fibonacci num-
bers and Pell numbers that satisfy equation (7). Furthermore, with the
first application we also generalize the result of Marques and Togbé in
[29] in the case of Fibonacci numbers by determining all the solutions
(n,m, g,B, l) of the equation

Fn = B ⋅ (g
lm − 1

gl − 1
)

in case of 2 ≤ g ≤ 9 and l = 1. Note that the case of Lucas numbers
can be generalized similarly, therefore we omit the details of this case.
More precisely, we use our approach in case where we have l is even,
otherwise we follow the technique of Marques and Togbé in [29] of
using the result of Matveev on linear forms in three logarithms and
the result of Dujella and Pethő on the method of Baker-Davenport re-
duction. In fact, our main results here also extend other related results
obtained by e.g. Luca [25] and Faye and Luca [10]. Before presenting
our results, it is important to mention the following remark:

REMARK. Since a finiteness result for equation (7) in case of
Gn = Un or Gn = Vn can be obtained in a similar way, we only
present and prove this result in detail in the case of Gn = Un and omit
the proof of the remaining case.

Here, we prove the following theorems, that are obtained in [16].

THEOREM. Let P and Q be nonzero relatively prime integers
with Q ∈ {−1,1} and t be a positive integer. If Gn = Un(P,Q) is non-
degenerate and l = 2t, then the Diophantine equation (7) has finitely
many solutions of the form (n,m, g,B, l), which can be effectively
determined.

THEOREM. If Gn = Fn, then the Diophantine equation (7) has
the following solutions with 2 ≤ g ≤ 9, l ∈ {1,2,4} and 1 ≤ B ≤
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min{10, gl − 1}.

(n,m, g,B, l) ∈ {(4,2,2,1,1), (5,2,4,1,1), (6,2,3,2,
1), (6,2,7,1,1), (7,3,3,1,1), (8,2,6,3,1), (8,3,4,1,1),
(5,2,2,1,2), (8,3,2,1,2), (9,2,4,2,2), (9,2,2,2,4)}.

Furthermore, suppose that 2 ≤ g ≤ 9, l = 2,1 ≤ B ≤ min{5, gl − 1}
and Gn = Pn, then equation (7) has no more solutions other than
(n,m, g,B, l) = (3,2,2,1,2).

Diophantine equations of the form
G(X,Y,Z) ∶= AX2 +BY r +CZ2 involving linear recurrence

sequences

The goal of Chapter 3 is to investigate the solutions of some Dio-
phantine equations of the formG(X,Y,Z) ∶= AX2+BY r+CZ2 (that
have infinitely many solutions in rational integers) from particular lin-
ear recurrence sequences for certain nonzero integers A,B,C and r.
More precisely, we respectively study the solutions of such equations
in case of G(X,Y,Z) = 0 and in case of G(X,Y,Z) ≠ 0. First, let us
consider the Diophantine equation

AX2 +BY r = C ′Z2, (9)

where A,B,C ′ and r are nonzero integers such that r > 1. According
to the following result of Beukers [5], equation (9) has either no solu-
tion or infinitely many relatively prime integer solutions (X,Y,Z).

THEOREM. For any given integers A1,B1,C1, a, b, r such that
A1B1C1 ≠ 0 and a, b and r greater than 1 satisfying 1

a
+ 1
b
+ 1
r
> 1,

equation
A1x

a +B1y
b +C1z

r = 0

has either no solution or infinitely many relatively prime integer solu-
tions (x, y, z).

Moreover, if a = b = 2,C1 = −1 and r is odd, then according to
Mordell [32, page 111] one can obtain for the equation

A1x
2 +B1y

2 = zr
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the following parametrizations for its solutions by putting

z = A1p
2 +B1q

2,

where p and q arbitrary integers, and taking

x
√
A1 + y

√
−B1 = (p

√
A1 + q

√
−B1)r,

x
√
A1 − y

√
−B1 = (p

√
A1 − q

√
−B1)r.

Thus, equation (9) has infinitely many integer solutions if B = 1 and
r is odd. Therefore, we here present a technique with which we can
investigate the nontrivial integer solutions (X,Y,Z) of any equation
of the form

AX2 + Y r = C ′Z2,

for certain nonzero integers A,C ′ and r with r > 1 being odd and
(X,Y ) = (Ln, Fn) (or (X,Y ) = (Fn, Ln)), where Fn and Ln de-
note the general terms of the sequences of Fibonacci numbers and Lu-
cas numbers, respectively. We also remark that this technique can be
applied on such equations for which they satisfy some conditions, that
will be mentioned later in a procedure presented by Kedlaya in [22].
More precisely, we present the use of this technique for determining
the solutions (X,Y,Z) of the Diophantine equation

7X2 + Y 7 = Z2, (10)

where (X,Y ) = (Ln, Fn)(or (X,Y ) = (Fn, Ln)) and Z is a nonzero
integer. From identity (1) (in case of Un(1,−1) = Fn and Vn(1,−1) =
Ln), this technique shows that the solutions of equation (10) are equiv-
alent to the solutions of the systems

x2 − 5y2 = ±4, 7x2 + y7 = z2,
x2 − 5y2 = ±4, x7 + 7y2 = z2,

where x = Ln, y = Fn and z = Z is a nonzero integer. More gener-
ally, a few techniques for investigating the integer solutions of certain
systems of Diophantine equations of the form

x2 − ay2 = b, P (x, y) = z2, (11)

where a is a positive integer that is not a perfect square, b is a nonzero
integer and P (x, y) is a polynomial with integer coefficients, have
been used by several authors such as Cohn [7] who considered the
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case where P is a linear polynomial. Cohn’s method uses congruence
arguments to eliminate some cases and a clever invocation of quadratic
reciprocity to handle the remaining cases. The congruence arguments
are very sufficient if there exists no solution in such a system, how-
ever they fail in the presence of a solution. This method was adapted
by Mohanty and Ramasamy [31], Muriefah and Al Rashed [1], Peker
and Cenberci [33] to study the solutions of particular systems. On
the other hand, Kedlaya [22] gave a general procedure, based on the
methods of Cohn and the theory of Pell equations, that solves many
systems of the form (11). In fact, he applied this approach on several
examples in which P is univariate with degree at most two. Moreover,
in some cases this procedure fails to solve a system completely. In the
following we summarize Kedlaya’s procedure.

Kedlaya’s procedure: Denote by (uk, vk) be the kth solution of
the Pell equation

u2 − av2 = 1.

For each base solution (x0, y0) of the equation x2 − ay2 = b, let S be
the set of integersm such that (xm, ym) is in the given list of solutions.
One can prove that P (xm, ym) is a prefect square if and only if m ∈ S
as follows (without having to give up):

● For each m ∈ S, let α = P (−xm,−ym).
● If ∣α∣ is a perfect square, we give up; otherwise, let β be

the product of all the primes that divide α an odd number of
times.

● Let l be the period of {uk(mod β)} and d be the largest odd
divisor of l.

● Let q be the largest integer such that 2q ∣l, unless 4 does not
divide l, in which case let q = 2.

● Let s be the order of 2 in the group (Z/dZ)×.
● Define the set U = {t ∈ {0, . . . , d − 1} ∶ (u2qt

β
) = −1}.

● If U is empty, we give up; otherwise find an odd number j
such that for each ε = q, . . . , q + s − 1, there exist t ∈ U and
g ∣ j with 2ε−qg ≡ t (mod β).

● Let γm = 2qj and γ be twice the least common multiple of
γm for all m ∈ S.



14

● Find an integer δ with the following property: for every k ∈
{0, . . . , δγ − 1}, either k ≡ m (mod 2γm) for some m ∈ S;
or there exists a prime number p such that P (xk, yk) is a
nonresidue (mod p), with {xi (mod p)} and {yi (mod p)}
have periods dividing δγ. The period condition can be guar-
anteed by having p∣vκ for some κ, where 2κ∣δγ.

● Suppose that δ can be found satisfying the specified proper-
ties. To show that P (xm, ym) is a prefect square if and only
if m ∈ S, assume that there exists k ∉ S such that P (xk, yk)
is a perfect square. By the construction of δ, there exists m
such that k ≡ m (mod 2γm), or else there exists a prime
number p such that P (xk, yk) is a nonresidue (mod p).
Since k ∉ S, so k ≠ m and k = m + 2ε+1jh for some h, ε
with h odd and ε ≥ q. We have that

xk ≡ −xm (mod uj2ε)

and
yk ≡ −ym (mod uj2ε).

Therefore,

P (xk, yk) ≡ P (−xm,−ym) = α (mod uj2ε).

The construction gives that for some t ∈ U and some g ∣ j
with 2ε−qg ≡ t (mod β). It is clear that ε ≥ q ≥ 2 and {uk
(mod 8)} has period dividing 4. Thus, the Jacobi symbols
( −1
u2εg

) and ( 2
u2εg

) both equal 1. Since ∣α∣ /β is a perfect
square and ug2ε ∣uj2ε , we have by quadratic reciprocity

(P (xk, yk)
u2εg

) = ( α

u2εg
) = ( β

u2εg
) = (u2

εg

β
)

= (u2qt
β

) = −1,

which contradicts the assumption that P (xk, yk) is a perfect
square.

Therefore, our technique mainly uses Kedlaya’s procedure and sim-
ilar techniques adapted by the methods of Mohanty and Ramasamy,
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Muriefah and Rashed, and Peker and Cenberci to prove the following
theorems, that appear in [12].

THEOREM. Suppose that X = Ln and Y = Fn, then the Dio-
phantine equation (10) has no more solutions other than (X,Y,Z) =
(3,1,±8).

THEOREM. The Diophantine equation (10) has no solutions in
integers X,Y and Z if X = Fn and Y = Ln.

Next, we consider the following Diophantine equation, that is
called Markoff equation,

x2 + y2 + z2 = 3xyz

in positive integers x ≤ y ≤ z, which was deeply studied by Markoff
[27, 28]. A triple (x, y, z) of positive integers that satisfies Markoff
equation is called a Markoff triple, and the numbers x, y and z are
called Markoff numbers. Indeed, Markoff showed that this equation
has infinitely many solutions, which can be generated from the funda-
mental solution (1,1,1) and the branching operation

(x, y, z)

(x, z,3xz − y) (y, z,3yz − x).
In these papers, Markoff numbers have been introduced to de-

scribe minimal values of indefinite quadratic forms with exceptionally
large minima greater than 1/3 of the square root of the discriminant.
He showed that these forms are in one-to-one correspondence with
the Markoff triples. This equation has been generalized by several
authors. For instance, Rosenberger [34] considered the equation

ax2 + by2 + cz2 = dxyz. (12)

This equation is often called the Markoff-Rosenberger equation. Rosen-
berger proved that if a, b, c, d ∈ N are integers such that gcd(a, b) =
gcd(a, c) = gcd(b, c) = 1 and a, b, c∣d, then nontrivial solutions exist
only if (a, b, c, d) ∈ T, where

T = {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,5,5),
(1,2,3,6)}.
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The Markoff-Rosenberger equation was also generalized by Jin and
Schmidt [20] in which they determined the positive integer solutions
of the equation

AX2 +BY 2 +CZ2 =DXY Z + 1. (13)

Jin and Schmidt showed that equation (13) has a fundamental solution
if and only if

(A,B,C,D) ∈ {(2,2,3,6), (2,1,2,2), (7,2,14,14), (3,1,6,6),
(6,10,15,30), (5,1,5,5), (1, t, t,2t)},with t ∈ N.

Respecting the authors of this generalization, we call equation (13) the
Jin-Schmidt equation. As equations (12) and (13) have infinitely many
solutions in integers, here we are interested in studying the solutions
of these equations in some binary recurrence sequences. The idea of
investigating the solutions of the Markoff equation in some binary lin-
ear recurrence sequences was initiated by Luca and Srinivasan [26]
in which they proved that the only solution of Markoff equation with
x ≤ y ≤ z such that (x, y, z) = (Fi, Fj , Fk) is given by the well-known
identity related to the Fibonacci numbers

1 + F 2
2n−1 + F 2

2n+1 = 3F2n−1F2n+1.

Here, we extend the result of Luca and Srinivasan by simplifying their
strategy with having upper bounds for the minimum of the indices to
provide a direct approach for investigating such special solutions of
the Markoff-Rosenberger equation (12) and the Jin-Schmidt equation
(13). Indeed, we first determine the solutions (X,Y,Z) = (FI , FJ ,
FK) in positive integers of the Jin-Schmidt equation (13), where FI
denotes the Ith Fibonacci number. In other words, we study the so-
lutions of the following Diophantine equations in the sequence of Fi-
bonacci numbers:

2X2 + 2Y 2 + 3Z2 = 6XY Z + 1, (14)

2X2 + Y 2 + 2Z2 = 2XY Z + 1, (15)

7X2 + 2Y 2 + 14Z2 = 14XY Z + 1, (16)

3X2 + Y 2 + 6Z2 = 6XY Z + 1, (17)

6X2 + 10Y 2 + 15Z2 = 30XY Z + 1, (18)
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5X2 + Y 2 + 5Z2 = 5XY Z + 1, (19)

where X = FI , Y = FJ and Z = FK . We also remark that the same
technique can be applied in case of (A,B,C,D) = (1, t, t,2t) for
given values of t. In the following we introduce the procedure of this
technique which we use to study the existence and nonexistence of
such special solutions of the Jin-Schmidt equation (particularly, equa-
tions (14)-(19)). Indeed, this technique can be adapted to study the
solutions of any equation of the form ax2 + by2 + cz2 = dxyz + e (for
certain nonzero integer coefficients) from certain binary linear recur-
rence sequences. Therefore, we call it the general investigative proce-
dure.

General investigative procedure: To start the procedure off, we
first have to obtain all the possible distinct equations

ax2 + by2 + cz2 = dxyz + 1 (20)

of equation (13) by permuting the coefficients A,B and C for

(A,B,C,D) ∈ S = {(2,2,3,6), (2,1,2,2), (7,2,14,14),
(3,1,6,6), (6,10,15,30), (5,1,5,5)}.

The following steps summarize the technique of investigating all the
solutions (x, y, z) = (Fi, Fj , Fk) with 2 ≤ i ≤ j ≤ k for every equation
of the form (20) for a given tuple (a, b, c, d); that is,

aF 2
i + bF 2

j + cF 2
k = dFiFjFk + 1, (21)

where 2 ≤ i ≤ j ≤ k. Note that we assumed that i ≥ 2 since F1 = F2 =
1.

● Determining an upper bound for i in equation (21). We first
rewrite the equation in the form

cFk − dFiFj = −
aF 2

i + bF 2
j

Fk
+ 1

Fk
. (22)

Inserting the values of Fi, Fj and Fk in the left-hand side
of equation (22) with using the Binet’s Fibonacci numbers
formula (that is obtained from the Binet’s formula of the
Lucas sequence of the first kind in (2) in case of Un(1,−1) =
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Fn): Fn = αn−βn
α−β ,where (α,β) = ( 1+√5

2
, 1−

√
5

2
) , n ≥ 0 and

α is called the golden ratio with β = −1
α

. We obtain that

c√
5
αk − d

5
αi+j = −

aF 2
i + bF 2

j

Fk
+ 1

Fk
+ c√

5
βk (23)

− d
5
(αiβj + αjβi − βi+j).

Based on the inequalities for the nth Fibonacci number

αn−2 ≤ Fn ≤ αn−1 for n ≥ 1,

and 2 ≤ i ≤ j ≤ k (that is 1 ≤ Fi ≤ Fj ≤ Fk), we have that

aF 2
i + bF 2

j

Fk
≤ (a + b)

F 2
j

Fk
≤ (a + b)α2j−k

≤ (a + b)αj , (24)
1

Fk
≤ 1 < αj , (25)

∣ c√
5
βk∣ = ∣− c√

5
α−k∣ ≤ c√

5
α−j

≤ c
5
αj , (26)

∣d
5
(αiβj + αjβi − βi+j)∣ ≤ d

5
(2αj + 1) ≤ 3d

5
αj . (27)

Taking the absolute values to equation (23) and using the
inequalities (24)-(27), we obtain that

∣ c√
5
αk − d

5
αi+j∣ < (1 + a + b + c + 3d

5
)αj .

Multiplying across by
√
5

cαi+j
, we get that

∣αk−i−j − d

c
√

5
∣ < h

αi
, (28)

where h =
√
5
c
(1 + a + b + c+3d

5
). Suppose that

min
n∈Z

∣αn − d

c
√

5
∣ > g > 0,
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so inequality (28) implies that

g < h

αi
,

which clearly gives

i ≤ ⌊
ln(h

g
)

ln(α) ⌋ = l. (29)

● Determining an upper bound for k − j in equation (21). In
fact, for a given i one can use inequality (28) to obtain an
upper bound for k − j. Here, we provide such a bound using
the upper bound for i (that is i ≤ l) and inequality (28). We
have that 1 ≤ a, b, c ≤ 15 and 2 ≤ d = D ≤ 30, which imply
that h ≤ 52

√
5 < 116.3. Therefore, inequality (28) becomes

∣∣αk−i−j ∣ − ∣ d

c
√

5
∣∣ ≤ ∣αk−i−j − d

c
√

5
∣

< 116.3

α2
< 44.5

as i ≥ 2, which leads to

∣αk−i−j ∣ < 44.5 + ∣ d

c
√

5
∣ < 44.5 + 30√

5
< 58

as d ≤ 30 and c ≥ 1. Hence,

k − j < i + ln(58)
ln(α) < l + 9 or k ≤ j + l + 8 (30)

as i ≤ l.
● Eliminating the values of i for i ∈ [2, l] in which equa-

tion (21) does not hold (and then equation (20) for which
(x, y, z) = (Fi, Fj , Fk) with 2 ≤ i ≤ j ≤ k). For that, we
solve the Diophantine equation

aF 2
i + by2 + cz2 − dFiyz − 1 = 0 (31)

for y and z. This can be done by SageMath [36] using the
function solve diophantine(). If there exists no i for
which equation (31) is satisfied, then equation (20) does not
have any solution (x, y, z) = (Fi, Fj , Fk) with 2 ≤ i ≤ j ≤ k
at the tuple (a, b, c, d).
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● Fixing i and k for an arbitrary k ∈ {j, j + 1, . . . , j + l + 8} in
equation (21), we get that

bF 2
j − sFj +w = 0, (32)

where s = dFiFk and w = aF 2
i + cF 2

k − 1. We note that the
equation above only depends on j for all j ≥ i ≥ 2.

● Determining whether there exists j for which equation (32)
holds using any of the following arguments:

(i) The technique of using the quadratic formula and the
identity relationship between the Fibonacci numbers and
Lucas numbers. This identity is obtained from (1) (in
case of Un(1,−1) = Fn and Vn(1,−1) = Ln), and it is
as follows

L2
k = 5F 2

k ± 4. (33)

Multiplying (32) by 4b and adding s2 to both sides lead
to

(2bFj − s)2 = s2 − 4bw. (34)

Multiplying equations (33) and (34) together yields

Y 2
1 = (5X2

1 ± 4)(d2F 2
i X

2
1 − 4b(aF 2

i + cX2
1 − 1)),

where X1 = Fk and Y1 = Lk(2bFj − dFiFk). There-
fore, our problem is reduced to obtain integral points
on these biquadratic genus 1 curves. This will be re-
alized using an algorithm implemented in Magma [6]
as SIntegralLjunggrenPoints() (based on results
obtained by Tzanakis [38]) or an algorithm described
by Alekseyev and Tengely [2] in which they gave an al-
gorithmic reduction of the search for integral points on
such a curve to solving a finite number of Thue equa-
tions.

(ii) The Fibonacci identities substitution technique in which
we use the Fibonacci sequence formula or some related
identities to eliminate equation (32).

(iii) The congruence argument technique in which we elim-
inate equation (32) modulo a prime number p.
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● From every obtained solution (x, y, z) = (Fi, Fj , Fk) of
equation (20) at the tuple (a, b, c, d), we derive the corre-
sponding solution (X,Y,Z) = (FI , FJ , FK) of equation
(13) at the tuple (A,B,C,D) by comparing the positions of
the components of their tuples.

By using the above procedure, we prove the following theorem, that is
obtained in [15].

THEOREM. Let m be a positive integer greater than 1. If (X,Y,
Z) = (FI , FJ , FK) is a solution of equation (13) with (A,B,C,D) ∈
S, then the complete list of solutions is given by

Eq. (A,B,C,D) {(X,Y,Z)}
(14) (2,2,3,6) {(1,1,1), (1,2,1), (1,2,3), (2,1,1), (2,1,3),

(F2m−1, F2m+1,1), (F2m+1, F2m−1,1)}
(15) (2,1,2,2) {(2,3,2), (2,5,2), (2,5,8), (8,5,2)}
(16) (7,2,14,14) {(1,2,1), (1,5,1), (3,2,1), (3,2,5)}
(17) (3,1,6,6) {(1,2,1), (3,2,1), (3,2,5)}
(18) (6,10,15,30) {(1,1,1), (1,2,1), (1,2,3)}
(19) (5,1,5,5) {}

In case of the Markoff-Rosenberger equation (12), we generalize
the strategy described in the general investigative procedure above to
provide general results for the solutions (x, y, z) = (Ri, Rj ,Rk) of
the Markoff-Rosenberger equation, where Ri denotes the ith gener-
alized Lucas number of first/second kind, i.e. Ri = Ui or Vi. Then
we apply the strategy of achieving these results to completely resolve
concrete equations, e.g. we determine solutions containing only bal-
ancing numbers Bn and Jacobsthal numbers Jn, respectively. In other
words, if T is the set of all distinct tuples (a, b, c, d) derived from per-
muting the first three components of elements in T , then we prove the
following results, that will appear in [18].

THEOREM. Let (a, b, c, d) ∈ T, P ≥ 2,−P − 1 ≤ Q ≤ P − 1 such
that Q ≠ 0, D > 0 and

B0 = min
I∈Z

∣αI − d

c
√
D

∣ , B1 = min
I∈Z

∣αI − d
c
∣ .
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If B0 ≠ 0, then B0 ≥ α−4 and if B1 ≠ 0, then B1 ≥ 0.17. Furthermore,
if x = Ui, y = Uj and z = Uk with 1 ≤ i ≤ j ≤ k is a solution of (12)
andB0 ≠ 0, then i ≤ 12. If x = Vi, y = Vj and z = Vk with 1 ≤ i ≤ j ≤ k
is a solution of (12) and B1 ≠ 0, then i ≤ 7.

Note that the cases where we have B1 = 0 were completely stud-
ied in the proof of the above theorem. Thus, it remains to classify the
cases satisfying B0 = 0, the result is as follows.

PROPOSITION. If P ≥ 2, −P − 1 ≤ Q ≤ P − 1, Q ≠ 0 and D > 0,
then B0 ≠ 0 fulfills unless

● e = 1, P = 3,Q = 2, α = 2,
√
D = 1, I = 0,

● e = 2, P = 3,Q = 2, α = 2,
√
D = 1, I = 1,

● e = 2, P = 4,Q = 3, α = 3,
√
D = 2, I = 0,

● e = 3, P = 5,Q = 4, α = 4,
√
D = 3, I = 0,

● e = 4, P = 3,Q = 2, α = 2,
√
D = 1, I = 2,

● e = 4, P = 6,Q = 5, α = 5,
√
D = 4, I = 0,

● e = 4, P = 2,Q = −3, α = 3,
√
D = 4, I = 0,

● e = 5, P = 7,Q = 6, α = 6,
√
D = 5, I = 0,

● e = 5, P = 3,Q = −4, α = 4,
√
D = 5, I = 0,

● e = 6, P = 4,Q = 3, α = 3,
√
D = 2, I = 1,

● e = 6, P = 8,Q = 7, α = 7,
√
D = 6, I = 0,

● e = 6, P = 4,Q = −5, α = 5,
√
D = 6, I = 0,

where e = d/c such that (a, b, c, d) ∈ T.

Indeed, our results here also extend other related results obtained
by e.g. Kafle, Srinivasan and Togbé [21] and Altassan and Luca [3].
As applications to the latter theorem, we also prove the following re-
sults, that will also appear in [18].

THEOREM. If (x, y, z) = (Bi,Bj ,Bk) is a solution of the equa-
tion

ax2 + by2 + cz2 = dxyz
and (a, b, c, d) ∈ {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,
5,5), (1,2,3, 6)}, then there is at most one solution given by x = y =
z = B1 = 1.

THEOREM. If (x, y, z) = (Ji, Jj , Jk) is a solution of the equation

ax2 + by2 + cz2 = dxyz
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and (a, b, c, d) ∈ {(1,1,1,1), (1,1,1,3), (1,1,2,2), (1,1,2,4), (1,1,
5,5), (1,2,3, 6)}, then the complete list of solutions is given by

(a, b, c, d) solutions

(1,1,1,1) {(3,3,3)}
(1,1,1,3) {(1,1,1)}
(1,1,2,2) {}
(1,1,2,4) {(1,1,1), (1,3,1), (1,3,5), (3,1,1), (3,1,5),

(3,11,1), (11,3,1)}
(1,1,5,5) {(1,3,1), (3,1,1)}
(1,2,3,6) {(1,1,1), (5,1,1)}
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[23] G. Köhler. Generating functions of Fibonacci-like sequences and decimal expan-
sions of some fractions. Fibonacci Quart., 23(1):29–35, 1985.

[24] C. T. Long. The decimal expansion of 1/89 and related results. Fibonacci Quart.,
19(1):53–55, 1981.

[25] F. Luca. Fibonacci and Lucas numbers with only one distinct digit. Port. Math.,
57(2):243–254, 2000.

[26] F. Luca and A. Srinivasan. Markov equation with Fibonacci components. Fi-
bonacci Quart., 56(2):126–129, 2018.

[27] A. A. Markoff. Sur les formes quadratiques binaires indéfinies. Math. Ann.,
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