

LIE DERIVATIVES AND GEOMETRIC VECTOR FIELDS IN SPRAY AND FINSLER GEOMETRY

Egyetemi doktori (PhD) értekezés

Tóth Anna
Témavezető: Dr. Szilasi József

Ezen értekezést a Debreceni Egyetem Természettudományi Doktori Tanács Matematika- és Számítástudományok Doktori Iskola Differenciálgeometria és alkalmazásai programja keretében készítettem a Debreceni Egyetem természettudományi doktori (PhD) fokozatának elnyerése céljából.

Debrecen, 2015

Tanúsítom, hogy Tóth Anna doktorjelölt 2008-2011 között a fent megnevezett Doktori Iskola Differenciálgeometria és alkalmazásai programjának keretében irányításommal végezte munkáját. Az értekezésben foglalt eredményekhez a jelölt önálló alkotó tevékenységével meghatározóan hozzájárult. Az értekezés elfogadását javasolom.

Debrecen, 2015

Lie derivatives and geometric vector fields in spray and Finsler geometry

Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében a
matematika tudományágban
Írta: Tóth Anna okleveles matematika-kémia szakos tanár
Készült a Debreceni Egyetem
Matematika- és Számítástudományok Doktori Iskolája
Differenciálgeometria és alkalmazásai programja keretében
Témavezetố: Dr. Szilasi József egyetemi docens

A doktori szigorlati bizottság:
 elnök: Dr.
 tagok: Dr.
 Dr.

A doktori szigorlat idốpontja: 2013.

Az értekezés bírálói:

Dr.
Dr.
Dr.

A bírálóbizottság:

elnök: Dr.
tagok: Dr.
Dr.
Dr.
Dr.
Az értekezés védésének időpontja: 2015

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and thanks to my supervisor, Dr. József Szilasi for the continuous support of my studies (from the beginning of my undergraduate studies to the end of my Ph.D. studies). This Thesis appears in its current form due to his motivation, patience, encouragement and relevant comments.

This Thesis could not have been written without the assistance and guidance of my colleagues. I would therefore like to offer my sincere thanks to all of them.

Special thanks to my family and my friends. I am grateful for all the sacrifices they have made to support me. Thanks to all my brothers and sisters in Christ for all the prayers said for me.

I praise God, the Almighty for providing me with this opportunity and granting me the capability to proceed successfully.

Soli Deo Gloria!
'I will go before you and will level the mountains; I will break down gates of bronze and cut through bars of iron.'
/Isaiah 45:2/

Contents

1 Introduction 7
I Preliminary material 9
2 Manifolds and bundles 9
3 Tangent bundle and vector fields 13
4 Integral curves and flows 16
5 Tensor fields and differential forms 20
6 Covariant derivatives 23
7 Constructions on the tangent bundle 26
II Lie derivatives in Finslerian setting 32
8 Finsler bundles 32
9 Vertical calculus 36
10 The classical Lie derivative 37
11 The Finslerian Lie derivative 42
III Lie symmetries 47
12 Semisprays and sprays 47
$13 \mathcal{H}$-Killing vector fields 52
14 Curvature collineations in a spray manifold 65
IV Geometric vector fields on Finsler manifolds 73
15 Basic objects of a Finsler manifold 73
16 Killing vector fields on a Finsler manifold 78
17 Conformal and projective vector fields 84
V Summaries 91
18 Summary 91
19 Magyar nyelvű összefoglaló 100
References 109

1 Introduction

The aim of this Thesis is threefold. First, to elaborate a (partly new) calculative background for Lie derivatives in the framework of Finsler bundles. Second, to apply the Finslerian Lie derivative, combining with other technical tools, for studying curvature collineations in spray manifolds. Third, to study projective and conformal (in particular, homothetic and Killing) vector fields on a Finsler manifold and describe some interrelations between them.

The theory of the above-mentioned 'geometric' vector fields has a vast literature. Let us quote here Mike Crampin. 'The transformation theory of sprays and Berwald connections was in vogue towards the middle of last century - Chapter VIII of Yano's book 'The Theory of Lie Derivatives and its Applications' [34] gives an excellent survey on the state of the art in 1957 - but went out of fashion; the subject has been taken up again very recently by Lovas [17]. The definition of an infinitesimal affine transformation of a Berwald connection is not entirely straightforward, because a Berwald connection is defined on a pull-back bundle (a pull back of a tangent bundle in fact). We feel that a concept of the Lie derivative of a section of such a pull-back bundle has not received the careful geometrical consideration that it deserves.' (See the Introduction of [8]; the numbering of items [17], [34] corresponds to the References in our Thesis.) In their just cited paper, Crampin and Saunders make an attempt to remedy the defect - and we continue their attempts here.

Going back to the historical roots, we mention that Gy. Soós important paper 'Über Gruppen von Affinitäten und Bewegungen in Finslerschen Räumen' $([27])$ has already been quoted in Yano's monograph. A good overview of the developments of the next two decades can be found in R. B. Misra's paper [23], written in 1981, revised and updated in 1993. In a two-part paper, M. Matsumoto clarified and improved some results of Yano in the framework of his theory of Finsler connections ([19], [20]). From the modern (and relatively modern, partly tensor calculus based) literature, beside the paper of R. L. Lovas, H. Akbar-Zadeh and J. Grifone works ([2], [3], [12], [13]) are worth mentioning. Grifone applies systematically the ' $\tau_{T M}: T T M \rightarrow T M$ tangent bundle formalism', combining with the Frölicher-Nijenhuis calculus of vector-valued differential forms; Lovas formulates and proves his results in terms of the 'pull-back formalism'. This Thesis, is some sense, is a continuation of Grifone's and Lovas's work. The greater part of the theory is developed on a pull-back of a tangent bundle,
however, the concepts and techniques of the tangent bundle geometry, including vertical calculus on $T M$, play an eminent role in our analysis. We use two types of Lie derivatives: the classical Lie derivative on the tensor algebra of a manifold and the Lie derivative of Finsler tensor fields with respect to projectable vector fields. (It turns out, as is expect, that the two types are closely related.) We also need the Lie derivative of a covariant derivative on a Finsler bundle as it has been introduced in [17]. In this Thesis, we define the concept of the Lie derivative of an Ehresmann connection \mathcal{H}; after that we can speak about \mathcal{H}-Killing vector fields.

We say, roughly speaking, that a vector field X on a manifold M is a curvature collineation of a curvature object \mathbf{C} of a spray manifold if $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{C}=0$, where X^{c} is the complete lift of X and $\widetilde{\mathcal{L}}_{X^{c}}$ is the Finslerian Lie derivative with respect to X^{c}. Curvature collineations play an important role in the study of geometry and physics of classical spacetimes; for an excellent account on the subject we refer to G. S. Hall's book [14], especially its last chapter. Similar investigations in the context of spray manifolds are new.

Most of our results are summarized in 18.2 (in English) and in 19.2 (in Hungarian), that is why we do not touch them here. To make the Thesis more readable, in Part I we briefly present the background material used throughout the other chapters.

Part I

Preliminary material

2 Manifolds and bundles

2.0 In general, we follow the notation and terminology of [29]. However, for convenience of the reader, we start here with some basic conventions which will be followed throughout this Thesis.
2.0.1 The identity transformation of a set S is denoted by 1_{S}. If $S \rightarrow T$ is a mapping and $A \subset S$, then $f \upharpoonright A$ denotes the restriction of f to A. The (canonical) inclusion of A into S is $j_{A}:=1_{S} \upharpoonright A$. Given two mappings $\varphi: M \rightarrow S$ and $\psi: M \rightarrow T,(\varphi, \psi)$ denotes the mapping

$$
\begin{equation*}
M \rightarrow S \times T, p \mapsto(\varphi(p), \psi(p)) . \tag{2.1}
\end{equation*}
$$

The product $\varphi_{1} \times \varphi_{2}$ of two mappings $\varphi_{1}: M_{1} \rightarrow S_{1}$ and $\varphi_{2}: M_{2} \rightarrow S_{2}$ is given by

$$
\begin{equation*}
\varphi_{1} \times \varphi_{2}\left(s_{1}, s_{2}\right):=\left(\varphi_{1}\left(s_{1}\right), \varphi_{2}\left(s_{2}\right)\right) ; \tag{2.2}
\end{equation*}
$$

it maps $M_{1} \times M_{2}$ into $S_{1} \times S_{2}$.
2.0.2 The set $\{0,1,2, \ldots\}$ of natural numbers is denoted by \mathbb{N}. The symbols \mathbb{Z}, \mathbb{Q} and \mathbb{R} denote the integers, rationals and reals, respectively. If $A \subset \mathbb{R}$, we write $A^{*}:=A \backslash\{0\}$ and $A_{+}:=\{a \in A \mid a \geqq 0\}$. Then $A_{+}^{*}=\{a \in A \mid a>0\}$. Real-valued mappings will usually be mentioned as functions.
2.0.3 For every $n \in \mathbb{N}^{*}$, we write $J_{n}:=\{1, \ldots, n\}$. The group of permutations of J_{n} is denoted by S_{n}, and $\epsilon(\sigma) \in\{-1,1\}$ stands for the sign of $\sigma \in S_{n}$.
2.0.4 By a ring we mean a commutative ring with unit element 1. The zero element of a ring (and any additive group) will usually be denoted by the same symbol 0 .
2.0.5 Let R be a ring and V a module over R (or an R -module for short). Then $V^{*}:=L(V, \mathrm{R}):=\{f: V \rightarrow \mathrm{R} \mid f$ is R -linear $\}$ is the dual of $V, \operatorname{End}_{\mathbb{R}}(V):=\operatorname{End}(V):=\{\varphi: V \rightarrow V \mid \varphi$ is R -linear $\}$ is the ring of endomorphisms of V.
2.0.6 Let V be an R -module and $k \in \mathbb{N}^{*}$. The R-module of k-linear mappings $V^{k} \rightarrow \mathrm{R}$ (resp. $V^{k} \rightarrow V$) is denoted by $T_{k}(V)\left(\right.$ resp. $\left.T_{k}^{1}(V)\right)$ and their elements are called covariant tensors (resp. vector-valued tensors) of degree k. Then $T_{1}(V)=V^{*}, T_{1}^{1}(V)=\operatorname{End}(V)$. We agree that $T_{0}(V):=\mathrm{R}, T_{0}^{1}(V):=V$. In this Thesis, by a tensor we shall always mean a covariant tensor or vector-valued tensor, so we use the term tensor in a restricted sense. The symbol \otimes will stand for tensor product.
2.0.7 Let V be an R -module, and let $A \in T_{k}(V) \cup T_{k}^{1}(V)$, where $k \in \mathbb{N}^{*}$. Given a permutation $\sigma \in S_{k}$, we define a tensor σA by

$$
\begin{equation*}
\sigma A\left(v_{1}, \ldots, v_{k}\right):=A\left(v_{\sigma(1)}, \ldots, v_{\sigma(k)}\right) . \tag{2.3}
\end{equation*}
$$

The tensor A is called symmetric (resp. alternating) if $\sigma A=A$ (resp. $\sigma A=\epsilon(\sigma) A)$. Both the symmetric and the alternating tensors form a submodule in $T_{k}(V)$ and $T_{k}^{1}(V)$. These submodules will be denoted by $S_{k}(V)$ and $S_{k}^{1}(V)$ in the symmetric case, $\mathcal{A}_{k}(V)$ and $\mathcal{A}_{k}^{1}(V)$ in the alternating case.
2.0.8 Let $V \neq\{0\}$ be an n-dimensional real vector space. A volume form on V is an element of $A_{n}(V) \backslash\{0\}$. Given a volume form $\mu \in A_{n}(V)$, for every linear transformation $\varphi \in \operatorname{End}(V)$ there exists a unique scalar $\operatorname{tr} \varphi \in \mathbb{R}$ such that

$$
\begin{equation*}
\sum_{i=1}^{n} \mu\left(v_{1}, \ldots, \varphi\left(v_{i}\right), \ldots, v_{n}\right)=\operatorname{tr}(\varphi) \mu\left(v_{1}, \ldots, v_{n}\right) \tag{2.4}
\end{equation*}
$$

where $v_{1}, \ldots, v_{n} \in V$ (see [10], 4.23). This scalar is called the trace of φ. Obviously, $\operatorname{tr} \varphi$ depends linearly on φ. We define the trace of a vector valued tensor $A \in T_{k}^{1}(V)\left(k \in \mathbb{N}^{*}\right)$ as the covariant tensor $\operatorname{tr} A \in T_{k-1}(V)$ given by

$$
\begin{equation*}
(\operatorname{tr} A)\left(v_{1}, \ldots, v_{k-1}\right):=\operatorname{tr}\left(v \in V \mapsto A\left(v, v_{1}, \ldots, v_{k-1}\right) \in V\right) . \tag{2.5}
\end{equation*}
$$

2.0.9 We continue to assume that V is an n-dimensional, non-trivial real vector space. The nullspace of a tensor $b \in S_{2}(V)$ is the subspace

$$
N_{b}:=\{v \in V \mid b(u, v)=0 \text { for all } u \in V\}
$$

of V. If $N_{b}=\{0\}$, then b is called non-degenerate, and we write

$$
\operatorname{Met}(V):=\left\{b \in S_{2}(V) \mid N_{b}=\{0\}\right\} .
$$

A tensor $b \in S_{2}(V)$ is positive definite if $b(v, v)>0$ for all $v \in V \backslash\{0\}$; $\operatorname{Euc}(V):=\left\{b \in S_{2}(V) \mid b\right.$ is positive definite $\}$.
2.0.10 In coordinate terms, we shall use Einstein's summation convention in two forms. The weak form: 'The summation sign is not omitted, but summation is understood over all repeated indices. Frequently (but not always) the repeated index occurs exactly twice - once up, once down.'(See [25], p. 10.) The standard form: Whenever a term contains a repeated index, one as a superscript and the other as a subscript, summation is implied over this index.
2.1 By a manifold we mean a second countable Hausdorff space endowed with a maximal smooth atlas. The letter M will be deserved for a manifold. The dimension of M is denoted by $\operatorname{dim} M$. All manifolds will be assumed at least 1-dimensional.
2.2 The set of k-times continuously differentiable mappings between manifolds M and N is denoted by $C^{k}(M, N)$. Here k is a natural number or $k=\infty$ with the convention that $C^{0}(M, N)$ stands for the set of continuous mappings of M into N. Elements of $C^{\infty}(M, N)$ are called smooth mappings. If $\varphi \in C^{\infty}(M, N)$ has a smooth inverse, we say that φ is a diffeomorphism. We write

$$
\operatorname{Diff}(M, N):=\left\{\varphi \in C^{\infty}(M, N) \mid \varphi \text { is a diffeomorphism }\right\}
$$

and $\operatorname{Diff}(M):=\operatorname{Diff}(M, M)$.
2.3 The set of smooth real-valued functions on a manifold M is denoted by $C^{\infty}(M)$. If $f, g \in C^{\infty}(M), \lambda \in \mathbb{R}$, and for any $p \in M$

$$
(f+g)(p):=f(p)+g(p), \quad(\lambda f)(p):=\lambda f(g), \quad(f g)(p):=f(p) g(p)
$$

then these operations make $C^{\infty}(M)$ into a ring and also an algebra over \mathbb{R}. The unit element of $C^{\infty}(M)$ is the constant function $\mathbf{1}: M \rightarrow \mathbb{R}, p \mapsto \mathbf{1}(p):=1$.
2.4 A triple (E, π, M) is a (smooth) fibre bundle with typical fibre F, briefly an F-bundle, if E, M, F are manifolds, π is a smooth mapping of E into M, and the following condition of local triviality is satisfied:
(LT) For every point $p \in M$ there exists a neighbourhood \mathcal{U} of p in M together with a diffeomorphism $\psi: \mathcal{U} \times F \rightarrow \pi^{-1}(\mathcal{U})$ such that

$$
\pi(\psi(q, v))=q \text { for all }(q, v) \in \mathcal{U} \times F
$$

Then E, M and π are called the total manifold, the base manifold, and the projection of the F-bundle (E, π, M), respectively. For each point $p \in M, E_{p}:=\pi^{-1}(p)$ is the fibre over p (or through p). The diffeomorphism ψ in condition (LT) is a trivializing map for π (or for E). A family $\left(\mathcal{U}_{i}, \psi_{i}\right)_{i \in I}$ is called a trivializing covering for π (or for E by abuse of language), if $\left(\mathcal{U}_{i}\right)_{i \in I}$ is an open covering of M and $\left(\psi_{i}\right)_{i \in I}$ is a family of trivializing maps $\psi_{i}: \mathcal{U}_{i} \times F \rightarrow \pi^{-1}(\mathcal{U})$ for π. We shall frequently use the terms ' $\pi: E \rightarrow M$ is a fibre bundle', π is a fibre bundle', or, less consequently, ' E is a fibre bundle'.
2.5 Let $\left(E_{i}, \pi_{i}, M_{i}\right)$ be F_{i}-bundles, where $i \in\{1,2\}$. A smooth mapping $\varphi: E_{1} \rightarrow E_{2}$ is called fibre preserving if $\pi_{1}\left(z_{1}\right)=$ $\pi_{2}\left(z_{2}\right)$ implies $\pi_{2}\left(\varphi\left(z_{1}\right)\right)=\pi_{2}\left(\varphi\left(z_{2}\right)\right)\left(z_{1}, z_{2} \in E_{1}\right)$. Equivalently, φ is fibre preserving if there exists a smooth mapping $\varphi_{B}: M_{1} \rightarrow M_{2}$ such that $\varphi_{B} \circ \pi_{1}=\pi_{2} \circ \varphi$. We say that φ_{B} is the mapping induced by the bundle map φ between the base manifolds.
2.6 A mapping $s: M \rightarrow E$ is a section of a fiber bundle $\pi: E \rightarrow M$ if $\pi \circ s=1_{M}$. The set of smooth sections of π is denoted by $\Gamma(\pi)$ or (by abuse of notation) $\Gamma(E)$.
2.7 Let V be a finite-dimensional real vector space. A fibre bundle (E, π, M) with typical fibre V is said to be a vector bundle of rank $\operatorname{dim} V$ if every fibre $E_{p}(p \in M)$ is a real vector space, and there is a trivializing covering $\left(\mathcal{U}_{i}, \psi_{i}\right)_{i \in I}$ for π such that the mappings

$$
\left(\psi_{i}\right)_{p}: V \rightarrow E_{p}, v \mapsto\left(\psi_{i}\right)_{p}(v):=\psi_{i}(p, v) \quad\left(i \in I, p \in \mathcal{U}_{i}\right)
$$

are linear isomorphisms. A vector bundle $\pi^{\prime}: E^{\prime} \rightarrow M$ is a subbundle of a vector bundle $\pi: E \rightarrow M$ if, for every $p \in M, E_{p}^{\prime}$ is a linear subspace of E_{p}, and the induced inclusion mapping $j_{E^{\prime}}: E^{\prime} \rightarrow E, \quad j_{E^{\prime}} \upharpoonright E_{p}^{\prime}:=$ $j_{E_{p}^{\prime}}$ is smooth. (For the definition of $j_{E_{p}^{\prime}}$ see 2.0.1)
2.8 Let $\left(E_{1}, \pi_{1}, M_{1}\right)$ and (E_{2}, π_{2}, M_{2}) be vector bundles. A smooth mapping $\varphi: E_{1} \rightarrow E_{2}$ is called a bundle map if φ is fibre preserving and the restrictions $\varphi_{p}:=\varphi \upharpoonright\left(E_{1}\right)_{p}:\left(E_{1}\right)_{p} \rightarrow\left(E_{2}\right)_{\varphi_{B}(p)}, p \in M_{1}$, are linear mappings (φ_{B} is the mapping induced by φ, see 2.5). If $M_{1}=M_{2}=$: M and $\varphi_{B}=1_{M}$, then we say that φ is a strong bundle map. A bundle map φ called an isomorphism if it is a diffeomorphism; this holds if, and only if, $\varphi_{B} \in \operatorname{Diff}\left(M_{1}, M_{2}\right)$ and the restrictions $\varphi_{p}:\left(E_{1}\right)_{p} \rightarrow\left(E_{2}\right)_{\varphi_{B}(p)}$ are linear isomorphisms.
2.9 The set $\Gamma(\pi)$ of smooth sections of a vector bundle $\pi: E \rightarrow M$ forms a $C^{\infty}(M)$-module under the pointwise operations

$$
\left(s_{1}+s_{2}\right)(p):=s_{1}(p)+s_{2}(p),(f s)(p):=f(p) s(p), p \in M,
$$

where $s, s_{1}, s_{2} \in \Gamma(\pi), f \in C^{\infty}(M)$. The zero element of this module is the zero section o defined by $o(p):=0_{p}:=$ the zero vector of the fibre $E_{p}, p \in M$.
2.10 The fundamental lemma of strong bundle maps. Let $\pi_{1}: E_{1} \rightarrow M$ and $\pi_{2}: E_{2} \rightarrow M$ be vector bundles over the same base manifold M. If $\varphi: E_{1} \rightarrow E_{2}$ is a strong bundle map, then the mapping

$$
\Phi: \Gamma\left(\pi_{1}\right) \rightarrow \Gamma\left(\pi_{2}\right), s \mapsto \Phi(s):=\varphi \circ s
$$

is $C^{\infty}(M)$-linear. Conversely, let $\Phi: \Gamma\left(\pi_{1}\right) \rightarrow \Gamma\left(\pi_{2}\right)$ be a module homomorphism. Then there exists a strong bundle map $\varphi: E_{1} \rightarrow E_{2}$ such that

$$
\Phi(s)=\varphi \circ s \text { for all } s \in \Gamma\left(\pi_{1}\right) .
$$

For a sketchy proof of this result, see [29], Proposition 2.2.31.
2.11 Let $\pi: E \rightarrow M$ be a vector bundle. A scalar product on π is a mapping

$$
g: p \in M \mapsto g_{p} \in S_{2}\left(E_{p}\right)
$$

such that the function

$$
g\left(s_{1}, s_{2}\right): M \rightarrow \mathbb{R}, p \mapsto g\left(s_{1}, s_{2}\right)(p):=g_{p}\left(s_{1}(p), s_{2}(p)\right)
$$

is smooth for each $s_{1}, s_{2} \in \Gamma(\pi)$. A vector bundle $\pi: E \rightarrow M$ with scalar product g is called semi-Euclidean if $g_{p} \in \operatorname{Met}\left(E_{p}\right)$ for all $p \in M$; Euclidean if $g_{p} \in \operatorname{Euc}\left(E_{p}\right)$ for all $p \in M$. Every vector bundle admits a Euclidean scalar product.

3 Tangent bundle and vector fields

3.1 A tangent vector to M at a point p of M is an \mathbb{R}-linear function $v: C^{\infty}(M) \rightarrow \mathbb{R}$ such that

$$
v(f g)=v(f) g(p)+f(p) v(g) \text { for all } f, g \in C^{\infty}(M)
$$

Under the usual linear operations the tangent vectors form an n dimensional real vector space $T_{p}(M)$, called the tangent space of M at p.
3.2 Let $(\mathcal{U}, u)=\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ be a chart of M at a point p of M. Here

$$
u^{i}:=e^{i} \circ u: \mathcal{U} \subset M \rightarrow u(\mathcal{U}) \subset \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

$\left(e^{i}\right)_{i=1}^{n}$ is the canonical coordinate system on \mathbb{R}^{n}, i.e., the dual of the canonical basis of \mathbb{R}^{n}. Then the functions $\left(\frac{\partial}{\partial u^{i}}\right)_{p}$ defined by

$$
\begin{equation*}
\left(\frac{\partial}{\partial u^{i}}\right)_{p}(f)=\left(\frac{\partial f}{\partial u^{i}}\right)(p):=D_{i}\left(f \circ u^{-1}\right)(u(p)), \quad f \in C^{\infty}(M) \tag{3.1}
\end{equation*}
$$

are the tangent vectors to M at p. The family $\left(\left(\frac{\partial}{\partial u^{i}}\right)_{p}\right)_{i=1}^{n}$ is a basis of $T_{p} M$. Using this basis, every tangent vector $v \in T_{p} M$ can uniquely be written in the form $v=\sum_{i=1}^{n} v\left(u^{i}\right)\left(\frac{\partial}{\partial u^{i}}\right)_{p}$.
3.3 Let $T M:=\bigcup^{\circ}{ }_{p \in M} T_{p} M$ (disjoint union) and define the projection $\tau: T M \rightarrow M$ by $\tau(v):=p$ if $v \in T_{p} M$. The topology and the smooth structure of M induce a unique (Hausdorff and second countable) topology and a smooth structure on $T M$ such that for every chart $(\mathcal{U}, u)=\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ on M,

$$
\left\{\begin{array}{l}
\left.\left(\tau^{-1}(\mathcal{U}),(x, y)\right)=\left(\tau^{-1}(\mathcal{U}),\left(\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)\right)\right) \tag{3.2}\\
x^{i}:=u^{i} \circ \tau, \quad y^{i}(v):=v\left(u^{i}\right)
\end{array}\right.
$$

is a chart on $T M$. We say that $\left(\tau^{-1}(\mathcal{U}),(x, y)\right)$ is the chart induced by (\mathcal{U}, u). The triple $(T M, \tau, M)$ is a vector bundle with typical fibre \mathbb{R}^{n} whose fibre over a point $p \in M$ is the tangent space $T_{p} M$. The vector bundle obtained in this way is called the tangent bundle of M; its total manifold $T M$ is the tangent manifold of M. The tangent bundle of $T M$ will be denoted by $\tau_{T M}: T T M \rightarrow T M$, or simply by $\tau_{T M}$, or less precisely by $T T M$.
3.4 Let $\varphi: M \rightarrow N$ be a smooth mapping between manifolds. Given any point $p \in M$, the mapping

$$
\left\{\begin{array}{l}
\left(\varphi_{*}\right)_{p}: T_{p} M \rightarrow T_{\varphi(p)} N, \quad v \mapsto\left(\varphi_{*}\right)_{p}(v) \tag{3.3}\\
\left(\varphi_{*}\right)_{p}(v)(h):=v(h \circ \varphi) \text { for all } h \in C^{\infty}(N)
\end{array}\right.
$$

is a linear mapping, called the derivative of φ at p. The mapping

$$
\varphi_{*}: T M \rightarrow T N, \quad \varphi_{*} \upharpoonright T_{p} M:=\left(\varphi_{*}\right)_{p} \quad(p \in M)
$$

is a bundle map with induced mapping $\left(\varphi_{*}\right)_{B}=\varphi$ between the base manifolds. This bundle map is the derivative of φ.
3.5 A smooth section of the tangent bundle of M is called a vector field on M. The $C^{\infty}(M)$-module of vector fields on M is denoted by $\mathfrak{X}(M)$. Thus

$$
\mathfrak{X}(M):=\Gamma(T M)=\left\{X \in C^{\infty}(M, T M) \mid \tau \circ X=1_{M}\right\} .
$$

If \mathcal{U} is an open subset of M, then a vector field on \mathcal{U} is a smooth mapping $X: \mathcal{U} \rightarrow T M$ such that $\tau \circ X=1_{\mathcal{U}}$. They form a module over $C^{\infty}(\mathcal{U})$ denoted by $\mathfrak{X}(\mathcal{U})$. If, in particular, \mathcal{U} is the domain of a local coordinate system $\left(u^{i}\right)_{i=1}^{n}$ of M, then the mappings

$$
\frac{\partial}{\partial u^{i}}: \mathcal{U} \rightarrow T M, \quad p \mapsto\left(\frac{\partial}{\partial u^{i}}\right)_{p} \in T_{p} M \quad\left(i \in J_{n}\right),
$$

where the right-hand side is defined by (3.1), are vector fields on \mathcal{U}, called the coordinate vector fields of the chart $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$. A family $\left(X_{i}\right)_{i=1}^{n}$ of vector fields on \mathcal{U} is a frame field on \mathcal{U} if $\left(\left(X_{i}\right)_{p}\right)_{i=1}^{n}$ is a basis of $T_{p} M$ for all $p \in \mathcal{U}$. Thus the coordinate vector fields of a chart form a special frame field on their domain.

As an example consider the real line \mathbb{R}, endowed with its canonical smooth structure defined by the single chart $(\mathbb{R}, r):=\left(\mathbb{R}, 1_{\mathbb{R}}\right)$. The coordinate vector field of this chart is the mapping

$$
\frac{d}{d r}: t \in \mathbb{R} \mapsto\left(\frac{d}{d r}\right)_{t} \in T_{t} \mathbb{R}
$$

where the tangent vectors $\left(\frac{d}{d r}\right)_{t}(t \in \mathbb{R})$ act as ordinary differentiations:

$$
\begin{equation*}
\left(\frac{d}{d r}\right)_{t}(h):=h^{\prime}(t) \text { for all } h \in C^{\infty}(\mathbb{R}) . \tag{3.4}
\end{equation*}
$$

3.6 Given a vector field $X \in \mathfrak{X}(M)$, the mapping

$$
f \in C^{\infty}(M) \mapsto X f \in C^{\infty}(M)
$$

is a derivation of the \mathbb{R}-algebra $C^{\infty}(M)$: it is \mathbb{R}-linear and satisfies the Leibniz rule

$$
X(f h)=(X f)(h)+f X h ; \quad f, h \in C^{\infty}(M) .
$$

Conversely, every derivation of $C^{\infty}(M)$ comes from a vector field. Thus vector fields on M can be freely interpreted as derivations in the algebra
$C^{\infty}(M)$. The Lie bracket $[X, Y]$ of two vector fields $X, Y \in \mathfrak{X}(M)$ is the unique vector field such that

$$
\begin{equation*}
[X, Y](f)=X(Y f)-Y(X f) \text { for all } f \in C^{\infty}(M) \tag{3.5}
\end{equation*}
$$

This bracket operation is \mathbb{R}-bilinear, skew symmetric and satisfies the Jacobi identity, making $\mathfrak{X}(M)$ into a (real) Lie algebra. Moreover, for $f \in C^{\infty}(M)$ we have

$$
\begin{equation*}
[f X, Y]=f[X, Y]-(Y f) X \text { and }[X, f Y]=f[X, Y]+(X f) Y . \tag{3.6a-b}
\end{equation*}
$$

3.7 Let $\varphi: M \rightarrow N$ be a smooth mapping between manifolds. Two vector fields $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$ are called φ-related if

$$
\begin{equation*}
\varphi_{*} \circ X=Y \circ \varphi . \tag{3.7}
\end{equation*}
$$

Then we write $X \sim \underset{\varphi}{\sim} Y$. We say that a vector field X on M is projectable (by φ) if there exists a vector field Y on N such that $X \underset{\varphi}{\sim} Y$.
3.8 Let $X_{1}, X_{2} \in \mathfrak{X}(M) ; Y_{1}, Y_{2} \in \mathfrak{X}(N)$. If $X_{i} \sim Y_{i}(i \in\{1,2\})$, then $\left[X_{1}, X_{2}\right] \underset{\varphi}{\sim}\left[Y_{1}, Y_{2}\right]$ (related vector field lemma). Suppose, in particular, that $\varphi \in \operatorname{Diff}(M, N)$. The push-forward of a vector field $X \in \mathfrak{X}(M)$ by φ is

$$
\begin{equation*}
\varphi_{\#} X:=\varphi_{*} \circ X \circ \varphi^{-1} \in \mathfrak{X}(N) ; \tag{3.8}
\end{equation*}
$$

it is the unique vector field on N which is φ-related to X. The mapping

$$
\varphi_{\#}: \mathfrak{X}(M) \rightarrow \mathfrak{X}(N), \quad X \mapsto \varphi_{\#} X
$$

is a Lie algebra isomorphism, i.e., we have

$$
\begin{equation*}
\varphi_{\#}[X, Y]=\left[\varphi_{\#} X, \varphi_{\#} Y\right] ; \quad X, Y \in \mathfrak{X}(M) . \tag{3.9}
\end{equation*}
$$

A vector field X on M is called invariant under a diffeomorphism ψ of M, if $\psi_{\#} X=X$, i.e, $\psi_{*} \circ X=X \circ \psi$.

4 Integral curves and flows

4.0 Throughout this section $I \subset \mathbb{R}$ is a nonempty open interval. To obtain coordinate expressions, we use a chart $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ on M and the induced chart given by (3.2) on $T M$.
4.1 A smooth mapping $\alpha: I \rightarrow M$ is also called a smooth curve in M. The tangent vector (or velocity vector) $\dot{\alpha}(t) \in T_{\alpha(t)} M$ of α at $t \in I$ is defined by

$$
\dot{\alpha}(t)(f):=(\alpha \circ f)^{\prime}(t)=\lim _{s \rightarrow 0} \frac{f(\alpha(t+s))-f(\alpha(t))}{s}, \quad f \in C^{\infty}(M) .
$$

Then we have

$$
\begin{equation*}
\dot{\alpha}(t)=\left(\alpha_{*}\right)_{t}\left(\frac{d}{d r}\right)_{t}, \quad t \in I . \tag{4.1}
\end{equation*}
$$

The curve α is regular if $\dot{\alpha}(t) \neq 0$ for all $t \in I$. If $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ is a chart at $\alpha(t)$ and $\alpha^{i}:=u^{i} \circ \alpha$, then

$$
\begin{equation*}
\dot{\alpha}(t)=\sum_{i=1}^{n}\left(\alpha^{i}\right)^{\prime}(t)\left(\frac{\partial}{\partial u^{i}}\right)_{\alpha(t)} . \tag{4.2}
\end{equation*}
$$

4.2 Let $\alpha: I \rightarrow M$ be a smooth curve. A vector field along α is a smooth mapping $X: I \rightarrow T M$ such that $X(t) \in T_{\alpha(t)} M$ for all $t \in I$, i.e., $\tau \circ X=\alpha$. The set of all vector fields along α forms the $C^{\infty}(I)$ module $\mathfrak{X}_{\alpha}(M):=\left\{X \in C^{\infty}(I, T M) \mid \tau \circ X=\alpha\right\}$. The velocity vector field

$$
\begin{equation*}
\dot{\alpha}:=\alpha_{*} \circ \frac{d}{d r} \tag{4.3}
\end{equation*}
$$

of α is an example of a vector field along α. By the acceleration vector field $\ddot{\alpha} \in \mathfrak{X}_{\dot{\alpha}}(T M)$ of α we mean the velocity vector field of the curve $\dot{\alpha}: I \rightarrow T M$, i.e.,

$$
\ddot{\alpha}:=(\dot{\alpha})=(\dot{\alpha})_{*} \circ \frac{d}{d r} .
$$

If $\alpha(t)$ is in the chart domain \mathcal{U}, then

$$
\begin{equation*}
\ddot{\alpha}(t)=\sum_{i=1}^{n}\left(\left(\alpha^{i}\right)^{\prime}(t)\left(\frac{\partial}{\partial x^{i}}\right)_{\dot{\alpha}(t)}+\left(\alpha^{i}\right)^{\prime \prime}(t)\left(\frac{\partial}{\partial y^{i}}\right)_{\dot{\alpha}(t)}\right) . \tag{4.4}
\end{equation*}
$$

4.3 Let V be an n-dimensional, non-trivial real vector space, endowed with the canonical smooth structure determined by a single chart (V, φ), where $\varphi: V \rightarrow \mathbb{R}^{n}$ is a linear isomorphism. Given any point p in V, V may be naturally identified with its tangent space $T_{p} V$ via the mapping $\iota_{p}: V \rightarrow T_{p} V, v \mapsto \iota_{p}(v):=\dot{\alpha}_{p}(0)$, where $\alpha_{p}(t):=p+t v, \quad t \in \mathbb{R}$.
4.4 A curve $\alpha: I \rightarrow M$ is an integral curve of a vector field X on M if $\dot{\alpha}=X \circ \alpha, \quad$ i.e, $\quad \dot{\alpha}(t)=X(\alpha(t)) \quad$ for all $t \in I$. If \widetilde{I} is an open interval containing I, then an integral curve $\widetilde{\alpha}: \widetilde{I} \rightarrow M$ of X is an extension of α if $\widetilde{\alpha} \upharpoonright I=\alpha$. An integral curve of X is maximal if it has no proper extension. A vector field on M is called complete if each of its maximal integral curves is defined on the entire real line.
4.5 Let X be a vector field on M and let a point $p \in M$ be given. There exists a unique integral curve $\gamma_{p}: I_{p} \rightarrow M$ of X such that $\gamma_{p}(0)=p$. We say that the integral curve γ_{p} starts at p. A function $f \in C^{\infty}(M)$ is called a first integral for $X \in \mathfrak{X}(M)$ if $X f=0$. This holds if, and only if, X is constant along the integral curves of f, i.e., the function $f \circ \alpha: I \rightarrow \mathbb{R}$ is constant for every integral curve $\alpha: I \rightarrow M$ of X.
4.6 Given a vector field X on M, there exists an open subset $\mathcal{D}(X)$ in $\mathbb{R} \times M$ and a smooth mapping $\varphi^{X}: \mathcal{D}(X) \rightarrow M$ satisfying the following conditions:
(a) For each $p \in M,\{t \in \mathbb{R} \mid(t, p) \in \mathcal{D}(X)\}=I_{p}$, and the mapping $I_{p} \rightarrow M, t \rightarrow \varphi^{X}(t, p)$ is the maximal integral curve of X starting at p. Thus, in particular, $\varphi^{X}(0, p)=p$.
(b) For each $t \in \mathbb{R}, \mathcal{D}_{t}(X):=\{p \in M \mid(t, p) \in \mathcal{D}(X)\}$ is an open subset of M and the mapping

$$
\varphi_{t}^{X}: p \in \mathcal{D}_{t}(X) \mapsto \varphi_{t}^{X}(p):=\varphi^{X}(t, p) \in M
$$

has the following properties:
(i) If (t, p) and $\left(s, \varphi_{t}^{X}(p)\right)$ are elements of $\mathcal{D}(X)$, then $(s+t, p)$ is also an element of $\mathcal{D}(X)$, and we have

$$
\begin{equation*}
\varphi_{s}^{X} \circ \varphi_{t}^{X}=\varphi_{s+t}^{X} . \tag{4.5}
\end{equation*}
$$

(ii) φ_{t}^{X} is a diffeomorphism of $\mathcal{D}_{t}(X)$ onto $\mathcal{D}_{-t}(X)$ with inverse φ_{-t}^{X}.

The mapping φ^{X} is called the local flow of X; it is uniquely determined by its (infinitesimal) generator X. In view of relation (4.5) we also say, less precisely, that $\left(\varphi_{t}^{X}\right)$ is the local one-parameter group generated by X, whose t th stage is the (local) diffeomorphism φ_{t}^{X} from $\mathcal{D}_{t}(X)$ onto $\mathcal{D}_{-t}(X)$. When the vector field X is clear from the context, we simply
write $\left(\varphi_{t}\right)$. If X is complete, then $\mathcal{D}(X)=\mathbb{R} \times M$, and the smooth mapping φ^{X} is called the global flow of X. In this case we have:
$\varphi_{0}^{X}=1_{M} ; \varphi_{s}^{X} \circ \varphi_{t}^{X}=\varphi_{s+t}^{X}$ for all $s, t \in \mathbb{R}$ (so the stages of φ^{X} commute); every stage φ_{t}^{X} is a diffeomorphism of M with $\left(\varphi_{t}^{X}\right)^{-1}=\varphi_{-t}^{X}$.

We also say that $\left(\varphi_{t}^{X}\right)_{t \in \mathbb{R}}$ (or $\left.\left(\varphi_{t}\right)_{t \in \mathbb{R}}\right)$ is the (global) one-parameter group generated by X. Every vector field on compact manifold is complete.
4.7 Let X be a vector field on M, and let $\varphi^{X}: \mathcal{D}(X) \rightarrow M$ its local flow. Suppose that $(t, p) \in \mathcal{D}(X)$. Then for every smooth function f on M

$$
\begin{align*}
(X f)(p) & =\lim _{t \rightarrow 0} \frac{1}{t}\left(f \circ \varphi_{t}^{X}(p)-f(p)\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(f \circ \alpha_{p}(t)-f(p)\right) \tag{4.6}\\
& =\left(f \circ \alpha_{p}\right)^{\prime}(0)=\dot{\alpha}_{p}(0)(f)
\end{align*}
$$

where α_{p} is the maximal integral curve of X starting at p. If Y is another vector field on M, then

$$
\begin{align*}
{[X, Y](p) } & =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\left(\varphi_{-t}^{X}\right)_{\#} Y\right)_{p}-Y(p)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\varphi_{-t}^{X}\right)_{*} \circ Y \circ \varphi_{t}^{X}(p)-Y(p)\right) . \tag{4.7}
\end{align*}
$$

We abbreviate formulas (4.6) and (4.7) as

$$
\begin{equation*}
X f=\lim _{t \rightarrow 0} \frac{1}{t}\left(f \circ \varphi_{t}^{X}-f\right) \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
[X, Y]=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\varphi_{-t}^{X}\right)_{\#} Y-Y\right) \tag{4.9}
\end{equation*}
$$

respectively. Notice that relation (4.9) can also be written in the form

$$
\begin{equation*}
[X, Y]=\lim _{t \rightarrow 0} \frac{1}{t}\left(Y \circ \varphi_{t}^{X}-\left(\varphi_{t}^{X}\right)_{*} \circ Y\right) \tag{4.10}
\end{equation*}
$$

To see this, note first that

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{1}{t}\left(Y \circ \varphi_{t}^{X}-\left(\varphi_{t}^{X}\right)_{*} \circ Y\right)=\lim _{t \rightarrow 0}\left(\varphi_{t}^{X}\right)_{*}\left(\left(\varphi_{-t}^{X}\right)_{*} \circ Y \circ \varphi_{t}^{X}-Y\right) \\
& =\lim _{t \rightarrow 0}\left(\varphi_{t}^{X}\right)_{*}\left(\frac{1}{t}\left(\left(\varphi_{-t}^{X}\right)_{\#} Y-Y\right)\right) .
\end{aligned}
$$

Now let $p \in M$ be a fixed point and introduce the mappings

$$
\eta: I_{p} \times T_{p} M \rightarrow M,(t, v) \mapsto \eta(t, v):=\left(\varphi_{t}^{X}\right)_{*}(v)
$$

and

$$
Z: I_{p} \rightarrow T_{p} M, t \rightarrow Z(t):=\frac{1}{t}\left(\left(\left(\varphi_{-t}^{X}\right)_{\#} Y\right)_{p}-Y_{p}\right) .
$$

Then Z is continuous and $\lim _{t \rightarrow 0} Z(t) \stackrel{(4.7)}{=}[X, Y]_{p}$, so we obtain

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{\varphi_{t}^{X}(p)}-\left(\varphi_{t}^{X}\right)_{*}\left(Y_{p}\right)\right)=\lim _{t \rightarrow 0} \eta(t, Z(t))=\eta\left(0, \lim _{t \rightarrow 0} Z(t)\right) \\
& =\left(\varphi_{0}^{X}\right)_{*}\left([X, Y]_{p}\right)=[X, Y]_{p},
\end{aligned}
$$

as we claimed.
4.8 Let X and Y be vector fields on M with local flows φ^{X} and φ^{Y}, respectively. Then following assertions are equivalent: The Lie bracket [X, Y] vanishes; 'the vector field Y is invariant under the flow of X ', i.e.,

$$
\left(\varphi_{-t}^{X}\right)_{\#} Y=Y \upharpoonright \mathcal{D}_{t}(X)
$$

whenever $\mathcal{D}_{t}(X) \neq \emptyset$; 'the local flows of X and Y commute', i.e., $\varphi_{s}^{X} \circ \varphi_{t}^{Y}=\varphi_{t}^{Y} \circ \varphi_{s}^{X}$ whenever either side is defined.

5 Tensor fields and differential forms

5.1 Let M be a manifold. By a tensor field on M we mean a tensor in

$$
T_{k}(\mathfrak{X}(M)) \cup T_{k}^{1}(\mathfrak{X}(M)), k \in \mathbb{N} .
$$

Then we write

$$
\mathcal{T}_{k}(M):=T_{k}(\mathfrak{X}(M)), \quad \mathcal{T}_{k}^{1}(M):=T_{k}^{1}(\mathfrak{X}(M))
$$

In particular (see 2.0.6)

$$
\begin{aligned}
& \mathcal{T}_{0}(M)=C^{\infty}(M), \mathfrak{T}_{0}^{1}(M)=\mathfrak{X}(M), \mathcal{T}_{1}(M)=\mathfrak{X}^{*}(M):=(\mathfrak{X}(M))^{*}, \\
& \mathcal{T}_{1}^{1}(M)=\operatorname{End}_{C^{\infty}(M)}(\mathfrak{X}(M)) .
\end{aligned}
$$

Instead of 'tensor field on M ' we also say simply that 'tensor on M '. The elements of $\mathfrak{X}^{*}(M)$ are called 1-forms on M. If $f \in C^{\infty}(M)$, then

$$
\begin{equation*}
d f: \mathfrak{X}(M) \rightarrow C^{\infty}(M), \quad X \mapsto d f(X):=X f \tag{5.1}
\end{equation*}
$$

is a 1 -form on M, the differential of f.
Given a tensor field $A \in \mathfrak{T}_{k}(M) \cup \mathfrak{T}_{k}^{1}(M)$ and a point p of M, A has a well-defined value

$$
A_{p} \in T_{k}\left(T_{p} M\right) \cup T_{k}^{1}\left(T_{p} M\right)
$$

at p (see, e.g., [24], pp. 37-38). Using this fact, we define the trace of a tensor $A \in \mathcal{T}_{1}^{1}(M)$ as the smooth function

$$
\operatorname{tr} A: M \rightarrow \mathbb{R}, p \mapsto(\operatorname{tr} A)_{p}:=\operatorname{tr}\left(A_{p}\right),
$$

where the right-hand side is given by (2.5). This definition is extended to tensors $B \in \mathcal{T}_{k}^{1}(M), k>1$, as follows: $\operatorname{tr} B \in \mathcal{T}_{k-1}(M)$ such that

$$
\begin{equation*}
\operatorname{tr} B\left(X_{1}, \ldots, X_{k}\right):=\operatorname{tr}\left(X \in \mathfrak{X}(M) \mapsto B\left(X, X_{1}, \ldots, X_{k-1}\right)\right) \in \mathfrak{X}(M) . \tag{5.2}
\end{equation*}
$$

5.2 The Grassmann algebra of a manifold The elements of

$$
\mathcal{A}_{k}(M):=A_{k}(\mathfrak{X}(M)) \text { and } \mathcal{A}_{k}^{1}(M):=A_{k}^{1}(\mathfrak{X}(M))
$$

are called k-forms and vector k-forms on M, respectively. Notice that $\mathcal{A}_{k}(M)=\{0\}$ if $k>n=\operatorname{dim} M$; we agree that $\mathcal{A}_{k}(M):=\{0\}$, if k is a negative integer. We define the wedge product $\alpha \wedge \beta$ of a k-form $\alpha \in \mathcal{A}_{k}(M)$ and an l-form $\beta \in \mathcal{A}_{l}(M)$ by

$$
\begin{align*}
& \alpha \wedge \beta\left(X_{1}, \ldots, X_{k+l}\right) \\
& \quad:=\frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} \epsilon(\sigma) \alpha\left(X_{\sigma(1)}, \ldots X_{\sigma(k)}\right) \beta\left(X_{\sigma(k+1), \ldots, X_{\sigma(k+l)}}\right), \tag{5.3}
\end{align*}
$$

Then $\alpha \wedge \beta \in \mathcal{A}_{k+l}(M)$. The wedge product makes the direct sum $\mathcal{A}(M):=\oplus_{k=0}^{n} \mathcal{A}_{k}(M)$ into an algebra over the ring $C^{\infty}(M)$, called the Grassmann algebra of M. This algebra is
graded, i.e., $\alpha \wedge \beta \in \mathcal{A}_{k+l}(M)$ if $\alpha \in \mathcal{A}_{k}(M)$ and $\beta \in \mathcal{A}_{l}(M)$;
associative, i.e., $(\alpha \wedge \beta) \wedge \gamma=\alpha \wedge(\beta \wedge \gamma)$ for all $\alpha, \beta, \gamma \in \mathcal{A}(M)$; graded commutative, i.e., if $\alpha \in \mathcal{A}_{k}(M)$ and $\beta \in \mathcal{A}_{l}(M)$, then

$$
\begin{equation*}
\alpha \wedge \beta=(-1)^{k l} \beta \wedge \alpha \tag{5.4}
\end{equation*}
$$

5.3 Derivations of the Grassmann algebra Let $r \in \mathbb{Z}$. An \mathbb{R}-linear mapping $D: \mathcal{A}(M) \rightarrow \mathcal{A}(M)$ is a graded derivation of degree r of $\mathcal{A}(M)$ if
(i) $D\left(\mathcal{A}_{k}(M)\right) \subset \mathcal{A}_{k+r}(M)$ for all $k \in \mathbb{Z}$;
(ii) for any $\alpha \in \mathcal{A}_{k}(M)$ and $\beta \in \mathcal{A}(M)$ we have

$$
\begin{equation*}
D(\alpha \wedge \beta)=(D \alpha) \wedge \beta+(-1)^{r k} \alpha \wedge D \beta \tag{5.5}
\end{equation*}
$$

Lemma 5.3.1. Every graded derivation of the Grassmann algebra $\mathcal{A}(M)$ is uniquely determined by its action on the smooth functions on M and on their differentials.

For a proof we refer to [29], Lemma 3.3.23.
5.3.2 If D_{1} and D_{2} are graded derivations of $\mathcal{A}(M)$ of degree r_{1} and r_{2}, respectively, then their graded commutator

$$
\begin{equation*}
\left[D_{1}, D_{2}\right]:=D_{1} \circ D_{2}-(-1)^{r_{1} r_{2}} D_{2} \circ D_{1} \tag{5.6}
\end{equation*}
$$

is a graded derivation of $\mathcal{A}(M)$ of degree $r_{1}+r_{2}$. The graded commutator is graded anticommutative in the sense that

$$
\begin{equation*}
\left[D_{1}, D_{2}\right]=-(-1)^{r_{1} r_{2}}\left[D_{2}, D_{1}\right], \tag{5.7}
\end{equation*}
$$

and satisfies the graded Jacobi identity

$$
\begin{align*}
(-1)^{r_{1} r_{3}}\left[D_{1},\left[D_{2}, D_{3}\right]\right] & +(-1)^{r_{2} r_{1}}\left[D_{2},\left[D_{3}, D_{1}\right]\right] \\
& +(-1)^{r_{3} r_{2}}\left[D_{3},\left[D_{1}, D_{2}\right]\right]=0, \tag{5.8}
\end{align*}
$$

where r_{i} is the degree of $D_{i}, i \in\{1,2,3\}$.
5.3.3 The classical graded derivations of $\mathcal{A}(M)$ are the substitution operator i_{X}, the Lie derivative $\mathcal{L}_{X}(X \in \mathfrak{X}(M))$ and the exterior derivative d. Their degrees are $-1,0$ and 1 , respectively, and they are defined by the following formulas:

$$
\begin{align*}
&\left(i_{X} \alpha\right)\left(X_{2}, \ldots, X_{k}\right):=\alpha\left(X, X_{2}, \ldots, X_{k}\right), \tag{5.9}\\
&\left(\mathcal{L}_{X} \alpha\right)\left(X_{1}, \ldots, X_{k}\right):=X\left(\alpha\left(X_{1}, \ldots, X_{k}\right)\right) \\
&-\sum_{i=1}^{k} \alpha\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{k}\right), \tag{5.10}\\
& d \alpha\left(X_{0}, \ldots, X_{k}\right):=\sum_{i=0}^{k}(-1)^{i} X_{i} \alpha\left(X_{0}, \ldots, \breve{X}_{i}, \ldots, X_{k}\right) \tag{5.11}\\
&+\sum_{0 \leqslant i<j \leqslant k}(-1)^{i+j} \alpha\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \breve{X}_{i}, \ldots, \breve{X}_{j}, \ldots, X_{k}\right) ;
\end{align*}
$$

$$
\begin{equation*}
i_{X} f:=0, \mathcal{L}_{X} f:=X f, d f(X):=X f ; f \in C^{\infty}(M) \tag{5.12a-c}
\end{equation*}
$$

In formulas (5.9)-(5.11), $\alpha \in \mathcal{A}_{k}(M), k>1$. In (5.11) the notation \breve{X}_{i} means that the argument X_{i} is deleted. These operators satisfy the identities

$$
\begin{align*}
& {\left[i_{X}, i_{Y}\right] \stackrel{(5.6)}{=} i_{X} \circ i_{Y}+i_{Y} \circ i_{X}=0,} \tag{5.13}\\
& {\left[\mathcal{L}_{X}, i_{Y}\right]=\mathcal{L}_{X} \circ i_{Y}-i_{Y} \circ \mathcal{L}_{X}=i_{[X, Y]},} \tag{5.14}\\
& {\left[i_{X}, d\right]=i_{X} \circ d+d \circ i_{X}=\mathcal{L}_{X},} \tag{5.15}\\
& {\left[\mathcal{L}_{X}, \mathcal{L}_{Y}\right]=\mathcal{L}_{X} \circ \mathcal{L}_{Y}-\mathcal{L}_{Y} \circ \mathcal{L}_{X}=\mathcal{L}_{[X, Y]},} \tag{5.16}\\
& {\left[\mathcal{L}_{X}, d\right]=\mathcal{L}_{X} \circ d-d \circ \mathcal{L}_{X}=0,} \tag{5.17}\\
& d^{2}:=d \circ d=0 . \tag{5.18}
\end{align*}
$$

6 Covariant derivatives

6.1 A covariant derivative on a vector bundle $\pi: E \rightarrow M$ is a mapping

$$
D: \mathfrak{X}(M) \times \Gamma(\pi) \rightarrow \Gamma(\pi),(X, s) \mapsto D_{X} s
$$

which is tensorial in X and derivation in s, i.e, which satisfies the conditions $D_{f X} s=f D_{X} s, D_{X} f s=(X f) s+f D_{X} s\left(f \in C^{\infty}(M)\right)$. The smooth section $D_{X} s$ is called the covariant derivative of s with respect to X. The covariant differential of a section $s \in \Gamma(\pi)$ is the mapping

$$
D s: \mathfrak{X}(M) \rightarrow \Gamma(\pi), X \mapsto D s(X):=D_{X} s
$$

More generally, let $k \in \mathbb{N}^{*}$ and suppose that

$$
A:(\Gamma(\pi))^{k} \rightarrow C^{\infty}(M) \text { and } B:(\Gamma(\pi))^{k} \rightarrow \Gamma(\pi)
$$

are $C^{\infty}(M)$-multilinear mappings. Then we say that A and B are π-tensor fields of type $(0, k)$ and $(1, k)$, respectively. We define their covariant differentials $D A$ and $D B$ by

$$
\begin{align*}
& D A\left(X, s_{1}, s_{2}, \ldots, s_{k}\right):=\left(D_{X} A\right)\left(s_{1}, \ldots, s_{k}\right):=X\left(A\left(s_{1}, \ldots, s_{k}\right)\right) \\
& -\sum_{i=1}^{k} A\left(s_{1}, \ldots, D_{X} s_{i}, \ldots, s_{k}\right) \tag{6.1}
\end{align*}
$$

and

$$
\begin{align*}
& D B\left(X, s_{1}, \ldots, s_{k}\right):=\left(D_{X} B\right)\left(s_{1}, \ldots, s_{k}\right):=D_{X}\left(B\left(s_{1}, \ldots, s_{k}\right)\right) \\
& -\sum_{i=1}^{k} B\left(s_{1}, \ldots, D_{X} s_{i}, \ldots, s_{k}\right) \tag{6.2}
\end{align*}
$$

respectively. Then $D_{X} A$ is also a type $(0, k), D_{X} B$ is also a type $(1, k)$ π-tensor field.

If g is a scalar product on $\pi(\mathbf{2 . 1 1})$, then a covariant derivative D on π is called compatible with g or a metric derivative if $D g=0$.

Lemma 6.1.1 (localization). Let $\pi: E \rightarrow M$ be a vector bundle and D is a covariant derivative on π. Suppose that two sections $s_{1}, s_{2} \in \Gamma(\pi)$ coincide in a neighbourhood of a point $p \in M$. Then

$$
\left(D_{X} s_{1}\right)(p)=\left(D_{X} s_{2}\right)(p) \text { for all } X \in \mathfrak{X}(M) .
$$

For a proof, see, e.g., [5], Lemma 1.3.
Using this lemma we may define the covariant derivatives of (smooth) local sections of π.
6.2 The curvature tensor field (briefly the curvature tensor) of a covariant derivative D on $\pi: E \rightarrow M$ is the mapping

$$
\begin{align*}
& R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \Gamma(\pi) \rightarrow \Gamma(\pi), \\
& (X, Y, s) \mapsto R(X, Y) s:=D_{X} D_{Y} s-D_{Y} D_{X} s-D_{[X, Y]} s . \tag{6.3}
\end{align*}
$$

It can quickly be checked that R is $C^{\infty}(M)$-linear in all three arguments and skew-symmetric in the first two arguments.
6.3 By a covariant derivative on a manifold M we mean a covariant derivative

$$
D: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M),(X, Y) \mapsto D_{X} Y
$$

on its tangent bundle. Then we define the torsion tensor $T \in \mathcal{T}_{2}^{1}(M)$ of D by

$$
\begin{equation*}
T(X, Y):=D_{X} Y-D_{Y} X-[X, Y] ; X, Y \in \mathfrak{X}(M) . \tag{6.4}
\end{equation*}
$$

If $T=0$ we say that D is torsion-free or symmetric.
Given a chart $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ of M, and using the localization lemma 6.1.1, we define the Christoffel symbols $\Gamma_{j k}^{i} \in C^{\infty}(\mathcal{U})\left(i, j, k \in J_{n}\right)$ of D with respect to the chosen chart by

$$
\begin{equation*}
D_{\frac{\partial}{\partial u^{j}}} \frac{\partial}{\partial u^{k}}=\sum \Gamma_{j k}^{i} \frac{\partial}{\partial u^{i}} . \tag{6.5}
\end{equation*}
$$

6.4 A diffeomorphism $\varphi: U \rightarrow V$ between two open subsets of M is called a local automorphism of a covariant derivative D on M if

$$
\begin{equation*}
\varphi_{\#}\left(D_{X} Y \upharpoonright U\right)=\left(D_{\varphi_{\# X}} \varphi_{\#} Y\right) \upharpoonright V \text { for all } X, Y \in \mathfrak{X}(M) \tag{6.6}
\end{equation*}
$$

Then we also say that φ is a (local) D-automorphism. We define a vector field X on M to be D-Killing if the stages of its local one-parameter group are local automorphisms of D. We denote by $\operatorname{Kill}_{D}(M)$ the set of D-Killing vector fields on M. (Here we follow the terminology and notation of Serge Lang [16].)

Proposition 6.4.1. Let M be a manifold together with a covariant derivative D on M. Then we have:

$$
\begin{equation*}
X \in \operatorname{Kill}_{D}(M) \Longleftrightarrow \mathcal{L}_{X} D=0 \tag{6.7}
\end{equation*}
$$

For a proof see, e.g., [26], 2.123 Proposition, (i).
6.5 Suppose that D is a covariant derivative on M. Given a vector field $X \in \mathfrak{X}(M)$, let

$$
\begin{align*}
\left(\mathcal{L}_{X} D\right)(Y, Z) & :=\mathcal{L}_{X}\left(D_{Y} Z\right)-D_{\mathcal{L}_{X} Y} Z-D_{Y}\left(\mathcal{L}_{X} Z\right) \\
& =\left[X, D_{Y} Z\right]-D_{[X, Y]} Z-D_{Y}[X, Z] \tag{6.8}
\end{align*}
$$

It is easily checked that $\mathcal{L}_{X} D$ is $C^{\infty}(M)$-linear in both of its arguments. So $\mathcal{L}_{X} D$ is a type $(1,2)$ tensor field on M, called the Lie derivative of D.

Lemma 6.5.1 (see [26], 2.123 Proposition (ii)). Let D be a covariant derivative on M with curvature R. If D is torsion-free, then

$$
\begin{equation*}
\left(\mathcal{L}_{X} D\right)(Y, Z)=\left(R(X, Y)+D_{Y}(D X)\right)(Z) \tag{6.9}
\end{equation*}
$$

for all $X, Y, Z \in \mathfrak{X}(M)$. Thus

$$
\begin{equation*}
\left(\mathcal{L}_{X} D\right)=0 \Longleftrightarrow D_{Y} D X=R(Y, X) \text { for all } Y \in \mathfrak{X}(M) \tag{6.10}
\end{equation*}
$$

(where $R(X, Y)$ means the endomorphism

$$
\left.\mathfrak{X}(M) \rightarrow \mathfrak{X}(M), Z \mapsto R(X, Y) Z:=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z .\right)
$$

The proof is a straightforward calculation.

7 Constructions on the tangent bundle

7.1 Throughout this section, M is an n-dimensional manifold, $\tau: T M \rightarrow M$ is the tangent bundle of M, and $\tau_{T} M: T T M \rightarrow T M$ is the tangent bundle of $T M$. For local descriptions and calculations, we fix a chart $(\mathcal{U}, u)=\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ on M, and consider the induced chart $\left(\tau^{-1}(\mathcal{U}),\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)$ (see(3.2)) on $T M$. If f is a smooth function on M, then $f^{\vee}:=f \circ \tau$ and $f^{c}: T M \rightarrow \mathbb{R}, v \mapsto f^{c}(v):=v(f)$ are smooth functions on TM, called the vertical lift and the complete lift of f, respectively. Locally,

$$
\begin{equation*}
f^{c} \underset{(u)}{c} \sum y^{i}\left(\frac{\partial f}{\partial u^{i}} \circ \tau\right) . \tag{7.1}
\end{equation*}
$$

7.2 The vertical bundle of $T T M$ Given a vector $v \in T M$, the vector space

$$
\begin{equation*}
V_{v} T M:=\operatorname{Ker}\left(\tau_{*}\right)_{v}:=\left\{w \in T_{v} T M \mid\left(\tau_{*}\right)_{v}(w)=0\right\} \subset T_{v} T M \tag{7.2}
\end{equation*}
$$

is called the vertical subspace of $T_{v} T M$. The elements of $V_{v} T M$ are mentioned as vertical vectors at v. Since $\left(\tau_{*}\right)_{v}: T_{v} T M \rightarrow T_{\tau(v)} M$ is a surjective linear mapping, it follows that $\operatorname{dim} V_{v} T M=\operatorname{dim} T_{\tau(v)} M=$ n. A basis for $V_{v} T M$ is the family $\left(\left(\frac{\partial}{\partial y^{2}}\right)_{v}\right)_{i=1}^{n}$. Let

$$
V T M:=\bigcup_{v \in T M}^{\circ} T_{v} T M, \quad \tau_{T M}^{\vee}:=\tau_{T M} \upharpoonright V T M
$$

Then $V T M$ has a unique smooth structure such that $\tau_{T M}^{\vee}$ becomes a subbundle of $\tau_{T M}$ (or TTM). This vector bundle is called the vertical bundle of $\tau_{T M}$. We denote by $\mathfrak{X}^{\vee}(T M)$ the $C^{\infty}(M)$-module of smooth sections of $\tau_{T M}^{\vee}$, and we call the elements of $\mathfrak{X}^{\vee}(T M)$ vertical vector fields on $T M$. It is easy to show that for a vector field $\xi \in \mathfrak{X}(T M)$ the following are equivalent:
(i) $\xi \in \mathfrak{X}^{\vee}(T M)$;
(ii) $\xi \underset{\tau}{\sim} o$, where $o \in \mathfrak{X}(M)$ is the zero vector field;
(iii) $\xi\left(f^{\vee}\right)=0$ for all $f \in C^{\infty}(M)$
(see, e.g., [29], Lemma 4.1.28). From this and from the related vector field lemma 3.7.8 we conclude immediately that

$$
\xi_{1}, \xi_{2} \in \mathfrak{X}^{\mathrm{v}}(T M) \quad \text { implies } \quad\left[\xi_{1}, \xi_{2}\right] \in \mathfrak{X}^{\mathrm{v}}(T M),
$$

and hence $\mathfrak{X}^{\vee}(T M)$ is a subalgebra of the Lie algebra $\mathfrak{X}(T M)$.
7.3 Vertical lift Given a point $p \in M$ and two tangent vectors u, v at p, define a tangent vector $v^{\uparrow}(u) \in T_{u} T M$ by

$$
\begin{equation*}
v^{\uparrow}(u):=\left(i_{p} \circ \alpha\right) \cdot(0), \tag{7.3}
\end{equation*}
$$

where $i_{p}: T_{p} M \rightarrow T M$ is the canonical inclusion, and $\alpha: \mathbb{R} \rightarrow T_{p} M$ is a smooth curve given by $\alpha(t):=u+t v, t \in \mathbb{R}$. Applying (4.2), we find that

$$
\begin{aligned}
\left(i_{p} \circ \alpha\right) \cdot(0) & =\sum\left(\left(x^{i} \circ i_{p} \circ \alpha\right)^{\prime}(0)\left(\frac{\partial}{\partial x^{i}}\right)_{u}+\left(y^{i} \circ i_{p} \circ \alpha\right)^{\prime}(0)\left(\frac{\partial}{\partial y^{i}}\right)_{u}\right. \\
& =\sum y^{i}(v)\left(\frac{\partial}{\partial y^{i}}\right)_{u},
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
v^{\uparrow}(u)=\sum y^{i}(v)\left(\frac{\partial}{\partial y^{i}}\right)_{u} . \tag{7.4}
\end{equation*}
$$

Thus $v^{\uparrow}(u)$ is a vertical vector at u, called the vertical lift of $v \in T_{p} M$ to $u \in T_{p} M$. The vertical lift of a vector field $X \in \mathfrak{X}(M)$ is the vertical vector field

$$
X^{\mathrm{v}}: u \in T M \mapsto X^{\mathrm{v}}(u):=(X(\tau(u)))^{\uparrow}(u) \in V_{v} T M .
$$

If $X \underset{(\overline{\mathcal{u}})}{=} \sum X^{i} \frac{\partial}{\partial u^{i}}$, then

$$
\begin{equation*}
X^{\vee} \underset{(\bar{u})}{ } \sum\left(X^{i} \circ \tau\right) \frac{\partial}{\partial y^{i}} . \tag{7.5}
\end{equation*}
$$

This implies immediately that

$$
\begin{equation*}
(X+Y)^{\mathrm{v}}=X^{\mathrm{v}}+Y^{\mathrm{v}}, \quad(f X)^{\mathrm{v}}=f^{\mathrm{v}} X^{\mathrm{v}} \tag{7.6}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}(M), f \in C^{\infty}(M)$.
Lemma 7.3.1. Let X be a vector field on M.
(i) The vertical lift X^{\vee} of X is the unique vertical vector field on TM such that

$$
\begin{equation*}
X^{\mathrm{v}} f^{c}=(X f)^{\mathrm{v}} \text { for all } f \in C^{\infty}(M) . \tag{7.7}
\end{equation*}
$$

(ii) The vector field X^{\vee} is complete, and its flow is given by

$$
\begin{equation*}
\varphi^{X^{v}}(t, v)=v+t X(\tau(v)) \text { for all }(t, v) \in \mathbb{R} \times T M \tag{7.8}
\end{equation*}
$$

7.4 The Liouville vector field We have a canonical vertical vector field on $T M$, the Liouville vector field

$$
\begin{equation*}
C: T M \rightarrow T T M, v \mapsto C(v):=v^{\uparrow}(v) . \tag{7.9}
\end{equation*}
$$

Locally,

$$
\begin{equation*}
C=\left(\overline{\mathcal{U})} \sum y^{i} \frac{\partial}{\partial y^{i}} .\right. \tag{7.10}
\end{equation*}
$$

Lemma 7.4.1. (i) The Liouville vector field is the unique vertical vector field on TM such that

$$
\begin{equation*}
C f^{c}=f^{c} \text { for all } f \in C^{\infty}(M) . \tag{7.11}
\end{equation*}
$$

(ii) Define the dilatations $\mu_{t}\left(t \in \mathbb{R}^{*}\right)$ and positive dilatations μ_{t}^{+}(t is a real number) of TM by

$$
\begin{equation*}
\mu_{t}(v):=t v \quad \text { and } \quad \mu_{t}^{+}(v):=e^{t} v, \tag{7.12}
\end{equation*}
$$

respectively. Then

$$
\begin{equation*}
C \underset{\mu_{t}}{\sim} C \text {, i.e., }\left(\mu_{t}\right)_{*} \circ C=C \circ \mu_{t} \text { for all } t \in \mathbb{R}^{*} \text {. } \tag{7.13}
\end{equation*}
$$

The Liouville vector field is complete, its flow is given by

$$
\begin{equation*}
\varphi^{C}(t, v)=e^{t} v \quad \text { for all }(t, v) \in \mathbb{R} \times T M \tag{7.14}
\end{equation*}
$$

i.e., the one-parameter group generated by C is $\left(\mu_{t}^{+}\right)_{t \in \mathbb{R}}$.
7.5 The complete lift of a vector field Given a vector field X on M, there exists a unique vector field X^{c} on $T M$ such that for every smooth function f on M,

$$
\begin{equation*}
X^{c} f^{\vee}=(X f)^{\vee} \quad \text { and } X^{c} f^{c}=(X f)^{c} \tag{7.15a-b}
\end{equation*}
$$

The vector field X^{c} is called the complete lift of X. Locally, if $X \underset{(\overline{\mathcal{U}})}{=} \sum X^{i} \frac{\partial}{\partial u^{i}}$, then

$$
\begin{align*}
X^{\mathrm{c}} & =\sum\left(\left(X^{i} \circ \tau\right) \frac{\partial}{\partial x^{i}}+\sum y^{j}\left(\frac{\partial X^{i}}{\partial u^{j}} \circ \tau\right) \frac{\partial}{\partial y^{i}}\right) \\
& \stackrel{(7.1)}{=} \sum\left(\left(X^{i}\right)^{\vee} \frac{\partial}{\partial x^{i}}+\left(X^{i}\right)^{\mathrm{c}} \frac{\partial}{\partial y^{i}}\right) . \tag{7.16}
\end{align*}
$$

We have, in particular,

$$
\begin{equation*}
\left(\frac{\partial}{\partial u^{i}}\right)^{c}=\frac{\partial}{\partial x^{i}} \quad i \in J_{n} . \tag{7.17}
\end{equation*}
$$

It can be seen immediately from (7.16), that X^{c} is τ-related to X, i.e.,

$$
\begin{equation*}
\tau_{*} \circ X^{\mathrm{c}}=X \circ \tau . \tag{7.18}
\end{equation*}
$$

A further consequence of (7.16) is that

$$
\begin{equation*}
(X+Y)^{\mathrm{c}}=X^{\mathrm{c}}+Y^{\mathrm{c}}, \quad(f X)^{\mathrm{c}}=f^{\mathrm{v}} X^{\mathrm{c}}+f^{\mathrm{c}} X^{\mathrm{v}} \tag{7.19}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}(M), f \in C^{\infty}(M)$. It can also easily be shown that

$$
\begin{equation*}
\left(\varphi_{*}\right)_{\#} X^{\mathrm{c}}=\left(\varphi_{\#} X\right)^{\mathrm{c}} \text { for all } \varphi \in \operatorname{Diff}(M) . \tag{7.20}
\end{equation*}
$$

Lemma 7.5.1. Let X be a vector field on M with local flow φ^{X}. Then the local flow $\varphi^{X^{c}}: \mathcal{D}_{X^{\mathrm{c}}} \subset \mathbb{R} \times T M \rightarrow T M$ of X^{c} is given by

$$
\begin{equation*}
\varphi^{X^{\mathrm{c}}}(t, v)=\left(\varphi_{t}^{X}\right)_{*}(v) \quad \text { for all }(t, v) \in \mathcal{D}_{X^{\mathrm{c}}} . \tag{7.21}
\end{equation*}
$$

Otherwise stated, if X generates the local one-parameter group $\left(\varphi_{t}^{X}\right)$, then X^{c} generates the local one-parameter group $\left(\left(\varphi_{t}^{X}\right)_{*}\right)$.
7.6 Formulas for Lie brackets For any vector fields X, Y on M we have

$$
\begin{align*}
& {\left[X^{\vee}, Y^{\mathrm{v}}\right]=0,\left[X^{\mathrm{v}}, Y^{\mathrm{c}}\right]=[X, Y]^{\mathrm{v}},\left[X^{\mathrm{c}}, Y^{\mathrm{c}}\right]=[X, Y]^{\mathrm{c}}} \\
& \left.\left[C, X^{\mathrm{v}}\right]=-X^{\mathrm{v}},\left[C, X^{\mathrm{c}}\right]=0.22 \mathrm{a}-\mathrm{c}\right) \tag{7.23a-b}\\
& (7.23 \mathrm{a}-\mathrm{b})
\end{align*}
$$

7.7 Homogeneity

7.7.1 Let $\widetilde{T M} \subset T M$ be an open subset, and let $\widetilde{\tau}:=\tau \upharpoonright \widetilde{T M}$. We say that $\widetilde{T M}$ is a conic subset of $T M$ if $\widetilde{\tau}(\widetilde{T M})=M$ and

$$
\begin{equation*}
\mu_{t}^{+}(v) \in \widetilde{T M} \text { for all } v \in \widetilde{T M}, t \in \mathbb{R} \tag{7.24}
\end{equation*}
$$

Obviously, $T M$ is a conic subset of itself. A further important example is

$$
\stackrel{\circ}{T} M:=T M \backslash o(M), o \in \mathfrak{X}(M) \text { is the zero vector field. }
$$

Then we write $\stackrel{\circ}{\tau}:=\tau \upharpoonright \stackrel{\circ}{T} M$, and call $\stackrel{\circ}{\tau}: \stackrel{\circ}{T} M \rightarrow M$ the slit tangent bundle of M.

If $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ is a chart on M, then we define the induced chart $\left(\widetilde{\tau}^{-1}(\mathcal{U}),\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)$ on $\widetilde{T M}$ in the same way as in (3.2). For simplicity, the restriction of a vector field $\xi \in \mathfrak{X}(T M)$ to $\widetilde{T M}$ will usually be denoted also by ξ.
7.7.2 Let $\widetilde{T M}$ be a conic subset of $T M$, and let r be an integer. A function $F: \widetilde{T M} \rightarrow \mathbb{R}$ is called positive-homogeneous of degree r (or r^{+}-homogeneous for short) if $F \circ \mu_{t}^{+}=e^{r t} F$ for all $t \in \mathbb{R}$.

The following basic results are well-known:
(i) A C^{1}-function $F: \widetilde{T M} \rightarrow \mathbb{R}$ is r^{+}-homogeneous if, and only if, $C F=r F$ (Euler's theorem).
(ii) If a function $F: T M \rightarrow \mathbb{R}$ is continuous on $o(M)$ and 0^{+}homogeneous, then it is fibrewise constant.
(iii) If $F \in C^{1}(T M, \mathbb{R})$ and F is 1^{+}-homogeneous, then F is fibrewise linear, i.e., $F \upharpoonright T_{p} M \in\left(T_{p} M\right)^{*}$ for all $p \in M$.
(iv) If $F \in C^{2}(T M, \mathbb{R})$ and F is 2^{+}-homogeneous, then $F \upharpoonright T_{p} M$ is a quadratic form for all $p \in M$.
(v) Suppose that $r \in \mathbb{N}^{*}$, and let $\stackrel{\circ}{F}: \stackrel{\circ}{T} M \rightarrow \mathbb{R}$ be an r^{+}homogeneous continuous function. Then its extension

$$
F: T M \rightarrow \mathbb{R}, v \mapsto F(v):= \begin{cases}\stackrel{\circ}{F}(v) & \text { if } v \in \stackrel{\circ}{T} M \\ 0 & \text { if } v \in o(M)\end{cases}
$$

is a continuous function on $T M$. If $r \geq 2$ and $\stackrel{\circ}{F}$ is of class C^{1}, then F is also of class C^{1}. For proofs see [29], 4.2.9-4.2.11.
7.7.3 We continue to assume that $\widetilde{T M} \subset T M$ is a conic subset and $r \in \mathbb{Z}$. A differential form $\omega \in \mathcal{A}(\widetilde{T M})$, resp. a vector k-form L in $\mathcal{A}_{k}^{1}(\widetilde{T M})$ is called r^{+}-homogeneous if

$$
\begin{equation*}
\mathcal{L}_{C} \omega=r \omega, \quad \text { resp. } \mathcal{L}_{C} L=(r-1) L . \tag{7.25a-b}
\end{equation*}
$$

In the special case $L:=\xi \in \mathfrak{X}(\widetilde{T M})=\mathcal{A}_{0}^{1}(\widetilde{T M})$ condition (7.25 b) takes the form

$$
\begin{equation*}
[C, \xi]=(r-1) \xi . \tag{7.26}
\end{equation*}
$$

From this and from (7.23 a-b) it follows that the vertical lift of a vector field is 0^{+}-homogeneous, the complete lift of a vector field is 1^{+}-homogeneous. Thus, in particular, for every $i \in J_{n}$,

$$
\begin{align*}
& {\left[C, \frac{\partial}{\partial x^{i}}\right]=\left[C,\left(\frac{\partial}{\partial u^{i}}\right)^{c}\right]=0,} \tag{7.27}\\
& {\left[C, \frac{\partial}{\partial y^{i}}\right]=\left[C,\left(\frac{\partial}{\partial u^{i}}\right)^{\vee}\right]=-\frac{\partial}{\partial y^{i}} .} \tag{7.28}
\end{align*}
$$

If $\xi \underset{(\mathcal{U})}{=} \sum\left(\xi^{i} \frac{\partial}{\partial x^{i}}+\xi^{n+i} \frac{\partial}{\partial y^{i}}\right)$, then

$$
\begin{aligned}
& {[C, \xi] \underset{(\overline{\mathcal{U}})}{=} \sum\left(\left(C \xi^{i}\right) \frac{\partial}{\partial x^{i}}+\xi^{i}\left[C, \frac{\partial}{\partial x^{i}}\right]+\left(C \xi^{n+i}\right) \frac{\partial}{\partial y^{i}}+\xi^{n+i}\left[C, \frac{\partial}{\partial y^{i}}\right]\right)} \\
& (7.27),(7.28)
\end{aligned}\left(\left(C \xi^{i}\right) \frac{\partial}{\partial x^{i}}+\left(C \xi^{n+i}-\xi^{n+i}\right) \frac{\partial}{\partial y^{i}}\right), ~ \$
$$

therefore ξ is r^{+}-homogeneous if, and only if, the component functions ξ^{i} are $(r-1)^{+}$-homogeneous and the component functions ξ^{n+i} are r^{+}-homogeneous.

Part II

Lie derivatives in Finslerian setting

8 Finsler bundles and canonical constructions

8.1 Let M be an n-dimensional manifold. Consider the tangent bundle $\tau: T M \rightarrow M$ of M, and let $\widetilde{\tau}: \widetilde{T M} \rightarrow M$ be a 'conic subbundle' of τ as described in 7.7.1. Form the fibre product

$$
\widetilde{T M} \times_{M} T M:=\{(u, v) \in \widetilde{T M} \times T M \mid \widetilde{\tau}(u)=\tau(v)\},
$$

and let $\widetilde{\pi}:=\mathrm{pr}_{1} \upharpoonright \widetilde{T M} \times_{M} T M$. Then $\widetilde{\pi}: \widetilde{T M} \times_{M} T M \rightarrow \widetilde{T M}$ turns out to be a vector bundle of rank n over $\widetilde{T M}$ with fibres
$\widetilde{\pi}^{-1}(u)=\left\{(u, v) \in \widetilde{T M} \times T M \mid v \in T_{\widetilde{\tau}(u)} M\right\}=\{u\} \times T_{\widetilde{\tau}(u)} M \cong T_{\tau(u)} M$.
This vector bundle is called the Finsler bundle over $\widetilde{T M}$. The most important special cases are
$\pi: T M \times{ }_{M} T M \rightarrow T M-$ the Finsler bundle over $T M$, $\stackrel{\circ}{\pi}: \stackrel{\circ}{T} M \times{ }_{M} T M \rightarrow \stackrel{\circ}{T} M$ - the slit Finsler bundle.
8.2 Finsler vector fields The smooth sections of $\widetilde{\pi}$ are of the form

$$
\begin{equation*}
\widetilde{X}=\left(1_{\widetilde{T M}}, \underline{X}\right): u \in \widetilde{T M} \mapsto(u, \underline{X}(u)) \in \widetilde{T M} \times_{M} T M, \tag{8.1}
\end{equation*}
$$

where $\underline{X} \in C^{\infty}(\widetilde{T M}, T M)$ is such that $\tau \circ \underline{X}=\widetilde{\tau}$. We say that \underline{X} is the principal part of \widetilde{X}. Elements of the $C^{\infty}(\widetilde{T M})$-module $\Gamma(\widetilde{\pi})$ are also called Finsler vector fields on $\widetilde{T M}$. Finsler vector fields can be identified canonically with their principal parts.

We have a canonical section $\widetilde{\delta}$ in $\Gamma(\widetilde{\pi})$ with principal part $1_{\widetilde{T M}}$. Thus

$$
\begin{equation*}
\widetilde{\delta}: \widetilde{T M} \rightarrow \widetilde{T M} \times_{M} T M, u \mapsto \widetilde{\delta}(u):=(u, u) . \tag{8.2}
\end{equation*}
$$

If $X \in \mathfrak{X}(M)$, then

$$
\begin{equation*}
\widehat{X}:=\left(1_{\widetilde{T M}}, X \circ \widetilde{\tau}\right): u \in \widetilde{T M} \mapsto(u, X(\widetilde{\tau}(u))) \tag{8.3}
\end{equation*}
$$

is a Finsler vector field on $\widetilde{T M}$. Finsler vector fields of this type are called basic. The $C^{\infty}(\widetilde{T M})$-module $\Gamma(\widetilde{\pi})$ is locally generated by the basic Finsler vector fields. If $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ is a chart on M with induced chart $\left(\widetilde{\tau}^{-1}(\mathcal{U}),\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)$ on $\widetilde{T M}$, then

$$
\begin{gather*}
\tilde{\delta}=\sum y_{(u)}^{i} \frac{\widehat{\partial}}{\partial u^{i}}, \tag{8.4}\\
\widehat{X}=\sum\left(X^{i} \circ \tau\right) \frac{\widehat{\partial}}{\partial u^{i}} \text { if } X \in \mathfrak{X}(M), X \underset{(\mathcal{u})}{\sum \sum} X^{i} \frac{\partial}{\partial u^{i}} \tag{8.5}
\end{gather*}
$$

Given a Finsler vector field $\tilde{X} \in \Gamma(\pi)$ and a diffeomorphism φ of M, the mapping

$$
\begin{equation*}
\varphi_{\#} \widetilde{X}:=\left(\varphi_{*} \times \varphi_{*}\right) \circ \widetilde{X} \circ\left(\varphi_{*}\right)^{-1} \tag{8.6}
\end{equation*}
$$

is also a Finsler vector field, called the push-forward of \widetilde{X} by φ (or, more precisely, by $\left(\varphi_{*} \times \varphi_{*}\right)$. Here the ' \times ' is defined by (2.2). If $\varphi_{\#} \widetilde{X}=\widetilde{X}$, then we say that \widetilde{X} is invariant under φ (cf. 4.8). We use the same terminology if φ is a diffeomorphism between two open subsets of M. The following equalities can easily be checked:

$$
\begin{equation*}
\varphi_{\#} \widehat{X}=\widehat{\varphi_{\#} X}(X \in \mathfrak{X}(M)), \quad \varphi_{\#} \widetilde{\delta}=\widetilde{\delta} . \tag{8.7a-b}
\end{equation*}
$$

8.3 Finsler tensor fields The elements of the $C^{\infty}(\widetilde{T M})$-modules $T_{k}(\Gamma(\widetilde{\pi}))$ and $T_{k}^{1}(\Gamma(\widetilde{\pi}))$ are called Finsler tensor fields of type $(0, k)$ and $(1, k)$, respectively. Then, for example, a Finsler tensor field $A \in T_{k}^{1}(\Gamma(\widetilde{\pi}))(k \geqq 1)$ is a $C^{\infty}(\widetilde{T M})$-multilinear mapping from $(\Gamma(\widetilde{\pi}))^{k}$ to $\Gamma(\widetilde{\pi})$. As a tensor field on a manifold, a Finsler tensor field also has a well-defined value at each point of $\widetilde{T M}$. To illustrate this, we consider two examples.
(a) Let $A \in T_{1}^{1}(\Gamma(\widetilde{\pi}))$. Then, for every $v \in \widetilde{T M}$,

$$
A_{v} \in T_{1}^{1}\left(\{v\} \times T_{\tau(v)} M\right) \cong T_{1}^{1}\left(T_{\tau(v)} M\right)=\operatorname{End}\left(T_{\tau(v)} M\right)
$$

such that $(A(\widetilde{X}))(v)=A_{v}(\widetilde{X}(v))$ for all $\widetilde{X} \in \Gamma(\widetilde{\pi})$.
(b) If $g \in T_{2}(\Gamma(\widetilde{\pi}))$, then for every $v \in \widetilde{T M}$,

$$
g_{v} \in T_{2}\left(\{v\} \times T_{\tau(v)} M\right) \cong T_{2}\left(T_{\tau(v)} M\right),
$$

i.e., $g_{v}: T_{\tau(v)} M \times T_{\tau(v)} M \rightarrow \mathbb{R}$ is a bilinear function such that

$$
g(\widetilde{X}, \widetilde{Y})(v)=g_{v}(\widetilde{X}(v), \widetilde{Y}(v)) \text { for all } \widetilde{X}, \widetilde{Y} \in \Gamma(\widetilde{\pi})
$$

This interpretation makes it possible to define the crucial concept of the trace of a Finsler tensor field $A \in T_{k}^{1}(\Gamma(\widetilde{\pi}))(k \geqq 1)$ on the analogy of 5.2. If $k>1$, then $\operatorname{tr} A \in T_{k-1}(\Gamma(\widetilde{\pi}))$ is given by

$$
\begin{equation*}
(\operatorname{tr} A)\left(\widetilde{X_{1}}, \ldots, \widetilde{X_{l-1}}\right):=\operatorname{tr}\left(\widetilde{X} \mapsto A\left(\widetilde{X}, \widetilde{X_{1}}, \ldots, \widetilde{X_{l-1}}\right)\right) \in \Gamma(\widetilde{\pi}) . \tag{8.8}
\end{equation*}
$$

8.4 The bundle maps \mathbf{i}, \mathbf{j} and \mathbf{J} In what follows, for simplicity, we consider the Finsler bundle $\pi: T M \times_{M} T M \rightarrow T M$. However, our constructions may be carried out without changes to the more general case $\widetilde{\pi}: \widetilde{T M} \times_{M} T M \rightarrow \widetilde{T M}$.

Definition and Lemma 8.4.1. (i) The mapping

$$
\begin{equation*}
\mathbf{i}: T M \times_{M} T M \rightarrow V T M,(u, v) \mapsto \mathbf{i}(u, v):=v^{\uparrow}(u) \tag{8.9}
\end{equation*}
$$

is a strong bundle isomorphism of the Finsler bundle π onto the vertical bundle $\tau_{T M}^{\vee}: V T M \rightarrow T M$.
(ii) The mapping

$$
\begin{equation*}
\mathbf{j}:=\left(\tau_{T M}, \tau_{*}\right): T T M \rightarrow T M \times_{M} T M, w \mapsto\left(\tau_{T M}(w), \tau_{*}(w)\right) \tag{8.10}
\end{equation*}
$$

is a surjective strong bundle map from the tangent bundle of TM onto the Finsler bundle over TM. Its kernel is the vertical bundle of TTM.
(iii) The composite mapping $\mathbf{j} \circ \mathbf{i}: T M \times_{M} T M \rightarrow T M \times_{M} T M$ is the zero mapping, i.e., for all $(u, v) \in T M \times_{M} T M$ we have $\mathbf{j} \circ \mathbf{i}(u, v)=(\tau(u), 0)$, where $0 \in T_{\tau(u)} M$ is the zero vector.
(iv) The composite mapping

$$
\begin{equation*}
\mathbf{J}:=\mathbf{i} \circ \mathbf{j}: T T M \rightarrow T M \times_{M} T M \rightarrow T T M \tag{8.11}
\end{equation*}
$$

is a strong bundle map from TTM into itself, called the vertical endomorphism of TTM. We have

$$
\begin{equation*}
\operatorname{Im}(\mathbf{J})=\operatorname{Ker}(\mathbf{J})=V T M, \quad \mathbf{J}^{2}=0 . \tag{8.12a-b}
\end{equation*}
$$

(v) The sequence

$$
\begin{equation*}
0 \rightarrow T M \times_{M} T M \xrightarrow{\mathbf{i}} T T M \xrightarrow{\mathbf{j}} T M \times_{M} T M \rightarrow 0 \tag{8.13}
\end{equation*}
$$

is a short exact sequence of strong bundle maps in the sense that

$$
\begin{equation*}
\mathbf{i} \text { is injective, } \mathbf{j} \text { is surjective and } \operatorname{Im}(\mathbf{i})=\operatorname{Ker}(\mathbf{j}) \text {. } \tag{8.14}
\end{equation*}
$$

(The zeros mean trivial vector bundles over TM, whose typical fibre is the trivial \mathbb{R}-vector space $\{0\}$.)

For a proof we refer to [29], Subsection 4.1.3.
Now, by 2.10, it follows that we also have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \Gamma(\pi) \xrightarrow{\mathbf{i}} \mathfrak{X}(T M) \xrightarrow{\mathbf{j}} \Gamma(\pi) \rightarrow 0 \tag{8.15}
\end{equation*}
$$

of $C^{\infty}(T M)$-homomorphisms, where, for simplicity, we denote the module homomorphisms by the same symbols as the corresponding bundle maps in (8.13). In this interpretation,

$$
\mathbf{J}:=\mathbf{i} \circ \mathbf{j}: \mathfrak{X}(T M) \rightarrow \mathfrak{X}(T M)
$$

is an endomorphism of the $C^{\infty}(T M)$-module of vector fields on $T M$ such that

$$
\begin{equation*}
\operatorname{Im}(\mathbf{J})=\operatorname{Ker}(\mathbf{J})=\mathfrak{X}^{\vee}(T M) . \tag{8.16}
\end{equation*}
$$

We say that a differential form $\alpha \in \mathcal{A}_{k}(T M)\left(\right.$ resp. $\left.A \in \mathcal{A}_{k}^{1}(T M)\right)$ is semibasic if

$$
\begin{equation*}
i_{\mathbf{J} \xi} \alpha=0\left(\text { resp. } i_{\mathbf{J} \xi} A=0 \text { and } \mathbf{J} \circ A=0\right) \text { for all } \xi \in \mathfrak{X}(T M) . \tag{8.17}
\end{equation*}
$$

It can easily be seen that the mapping

$$
\begin{equation*}
\widetilde{A} \in T_{1}^{1}(\Gamma(\pi))=\operatorname{End}(\Gamma(\pi)) \mapsto A:=\mathbf{i} \circ \widetilde{A} \circ \mathbf{j} \in \operatorname{End}(\mathcal{X}(T M)) \tag{8.18}
\end{equation*}
$$

is a canonical isomorphism between the module of endomorphisms of $\Gamma(\pi)$ and the module of semibasic endomorphisms of $\mathfrak{X}(T M)$.

For a general discussion of such type of isomorphisms we refer to [28], 2.22.

Lemma 8.4.2. Concerning the $C^{\infty}(T M)$-homomorphisms \mathbf{i}, \mathbf{j} and the endomorphism $\mathbf{J} \in \operatorname{End}(\mathfrak{X}(T M))$ we have

$$
\begin{align*}
& \mathbf{i} \widehat{X}=X^{\mathrm{v}}, \mathbf{j} X^{\mathrm{c}}=\widehat{X}, \tag{8.19a-b}\\
& \mathbf{J} X^{\mathrm{c}}=X^{\mathrm{v}}, \mathbf{J} X^{\mathrm{v}}=0, \tag{8.20a-b}\\
& {\left[\mathbf{J}, X^{\mathrm{c}}\right]=\left[\mathbf{J}, X^{\mathrm{v}}\right]=0,} \tag{8.21a-b}
\end{align*}
$$

where $X \in \mathfrak{X}(M)$, and, furthermore

$$
\begin{equation*}
\mathbf{i} \widetilde{\delta}=C, \quad[\mathbf{J}, C]=\mathbf{J} \tag{8.22a-b}
\end{equation*}
$$

The proof is routine.
Lemma 8.4.3. If φ is a smooth transformation of M, then

$$
\begin{equation*}
\varphi_{* *} \circ \mathbf{i}=\mathbf{i} \circ\left(\varphi_{*} \times \varphi_{*}\right), \quad\left(\varphi_{*} \times \varphi_{*}\right) \circ \mathbf{j}=\mathbf{j} \circ \varphi_{* *} \tag{8.23a-b}
\end{equation*}
$$

For a proof we refer to [29], Lemma 4.1.64.

9 Vertical calculus

9.1 The vertical endomorphism $\mathbf{J} \in \mathcal{A}_{1}^{1}(T M)=\operatorname{End}(\mathfrak{X}(T M))$ induces two graded derivations of the Grassmann algebra $\mathcal{A}(T M)$: a derivation $i_{\mathbf{J}}$ of degree 0 and a derivation $d_{\mathbf{J}}$ of degree 1 . Referring to Lemma 5.3.1, we define the derivation $i_{\mathbf{J}}$ by its action on smooth functions and on their differentials:

$$
\begin{equation*}
i_{\mathbf{J}} F:=0 \text { and } i_{\mathbf{J}} d F:=d F \circ \mathbf{J} \text { for all } F \in C^{\infty}(T M) \tag{9.1}
\end{equation*}
$$

Then the operator $d_{\mathbf{J}}$ is defined as the graded commutator

$$
\begin{equation*}
d_{\mathbf{J}}:=\left[\mathbf{i}_{\mathbf{J}}, d\right] \stackrel{(5.6)}{=} i_{\mathbf{J}} \circ d-d \circ i_{\mathbf{J}} . \tag{9.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
d_{\mathbf{J}} F=i_{\mathbf{J}} d F=d F \circ \mathbf{J}, \quad d_{\mathbf{J}} d F=-d(d F \circ \mathbf{J}) . \tag{9.3a-b}
\end{equation*}
$$

9.2 Given a Finsler vector field $\widetilde{X} \in \Gamma(\pi)$, we define a derivation $\nabla_{\tilde{X}}^{v}$ prescribing its action on smooth functions and Finsler vector fields as follows:

$$
\begin{align*}
& \nabla_{\widetilde{X}}^{v} F:=(\mathbf{i} \widetilde{X}) F=(d F \circ \mathbf{i})(\widetilde{X}), \quad F \in C^{\infty}(T M) ; \tag{9.4}\\
&\left\{\begin{array}{l}
\nabla_{\widetilde{X}}^{v} \widetilde{Y}:=\mathbf{j}[\mathbf{i} \widetilde{X}, \eta], \quad \widetilde{Y} \in \Gamma(\pi), \\
\eta \in \mathfrak{X}(T M) \text { is such that } \mathbf{j} \eta=\widetilde{Y} .
\end{array}\right. \tag{9.5}
\end{align*}
$$

Then $\nabla_{\widetilde{X}}^{v} \widetilde{Y}$ is well-defined: does not depend on the choice of the vector field η satisfying $\mathbf{j} \eta=\widetilde{Y}$. The mapping

$$
\nabla_{\tilde{X}}^{v}: \widetilde{Y} \in \Gamma(\pi) \mapsto \nabla_{\tilde{X}}^{v} \tilde{Y} \in \Gamma(\pi)
$$

is \mathbb{R}-linear and satisfies the Leibniz rule

$$
\begin{equation*}
\nabla_{\tilde{X}}^{\vee} F \widetilde{Y}=\left(\nabla_{\widetilde{X}}^{\vee} F\right) \tilde{Y}+F \nabla_{\tilde{X}}^{\vee} \tilde{Y}^{2} \tag{9.6}
\end{equation*}
$$

Now we extend the operator $\nabla_{\tilde{X}}^{V}$ to act on any Finsler tensor field in such a way that Leibniz's rule remains valid. For any Finsler tensor field $A \in T_{k}(\Gamma(\pi)) \cup T_{k}^{1}(\Gamma(\pi))(k \geqq 1)$ we define the tensor $\nabla_{\tilde{X}}^{\vee} A$ of the same type by

$$
\begin{align*}
\left(\nabla_{\widetilde{X}}^{v} A\right)\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right) & :=\nabla_{\widetilde{X}}^{v}\left(A\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right)\right) \\
& -\sum_{i=1}^{k} A\left(\widetilde{X}_{1}, \ldots \nabla_{\tilde{X}}^{v} \widetilde{\widetilde{X}}_{i}, \ldots, \widetilde{X}_{k}\right) . \tag{9.7}
\end{align*}
$$

We say that $\nabla_{\tilde{X}}^{\vee} A$ is the canonical vertical covariant derivative, briefly the vertical derivative, of A with respect to the Finsler vector field \widetilde{X}. The (canonical) vertical differential of A is the Finsler tensor field $\nabla^{\vee} A$ of type $(0, k+1)$ or $(1, k+1)$ given by

$$
\begin{equation*}
\nabla^{\vee} A\left(\widetilde{X}, \widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right):=\left(\nabla_{\widetilde{X}}^{\vee} A\right)\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}\right) . \tag{9.8}
\end{equation*}
$$

Examples. (a) If $F \in C^{\infty}(T M)$, then $\nabla^{\vee} F=d F \circ \mathbf{i}$, therefore

$$
\begin{equation*}
\nabla^{\vee} F(\widehat{X})=X^{\vee} F \text { for all } X \in \mathfrak{X}(M) . \tag{9.9}
\end{equation*}
$$

The 1-form $d_{\mathbf{J}} F$ and the Finsler 1-form $\nabla^{\vee} F$ are related by $d_{\mathbf{J}} F=\nabla^{\vee} F \circ \mathbf{j}$.
(b) For every section $\widetilde{X} \in \Gamma(\pi)$ and vector field $Y \in \mathfrak{X}(M)$,

$$
\begin{equation*}
\nabla_{\tilde{X}}^{v} \widehat{Y}=0 . \tag{9.10}
\end{equation*}
$$

Indeed, $\nabla_{\widetilde{X}}^{v} \widehat{Y}=\mathbf{j}\left[\mathbf{i} \widetilde{X}, Y^{c}\right]$. Since $\mathbf{i} \widetilde{X} \underset{\tau}{\sim} 0$ and $Y^{c} \underset{\tau}{\sim} 0$, by the related vector field lemma (3.7.8) it follows that $\left[\mathbf{i} \widetilde{X}, Y^{c}\right]$ is vertical, hence $\mathbf{j}\left[\mathbf{i} \widetilde{X}, Y^{\mathrm{c}}\right]=0$.
(c) The vertical differential of the canonical section is the identity transformation of $\Gamma(\pi)$:

$$
\begin{equation*}
\nabla^{\vee} \widetilde{\delta}=1_{\Gamma(\pi)} . \tag{9.11}
\end{equation*}
$$

This can be seen, for example, by an easy local calculation.

10 The classical Lie derivative

10.1 Let M be a manifold and let $X \in \mathfrak{X}(M)$. If $A \in \mathcal{T}_{k}(M)$, then we define the Lie derivative $\mathcal{L}_{X} A$ by (5.10) and (5.12 b). Thus, if $k \geqq 1$,

$$
\begin{align*}
\left(\mathcal{L}_{X} A\right)\left(X_{1}, \ldots, X_{k}\right) & :=X\left(A\left(X_{1}, \ldots, X_{k}\right)\right) \\
& -\sum_{i=1}^{k} A\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{k}\right) \tag{10.1}
\end{align*}
$$

If $B \in \mathcal{T}_{k}^{1}(M)(k \geqq 1)$, then we define

$$
\begin{align*}
\left(\mathcal{L}_{X} B\right)\left(X_{1}, \ldots, X_{k}\right) & :=\left[X, B\left(X_{1}, \ldots, X_{k}\right)\right] \\
& -\sum_{i=1}^{k} B\left(X_{1}, \ldots,\left[X, X_{i}\right], \ldots, X_{k}\right) . \tag{10.2}
\end{align*}
$$

If, in particular, $B \in \operatorname{End}(\mathfrak{X}(M))$, then we write

$$
[B, Y]:=-\mathcal{L}_{Y} B,(Y \in \mathfrak{X}(M)),
$$

and we say that $[B, Y]$ is the Frölicher-Nijenhuis bracket of B and Y. From (10.2) we obtain

$$
\begin{equation*}
[B, Y] X=[B X, Y]-B([X, Y]) ; X \in \mathfrak{X}(M) . \tag{10.3}
\end{equation*}
$$

Lemma 10.1.2. Let $A \in \mathcal{T}_{l}(M), X \in \mathfrak{X}(M)$. Given a point $p \in M$, we have

$$
\begin{equation*}
\left(\mathcal{L}_{X} A\right)_{p}=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\left(\varphi_{t}^{X}\right)^{*} A\right)_{p}-A_{p}\right), \tag{10.4}
\end{equation*}
$$

where $\left(\varphi_{t}^{X}\right)$ is the local one-parameter group generated by X.
Proof. (cf. [21], pp. 147-148 and [24], p. 250). First we note that, for small $t \neq 0$, the difference quotient at the right-hand side of (10.4) has meaning, because φ_{t}^{X} is defined in a neighbourhood of p, and $\left(\left(\varphi_{t}^{X}\right)^{*} A\right)_{p}$ and A_{p} are elements of the finite-dimensional real vector space $T_{l}\left(T_{p} M\right)$.

Note further that, on the analogy of (4.8) and (4.9), relation (10.4) can be abbreviated as

$$
\begin{equation*}
\mathcal{L}_{X} A=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\varphi_{t}^{X}\right)^{*} A-A\right) . \tag{10.5}
\end{equation*}
$$

Now we turn to the actual proof. To simplify the writing, we assume that $l=2$. Then we have to show that

$$
\begin{equation*}
\left(\mathcal{L}_{X} A\right)_{p}\left(Y_{p}, Z_{p}\right)=\lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\left(\varphi_{t}^{X}\right)^{*} A\right)_{p}\left(Y_{p}, Z_{p}\right)-A_{p}\left(Y_{p}, Z_{p}\right)\right), \tag{*}
\end{equation*}
$$

for all $Y, Z \in \mathfrak{X}(M)$. By (10.1), the left-hand side of $(*)$ is equal to

$$
X_{p}(A(Y, Z))-A_{p}\left([X, Y]_{p}, Z_{p}\right)-A_{p}\left(Y_{p},[X, Z]_{p}\right) .
$$

Adding and subtracting a suitable term, the right hand-side of $(*)$ can be manipulated as follows:

$$
\begin{aligned}
& \lim _{t \rightarrow 0} \frac{1}{t}\left(\left(\left(\varphi_{t}^{X}\right)^{*} A\right)_{p}\left(Y_{p}, Z_{p}\right)-A_{p}\left(Y_{p}, Z_{p}\right)\right)= \\
& \lim _{t \rightarrow 0} \frac{1}{t}\left(A_{\varphi_{t}^{X}(p)}\left(\left(\varphi_{t}^{X}\right)_{*}\left(Y_{p}\right),\left(\varphi_{t}^{X}\right)_{*}\left(Z_{p}\right)\right)-A_{\varphi_{t}^{X}(p)}\left(Y_{\varphi_{t}^{X}(p)}, Z_{\varphi_{t}^{X}(p)}\right)\right) \\
& +\lim _{t \rightarrow 0} \frac{1}{t}\left(A_{\varphi_{t}^{X}(p)}\left(Y_{\varphi_{t}^{X}(p)}, Z_{\varphi_{t}^{X}(p)}\right)-A_{p}\left(Y_{p}, Z_{p}\right)=: L_{1}+L_{2} .\right.
\end{aligned}
$$

Here

$$
L_{2}=\lim _{t \rightarrow 0} \frac{1}{t}\left(A(Y, Z) \circ \varphi_{t}^{X}(p)-A(Y, Z)(p)\right) \stackrel{(4.6)}{=} X_{p}(A(Y, Z)) .
$$

To manipulate expression L_{1}, we use the telescoping identity

$$
A\left(u^{\prime}, v^{\prime}\right)-A(u, v)=A\left(u^{\prime}-u, v^{\prime}\right)+A\left(u, v^{\prime}-v\right) .
$$

Then we find that

$$
\begin{aligned}
L_{1} & =\lim _{t \rightarrow 0} \frac{1}{t} A_{\varphi_{t}^{X}}(p)\left(\left(\varphi_{t}^{X}\right)_{*}\left(Y_{p}\right)-Y_{\varphi_{t}^{X}(p)},\left(\varphi_{t}^{X}\right)_{*}\left(Z_{p}\right)\right) \\
& +\lim _{t \rightarrow 0} \frac{1}{t} A_{\varphi_{t}^{X}(p)}\left(Y_{\varphi_{t}^{X}(p)},\left(\varphi_{t}^{X}\right)_{*}\left(Z_{p}\right)-Z_{\varphi_{t}^{X}(p)}\right) \\
& \left.=A_{p}\left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\varphi_{t}^{X}\right)_{*}\left(Y_{p}\right)-Y_{\varphi_{t}^{X}(p)}\right), Z_{p}\right) \\
& +A_{p}\left(Y_{p}, \lim _{t \rightarrow 0} \frac{1}{t}\left(\varphi_{t}^{X}\right)_{*}\left(Z_{p}\right)-Z_{\varphi_{t}^{X}(p)}\right) \\
& \stackrel{(4.10)}{=}-A_{p}\left([X, Y]_{p}, Z_{p}\right)-A_{p}\left(Y_{p},[X, Z]_{p}\right),
\end{aligned}
$$

Thus
$L_{1}+L_{2}=L_{2}+L_{1}=X_{p}(A(Y, Z))-A_{p}\left([X, Y]_{p}, Z_{p}\right)-A_{p}\left(Y_{p},[X, Z]_{p}\right)$,
as was to be shown.
Lemma 10.1.3. Let $B \in \operatorname{End}(\mathfrak{X}(\mathrm{M}))$ and $X \in \mathfrak{X}(M)$. Then for every vector field Y on M,

$$
\begin{equation*}
\left.\left(\mathcal{L}_{X} B\right)(Y)=\lim _{t \rightarrow 0} \frac{1}{t}\left(\varphi_{-t}^{X}\right)_{\#} B(Y)-B\left(\left(\varphi_{-t}^{X}\right)_{\#} Y\right)\right), \tag{10.6}
\end{equation*}
$$

where $\left(\varphi_{t}^{X}\right)$ is the local one-parameter group generated by X.
Proof. We have immediately that

$$
\begin{aligned}
& \left.\lim _{t \rightarrow 0} \frac{1}{t}\left(\varphi_{-t}^{X}\right)_{\#} B(Y)-B\left(\left(\varphi_{-t}^{X}\right)_{\#} Y\right)\right) \\
& \left.\lim _{t \rightarrow 0} \frac{1}{t}\left(\varphi_{-t}^{X}\right)_{\#} B(Y)-B(Y)\right)-B\left(\lim _{t \rightarrow 0} \frac{1}{t}\left(\varphi_{-t}^{X}\right)_{\#} Y-Y\right) \\
& =[X, B Y]-B([X, Y]) \stackrel{(10.2)}{=}\left(\mathcal{L}_{X} B\right)(Y)
\end{aligned}
$$

Equality (10.6) can be abbreviated as follows:

$$
\begin{equation*}
\left.\mathcal{L}_{X} B=\lim _{t \rightarrow 0} \frac{1}{t}\left(\varphi_{-t}^{X}\right)_{\#} \circ B-B \circ\left(\varphi_{-t}^{X}\right)_{\#}\right) . \tag{10.7}
\end{equation*}
$$

The next result belongs to the folklore, but we were unable to find a proof for it in the literature which was completely satisfactory for us. Due to its key importance, after the preparations above, we include here our own proof.
Proposition 10.1.4. Let $B \in \operatorname{End}(\mathfrak{X}(\mathrm{M}))$, and let X be a vector field on M with local flow

$$
\varphi^{X}: \mathcal{D}(X) \subset \mathbb{R} \times M \rightarrow M
$$

Then $\mathcal{L}_{X} B=0$ if, and only if, B commutes with the derivative of every stage of φ^{X}, i.e,

$$
\left(\varphi_{t}^{X}\right)_{*} \circ B=B \circ\left(\varphi_{t}^{X}\right)_{*},
$$

where B is regarded as a smooth section of the vector bundle

$$
\pi: \bigcup_{p \in M}^{\circ} \operatorname{End}\left(T_{p} M\right) \rightarrow M, \pi(\psi):=m \text { if } \psi \in \operatorname{End}\left(T_{m} M\right)
$$

Proof. Suppose first that for every stage φ_{t}^{X} of φ^{X} we have $\left(\varphi_{t}^{X}\right)_{*} \circ B=$ $B \circ\left(\varphi_{t}^{X}\right)_{*}$. Then, for any $Y \in \mathfrak{X}(M)$,

$$
\begin{aligned}
& \left(\left(\varphi_{-t}^{X}\right)_{\#} \circ B-B \circ\left(\varphi_{-t}^{X}\right)_{\#}\right)(Y)=\left(\varphi_{-t}^{X}\right)_{*} \circ B(Y) \circ \varphi_{t}^{X} \\
& -B \circ\left(\varphi_{-t}^{X}\right)_{*} \circ Y \circ \varphi_{t}^{X}=\left(\left(\varphi_{-t}^{X}\right)_{*} \circ B(Y)-B \circ\left(\varphi_{-t}^{X}\right)_{*} \circ Y\right) \circ \varphi_{t}^{X}=0,
\end{aligned}
$$

which implies by the previous lemma that $\mathcal{L}_{X} B=0$.
Conversely, suppose that $\mathcal{L}_{X} B=0$. Choose a point $p \in M$ and a tangent vector $v \in T_{p} M$. Note first that by our assumption, we have

$$
[X, B Y]=B[X, Y] \text { for all } Y \in \mathfrak{X}(M)
$$

Applying (4.10), we find that

$$
\begin{aligned}
{[X, B Y]_{p} } & =\lim _{t \rightarrow 0} \frac{1}{t}\left((B Y)_{\varphi_{t}^{X}(p)}-\left(\varphi_{t}^{X}\right)_{*}(B Y)_{p}\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(B\left(Y_{\varphi_{t}^{X}(p)}\right)-\left(\varphi_{t}^{X}\right)_{*}\left(B\left(Y_{p}\right)\right)\right) ; \\
B[X, Y]_{p} & =B\left(\lim _{t \rightarrow 0} \frac{1}{t}\left(Y_{\varphi_{t}^{X}(p)}\right)-\left(\varphi_{t}^{X}\right)_{*}\left(Y_{p}\right)\right) \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left(B\left(Y_{\varphi_{t}^{X}(p)}-B\left(\left(\varphi_{t}^{X}\right)_{*}\left(Y_{p}\right)\right)\right),\right.
\end{aligned}
$$

from which it follows that

$$
\lim _{t \rightarrow 0}\left(B\left(\varphi_{t}^{X}\right)_{*}\left(Y_{p}\right)\right)-\left(\varphi_{t}^{X}\right)_{*}\left(B\left(Y_{p}\right)\right)=0 .
$$

Thus $\mathcal{L}_{X} B=0$ implies that

$$
\lim _{t \rightarrow 0} \frac{1}{t}\left(B \circ\left(\varphi_{t}^{X}\right)_{*}(v)-\left(\varphi_{t}^{X}\right)_{*} \circ B(v)\right)=0 . \quad(*)
$$

Now we define a mapping $h: I_{p} \rightarrow T_{p} M$ by

$$
h(t):=\left(\varphi_{-t}^{X}\right)_{*} \circ B \circ\left(\varphi_{t}^{X}\right)_{*}(v) .
$$

Our next goal is to show that h is constant.
Let $t \in I_{p}$ be arbitrary, and let, for short, $w:=\left(\varphi_{t}^{X}\right)_{*}(v)$. Then

$$
\begin{aligned}
& h^{\prime}(t)=\lim _{s \rightarrow 0} \frac{h(t+s)-h(t)}{s} \\
& =\lim _{s \rightarrow 0} \frac{\left(\varphi_{-t-s}^{X}\right)_{*} \circ B \circ\left(\varphi_{t+s}^{X}\right)_{*}(v)-\left(\varphi_{-t}^{X}\right)_{*} \circ B \circ\left(\varphi_{t}^{X}\right)_{*}(v)}{s} \\
& \left(\varphi_{-t}^{X}\right)_{*} \lim _{s \rightarrow 0}\left(\varphi_{-s}^{X}\right)_{*} \frac{B \circ\left(\varphi_{s}^{X}\right)_{*}(w)-\left(\varphi_{s}^{X}\right)_{*} \circ B(w)}{s} \\
& :=\left(\varphi_{-t}^{X}\right)_{*}(L(w)) .
\end{aligned}
$$

Continuing as in 4.7, we define the mappings

$$
\eta: I_{p} \times T_{p} M \rightarrow T_{p} M,(s, u) \mapsto \eta(s, u):=\left(\varphi_{-s}^{X}\right)_{*}(u)
$$

and

$$
Z: I_{p} \rightarrow T_{p} M, s \mapsto Z(s):=\frac{B \circ\left(\varphi_{s}^{X}\right)_{*}(w)-\left(\varphi_{s}^{X}\right)_{*} \circ B(w)}{s}
$$

Then $\eta(s, Z(s))=\left(\varphi_{-s}^{X}\right)_{*} \frac{B \circ\left(\varphi_{s}^{X}\right)_{*}(w)-\left(\varphi_{s}^{X}\right) * \circ B(w)}{s}$, so we obtain that

$$
\begin{aligned}
L(w) & =\lim _{s \rightarrow 0} \eta(s, Z(s))=\eta\left(0, \lim _{s \rightarrow 0} Z(s)\right) \\
& =\lim _{s \rightarrow 0} \frac{B \circ\left(\varphi_{s}^{X}\right)_{*}(w)-\left(\varphi_{s}^{X}\right)_{*} \circ B(w)}{s} \stackrel{(*)}{=} 0 .
\end{aligned}
$$

Thus $h^{\prime}(t)=0$ for every $t \in I_{p}$, and hence h is constant. Since $h(0)=$ $B(v)$, our assertion follows.

11 The Finslerian Lie derivative

11.0 For simplicity, throughout this subsection we work on the Finsler bundle $\pi: T M \times_{M} T M \rightarrow T M$. What we say remains valid without any change in the more general context of Finsler bundles over $\widetilde{T M}$, where $\overparen{T M}$ is a conic subbundle of $T M$ (see 8.1). The conventions fixed in 7.1 will be in force. We say that a vector field ξ on $T M$ is projectable if it is τ-equivalent to a vector field on M, i.e., there exists a vector field $X \in \mathfrak{X}(M)$ such that $\tau_{*} \circ \xi=X \circ \tau$ (cf. 3.7).
11.1 As a first step, we introduce the Lie derivative of a Finsler vector field with respect to a projectable vector field on $T M$. We note that our Lie derivative concept - suggested by M. Crampin and D. J. Saunders [8] - is a common generalization of the Lie derivatives with respect to the vertical, the complete and (in the presence of an Ehresmann connection) of the horizontal lift of a vector field on the base manifold; see [28], Section 2.39 and [18], $\S 2$.

Definition and Lemma 11.1.1. Let ξ be a projectable vector field on $T M$, and \widetilde{Y} be a section in $\Gamma(\pi)$.
(i) $I f$

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\xi} \widetilde{Y}:=\mathbf{i}^{-1}[\xi, \tilde{\mathbf{i}}] \tag{11.1}
\end{equation*}
$$

then $\widetilde{\mathcal{L}}_{\xi} \widetilde{Y}$ is a well-defined section in $\Gamma(\pi)$, called the Lie-derivative of \widetilde{Y} with respect to ξ.
(ii) The mapping $\widetilde{\mathcal{L}}_{\xi}: \Gamma(\pi) \rightarrow \Gamma(\pi), \widetilde{Y} \rightarrow \widetilde{\mathcal{L}}_{\xi} \widetilde{Y}$ satisfies the product rule

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\xi} F \widetilde{Y}=(\xi F) \widetilde{Y}+F \widetilde{\mathcal{L}_{\xi}} \widetilde{Y}, \quad F \in C^{\infty}(T M) \tag{11.2}
\end{equation*}
$$

(iii) If η is another projectable vector field on $T M$, then

$$
\begin{equation*}
\left[\widetilde{\mathcal{L}}_{\xi}, \widetilde{\mathcal{L}}_{\eta}\right]=\widetilde{\mathcal{L}}_{[\xi, \eta]}, \tag{11.3}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\xi} \circ \widetilde{\mathcal{L}}_{\eta}(\widetilde{Z})-\widetilde{\mathcal{L}}_{\eta} \circ \widetilde{\mathcal{L}}_{\xi}(\widetilde{Z})=\widetilde{\mathcal{L}}_{[\xi, \eta]} \widetilde{Z} \text { for all } \widetilde{Z} \in \Gamma(\pi) . \tag{11.4}
\end{equation*}
$$

(iv) We have the following formulae:

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \widetilde{\delta}=0, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}=\widehat{[X, Y]} ; \quad X, Y \in \mathfrak{X}(M) \tag{11.5a-b}
\end{equation*}
$$

Proof. (i) Since the vector field $\xi \underset{\sim}{\sim}$ is projectable, we have $\underset{\sim}{\sim} \sim X$, where $X \in \mathfrak{X}(M)$. On the other hand $\mathbf{i} \widetilde{Y} \sim 0$, because $\mathbf{i} \widetilde{Y} \in \mathfrak{X}^{v}(T M)$. Thus, by the related vector field lemma (3.7.8) we conclude that $[\xi, \mathbf{i} \widetilde{Y}] \sim 0$, and hence $[\xi, \mathbf{i} \widetilde{Y}]$ is vertical. The injective $C^{\infty}(T M)$-linear mapping i: $\Gamma(\pi) \rightarrow \mathfrak{X}(T M)$ is a bijection onto $\mathfrak{X}^{\mathfrak{v}}(T M)$, so we have the inverse mapping $\mathbf{i}^{-1}: \Gamma(\pi) \rightarrow \mathfrak{X}(T M)$, and we can form the section $\mathbf{i}^{-1}[\xi, \mathbf{i} \widetilde{Y}]$, as was to be shown.
(ii)

$$
\begin{aligned}
& \widetilde{\mathcal{L}}_{X^{c}} F \widetilde{Y}:=\mathbf{i}^{-1}[\xi, \mathbf{i}(F \widetilde{Y})]=\mathbf{i}^{-1}[\xi, F(\mathbf{i} \widetilde{Y})] \stackrel{(3.6 b)}{=} F \mathbf{i}^{-1}[\xi, \mathbf{i} \widetilde{Y}] \\
& +\mathbf{i}^{-1}(\xi F(\mathbf{i} \widetilde{Y}))=(\xi F) \widetilde{Y}+F \widetilde{\mathcal{L}_{\xi}} \widetilde{Y} .
\end{aligned}
$$

(iii) From the definition of $\widetilde{\mathcal{L}}_{\xi}$ and $\widetilde{\mathcal{L}}_{\eta}$,

$$
\widetilde{\mathcal{L}}_{\xi} \circ \widetilde{\mathcal{L}}_{\eta}(\widetilde{Z})=\widetilde{\mathcal{L}}_{\xi}\left(\mathbf{i}^{-1}[\eta, \mathbf{i} \widetilde{Z}]\right)=\mathbf{i}^{-1}[\xi,[\eta, \mathbf{i} \widetilde{Z}]] .
$$

Interchanging ξ and η and subtracting, we find that

$$
\begin{aligned}
& \widetilde{\mathcal{L}}_{\xi} \circ \widetilde{\mathcal{L}}_{\eta}(\widetilde{Z})-\widetilde{\mathcal{L}}_{\eta} \circ \widetilde{\mathcal{L}}_{\xi}(\widetilde{Z})=\mathbf{i}^{-1}([\xi,[\eta, \mathbf{i} \widetilde{Z}]]+[\eta,[\mathbf{i} \widetilde{Z}, \xi]]) \\
& \stackrel{\text { Jacobi }}{=} \mathbf{i}^{-1}[[\xi, \eta], \mathbf{i} \widetilde{Z}]=: \widetilde{\mathcal{L}}_{[\xi, \eta]} \widetilde{Z}
\end{aligned}
$$

as wanted.
(iv) Since $X^{\text {c }}$ is projectable (see (7.18)), formulae (11.5 a-b) have meaning. We obtain by an easy calculation that

$$
\widetilde{\mathcal{L}}_{X^{c}} \widetilde{\delta}:=\mathbf{i}^{-1}\left[X^{\mathrm{c}}, \mathbf{i} \tilde{\delta}\right] \stackrel{(8.22 a)}{=} \mathbf{i}^{-1}\left[X^{\mathrm{c}}, C\right] \stackrel{(7.23 b)}{=} 0 .
$$

and

$$
\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}:=\mathbf{i}^{-1}\left[X^{\mathrm{c}}, \mathbf{i} \widehat{Y}\right] \stackrel{(8.19 a)}{=} \mathbf{i}^{-1}\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right] \stackrel{(7.22 b)}{=} \mathbf{i}^{-1}[X, Y]^{\mathrm{v}}=\widehat{[X, Y]},
$$

which complete the proof.
Proposition 11.1.2. Let X and Y be vector fields on M. We have the following relations:

$$
\begin{align*}
& \widetilde{\mathcal{L}}_{X^{v}} \widetilde{Y}=\nabla_{\widehat{X}}^{v} \widetilde{Y} \text { for all } \widetilde{Y} \in \Gamma(\pi) ; \tag{11.6}\\
& \mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}}=\mathcal{L}_{X^{c}} \circ \mathbf{i} ; \tag{11.7}\\
& \widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{j}=\mathbf{j} \circ \mathcal{L}_{X^{c}} ; \tag{11.8}\\
& \widetilde{\mathcal{L}}_{X^{c}} \circ \nabla_{\widehat{Y}}^{v}-\nabla_{\widehat{Y}}^{v} \circ \widetilde{\mathcal{L}}_{X^{c}}=\widetilde{\mathcal{L}}_{[X, Y]^{v}} \tag{11.9}
\end{align*}
$$

Proof. (i) Let $\widetilde{Y}=\mathbf{j} \eta, \eta \in \mathfrak{X}(T M)$. Then, on the one hand,

$$
\mathbf{i} \widetilde{\mathcal{L}}_{X^{\vee}} \widetilde{Y}=\mathbf{i} \widetilde{\mathcal{L}}_{X^{\vee}} \mathbf{j} \eta:=\left[X^{\mathrm{c}}, \mathbf{J} \eta\right] .
$$

On the other hand,

$$
\mathbf{i} \nabla_{\widehat{X}}^{v} \widetilde{Y}=\mathbf{i} \nabla_{\widehat{X}}^{v} \mathbf{j} \eta \stackrel{(9.5)}{=} \mathbf{J}\left[X^{\mathrm{v}}, \eta\right] .
$$

Since $0 \stackrel{(8.21 b)}{=}\left[\mathbf{J}, X^{\mathrm{v}}\right] \eta \stackrel{(10.3)}{=}\left[\mathbf{J} \eta, X^{\mathrm{v}}\right]-\mathbf{J}\left[\eta, X^{\mathrm{v}}\right]$, and hence

$$
\begin{equation*}
\mathbf{J}\left[X^{\vee}, \eta\right]=\left[X^{\vee}, \mathbf{J} \eta\right], \tag{11.10}
\end{equation*}
$$

the equality (11.6) follows.
(ii) For every $\widetilde{Y} \in \Gamma(\pi)$,

$$
\mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}}(\widetilde{Y}):=\left[X^{\mathrm{c}}, \mathbf{i} \widetilde{Y}\right]=\widetilde{\mathcal{L}}_{X^{c}}(\mathbf{i} \widetilde{Y})=\left(\widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{i}\right)(\widetilde{Y}) .
$$

(iii) Let $\eta \in \mathfrak{X}(T M)$. Observe that, as above, we have

$$
0^{(8.21 a)}=\left[\mathbf{J}, X^{\mathrm{c}}\right] \eta=\left[\mathbf{J} \eta, X^{\mathrm{c}}\right]-\mathbf{J}\left[\eta, X^{\mathrm{c}}\right],
$$

whence

$$
\begin{equation*}
\mathbf{J}\left[X^{\mathrm{c}}, \eta\right]=\left[X^{\mathrm{c}}, \mathbf{J} \eta\right] . \tag{11.11}
\end{equation*}
$$

Taking this into account,

$$
\mathbf{i} \widetilde{\mathcal{L}}_{X^{c} \mathbf{j} \eta} \eta:=\left[X^{\mathrm{c}}, \mathbf{J} \eta\right]=\mathbf{J}\left[X^{\mathrm{c}}, \eta\right]=\mathbf{J} \mathcal{L}_{X^{c}} \eta
$$

from which (11.8) follows.
(iv) Consider a section $\widetilde{Z}=\mathbf{j} \zeta \in \Gamma(\pi)$, where $\zeta \in \mathfrak{X}(T M)$. Then $\mathbf{i} \widetilde{Z}=\mathbf{J} \zeta$, and we obtain

$$
\begin{aligned}
& \mathbf{i} \circ\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \circ \nabla_{\widehat{Y}}^{\vee}-\nabla_{\widehat{Y}}^{\vee} \circ \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\right)(\widetilde{Z}) \stackrel{(9.5),(11.1)}{=} \mathbf{i} \widetilde{\mathcal{L}}_{X^{\mathrm{c}} \mathbf{j}}\left[Y^{\mathrm{v}}, \zeta\right] \\
&-\mathbf{i} \nabla_{\widehat{Y}}^{\vee}\left(\mathbf{i}^{-1}\left[X^{\mathrm{c}}, \mathbf{J} \zeta\right]\right) \stackrel{(11.1),(11.11)}{=}\left[X^{\mathrm{c}}, \mathbf{J}\left[Y^{\mathrm{v}}, \zeta\right]\right]-\mathbf{i} \nabla_{\widehat{Y} \mathbf{v}}^{\vee} \mathbf{j}\left[X^{\mathrm{c}}, \zeta\right] \\
& \stackrel{(11.10),(9.5)}{=}\left[X^{\mathrm{c}},\left[Y^{\mathrm{v}}, \mathbf{J} \zeta\right]\right]-\mathbf{J}\left[Y^{\mathrm{v}},\left[X^{\mathrm{c}}, \zeta\right]\right] \stackrel{(11.10),(11.11)}{=}\left[X^{\mathrm{c}},\left[Y^{\mathrm{v}}, \mathbf{J} \zeta\right]\right] \\
&+\left[Y^{\mathrm{v}},\left[\mathbf{J} \zeta, X^{\mathrm{c}}\right]\right] \stackrel{\mathrm{Jacobi}}{=}-\left[\mathbf{J} \zeta,\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right]\right] \stackrel{(7.22 b)}{=}-\left[\mathbf{J} \zeta,[X, Y]^{\mathrm{v}}\right] \\
&=\left[[X, Y]^{\mathrm{v}}, \mathbf{i} \widetilde{Z}\right]=\mathbf{i} \widetilde{\mathcal{L}}_{[X, Y] \mathrm{v}} \widetilde{Z} .
\end{aligned}
$$

This proves (11.9), and finishes the proof of the Proposition.

Remark 11.1.3. In formula (11.9), $\nabla_{\widehat{Y}}^{v}$ and $\widetilde{\mathcal{L}}_{[X, Y]^{v}} \stackrel{(11.6)}{=} \nabla_{[X, Y]}^{v}$ annulate the basic sections, so it follows that

$$
\begin{equation*}
\nabla_{\widehat{Y}}^{\vee} \circ \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}=0 \quad \text { for all } X, Y, Z \in \mathfrak{X}(M) \tag{11.12}
\end{equation*}
$$

Obviously, this relation can also be checked by an easy direct calculation.

Proposition 11.1.4. Let X be a vector field on M, and let (φ_{t}) be the local one-parameter group of X. Then, for a Finsler vector field $\widetilde{Y} \in \Gamma(\pi), \widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}=0$ if, and only if, \widetilde{Y} is invariant under the stages of $\left(\varphi_{t}\right)$, i.e., for every possible $t \in \mathbb{R}$ we have

$$
\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \tilde{Y}=\tilde{Y} \circ\left(\varphi_{t}\right)_{*}
$$

Proof. By (11.7), $\mathbf{i} \widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}=\mathcal{L}_{X^{c}} \mathbf{i} \widetilde{Y}$. Since \mathbf{i} is injective, this implies that

$$
\widetilde{\mathcal{L}}_{X^{c}} \tilde{Y}=0 \Longleftrightarrow \mathcal{L}_{X^{c}} \mathbf{i} \tilde{Y}=0
$$

Thus, taking into account 4.8 and Lemma 7.5.1, it follows that

$$
\widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}=0 \Longleftrightarrow\left(\varphi_{t}\right)_{* *} \circ(\mathbf{i} \widetilde{Y})=(\mathbf{i} \widetilde{Y}) \circ\left(\varphi_{t}\right)_{*}
$$

Here $\left(\varphi_{t}\right)_{* *} \circ \mathbf{i} \stackrel{(8.23 a)}{=} \mathbf{i} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right)$, so our assertion follows.
11.2 Let ξ again be a projectable vector field on $T M$. Now we extend the derivation

$$
\widetilde{\mathcal{L}}_{\xi}: \Gamma(\pi) \rightarrow \Gamma(\pi), \quad \widetilde{Y} \mapsto \widetilde{\mathcal{L}}_{\xi} \tilde{Y}
$$

to a derivation of Finsler tensor fields of type $(0, k)$ and $(1, k)$.
(a) We set $\widetilde{\mathcal{L}}_{\xi} F:=\xi F$ if $F \in C^{\infty}(T M)=: T_{0}^{0}(\Gamma(\pi))$. We note that relations (11.3) and (11.9) remain valid over $C^{\infty}(T M)$. This is obvious in the first case, while in the second case it can be seen an easy calculation: for every smooth function F on $T M$ we have

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \circ \nabla_{\widehat{Y}}^{\mathrm{v}}-\widetilde{\mathcal{L}}_{Y^{\mathrm{c}}} \circ \nabla_{\widehat{X}}^{\mathrm{v}}\right) F=X^{\mathrm{c}}\left(Y^{\mathrm{v}} F\right)-Y^{\mathrm{c}}\left(X^{\mathrm{v}} F\right)=\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right] F \\
& \stackrel{(7.22}{=}{ }^{b)}[X, Y]^{\mathrm{v}} F=\widetilde{\mathcal{L}}_{[X, Y]^{\mathrm{v}}} F
\end{aligned}
$$

as wanted.
(b) The Lie derivative of a Finsler tensor field

$$
A \in T_{l}^{0}(\Gamma(\pi)) \cup T_{l}^{1}(\Gamma(\pi))(l \geqq 1)
$$

with respect to ξ is defined by

$$
\begin{align*}
\left(\widetilde{\mathcal{L}}_{\xi} A\right)\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{l}\right) & :=\widetilde{\mathcal{L}}_{\xi}\left(A\left(\widetilde{X}_{1}, \ldots, \widetilde{X}_{l}\right)\right) \\
& -\sum_{i=1}^{l} A\left(\widetilde{X}_{1}, \ldots, \widetilde{\mathcal{L}}_{\xi} \widetilde{X}_{i}, \ldots \widetilde{X}_{l}\right), \tag{11.13}
\end{align*}
$$

where $\widetilde{X}_{1}, \ldots, \widetilde{X}_{l} \in \Gamma(\pi)$.
11.3 Now let $D: \mathfrak{X}(T M) \times \Gamma(\pi) \rightarrow \Gamma(\pi)$ be a covariant derivative on the Finsler bundle π (for the general definition see 6.1). Given a projectable vector field ξ on $T M$, we define the Lie derivative $\widetilde{\mathcal{L}}_{\xi} D$ of D by

$$
\begin{align*}
& \left(\widetilde{\mathcal{L}}_{\xi} D\right)(\eta, \widetilde{Z}):=\widetilde{\mathcal{L}}_{\xi}\left(D_{\eta} \widetilde{Z}\right)-D_{\mathcal{L}_{\xi} \eta} \widetilde{Z}-D_{\eta}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Z}\right) \tag{11.14}\\
& =\widetilde{\mathcal{L}}_{\xi}\left(D_{\eta} \widetilde{Z}\right)-D_{[\xi, \eta]} \widetilde{Z}-D_{\eta}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Z}\right),
\end{align*}
$$

where $\eta \in \mathfrak{X}(T M), \widetilde{Z} \in \Gamma(\pi)$. Then the mapping

$$
\widetilde{\mathcal{L}}_{\xi} D: \mathfrak{X}(T M) \times \Gamma(\pi) \rightarrow \Gamma(\pi), \quad(\eta, \widetilde{Z}) \mapsto\left(\widetilde{\mathcal{L}}_{\xi} D\right)(\eta, \widetilde{Z})
$$

is $C^{\infty}(T M)$-linear in both of its argument. Indeed, for example, if $F \in C^{\infty}(T M)$, then

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{\xi} D\right)(F \eta, \widetilde{Z}):=\widetilde{\mathcal{L}}_{\xi}\left(D_{F \eta} \widetilde{Z}\right)-D_{[\xi, F \eta]} \widetilde{Z}-D_{F \eta}\left(\widetilde{\mathcal{L}_{\xi}} \widetilde{Z}\right) \\
& \stackrel{(3.6 b),(6.1)}{=} \widetilde{\mathcal{L}}_{\xi}\left(F D_{\eta} \widetilde{Z}\right)-F D_{[\xi, \eta]} \widetilde{Z}-(\xi F) D_{\eta} \widetilde{Z}-F D_{\eta}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Z}\right) \\
& \stackrel{(11.2)}{=} F\left(\widetilde{\mathcal{L}}_{\xi} D\right)(\eta, \widetilde{Z}),
\end{aligned}
$$

as wanted.
11.4 We continue to assume that D is a covariant derivative on π. Consider a diffeomorphism $\varphi: \mathcal{U} \rightarrow \mathcal{V}$ between two open subsets of M. On the analogy of definition (6.6), if

$$
\begin{equation*}
\varphi_{\#}\left(\left(D_{\xi} \widetilde{Y}\right) \upharpoonright \tau^{-1}(\mathcal{U})\right)=\left(D_{\left(\varphi_{*}\right) \sharp \xi} \varphi_{\#} \widetilde{Y}\right) \upharpoonright \tau^{-1}(\mathcal{V}) \tag{11.15}
\end{equation*}
$$

for all $\xi \in \mathfrak{X}(T M), \widetilde{Y} \in \Gamma(\pi)$, then we say that φ is a (local) D automorphism. (The push-forward of a Finsler vector field was defined in 8.2). To continue the analogy, a vector field X on M is called D-Killing, if the stages of its local one-parameter group are D automorphisms, and the set of D-Killing fields is denoted by $\operatorname{Kill}_{D}(\pi)$. Finally, the analogue of Proposition 6.4.1 is the following result:

$$
\begin{equation*}
X \in \operatorname{Kill}_{D}(\pi) \Longleftrightarrow \widetilde{\mathcal{L}}_{X^{c}} D=0 \tag{11.16}
\end{equation*}
$$

Part III

Lie symmetries

12 Semisprays and sprays

We follow the conventions described in 7.1
12.1 A mapping $S: T M \rightarrow T T M$ is called a semispray for M (or over $M)$ if it satisfies the following conditions:
(S1) $\tau_{T M} \circ S=1_{T M}$, i.e., S is a section of the vector bundle $\tau_{T M}: T T M \rightarrow T M$.
(S2) S is of class C^{1} on $T M$ and smooth on $\stackrel{\circ}{T} M$.
(S3) $\tau_{*} \circ S=1_{T M}$ or, equivalently, $\mathbf{J} S=C$.
If, in addition, we have
(S4) $[C, S]=S$, i.e., S is 2^{+}-homogeneous, then S is called a spray.
A spray is said to be affine or (quadratic) if it is of class C^{2} (and hence smooth) on $T M$. A manifold together with a spray is called a spray manifold.

If $S: T M \rightarrow T T M$ is a semispray, then it can be expressed locally as

$$
\begin{equation*}
S_{(\overline{\mathcal{U}})} \sum\left(y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i} \frac{\partial}{\partial y^{i}}\right), \tag{12.1}
\end{equation*}
$$

where the semispray coefficients $G^{i}: \tau^{-1}(\mathcal{U}) \rightarrow \mathbb{R}$ are of class C^{1} and their restrictions to $\tau^{-1}(\mathcal{U}) \cap \stackrel{\circ}{T} M$ are smooth. In the special case when S is a spray, the spray coefficients $G^{i}: \tau^{-1}(\mathcal{U}) \rightarrow \mathbb{R}$ are 2^{+}homogeneous and hence, by 7.7.2 (i), we have

$$
\begin{equation*}
\sum y^{j} \frac{\partial G^{i}}{\partial y^{j}}=2 G^{i}, \quad i \in J_{n} . \tag{12.2}
\end{equation*}
$$

Suppose, finally, that S is an affine spray. Then the spray coefficients G^{i} are 2^{+}-homogeneous functions of class C^{2}, so, in view of $\mathbf{7 . 7 . 2}$ (iii) their restrictions $G^{i} \upharpoonright T_{p} M(p \in \mathcal{U})$ are quadratic functions. Thus there exist smooth functions

$$
\Gamma_{j k}^{i}: \mathcal{U} \rightarrow \mathbb{R} ; \quad i, j, k \in J_{n}
$$

such that

$$
\begin{equation*}
G^{i}=\frac{1}{2} \sum y^{j} y^{k}\left(\Gamma_{j k}^{i} \circ \tau\right) \text { and } \Gamma_{j k}^{i}=\Gamma_{k j}^{i} . \tag{12.3}
\end{equation*}
$$

Lemma 12.1.1. Let $S: T M \rightarrow T T M$ be a semispray for M. Then
(i) $S f^{\vee}=f^{c}$ for all $f \in C^{\infty}(M)$;
(ii) $\left[X^{\vee}, S\right] \underset{\tau}{\sim} X$ for all $X \in \mathfrak{X}(M)$;
(iii) $\left[X^{\mathrm{c}}, S\right] \in \mathfrak{X}^{\mathrm{v}}(\stackrel{\circ}{T} M)$ for all $X \in \mathfrak{X}(M)$.

Proof. For every $v \in T M$,

$$
\left(S, f^{\vee}\right)(v)=S(v)(f \circ \tau) \stackrel{(3.3)}{=} \tau_{*}(S(v))(f) \stackrel{(\mathrm{S} 3)}{=} v(f)=: f^{c}(v),
$$

which proves (i). Given a smooth function f on M, we have

$$
\left[X^{\vee}, S\right](f \circ \tau)=X^{\vee}\left(S f^{\vee}\right)-S\left(X^{\vee} f^{\vee}\right) \stackrel{(i), 7.2}{=} X^{\vee} f^{\mathrm{c}} \stackrel{(7.7)}{=}(X f) \circ \tau \text {. }
$$

This implies that $\left[X^{\vee}, S\right] \sim X$ (see, e.g., [24], p.14). Similarly, we find that

$$
\begin{aligned}
& {\left[X^{\mathrm{c}}, S\right] f^{\vee}=X^{\mathrm{c}}\left(S f^{\vee}\right)-S\left(X^{\mathrm{c}} f^{\vee}\right) \stackrel{(i),(7.15 a)}{=} X^{\mathrm{c}} f^{\mathrm{c}}-S(X f)^{\vee}} \\
& \stackrel{(7.15 b),(i)}{=}(X f)^{\mathrm{c}}-(X f)^{\mathrm{c}}=0 .
\end{aligned}
$$

This implies (see 7.2) that $\left[X^{c}, S\right]$ is vertical, and completes the proof.

Lemma 12.1.2. Let S be a semispray for M. Then, for every vector field ξ on $T M$,

$$
\begin{equation*}
\mathbf{J}[\mathbf{J} \xi, S]=\mathbf{J} \xi \tag{12.4}
\end{equation*}
$$

(Grifone's identity). In particular,

$$
\begin{equation*}
\mathbf{J}\left[X^{\vee}, S\right]=X^{\vee} \quad \text { for all } X \in \mathfrak{X}(M) \tag{12.5}
\end{equation*}
$$

For a proof, see [11], Proposition I. 7 or [29] Lemma 5.1.9 and Corollary 5.1.10.

12.2 Automorphisms and symmetries

Lemma 12.2.1. If $S: T M \rightarrow T T M$ is a semispray and $\varphi \in \operatorname{Diff}(M)$, then $\left(\varphi_{*}\right)_{\#} S=\varphi_{* *} \circ S \circ \varphi_{*}^{-1}$ is also a semispray. This semispray is a spray whenever S is a spray.

Proof. We show that $\left(\varphi_{*}\right)_{\#} S$ satisfies ($S 3$) if S is a semispray, and $\left[C,\left(\varphi_{*}\right)_{\#} S\right]=\left(\varphi_{*}\right)_{\#} S$ if S is a spray. Indeed, in the first case we find

$$
\begin{aligned}
\tau_{*} \circ\left(\varphi_{*}\right)_{\#} S & =\tau_{*} \circ \varphi_{* *} \circ S \circ \varphi_{*}^{-1}=\left(\tau \circ \varphi_{*}\right)_{*} \circ S \circ \varphi_{*}^{-1} \\
& =(\varphi \circ \tau)_{*} \circ S \circ \varphi_{*}^{-1}=\varphi_{*} \circ \tau_{*} \circ S \circ \varphi_{*}^{-1} \stackrel{(\mathrm{~S} 2)}{=} \varphi_{*} \circ \varphi_{*}^{-1}=1_{T M},
\end{aligned}
$$

as desired. Now suppose that S is a spray. Since $\left(\varphi_{*}\right)_{\#} C=C$ (see [29], (4.1.112)), we get

$$
\left[C,\left(\varphi_{*}\right)_{\#} S\right]=\left[\left(\varphi_{*}\right)_{\#} C,\left(\varphi_{*}\right) \# S\right] \stackrel{(3.9)}{=}\left(\varphi_{*}\right) \#[C, S] \stackrel{(\mathrm{S} 4)}{=}\left(\varphi_{*}\right)_{\#} S,
$$

as was to be shown.
Definition and Lemma 12.2.2. Let S be a semispray for M.
(i) A diffeomorphism φ of M is called an automorphism of S if S is invariant under $\varphi_{*} \in \operatorname{Diff}(T M)$,i.e., $\left(\varphi_{*}\right)_{\#} S=S$. The automorphisms of S form a group under composition.
(ii) Let $\varphi: \mathcal{U} \rightarrow \mathcal{V}$ be a diffeomorphism between two open subsets of M. We say that φ is local automorphism of S if $S \upharpoonright\left(\tau^{-1}(\mathcal{U})\right)$ is invariant under φ_{*}, i.e.,

$$
\left(\varphi_{*}\right)_{\#}\left(S \upharpoonright \tau^{-1}(\mathcal{U})\right)=S \upharpoonright \tau^{-1}(\mathcal{V}) .
$$

(iii) A vector field X on M is called a Lie symmetry of S if the stages of the local one-parameter group $\left(\varphi_{t}\right)$ generated by X are local automorphisms of S.
(iv) A vector field $X \in \mathfrak{X}(M)$ is a Lie symmetry of S if, and only if, $\left[X^{\mathrm{c}}, S\right]=0$. The Lie symmetries of S form a subalgebra $\operatorname{Lie}_{S}(M)$ of the Lie algebra $\mathfrak{X}(M)$.

Proof. Only part (iv) requires some comments. If X generates the local one-parameter group $\left(\varphi_{t}\right)$, then $X^{\text {c }}$ generates the local one-parameter group $\left(\left(\varphi_{t}\right)_{*}\right)$ by Lemma 7.5.1. So, as in 4.8, $\left[X^{\mathrm{c}}, S\right]=0$ if, and only if, the local one-parameter group of X consists of local automorphisms of S.

If $X, Y \in \operatorname{Lie}_{S}(M)$, then we obviously have

$$
\lambda X+\mu Y \in \mathfrak{X}_{\text {Lie }}^{S}(M) ; \lambda, \mu \in \mathbb{R} .
$$

Since

$$
\left.\left.\left[[X, Y]^{\mathrm{c}}, S\right] \stackrel{(7.22}{=}{ }^{c}\right)\left[X^{\mathrm{c}}, Y^{\mathrm{c}}\right], S\right] \stackrel{\mathrm{Jacobi}}{=}-\left[\left[Y^{\mathrm{c}}, S\right], X^{\mathrm{c}}\right]-\left[\left[S, X^{\mathrm{c}}\right], Y^{\mathrm{c}}\right]=0,
$$

$[X, Y]$ also belongs to $\mathfrak{X}_{\text {Lie }}^{S}(M)$, thus proving that $\operatorname{Lie}_{S}(M)$ is a subalgebra of $\mathfrak{X}(M)$.

The last part of 12.2.2 can also be found in Lovas's paper [17] as a part of his Proposition 5.2 and his Corollary 5.3, in the framework of spray manifolds and with partly different proof.

Proposition 12.2.3 (cf. [7], Prop. 4.5.1). Let S be a semispray for M with semispray coefficients $G^{i}\left(i \in J_{n}\right)$, and let X be a vector field on M with local expression $X \upharpoonright \mathcal{U}=\sum X^{i} \frac{\partial}{\partial u^{i}}$.
(i) The vector field X is a Lie symmetry of S if, and only if, locally we have

$$
\begin{equation*}
X^{\mathrm{c}} G^{i}=G^{r}\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right)-\frac{1}{2} y^{r} y^{s}\left(\frac{\partial^{2} X^{i}}{\partial u^{r} \partial u^{s}} \circ \tau\right)\left(i \in J_{n}\right) \tag{12.6}
\end{equation*}
$$

(ii) If, in addition, S is a spray, then $X \in \mathfrak{X}_{\text {Lie }}^{S}(M)$ if, and only if,

$$
\begin{equation*}
X^{\mathrm{c}} G_{j k}^{i}=-\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau+\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right) G_{j k}^{r}-\left(\frac{\partial X^{r}}{\partial u^{j}} \circ \tau\right) G_{r k}^{i}-\left(\frac{\partial X^{r}}{\partial u^{k}} \circ \tau\right) G_{j r}^{i} \tag{12.7}
\end{equation*}
$$

($i, j, k \in J_{n}$), where

$$
\begin{equation*}
G_{j}^{i}:=\frac{\partial G^{i}}{\partial y^{i}}, \quad G_{j k}^{i}:=\frac{\partial G_{j}^{i}}{\partial y^{k}}=\frac{\partial G^{i}}{\partial y^{j} \partial y^{k}} . \tag{12.8}
\end{equation*}
$$

Proof. Step 1 We check assertion (i). This is just a calculation:

$$
\begin{aligned}
& {\left[X^{\mathrm{c}}, S\right]\left[\begin{array}{l}
\overline{(\mathcal{u})}
\end{array} X^{\mathrm{c}}, y^{r} \frac{\partial}{\partial x^{r}}-2 G^{r} \frac{\partial}{\partial y^{r}}\right] \stackrel{(3.6)}{=} y^{r}\left[X^{\mathrm{c}}, \frac{\partial}{\partial x^{r}}\right]+\left(X^{\mathrm{c}} y^{r}\right) \frac{\partial}{\partial x^{r}}} \\
& -2 G^{r}\left[X^{\mathrm{c}}, \frac{\partial}{\partial y^{r}}\right]-2\left(X^{\mathrm{c}} G^{i}\right) \frac{\partial}{\partial y^{i}} \stackrel{(7.15 b),(7.16)}{=} y^{r}\left[\left(X^{i}\right)^{\vee} \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{r}}\right] \\
& +y^{r}\left[\left(X^{i}\right)^{\mathrm{c}} \frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial x^{r}}\right]+\left(X^{i}\right)^{\mathrm{c}} \frac{\partial}{\partial x^{i}}-2 G^{r}\left[\left(X^{i}\right)^{\vee} \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{r}}\right] \\
& -2 G^{r}\left[\left(X^{i}\right)^{\mathrm{c}} \frac{\partial}{\partial y^{i}}, \frac{\partial}{\partial y^{r}}\right]-2\left(X^{\mathrm{c}} G^{i}\right) \frac{\partial}{\partial y^{i}} \stackrel{(7.1)}{=}-y^{r}\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right) \frac{\partial}{\partial x^{i}} \\
& -y^{r}\left(\frac{\partial}{\partial x^{r}}\left(y^{s}\left(\frac{\partial X^{i}}{\partial u^{s}} \circ \tau\right)\right) \frac{\partial}{\partial y^{i}}\right)+y^{r}\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right) \frac{\partial}{\partial x^{i}} \\
& +2 G^{r}\left(\frac{\partial}{\partial y^{r}}\left(y^{s}\left(\frac{\partial X^{i}}{\partial u^{s}} \circ \tau\right)\right) \frac{\partial}{\partial y^{i}}\right)=-y^{r} y^{s}\left(\frac{\partial^{2} X^{i}}{\partial u^{r} \partial u^{s}} \circ \tau\right) \frac{\partial}{\partial y^{i}} \\
& =+2 G^{r}\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right) \frac{\partial}{\partial y^{i}}-2\left(X^{\mathrm{c}} G^{i}\right) \frac{\partial}{\partial y^{i}}
\end{aligned}
$$

whence

$$
\left.-\frac{1}{2}\left[X^{\mathrm{c}}, S\right]_{(\overline{\mathcal{U}})}\left(X^{\mathrm{c}} G^{i}-G^{r}\left(\frac{\partial X^{i}}{\partial u^{r}}\right) \circ \tau\right)+\frac{1}{2} y^{r} y^{s}\left(\frac{\partial^{2} X^{i}}{\partial u^{r} \partial u^{s}} \circ \tau\right)\right) \frac{\partial}{\partial y^{i}} .
$$

Thus $\left[X^{\mathrm{c}}, S\right]=0$ if, and only if, we have (locally) relation (12.6).
Step 2. We show that (12.6) implies (12.7). To see this, we differentiate both side of (12.6) with respect to y^{j} and y^{k}. We find, on the one hand, that

$$
\begin{aligned}
& \frac{\partial}{\partial y^{j}}\left(X^{\mathrm{c}} G^{i}\right)=\left[\frac{\partial}{\partial y^{j}}, X^{\mathrm{c}}\right] G^{i}+X^{\mathrm{c}} G_{j}^{i} \stackrel{(7.22 b)}{=}\left[\frac{\partial}{\partial u^{j}}, X\right]^{\mathrm{v}} G^{i}+X^{\mathrm{c}} G_{j}^{i} \\
& =\left(\frac{\partial X^{r}}{\partial u^{j}} \circ \tau\right) G_{r}^{i}+X^{\mathrm{c}} G_{j}^{i},
\end{aligned}
$$

therefore

$$
\begin{aligned}
& \frac{\partial}{\partial y^{k}}\left(\frac{\partial}{\partial y^{j}} X^{\mathrm{c}} G^{i}\right)=\left(\frac{\partial X^{r}}{\partial u^{j}} \circ \tau\right) G_{r k}^{i}+\left[\frac{\partial}{\partial y^{k}}, X^{\mathrm{c}}\right] G_{j}^{i}+X^{\mathrm{c}} G_{j k}^{i} \\
& =\left(\frac{\partial X^{r}}{\partial u^{j}} \circ \tau\right) G_{r k}^{i}+\left(\frac{\partial X^{r}}{\partial u^{k}} \circ \tau\right) G_{j r}^{i}+X^{\mathrm{c}} G_{j k}^{i} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \frac{\partial}{\partial y^{k}}\left(\frac{\partial}{\partial y^{j}}\left(G^{r}\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right)\right)-\frac{1}{2} y^{r} y^{s}\left(\frac{\partial^{2} X^{i}}{\partial u^{r} \partial u^{s}} \circ \tau\right)\right) \\
= & \frac{\partial}{\partial y^{k}}\left(\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right) G_{j}^{r}-y^{s}\left(\frac{\partial^{2} X^{i}}{\partial u^{i} \partial u^{s}} \circ \tau\right)\right) \\
= & \left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right) G_{j k}^{r}-\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau,
\end{aligned}
$$

so our claim follows.
Step 3. Now we assume that S is a spray, and we show that in this case (12.7) implies (12.6). Under our assumption the functions G^{i} and G_{j}^{i} are positive-homogeneous of degree 2 and 1 , respectively, so we have

$$
\begin{equation*}
G_{j}^{i} y^{j}=2 G^{i}, \quad G_{j k}^{i} y^{k}=G_{j}^{i} \tag{12.9}
\end{equation*}
$$

Now we multiply both sides of (12.7) by $y^{j} y^{k}$. Then the left-hand side gives

$$
\begin{aligned}
& \left(X^{\mathrm{c}} G_{j k}^{i}\right) y^{j} y^{k}=X^{\mathrm{c}}\left(G_{j k}^{i} y^{j} y^{k}\right)-G_{j k}^{i}\left(X^{\mathrm{c}}\left(u^{j}\right)^{\mathrm{c}}\right) y^{k}-G_{j k}^{i} y^{j}\left(X^{\mathrm{c}}\left(u^{k}\right)^{\mathrm{c}}\right) \\
& \stackrel{(12.9),(7.15 b)}{=} 2 X^{\mathrm{c}} G^{i}-G_{j}^{i}\left(X^{j}\right)^{\mathrm{c}}-G_{k}^{i}\left(X^{k}\right)^{\mathrm{c}}=2\left(X^{\mathrm{c}} G^{i}-G_{r}^{i}\left(X^{r}\right)^{\mathrm{c}}\right) .
\end{aligned}
$$

The right-hand side takes the form

$$
-\left(\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau\right) y^{j} y^{k}+2 G^{r}\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right)-2 G_{r}^{i}\left(X^{r}\right)^{c},
$$

so we obtain that

$$
X^{\mathrm{c}} G^{i}=G^{r}\left(\frac{\partial X^{i}}{\partial u^{r}} \circ \tau\right)-\frac{1}{2}\left(\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau\right) y^{i} y^{k} .
$$

This proves our claim, and completes the proof of the proposition.
We note that in the book [7] of Bucataru and Miron, Lie symmetries of a semispray were defined by the condition 12.2 .2 (iv), and were characterized locally, by (12.6).

$13 \mathcal{H}$-Killing vector fields

13.1 Ehresmann connections

13.1.1 Let M be a manifold and consider its slit tangent bundle $\stackrel{\circ}{\tau}: \stackrel{\circ}{T} M \rightarrow M$. By an Ehresmann connection in $\stackrel{\circ}{T} M$ we mean a $C^{\infty}(\stackrel{\circ}{T} M)$-linear mapping $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M)$ such that

$$
\begin{equation*}
\mathbf{j} \circ \mathcal{H}=1_{\Gamma(\pi)} . \tag{13.1}
\end{equation*}
$$

The fundamental lemma of strong bundle maps (2.10) assures us that \mathcal{H} can be equivalently be regarded as a strong bundle map

$$
\mathcal{H}: \stackrel{\circ}{T} M \times_{M} T M \rightarrow T \stackrel{\circ}{T} M
$$

Then, for every $v \in \stackrel{\circ}{T} M$,

$$
\mathcal{H}_{v}:=\mathcal{H} \upharpoonright\{v\} \times T_{\tau(v)} M:\{v\} \times T_{\tau(v)} M \cong T_{\tau(v)} M \rightarrow T_{v} \stackrel{\circ}{T} M
$$

is an \mathbb{R}-linear mapping, and condition (13.1) reads as follows: for all

$$
\begin{gather*}
(v, w) \in \stackrel{\circ}{T} M \times_{M} T M, \mathbf{j} \circ \mathcal{H}_{v}(w) \stackrel{(8.10)}{=}\left(v, \tau_{*} \circ \mathcal{H}_{v}(w)\right)=(v, w), \text { i.e., } \\
\mathbf{j} \circ \mathcal{H}_{v}=1_{T_{\tau(v)} M} \text { for all } v \in \stackrel{\circ}{T} M . \tag{13.2}
\end{gather*}
$$

13.1.2 Let $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M)$ be an Ehresmann connection in $\stackrel{\circ}{T} M$. Then $\mathfrak{X}^{\mathrm{h}}(\stackrel{\circ}{T} M):=\operatorname{Im}(\mathcal{H})$ is a submodule of $\mathfrak{X}(\stackrel{\circ}{T} M)$, and we have the direct sum decomposition

$$
\begin{equation*}
\mathfrak{X}(\stackrel{\circ}{T} M)=\mathfrak{X}^{\vee}(\stackrel{\circ}{T} M) \oplus \mathfrak{X}^{\mathrm{h}}(\stackrel{\circ}{T} M) . \tag{13.3}
\end{equation*}
$$

Vector fields on $\stackrel{\circ}{T} M$ belonging to $\mathfrak{X}^{\mathrm{h}}(\stackrel{\circ}{T} M)$ are called horizontal (with respect to \mathcal{H}). Notice that horizontal vector fields do not form, in general, a subalgebra of the Lie algebra $\mathfrak{X}(\stackrel{\circ}{T} M)$.

The mappings

$$
\begin{align*}
& \mathbf{h}:=\mathcal{H} \circ \mathbf{j}, \quad \mathbf{v}=1_{\mathfrak{X}(\stackrel{\circ}{T} M)}-\mathbf{h}, \tag{13.4a-b}\\
& \mathcal{V}:=\mathbf{i}^{-1} \circ \mathbf{v}: \mathfrak{X}(\stackrel{\circ}{T} M) \rightarrow \mathfrak{X}^{\mathrm{v}}(\stackrel{\circ}{T} M) \rightarrow \Gamma(\stackrel{\circ}{\pi}) \tag{13.5}
\end{align*}
$$

are the horizontal projection, the vertical projection and the vertical mapping associated to \mathcal{H}, respectively. Then \mathbf{h} and \mathbf{v} are indeed projections, i.e., we have $\mathbf{h}^{2}=\mathbf{h}$ and $\mathbf{v}^{2}=\mathbf{v}$. The vertical mapping \mathcal{V} has properties

$$
\begin{equation*}
\mathcal{V} \circ \mathbf{i}=1_{\Gamma(\pi)}, \operatorname{Ker}(\mathcal{V})=\operatorname{Im}(\mathcal{H}) \tag{13.6}
\end{equation*}
$$

Since $C=\mathbf{i}(\widetilde{\delta})$ by $(8.22 a)$, thus it follows that

$$
\begin{equation*}
\mathcal{V}(C)=\widetilde{\delta} \tag{13.7}
\end{equation*}
$$

Obviously, \mathbf{h}, \mathbf{v} and \mathcal{V} can be also regarded as strong bundle maps. If $\mathbf{h}_{v}:=h \upharpoonright T_{v} \stackrel{\circ}{T} M, \mathbf{v}_{v}:=\mathbf{v} \upharpoonright T_{v} \stackrel{\circ}{T} M$, then $\mathbf{h}_{v}, \mathbf{v}_{v} \in \operatorname{End}\left(T_{v} \stackrel{\circ}{T} M\right)$, and

$$
\begin{equation*}
\mathbf{h}_{v}(w)=\mathcal{H}\left(v,\left(\tau_{*}\right)_{v}(w)\right) \text { for all } w \in T_{v} \stackrel{\circ}{T} M \tag{13.8}
\end{equation*}
$$

13.1.3 The horizontal lift of a vector field $X \in \mathfrak{X}(M)$ with respect to an Ehresmann connection $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathcal{X}(\stackrel{\circ}{T} M)$ is

$$
\begin{equation*}
X^{h}:=\mathcal{H}(\widehat{X})=\mathcal{H}\left(\mathbf{j} X^{\mathrm{c}}\right) \stackrel{(13.4)}{=} \mathbf{h}\left(X^{\mathrm{c}}\right) . \tag{13.9}
\end{equation*}
$$

(In this formula, \widehat{X} and X^{c} are regarded as a section in $\Gamma(\stackrel{\circ}{\pi})$ and a vector field on $\stackrel{\circ}{T} M$, resp.; for simplicity, we make no notational distinction between them and the corresponding objects in $\Gamma(\pi)$ and $\mathfrak{X}(T M)$.$) The horizontal lift X^{\mathrm{h}}$ of X is a projectable vector field,

$$
\begin{equation*}
X^{\mathrm{h}} \underset{\tau}{\sim} X \text {, i.e., } \tau_{*} \circ X^{\mathrm{h}}=X \circ \tau . \tag{13.10}
\end{equation*}
$$

Indeed, for every $v \in \stackrel{\circ}{T} M$ we have

$$
\begin{aligned}
& \tau_{*} \circ X^{\mathrm{h}}(v):=\tau_{*} \circ \mathcal{H} \circ \widehat{X}(v) \stackrel{(8.3)}{=} \tau_{*} \circ \mathcal{H}(v, X \circ \tau(v)) \\
& =\tau_{*} \circ \mathcal{H}_{v}(X \circ \tau(v)) \stackrel{(\stackrel{13.2)}{=} X \circ \tau(v) .}{ } .
\end{aligned}
$$

13.1.4 An Ehresmann connection $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M)$ is called homogeneous if

$$
\begin{equation*}
\left[C, X^{\mathrm{h}}\right]=0 \text { for all } X \in \mathfrak{X}(M) . \tag{13.11}
\end{equation*}
$$

By 4.8 and Lemma 7.4.1 (ii), this hold if, and only if,

$$
\begin{equation*}
\left(\mu_{t}^{+}\right)_{*} \circ X^{\mathrm{h}}=X^{\mathrm{h}} \circ \mu_{t}^{+} \text {for all } t \in \mathbb{R} . \tag{13.12}
\end{equation*}
$$

Then \mathcal{H}, as a strong bundle map of $\stackrel{\circ}{T} M \times T M$ into $T \stackrel{\circ}{T} M$, may be continuously extended to mapping from $T M \times_{M} T M$ into $T T M$ such that

$$
\mathcal{H}\left(0_{p}, w\right)=\left(\sigma_{*}\right)_{p}(w) \text { for all } p \in M, w \in T_{p} M
$$

Thus, in what follows, we shall always assume that a homogeneous Ehresmann connection is defined on the entire Finsler bundle $T M \times{ }_{M} T M$.
13.1.5 Given an Ehresmann connection $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathcal{X}(\stackrel{\circ}{T} M)$ and a Finsler vector field $\widetilde{X} \in \Gamma(\stackrel{\circ}{\pi})$, we define a differential operator $\nabla_{\widetilde{X}}^{\mathrm{h}}$, following the scheme of section 9.2 . First we prescribe its action
on smooth functions by $\nabla_{\widetilde{X}}^{\mathrm{h}} F:=(\mathcal{H} \widetilde{X}) F \quad\left(F \in C^{\infty}(\stackrel{\circ}{T} M)\right)$;
on Finsler vector fields by $\nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}:=\mathcal{V}[\mathcal{H} \widetilde{X}, \mathbf{i} \widetilde{Y}](\widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi}))$.
Then the Leibniz rule $\nabla_{\tilde{X}}^{h} F \widetilde{Y}=\left(\nabla_{\tilde{X}}^{h} F\right) \widetilde{Y}+F \nabla_{\tilde{X}}^{h} \widetilde{Y}$ is satisfied (cf. (9.6)). The mapping

$$
\nabla^{\mathrm{h}}: \Gamma(\stackrel{\circ}{\pi}) \times \Gamma(\stackrel{\circ}{\pi}) \rightarrow \Gamma(\stackrel{\circ}{\pi}),(\widetilde{X}, \tilde{Y}) \mapsto \nabla_{\widetilde{X}}^{\mathrm{h}} \tilde{Y}
$$

defined by (13.14) is called the horizontal Berwald derivative (or h Berwald derivative for short) induced by \mathcal{H}. In the next step, we extend to the operators $\nabla_{\widetilde{X}}^{\mathrm{h}}(\widetilde{X} \in \Gamma(\stackrel{\circ}{\pi}))$ to arbitrary Finsler tensor fields in such a way that derivation property be satisfied. Finally, we define the ∇^{h}-differential of Finsler tensor fields, formally in the same
way as the ∇^{\vee}-differential in 9.2. Thus, for example, if $\tilde{Y} \in \Gamma(\stackrel{\circ}{\pi})$, $g \in T_{2}^{0}(\Gamma(\stackrel{\circ}{\pi})), B \in T_{k}^{1}(\Gamma(\stackrel{\circ}{\pi}))(k \geqq 1)$, then the Finsler tensor fields $\nabla^{\mathrm{h}} \widetilde{Y} \in T_{1}^{1}(\Gamma(\stackrel{\circ}{\pi})) \cong \operatorname{End}(\Gamma(\stackrel{\circ}{\pi})), \nabla^{\mathrm{h}} g \in T_{3}^{0}\left((\Gamma(\stackrel{\circ}{\pi})), \nabla^{\mathrm{h}} B \in T_{k+1}^{1}(\Gamma(\stackrel{\circ}{\pi}))\right.$ are given by

$$
\begin{align*}
\left(\nabla^{\mathrm{h}} \widetilde{Y}\right)(\widetilde{X}): & =\nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y} \tag{13.15}\\
\left(\nabla^{\mathrm{h}} g\right)(\widetilde{X}, \widetilde{Y}, \widetilde{Z}) & :=\left(\nabla_{\widetilde{X}}^{\mathrm{h}} g\right)(\widetilde{Y}, \widetilde{Z}) \\
& :=(\mathcal{H} \widetilde{X}) g(\widetilde{Y}, \widetilde{Z})-g\left(\nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}, \widetilde{Z}\right)-g\left(\widetilde{Y}, \nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Z}\right), \tag{13.16}
\end{align*}
$$

$$
\begin{align*}
& \left(\nabla^{\mathrm{h}} B\right)\left(\widetilde{X}, \widetilde{Y}_{1}, \widetilde{Y}_{2}, \ldots, \widetilde{Y}_{l}\right):=\left(\nabla_{\widetilde{X}}^{\mathrm{h}} B\right)\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{l}\right) \\
& :=\nabla_{\widetilde{X}}^{\mathrm{h}}\left(B\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{l}\right)\right)-\sum_{i=1}^{k} B\left(\widetilde{Y}_{1}, \ldots, \nabla_{\widehat{X}}^{\mathrm{h}} \widetilde{Y}_{i}, \ldots, \widetilde{Y}_{k}\right) \tag{13.17}
\end{align*}
$$

It is useful to note that

$$
\begin{equation*}
\mathbf{i} \nabla_{\widehat{X}}^{\mathrm{h}} \widehat{Y}=\left[X^{\mathrm{h}}, Y^{\vee}\right] \text { for all } X, Y \in \mathfrak{X}(M) \tag{13.18}
\end{equation*}
$$

13.1.6 Let an Ehresmann connection \mathcal{H} be given in $\stackrel{\circ}{T} M$. Putting together the vertical derivative ∇^{v} and the h-Berwald derivative ∇^{h}, we obtain a particularly important covariant derivative on $\stackrel{\circ}{\pi}$, the Berwald derivative ∇ induced by \mathcal{H}. To be explicit,

$$
\begin{align*}
& \nabla: \mathfrak{X}(\stackrel{\circ}{T} M) \times \Gamma(\stackrel{\circ}{\pi}) \mapsto \Gamma(\stackrel{\circ}{\pi}) \tag{13.19}\\
& (\xi, \widetilde{Y}) \mapsto \nabla_{\xi} \widetilde{Y}:=\nabla_{\mathcal{V} \xi}^{\mathfrak{v}} \widetilde{Y}+\nabla_{\mathbf{j} \xi}^{\mathrm{h}} \widetilde{Y}=\mathbf{j}[\mathbf{v} \xi, \mathcal{H} \widetilde{Y}]+\mathcal{V}[\mathbf{h} \xi, \mathbf{i} \widetilde{Y}]
\end{align*}
$$

Then we have especially

$$
\begin{equation*}
\nabla_{\mathbf{i} \tilde{X}} \widetilde{Y}=\nabla_{\tilde{X}}^{v} \widetilde{Y}, \quad \nabla_{\mathcal{H} \tilde{X}} \widetilde{Y}=\nabla_{\widetilde{X}}^{\mathrm{h}} \tilde{Y} \tag{13.20a-b}
\end{equation*}
$$

With the help of the induced Berwald derivative ∇, we define the torsion \mathbf{T} of an Ehresmann connection \mathcal{H} by

$$
\begin{equation*}
\mathbf{T}(\widetilde{X}, \widetilde{Y}):=\nabla_{\mathcal{H} \tilde{X}} \widetilde{Y}-\nabla_{\mathcal{H} \widetilde{Y}} \widetilde{X}-\mathbf{j}[\mathcal{H} \widetilde{X}, \mathcal{H} \widetilde{Y}] ; \quad \widetilde{X}, \widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi}) . \tag{13.21}
\end{equation*}
$$

Evaluating on basic sections, we obtain the more attractive formula

$$
\begin{equation*}
\mathbf{i} \mathbf{T}(\widehat{X}, \widehat{Y})=\left[X^{\mathrm{h}}, Y^{\mathrm{v}}\right]-\left[Y^{\mathrm{h}}, X^{\mathrm{v}}\right]-[X, Y]^{\mathrm{v}} ; X, Y \in \mathfrak{X}(M) . \tag{13.22}
\end{equation*}
$$

13.1.7 Coordinate description Suppose that \mathcal{H} is an Ehresmann connection in $\stackrel{\circ}{T} M$. Given a chart $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ on M, consider the induced chart $\left(\stackrel{\circ}{\tau}^{-1}(\mathcal{U}),\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)$ on $\stackrel{\circ}{T} M$.
(a) There exist unique smooth functions

$$
N_{j}^{i}: \stackrel{\circ}{\tau}^{-1}(\mathcal{U}) \rightarrow \mathbb{R} ; i, j \in J_{n}
$$

such that

$$
\begin{equation*}
\mathcal{H}\left(\frac{\widehat{\partial}}{\partial u^{j}}\right)=\left(\frac{\partial}{\partial u^{j}}\right)^{\mathrm{h}}=\frac{\partial}{\partial x^{j}}-N_{j}^{i} \frac{\partial}{\partial y^{j}}, j \in J_{n} . \tag{13.23}
\end{equation*}
$$

We say that $\left(N_{j}^{i}\right)$ is the family of Christoffel symbols \mathcal{H} with respect to the chosen chart. If $X \in \mathfrak{X}(M)$ and $X \underset{(\mathcal{U})}{=} X^{i} \frac{\partial}{\partial u^{i}}$, then

$$
\begin{equation*}
X^{\mathrm{h}} \underset{(\mathcal{U})}{=}\left(X^{i} \circ \tau\right) \frac{\partial}{\partial x^{i}}-\left(X^{j} \circ \tau\right) N_{j}^{i} \frac{\partial}{\partial y^{i}} \tag{13.24}
\end{equation*}
$$

Thus

$$
\begin{aligned}
& {\left[C, X^{\mathrm{h}}\right]=\left[C,\left(X^{i} \circ \tau\right) \frac{\partial}{\partial x^{i}}\right]-\left[C,\left(X^{j} \circ \tau\right) N_{j}^{i} \frac{\partial}{\partial y^{i}}\right]} \\
& =\left(X^{i} \circ \tau\right)\left[C,\left(\frac{\partial}{\partial u^{i}}\right)^{c}\right]-\left(X^{j} \circ \tau\right)\left(C N_{j}^{i}\right) \frac{\partial}{\partial y^{i}} \\
& -\left(X^{j} \circ \tau\right) N_{j}^{i}\left[C,\left(\frac{\partial}{\partial u^{i}}\right)^{\mathrm{v}}\right] \stackrel{(7.23 b)}{=}\left(X^{j} \circ \tau\right)\left(N_{j}^{i}-C N_{j}^{i}\right) \frac{\partial}{\partial y^{i}}
\end{aligned}
$$

from which we conclude, taking into account 7.7.2 (ii), that an Ehresmann connection is homogeneous if, and only if, its Christoffel symbols are 1^{+}-homogeneous functions.
(b) The Christoffel symbols of the induced Berwald derivative ∇ with respect to the chosen chart are the unique smooth function $N_{j k}^{i}: \stackrel{\circ}{\tau}^{-1}(\mathcal{U}) \rightarrow \mathbb{R}$ such that

$$
\nabla_{\frac{\partial}{\partial u j}}^{h} \frac{\widehat{\partial}}{\partial u^{k}}=N_{j k}^{i} \frac{\widehat{\partial}}{\partial u^{i}} ; \quad j, k \in J_{n} .
$$

Since

$$
\mathbf{i}\left(\nabla \frac{\mathrm{h}}{\frac{\partial}{\partial u^{i}}} \frac{\widehat{\partial}}{\partial u^{k}}\right)=\left[\left(\frac{\partial}{\partial u^{j}}\right)^{\mathrm{h}}, \frac{\partial}{\partial y^{k}}\right]=\frac{\partial N_{j}^{i}}{\partial y^{k}} \frac{\partial}{\partial y^{i}},
$$

it follows that

$$
\begin{equation*}
N_{j k}^{i}=\frac{\partial N_{j}^{i}}{\partial y^{k}} ; i, j, k \in J_{n} . \tag{13.25}
\end{equation*}
$$

Now, taking into account (13.22), we find easily, that the components of the torsion of \mathcal{H} are

$$
\begin{equation*}
T_{j k}^{i}=N_{j k}^{i}-N_{k j}^{i}=\frac{\partial N_{j}^{i}}{\partial y^{k}}-\frac{\partial N_{k}^{i}}{\partial y^{j}} . \tag{13.26}
\end{equation*}
$$

Then $\mathbf{T}\left(\frac{\widehat{\partial}}{\partial u^{j}}, \frac{\widehat{\partial}}{\partial u^{k}}\right)=T_{j k}^{i} \frac{\widehat{\partial}}{\partial u^{i}}$.
(c) Let $S_{\mathcal{H}}:=\mathcal{H}(\widetilde{\delta})$. Since

$$
\mathcal{H}(\widetilde{\delta}) \underset{(\mathcal{U})}{ } \mathcal{H}\left(y^{i} \frac{\widehat{\partial}}{\partial u^{i}}\right)=y^{i} \mathcal{H}\left(\frac{\widehat{\partial}}{\partial u^{i}}\right) \stackrel{(13.23)}{=} y^{i} \frac{\partial}{\partial x^{i}}-y^{j} N_{j}^{i} \frac{\partial}{\partial y^{i}},
$$

it follows (see 12.1) that $S_{\mathcal{H}}$ is a semispray with semispray coefficients

$$
\begin{equation*}
G^{i}:=\frac{1}{2} y^{j} N_{j}^{i} . \tag{13.27}
\end{equation*}
$$

We say that $S_{\mathcal{H}}$ is the semispray associated to \mathcal{H}. If \mathcal{H} is homogeneous, then

$$
C G^{i}=\frac{1}{2}\left(C y^{j}\right) N_{j}^{i}+\frac{1}{2} y^{j} C N_{j}^{i} \stackrel{(7.11),(a)}{=} y^{j} N_{j}^{i}=2 G^{i},
$$

therefore $S_{\mathcal{H}}$ is a 2^{+}-homogeneous, so it is a spray.
13.1.8 Let an Ehresmann connection \mathcal{H} be specified in $\stackrel{\circ}{T} M$, and let $\xi \in \mathscr{X}(\stackrel{\circ}{T} M)$ be a projectable vector field. For every Finsler vector field $\widetilde{Y} \in \Gamma\left({ }^{\circ}\right)$, the vector field $[\xi, \mathrm{i} \widetilde{Y}]$ is vertical, as we have seen in 11.1.1. Thus

$$
[\xi, \mathbf{i} \widetilde{Y}]=\mathbf{v}[\xi, \mathbf{i} \widetilde{Y}] \stackrel{(13.5)}{=} \mathbf{i}[\xi, \mathbf{i} \widetilde{Y}],
$$

so it follows that

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{\xi} \tilde{Y}=\mathcal{V}[\xi, \mathrm{i} \widetilde{Y}] \tag{13.28}
\end{equation*}
$$

Since, as we have also seen above, the horizontal lift of a vector field $X \in \mathfrak{X}(M)$ is projectable, the Lie derivative operator $\mathcal{L}_{X^{n}}$ is defined. For every $\widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi})$,

$$
\mathcal{L}_{X^{\mathrm{h}}} \widetilde{Y}^{(13.28)} \underset{=}{\mathcal{V}}\left[X^{\mathrm{h}}, \mathbf{i} \widetilde{Y}\right]=\mathcal{V}[\mathcal{H}(\widehat{X}), \mathbf{i} \widetilde{Y}] \stackrel{(13.14)}{=} \nabla_{\widehat{\widehat{X}}}^{\mathrm{h}} \widetilde{Y} .
$$

As a conclusion, we find that

$$
\begin{equation*}
\nabla_{\widehat{X}}^{h}=\widetilde{\mathcal{L}}_{X^{\mathrm{h}}} \text { for all } X \in \mathfrak{X}(M) . \tag{13.29}
\end{equation*}
$$

Now we add to Proposition 11.1.2 the following result.

Proposition 13.1.1. With the notation above, we have

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \circ \nabla_{\widehat{Y}}^{\mathrm{h}}-\nabla_{\widehat{Y}}^{\mathrm{h}} \circ \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}=\widetilde{\mathcal{L}}_{\left[X^{c}, Y^{\mathrm{h}}\right]} ; X, Y \in \mathfrak{X}(M) . \tag{13.30}
\end{equation*}
$$

Proof. It is clear that the left-hand side and the right-hand side of (13.30) act in the same way on $C^{\infty}(\stackrel{\circ}{T} M)$. We show that $\left(\widetilde{\mathcal{L}}_{X^{c}} \circ \nabla_{\widehat{Y}}^{\mathrm{h}}-\nabla_{\widetilde{Y}}^{\mathrm{h}} \circ \widetilde{\mathcal{L}}_{X^{c}}\right) \upharpoonright \Gamma(\stackrel{\circ}{\pi})=\widetilde{\mathcal{L}}_{\left[X^{c}, Y^{\mathrm{h}}\right]} \upharpoonright \Gamma(\pi)$ also holds; then our claim follows.

For every Finsler vector field $\widetilde{Y} \in \Gamma\left({ }_{\pi}^{\pi}\right)$ we have

$$
\begin{aligned}
& \mathbf{i} \circ\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \circ \nabla_{\widehat{Y}}^{\mathrm{h}}-\nabla_{\widetilde{Y}}^{\mathrm{h}} \circ \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\right)(\widetilde{Z}) \stackrel{(13.14),(11.1)}{=} \mathbf{i}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \mathcal{V}\left[Y^{\mathrm{h}}, \mathbf{i} \widetilde{Z}\right]\right) \\
& -\mathbf{i} \nabla_{\widetilde{Y}}^{\mathrm{h}} \mathbf{i}^{-1}\left[X^{\mathrm{c}}, \mathbf{i} \widetilde{Z}\right]=\left[X^{\mathrm{c}}, \mathbf{i} \mathcal{V}\left[Y^{\mathrm{h}}, \mathbf{i} \widetilde{Z}\right]\right]-\mathbf{i} \mathcal{V}\left[Y^{\mathrm{h}},\left[X^{\mathrm{c}}, \mathbf{i} \widetilde{Z}\right]\right] \\
& =\left[X^{\mathrm{c}}, \mathbf{v}\left[Y^{\mathrm{h}}, \mathbf{i} \widetilde{Z}\right]\right]-\mathbf{v}\left[Y^{\mathrm{h}},\left[X^{\mathrm{c}}, \mathbf{i} \widetilde{Z}\right]\right] \stackrel{(*)}{=}\left[X^{\mathrm{c}},\left[Y^{\mathrm{h}}, \mathbf{i} \widetilde{Z}\right]\right]+\left[Y^{\mathrm{h}},\left[\mathbf{i} \widetilde{Z}, X^{\mathrm{c}}\right]\right] \\
& \\
& \stackrel{\text { Jacobi }}{=}-\left[\mathbf{i} \widetilde{Z},\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]\right]=\left[\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right], \mathbf{i} \widetilde{Z}\right]=\mathbf{i} \widetilde{\mathcal{L}}_{\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]} \widetilde{Z},
\end{aligned}
$$

as was to be shown. In step (*) we used the fact that the vector fields $\left[Y^{\mathrm{h}}, \mathbf{i} \widetilde{Z}\right]$ and $\left[\mathbf{i} \widetilde{Z}, X^{\mathrm{c}}\right]$ are vertical.

13.2 The Lie derivative of an Ehresmann connection

13.2.1 Let $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M)$ be an Ehresmann connection, and let $\xi \in \mathfrak{X}(\stackrel{\circ}{T} M)$ be a projectable vector field. We define the Lie derivative $\widetilde{\mathcal{L}}_{\xi} \mathcal{H}$ of \mathcal{H} by

$$
\begin{equation*}
\left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(\widetilde{Y}):=\mathcal{L}_{\xi}(\mathcal{H}(\widetilde{Y}))-\mathcal{H}\left(\widetilde{\mathcal{L}_{\xi}} \widetilde{Y}\right)=[\xi, \mathcal{H}(\widetilde{Y})]-\mathcal{H}\left(\widetilde{\mathcal{L}_{\xi}} \widetilde{Y}\right), \tag{13.31}
\end{equation*}
$$

where $\tilde{Y} \in \Gamma(\stackrel{\circ}{\pi})$.
Proposition 13.2.2. The Lie derivative

$$
\widetilde{\mathcal{L}}_{\xi} \mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M), \widetilde{Y} \mapsto\left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(\widetilde{Y})
$$

has the following properties:
(i) It is $C^{\infty}(\stackrel{\circ}{T} M)$-linear.
(ii) For every vector field X on M,

$$
\begin{equation*}
\mathbf{j} \circ \widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}=0 \tag{13.32}
\end{equation*}
$$

and hence $\widetilde{\mathcal{L}}_{\xi} \mathcal{H}$ is not an Ehresmann connection.
(iii) If \mathbf{h} is the horizontal projection associated to \mathcal{H}, then for every $X \in \mathfrak{X}(M)$,

$$
\begin{equation*}
\mathcal{L}_{X^{c}} \mathbf{h}=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}\right) \circ \mathbf{j} . \tag{13.33}
\end{equation*}
$$

Proof. (i) The additivity of $\widetilde{\mathcal{L}}_{\xi} \mathcal{H}$ is clear. To see the $C^{\infty}(\stackrel{\circ}{T} M)$ homogeneity, let $\widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi}), F \in C^{\infty}(\stackrel{\circ}{T} M)$. Then

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(F \widetilde{Y}):=[\xi, \mathcal{H}(F \widetilde{Y})]-\mathcal{H}\left(\widetilde{\mathcal{L}}_{\xi} F \widetilde{Y}\right) \stackrel{(11.2)}{=}[\xi, F \mathcal{H}(\widetilde{Y})] \\
& \left.-\mathcal{H}((\xi F)) \widetilde{Y}+F \widetilde{\mathcal{L}}_{\xi} \widetilde{Y}\right)=(\xi F) \mathcal{H}(\widetilde{Y})+F[\xi, \mathcal{H}(\widetilde{Y})]-(\xi F) \mathcal{H}(\widetilde{Y}) \\
& -F \mathcal{H}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Y}\right)=F\left([\xi, \mathcal{H}(\widetilde{Y})]-\mathcal{H}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Y}\right)\right)=F\left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(\widetilde{Y}),
\end{aligned}
$$

as wanted.
(ii) For any $X \in \mathfrak{X}(M), \widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi})$,

$$
\begin{aligned}
& \left(\mathbf{j} \circ \widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}\right)(\widetilde{Y}) \stackrel{(13.31)}{=} \mathbf{j} \circ \mathcal{L}_{X^{c}}(\mathcal{H}(\widetilde{Y}))-\mathbf{j} \circ \mathcal{H}\left(\widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}\right) \\
& (11.8),(13.1) \\
& =\widetilde{\mathcal{L}}_{X^{c}}(\mathbf{j}(\mathcal{H}(\widetilde{Y})))-\widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}=\widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}-\widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}=0 .
\end{aligned}
$$

(iii) For every vector field η on $\stackrel{\circ}{T} M$, we have

$$
\begin{aligned}
& \left(\mathcal{L}_{X^{c}} \mathbf{h}\right)(\eta) \stackrel{(10.2)}{=} \mathcal{L}_{X^{c}}(\mathbf{h} \eta)-\mathbf{h}\left(\mathcal{L}_{X^{c}} \eta\right)=\mathcal{L}_{X^{c}}(\mathcal{H}(\mathbf{j} \eta))-\mathcal{H}\left(\mathbf{j} \mathcal{L}_{X^{c}} \eta\right) \\
& \stackrel{(11.8)}{=} \mathcal{L}_{X^{c}}(\mathcal{H}(\mathbf{j} \eta))-\mathcal{H}\left(\widetilde{\mathcal{L}}_{X^{c}}(\mathbf{j} \eta)\right):=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}\right)(\mathbf{j} \eta)=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}\right) \circ \mathbf{j}(\eta)
\end{aligned}
$$

as was to be shown.
Proposition 13.2.3. With the notation as above, choose a chart $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ on M, and consider the induced chart $\left(\stackrel{\circ}{\tau}^{-1}(\mathcal{U}),\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)$ on $\stackrel{\circ}{T} M$. Then, for every vector field X on M,

$$
\begin{align*}
\left(\widetilde{\mathcal{L}}_{X^{\circ}} \mathcal{H}\right)\left(\frac{\widehat{\partial}}{\partial u^{j}}\right) & =\left(\left(N_{j}^{k}\left(\frac{\partial X^{i}}{\partial u^{k}} \circ \tau\right)-N_{k}^{i}\left(\frac{\partial X^{k}}{\partial u^{j}} \circ \tau\right)\right.\right. \tag{13.34}\\
& \left.-X^{\mathrm{c}} N_{j}^{i}-y^{k}\left(\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau\right)\right) \frac{\partial}{\partial y^{i}},
\end{align*}
$$

where $\left(N_{j}^{i}\right)$ is the family of Christoffel symbols of \mathcal{H} with respect to the chosen chart and $X \underset{(\mathcal{U})}{=} X^{i} \frac{\partial}{\partial u^{i}}$.

Proof. By (13.32) and (13.28)

$$
\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}\right)\left(\frac{\widehat{\partial}}{\partial u^{j}}\right)=\left[X^{\mathrm{c}},\left(\frac{\partial}{\partial u^{j}}\right)^{\mathrm{h}}\right]-\mathcal{H} \circ \mathcal{V}\left[X^{\mathrm{c}}, \frac{\partial}{\partial y^{j}}\right] .
$$

Here

$$
\begin{aligned}
& {\left[X^{\mathrm{c}},\left(\frac{\partial}{\partial u^{j}}\right)^{\mathrm{h}}\right]=\left[X^{\mathrm{c}}, \frac{\partial}{\partial x^{j}}\right]-\left[X^{\mathrm{c}}, N_{j}^{i} \frac{\partial}{\partial y^{i}}\right]=\left[X, \frac{\partial}{\partial u^{j}}\right]^{\mathrm{c}}} \\
& -\left(X^{\mathrm{c}} N_{j}^{i}\right) \frac{\partial}{\partial y^{i}}-N_{j}^{i}\left[X, \frac{\partial}{\partial u^{i}}\right]^{\mathrm{v}}=-\left(\frac{\partial X^{i}}{\partial u^{j}} \frac{\partial}{\partial u^{i}}\right)^{\mathrm{c}}-\left(X^{\mathrm{c}} N_{j}^{i}\right) \frac{\partial}{\partial y^{i}} \\
& +N_{j}^{i}\left(\frac{\partial X^{k}}{\partial u^{i}} \frac{\partial}{\partial u^{k}}\right)^{\mathrm{v}}=-\left(\frac{\partial X^{k}}{\partial u^{j}} \circ \tau\right) \frac{\partial}{\partial x^{k}}-y^{k}\left(\frac{\partial^{2} X^{i}}{\partial u^{i} \partial u^{k}} \circ \tau\right) \frac{\partial}{\partial y^{i}} \\
& -\left(X^{\mathrm{c}} N_{j}^{i}\right) \frac{\partial}{\partial y^{i}}+N_{j}^{k}\left(\frac{\partial X^{i}}{\partial u^{k}} \circ \tau\right) \frac{\partial}{\partial y^{i}} ; \\
& \mathcal{H} \circ \mathcal{V}\left[X^{\mathrm{c}}, \frac{\partial}{\partial y^{j}}\right]=\mathcal{H} \circ \mathcal{V} \circ \mathbf{i}\left[X, \frac{\partial}{\partial u^{j}}\right]=\left[X^{k} \frac{\partial}{\partial u^{k}}, \frac{\partial}{\partial u^{j}}\right]^{\mathrm{h}} \\
& =-\left(\frac{\partial X^{k}}{\partial u^{j}} \frac{\partial}{\partial u^{k}}\right)^{\mathrm{h}}=-\left(\frac{\partial X^{k}}{\partial u^{j}} \circ \tau\right)\left(\frac{\partial}{\partial u^{k}}\right)^{\mathrm{h}}=-\left(\frac{\partial X^{k}}{\partial u^{j}} \circ \tau\right) \frac{\partial}{\partial x^{k}} \\
& +N_{k}^{i}\left(\frac{\partial X^{k}}{\partial u^{i}} \circ \tau\right) \frac{\partial}{\partial y^{i}} .
\end{aligned}
$$

Thus, taking the difference $\left[X^{c},\left(\frac{\partial}{\partial u^{j}}\right)^{\mathrm{h}}\right]-\mathcal{H} \circ \mathcal{V}\left[X^{c}, \frac{\partial}{\partial y^{j}}\right]$, we obtain the desired result.

We note that in [7], by abuse of notation, the 'Lie derivative $\mathcal{L}_{X^{c}} N_{j}^{i}$, was essentially defined by the right-hand side of (13.34); see loc.cit. (2.46).

$13.3 \mathcal{H}$-automorphisms and \mathcal{H}-Killing vector fields

Throughout, we assume that an Ehresmann connection $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \mapsto \mathfrak{X}(\stackrel{\circ}{T} M)$ is given in $\stackrel{\circ}{T} M$. We recall that it can also be regarded as a strong bundle map $\mathcal{H}: \stackrel{\circ}{T} M \times_{M} T M \rightarrow T \stackrel{\circ}{T} M$.

A diffeomorphism $\varphi: U \rightarrow V$ between two open subsets of M is called a (local) automorphism of \mathcal{H} (or simply an \mathcal{H}-automorphism) if over $\stackrel{\circ}{\tau}^{-1}(U) \times_{U} \tau^{-1}(U)$ we have

$$
\begin{equation*}
\varphi_{* *} \circ \mathcal{H}=\mathcal{H} \circ\left(\varphi_{*} \times \varphi_{*}\right) \tag{13.35}
\end{equation*}
$$

We say that a vector field X on M is an \mathcal{H}-Killing vector field if its local one-parameter group consists of \mathcal{H}-automorphisms. We denote by $\operatorname{Kill}_{\mathcal{H}}(M)$ the set of all \mathcal{H}-Killing vector fields on M.

Theorem 13.3.1. Let X be a vector field on M, and let $\left(\varphi_{t}\right)$ be the local one-parameter group generated by X. The following assertions are equivalent:
(i) $X \in \operatorname{Kill}_{\mathcal{H}}(M)$.
(ii) For every stage φ_{t} of the local flow of X we have

$$
\begin{equation*}
\left(\varphi_{t}\right)_{* *} \circ \mathbf{h}=\mathbf{h} \circ\left(\varphi_{t}\right)_{* *}, \tag{13.36}
\end{equation*}
$$

where \mathbf{h} is the horizontal projection associated to \mathcal{H}.
(iii) $\widetilde{\mathcal{L}}_{X \subset} \mathcal{H}=0$.
(iv) $\mathcal{L}_{X^{c}} \mathbf{h}=0$.

If one (and hence all) of these conditions is satisfied, then locally we have

$$
\begin{equation*}
X^{\mathrm{c}} N_{j}^{i}=N_{j}^{k}\left(\frac{\partial X^{i}}{\partial u^{k}} \circ \tau\right)-N_{k}^{i}\left(\frac{\partial X^{k}}{\partial u^{j}} \circ \tau\right)-y^{k}\left(\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau\right) ; i, j \in J_{n} \tag{13.37}
\end{equation*}
$$

where $\left(N_{j}^{i}\right)$ is the family of Christoffel symbols of \mathcal{H} with respect to a chart induced by a chart $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ on M.

Proof. (i) \Longleftrightarrow (ii) By definition, $X \in \operatorname{Kill}_{\mathcal{H}}(M)$ if, and only if, for every stage φ_{t} of the local flow of X we have

$$
\begin{equation*}
\left(\varphi_{t}\right)_{* *} \circ \mathcal{H}=\mathcal{H} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) . \tag{*}
\end{equation*}
$$

Since the strong bundle map \mathbf{j} is surjective, this relation is equivalent to

$$
\left(\varphi_{t}\right)_{* *} \circ \mathcal{H} \circ \mathbf{j}=\mathcal{H} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \mathbf{j}
$$

Here $\mathcal{H} \circ \mathbf{j}=: \mathbf{h}$ and $\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \mathbf{j} \stackrel{(8.23 b)}{=} \mathbf{j} \circ\left(\varphi_{t}\right)_{* *}$, therefore $(*)$ is equivalent to (13.36), as we claimed.
(iii) \Longleftrightarrow (iv) This is clear since $\quad \mathcal{L}_{X^{c}} \mathbf{h}=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}\right) \circ \mathbf{j} \quad$ by Proposition 13.2.2 (iii), and \mathbf{j} is surjective.
(iv) \Longleftrightarrow (ii) In view of Lemma 7.5.1, the local one-parameter group of X^{c} is $\left(\left(\varphi_{t}\right)_{*}\right)$. Thus, by Proposition 10.1.4, $\mathcal{L}_{X^{\mathrm{c}}} \mathbf{h}=0$ if, and only if $\left(\varphi_{t}\right)_{* *} \circ \mathbf{h}=\mathbf{h} \circ\left(\varphi_{t}\right)_{* *}$ for every stage $\left(\varphi_{t}\right)_{*}$ of the local flow of $X^{\mathbf{c}}$.

The last statement of the theorem is immediate from Proposition 13.2.3.

13.4 Lie symmetries of spray manifolds

13.4.1 Let M be a manifold, and suppose that $S: T M \rightarrow T T M$ is a semispray for M. Then there exists a unique Ehresmann connection \mathcal{H} with vanishing torsion in $\stackrel{\circ}{T} M$ such that the horizontal lifts with respect to \mathcal{H} are given by

$$
\begin{equation*}
X^{\mathrm{h}}:=\mathcal{H}(\widehat{X}):=\frac{1}{2}\left(X^{\mathrm{c}}+\left[X^{\mathrm{v}}, S\right]\right), \quad X \in \mathfrak{X}(M) . \tag{13.38}
\end{equation*}
$$

The semispray associated to \mathcal{H} is

$$
S_{\mathcal{H}}:=\mathcal{H}(\widetilde{\delta}):=\frac{1}{2}(S+[C, S])
$$

For a recent proof of this fundamental result we refer to [29], Proposition 7.3.4. We say that the connection \mathcal{H} so defined is the semispray connection associated to S. If the semispray coefficients of S with respect to a chart are the functions $G^{i} \in C^{\infty}\left(\stackrel{\circ}{\tau}^{-1}(\mathcal{U})\right)$ as in 12.1, then the Christoffel symbols of the associated semispray connection (with respect to the same chart) are

$$
\begin{equation*}
G_{j}^{i}:=\frac{\partial G^{i}}{\partial y^{j}} ; \quad i, j \in J_{n} . \tag{13.39}
\end{equation*}
$$

Proposition 13.4.2. Let $S: T M \rightarrow T T M$ be a semispray for M, and let \mathcal{H} be the semispray connection associated to S. Then

$$
\begin{equation*}
X \in \operatorname{Lie}_{S}(M) \Longrightarrow X \in \operatorname{Kill}_{\mathcal{H}}(M) \tag{13.40}
\end{equation*}
$$

Proof. We calculate the Lie derivative $\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}$. Since $\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}$ is $C^{\infty}(\stackrel{\circ}{T} M)-$ linear, it is sufficient to evaluate it on an arbitrary basic vector field
\widehat{Y}. Then we find

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \mathcal{H}\right)(\widehat{Y}) \stackrel{(13.31)}{=}\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]-\mathcal{H}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}\right) \stackrel{(11.5 b)}{=}\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]-\mathcal{H}(\widehat{[X, Y]}) \\
& \stackrel{(13.38)}{=} \frac{1}{2}\left(\left[X^{\mathrm{c}}, Y^{\mathrm{c}}+\left[Y^{\mathrm{v}}, S\right]\right]-[X, Y]^{\mathrm{c}}-\left[[X, Y]^{\mathrm{v}}, S\right]\right) \\
& \stackrel{(7.22 b-c)}{=} \frac{1}{2}\left(\left[X^{\mathrm{c}},\left[Y^{\mathrm{v}}, S\right]\right]-\left[\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right], S\right]\right)=\frac{1}{2}\left(\left[X^{\mathrm{c}},\left[Y^{\mathrm{v}}, S\right]\right]+\left[S,\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right]\right]\right)
\end{aligned}
$$

Since, by condition, $\left[X^{\mathrm{c}}, S\right]=0$ (see $\mathbf{1 2 . 2 . 2}$ (iv)), the Jacobi identity gives

$$
\begin{aligned}
& 0=\left[X^{\mathrm{c}},\left[Y^{\vee}, S\right]\right]+\left[Y^{\vee},\left[S, X^{\mathrm{c}}\right]\right]+\left[S,\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right]\right] \\
& =\frac{1}{2}\left[X^{\mathrm{c}},\left[Y^{\mathrm{v}}, S\right]\right]+\left[S,\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right]\right],
\end{aligned}
$$

thus concluding the proof.
Remark 13.4.3. Applying the argument of R. L. Lovas in [17], Proposition 5.2, we show that the converse of implication (13.40) is also true when S is a spray. Indeed, if $\widetilde{\mathcal{L}}_{X c} \mathcal{H}=0$, then the calculation above leads to

$$
\left[\left[X^{\mathrm{c}}, S\right], Y^{\mathrm{v}}\right]=0 \text { for all } Y \in \mathfrak{X}(M)
$$

Since $\left[X^{c}, S\right]$ is vertical by Lemma 12.1.1, this implies that $\left[X^{c}, S\right]$ is a vertical lift, and hence

$$
\begin{equation*}
\left[C,\left[X^{\mathrm{c}}, S\right]\right] \stackrel{(7.23 a)}{=}-\left[X^{\mathrm{c}}, S\right] . \tag{*}
\end{equation*}
$$

On the other hand, using the Jacobi identity, the 2^{+}-homogeneity of S and the 1^{+}-homogeneity of X^{c}, we find that

$$
0=\left[C,\left[X^{\mathrm{c}}, S\right]\right]+\left[X^{\mathrm{c}},[S, C]\right]+\left[S,\left[C, X^{\mathrm{c}}\right]\right]=\left[C,\left[X^{\mathrm{c}}, S\right]\right]-\left[X^{\mathrm{c}}, S\right]
$$

whence $\left[C,\left[X^{c}, S\right]\right]=\left[X^{c}, S\right]$. Comparing this with equality (*), we conclude that $\left[X^{c}, S\right]=0$, and hence $X \in \operatorname{Lie}_{S}(M)$.
13.4.4 Now suppose that (M, S) is a spray manifold. Then the construction described in 13.4.1 leads to a homogeneous torsion-free Ehresmann connection $\mathcal{H}: T M \times_{M} T M \rightarrow T T M$ (see also the end of 13.1.4). This spray connection will be called the Berwald connection of (M, S). Then the semispray associated to $\mathcal{H}(\mathbf{1 3 . 1 . 7}(\mathrm{c}))$ is just the initial spray S. The Christoffel symbols $G_{j}^{i}=\frac{\partial G^{i}}{\partial y^{j}}$ are smooth
on $\stackrel{\circ}{\tau}^{-1}(U)$ and continuous on $\tau^{-1}(U)$. The Berwald derivative in a spray manifold (M, S) is the covariant derivative ∇ on $\stackrel{\circ}{\pi}$ induced by the Berwald connection \mathcal{H} according to (13.19). Its Christoffel symbols with respect to an induced chart on $T M$ are the 0^{+}-homogeneous functions

$$
G_{j k}^{i} \stackrel{(13.24)}{=} \frac{\partial G_{j}^{i}}{\partial y^{k}}=\frac{\partial G^{i}}{\partial y^{j} \partial y^{k}} \in C^{\infty}\left(\stackrel{\circ}{\tau}^{-1}(U)\right) .
$$

Our next theorem is a supplement to Lovas's Proposition 5.2 in [17].
Theorem 13.4.5. Let (M, S) be a spray manifold, equipped with the Berwald connection \mathcal{H} associated to S and the Berwald derivative ∇ induced by \mathcal{H}. Let \mathbf{h}, \mathbf{v} and \mathcal{V} be the data defined by (13.4 a-b) and (13.5). For a vector filed X on M, the following are equivalent:
(i) $X \in \operatorname{Lie}_{S}(M)$, i.e., X is a Lie symmetry of S;
(ii) $\left[X^{\mathrm{c}}, S\right]=0$;
(iii) $X \in \operatorname{Kill}_{\mathcal{H}}(M)$;
(iv) $\widetilde{\mathcal{L}}_{X^{c}} \mathcal{H}=0$;
(v) $\mathcal{L}_{X^{c}} \mathbf{h}=-\left[\mathbf{h}, X^{c}\right]=0$;
(vi) $\mathcal{L}_{X^{c}} \mathbf{V}=-\left[\mathbf{v}, X^{c}\right]=0$;
(vii) $\widetilde{\mathcal{L}}_{X^{c}} \nabla=0$;
(viii) For every vector field Y on M;

$$
\begin{equation*}
\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]=[X, Y]^{\mathrm{h}} ; \tag{13.41}
\end{equation*}
$$

(ix) For every vector field Y on M,

$$
\begin{equation*}
\left[\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}, \widetilde{\mathcal{L}}_{Y^{ }}\right]=\widetilde{\mathcal{L}}_{[X, Y]^{\mathrm{h}}} ; \tag{13.42}
\end{equation*}
$$

(x) We have the commutation relation

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \circ \mathcal{V}=\mathcal{V} \circ \mathcal{L}_{X^{c}} . \tag{13.43}
\end{equation*}
$$

Proof. We begin with some remarks.
(1) The equivalence of conditions (i), (v) and (vii) has already been proven in Lovas's cited paper [17].
(2) We have shown for semisprays that (i) \Longleftrightarrow (ii), and for general Ehresmann connections that (iii) \Longleftrightarrow (iv) \Longleftrightarrow (v). We note that the equivalence of (v) and $(v i)$ is evident, since $\mathbf{v}=1_{\mathfrak{X}(T M)}-$ \mathbf{h}, and $\left[1_{\mathfrak{X}(\underset{T}{\circ} M)}, \xi\right]=0$ for every $\xi \in \mathfrak{X}(\stackrel{\circ}{T} M)$.
(3) By Proposition 13.4.2 and Remark 13.4.3 $(i) \Longrightarrow$ (iii) for every semispray, and (iii) \Longrightarrow (i) for sprays.
Thus, to complete the proof, it is enough to show the implications (v) \Longleftrightarrow (viii), (viii) \Longleftrightarrow (ix) and (vi) \Longleftrightarrow (x). The equivalence of conditions (i), (ii) and (iv) has already been proved in [17].
(v) \Longleftrightarrow (vii) For any vector field Y on M,

$$
\begin{aligned}
& {\left[\mathbf{h}, X^{\mathrm{c}}\right] Y^{\mathrm{c}} \stackrel{(10.3)}{=}\left[\mathbf{h} Y^{\mathrm{c}}, X^{\mathrm{c}}\right]-\mathbf{h}\left[Y^{\mathrm{c}}, X^{\mathrm{c}}\right]=\left[Y^{\mathrm{h}}, X^{\mathrm{c}}\right]-\mathbf{h}[Y, X]^{\mathrm{c}}} \\
& =\left[Y^{\mathrm{h}}, X^{\mathrm{c}}\right]-[Y, X]^{\mathrm{h}},
\end{aligned}
$$

so $\left[\mathbf{h}, X^{\mathrm{c}}\right]=0$ implies that $[X, Y]^{\mathrm{h}}=\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]$. The converse is also true, since

$$
\left[\mathbf{h}, X^{\mathrm{c}}\right] Y^{\mathrm{v}}=\left[\mathbf{h} Y^{\mathrm{v}}, X^{\mathrm{c}}\right]-\mathbf{h}[Y, X]^{\mathrm{v}}=0,
$$

and hence $\left[\mathbf{h}, X^{\mathrm{c}}\right] \upharpoonright \mathfrak{X}^{\mathrm{v}}(\stackrel{\circ}{T} M)=0$.
(vii) \Longleftrightarrow (ix) This is an immediate since $\left[\widetilde{\mathcal{L}}_{X^{c}}, \widetilde{\mathcal{L}}_{Y^{\mathrm{h}}}\right] \stackrel{(11.3)}{=} \widetilde{\mathcal{L}}_{\left[X^{c}, Y^{\mathrm{h}}\right]}$.
(vi) $\Longleftrightarrow($ ix) For any vector field ξ on $\stackrel{\circ}{T} M$,

$$
\begin{aligned}
& \mathbf{i} \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}(\mathcal{V} \xi) \stackrel{(11.1)}{=}\left[X^{\mathrm{c}}, \mathbf{i}(\mathcal{V} \xi)\right] \stackrel{(13.5)}{=}\left[X^{\mathrm{c}}, \mathbf{v} \xi\right], \\
& \mathbf{i}\left(\mathcal{L}_{X^{\mathrm{c}}} \xi\right)=\mathbf{v}\left[X^{\mathrm{c}}, \xi\right],
\end{aligned}
$$

so $\widetilde{\mathcal{L}}_{X^{c}}(\mathcal{V} \xi)=\mathcal{V}\left(\mathcal{L}_{X^{c}} \xi\right)$ if, and only if,

$$
0=\left[\mathbf{v} \xi, X^{\mathrm{c}}\right]-\mathbf{v}\left[\xi, X^{\mathrm{c}}\right]=\left[\mathbf{v}, X^{\mathrm{c}}\right] \xi .
$$

This concludes the proof.

14 Curvature collineations in a spray manifold

Throughout this section, (M, S) is a spray manifold, \mathcal{H} is the Berwald connection in (M, S) and ∇ is the Berwald derivative induced by \mathcal{H}. As always, we denote by \mathbf{h}, \mathbf{v} and \mathcal{V} the horizontal projection, the vertical projection and the vertical map associated to \mathcal{H}, respectively.
14.1 In the language of classical tensor calculus, the basic curvature data of a spray manifold were introduced by Ludwig Berwald in his epoch-making, posthumously published paper [6], in an illuminating manner. Here we follow his approach, but we use an index-free formalism. In this spirit, we start with Jacobi endomorphism $\mathbf{K} \in T_{1}^{1}\left(\Gamma\binom{\circ}{)}\right.$ (called affine deviation by Berwald) given by

$$
\begin{equation*}
\mathbf{K}(\widetilde{X}):=\mathcal{V}[S, \mathcal{H}(\widetilde{X})], \quad \widetilde{X} \in \Gamma\left(\frac{\circ}{\pi}\right) . \tag{14.1}
\end{equation*}
$$

Next, with the help of \mathbf{K}, we define the fundamental affine curvature $\mathbf{R} \in T_{2}^{1}\left(\Gamma(\stackrel{\circ}{\pi})\right.$) and the affine curvature $\mathbf{H} \in T_{3}^{1}(\Gamma(\stackrel{\circ}{\pi}))$ by the formulae

$$
\begin{equation*}
\mathbf{R}(\widetilde{X}, \widetilde{Y}):=\frac{1}{3}\left(\nabla^{\vee} \mathbf{K}(\widetilde{X}, \widetilde{Y})-\nabla^{\vee} \mathbf{K}(\widetilde{Y}, \widetilde{X})\right) \tag{14.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{H}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=-\nabla^{\mathrm{v}} \mathbf{R}(\widetilde{Z}, \widetilde{X}, \widetilde{Y}) \tag{14.3}
\end{equation*}
$$

If $\mathbf{C} \in\{\mathbf{K}, \mathbf{R}, \mathbf{H}\}, X \in \mathfrak{X}(M)$ and $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{C}=0$, then we say X is a curvature collineation of \mathbf{C}. Notice that

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}=0 \Longleftrightarrow \widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{K}=\mathbf{K} \circ \widetilde{\mathcal{L}}_{X^{c}} \tag{14.4}
\end{equation*}
$$

Indeed, for every $\widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi})$ we have

$$
\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}\right)(\widetilde{Y}) \stackrel{(11.13)}{=} \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widetilde{Y}))-\mathbf{K}\left(\widetilde{\mathcal{L}}_{X^{c}} \widetilde{Y}\right) .
$$

Proposition 14.1.1. (i) Let \mathbf{K}^{0} be the semibasic 1-form corresponding to the Jacobi endomorphism under the isomorphism given by (8.18). Then

$$
\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}^{0}=0 \Longleftrightarrow \widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}=0 \quad(X \in \mathfrak{X}(M))
$$

(ii) A vector field X on M is a curvature collineation of \mathbf{K} if, and only if, \mathbf{K} is invariant under the local flow of X in the sense that

$$
\left.\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right)\right) \circ \mathbf{K}=\mathbf{K} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right)
$$

for every stage φ_{t} of the local flow (here \mathbf{K} is interpreted as a strong bundle endomorphism of $T M \times{ }_{M} T M$).
Proof. (i) Suppose that $\widetilde{\mathcal{L}}_{X} \mathbf{C}=0$. Then

$$
\begin{aligned}
\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}^{0} & \stackrel{(8.18)}{=} \mathcal{L}_{X^{c}} \circ \mathbf{i} \circ \mathbf{K} \circ \mathbf{j} \stackrel{(11.7)}{=} \mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{K} \circ \mathbf{j} \stackrel{(14.4)}{=} \mathbf{i} \circ \mathbf{K} \circ \widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{j} \\
& \stackrel{(1.8)}{=} \mathbf{i} \circ \mathbf{K} \circ \mathbf{j} \circ \mathcal{L}_{X^{c}}=\mathbf{K}^{0} \circ \mathcal{L}_{X^{c}},
\end{aligned}
$$

which implies (as above) that $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}^{0}=0$.
Conversely, suppose that $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}^{0}=0$. Then $\mathcal{L}_{X^{c}} \circ \mathbf{K}^{0}=\mathbf{K}^{0} \circ \mathcal{L}_{X^{c}}$, and we obtain

$$
\mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}} \mathbf{K} \circ \mathbf{j}=\mathcal{L}_{X^{c}} \mathbf{K}^{0}=\mathcal{L}_{X^{c}} \circ \mathbf{i} \circ \mathbf{K} \circ \mathbf{j}=\mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{K} \circ \mathbf{j} .
$$

Since \mathbf{i} is injective, \mathbf{j} is surjective, from this we conclude that $\widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{K}=$ $\mathbf{K} \circ \widetilde{\mathcal{L}}_{X^{c}}$, and hence $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}=0$.
(ii) By part (i), Lemma 7.5.1 and Proposition 10.1.4,

$$
\begin{aligned}
\widetilde{\mathcal{L}}_{X} \mathbf{K}=0 & \Longleftrightarrow\left(\varphi_{t}\right)_{* *} \circ \mathbf{K}^{0}=\mathbf{K}^{0} \circ\left(\varphi_{t}\right)_{* *} \\
& \Longleftrightarrow\left(\varphi_{t}\right)_{* *} \circ \mathbf{i} \circ \mathbf{K} \circ \mathbf{j}=\mathbf{i} \circ \mathbf{K} \circ \mathbf{j} \circ\left(\varphi_{t}\right)_{* *} \\
& \stackrel{(8.23 a-b)}{\Longleftrightarrow} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \mathbf{K} \circ \mathbf{j}=\mathbf{i} \circ \mathbf{K} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \mathbf{j} \\
& \Longleftrightarrow\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \mathbf{K}=\mathbf{K} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right),
\end{aligned}
$$

where φ_{t} is any stage of the local flow of X.
Theorem 14.1.2. If a vector field X on M is a Lie symmetry of S, then it is a curvature collineation of the Jacobi endomorphism of (M, S).

Proof. Suppose that $X \in \operatorname{Lie}_{S}(M)$. Then, for every vector field Y on M,

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{K}\right)(\widehat{Y})=\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}(\mathbf{K}(\widehat{Y}))-\mathbf{K}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Y}\right) \stackrel{(14.1)}{=} \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(\mathcal{V}\left[S, Y^{\mathrm{h}}\right]\right) \\
& -\mathcal{V}\left[S, \mathcal{H}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Y}\right)\right] \stackrel{(11.1),(11.5 b)}{=} \mathbf{i}^{-1}\left[X^{\mathrm{c}}, \mathbf{v}\left[S, Y^{\mathrm{h}}\right]\right]-\mathcal{V}[S, \mathcal{H}[X, Y]] \\
& \stackrel{(13.9)}{=} \mathbf{i}^{-1}\left[X^{\mathrm{c}}, \mathbf{v}\left[S, Y^{\mathrm{h}}\right]\right]-\mathcal{V}\left[S,[X, Y]^{\mathrm{h}}\right]=\mathbf{i}^{-1}\left(\left[X^{\mathrm{c}}, \mathbf{v}\left[S, Y^{\mathrm{h}}\right]\right]\right. \\
& \left.-\mathbf{v}\left[S,[X, Y]^{\mathrm{h}}\right]\right) \stackrel{(13.41)}{=} \mathbf{i}^{-1}\left(\left[X^{\mathrm{c}}, \mathbf{v}\left[S, Y^{\mathrm{h}}\right]\right]-\mathbf{v}\left[S,\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]\right]\right) \\
& \stackrel{\mathrm{Jacobb}}{=} \mathbf{i}^{-1}\left(\left[X^{\mathrm{c}}, \mathbf{v}\left[S, Y^{\mathrm{h}}\right]\right]+\mathbf{v}\left[X^{\mathrm{c}},\left[Y^{\mathrm{h}}, S\right]\right]\right. \\
& \left.+\left[Y^{\mathrm{h}},\left[S, X^{\mathrm{c}}\right]\right]\right) \stackrel{X \text { is a Lie symmetry }}{=} \mathbf{i}^{-1}\left(\left[X^{\mathrm{c}}, \mathbf{v}\left[S, Y^{\mathrm{h}}\right]\right]-\mathbf{v}\left[X^{\mathrm{c}},\left[S, Y^{\mathrm{h}}\right]\right]\right. \\
& =-\mathbf{i}^{-1}\left(\left[\mathbf{v}, X^{\mathrm{c}}\right]\left[S, Y^{\mathrm{h}}\right]\right) \stackrel{(13.4 .5),(\text { vi) })}{=} 0,
\end{aligned}
$$

so we have the desired equality $\widetilde{\mathcal{L}}_{X} \mathrm{~K}=0$.
Corollary 14.1.3. If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{R}=0$, i.e., X is a curvature collineation of the fundamental affine curvature of (M, S).

Proof. Since $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{R}$ is $C^{\infty}(\stackrel{\circ}{T} M)$-linear in its both arguments, it is sufficient to show that $\left(\widetilde{\mathcal{L}}_{X} \mathbf{R}\right)(\widehat{Y}, \widehat{Z})=0$ for all $Y, Z \in \mathfrak{X}(M)$. By (11.13),

$$
\begin{equation*}
\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{R}\right)(\widehat{Y}, \widehat{Z})=\widetilde{\mathcal{L}}_{X^{c}}(\mathbf{R}(\widehat{Y}, \widehat{Z}))-\mathbf{R}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right)-\mathbf{R}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right) \tag{*}
\end{equation*}
$$

We calculate the three terms at the right-hand side of $(*)$:
(1) $\quad \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}(\mathbf{R}(\widehat{Y}, \widehat{Z})) \stackrel{(14.2)}{=} \frac{1}{3} \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(\nabla^{\mathrm{v}} \mathbf{K}(\widehat{Y}, \widehat{Z})-\nabla^{\mathrm{v}} \mathbf{K}(\widehat{Z}, \widehat{Y})\right)$

$$
\begin{aligned}
& =\frac{1}{3} \widetilde{\mathcal{L}}_{X^{c}}\left(\left(\nabla_{\widehat{Y}}^{v} \mathbf{K}\right)(\widehat{Z})-\left(\nabla_{\widehat{Z}}^{v} \mathbf{K}\right)(\widehat{Y})\right) \stackrel{(9.10)}{=} \frac{1}{3} \widetilde{\mathcal{L}}_{X^{c}}\left(\nabla^{\vee}(\mathbf{K}(\widehat{Z}))\right) \\
& -\frac{1}{3} \nabla_{\widehat{Z}}^{v}(\mathbf{K}(\widehat{Y})) \stackrel{(1.9)}{=} \frac{1}{3}\left(\nabla_{\widehat{Y}}^{v} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widehat{Z}))+\widetilde{\mathcal{L}}_{[X, Y]^{\mathrm{v}}}(\mathbf{K}(\widehat{Z}))\right) \\
& -\frac{1}{3}\left(\nabla_{\widehat{Z}}^{v} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widehat{Y}))-\widetilde{\mathcal{L}}_{[X, Z]^{\mathrm{v}}}(\mathbf{K}(\widehat{Y}))\right) ;
\end{aligned}
$$

(2) $\quad \mathbf{R}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right):=\frac{1}{3}\left(\left(\nabla^{\vee} \mathbf{K}\right)\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right)\right)-\left(\nabla^{\vee} \mathbf{K}\right)\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}\right)$

$$
=\frac{1}{3}\left(\nabla_{\widetilde{\mathcal{L}}_{X} \subset \widehat{Y}}^{v}(\mathbf{K}(\widehat{Z}))-\nabla_{\widehat{Z}}^{v}\left(\mathbf{K}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}\right)\right)\right)
$$

$$
\stackrel{(11.5 b),(14.4)}{=} \frac{1}{3}\left(\nabla_{[\widehat{X, Y]}}^{\vee}(\mathbf{K}(\widehat{Z}))-\nabla_{\widehat{Z}}^{\vee} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widehat{Y}))\right)
$$

(3) Interchanging Y and Z in the above result,

$$
\begin{aligned}
\mathbf{R}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right) & =-\mathbf{R}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{Y}\right) \\
& =-\frac{1}{3}\left(\nabla_{\widehat{[X, Z]}}^{v}(\mathbf{K}(\widehat{Y}))-\left(\nabla_{\widehat{Y}}^{v} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widehat{Z}))\right)\right) .
\end{aligned}
$$

Thus we obtain that 3 times the right-hand side of (*)
as was to be shown.
Notice that by (11.13) for all $Y, Z \in \mathfrak{X}(M)$ we have

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \mathbf{R}=0 \Longleftrightarrow \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{R}(\widehat{Y}, \widehat{Z}))=\mathbf{R}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right)+\mathbf{R}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right) \tag{14.5}
\end{equation*}
$$

Corollary 14.1.4. If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{H}=0$, i.e., X is a curvature collineation of the affine curvature of (M, S).

$$
\begin{aligned}
& =\nabla_{\widehat{Y}}^{\vee} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widetilde{Z}))+\widetilde{\mathcal{L}}_{[X, Y]^{\mathrm{v}}}(\mathbf{K}(\widehat{Z}))-\nabla_{\widehat{Z}}^{\vee} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widehat{Y})) \\
& -\widetilde{\mathcal{L}}_{[X, Z]}(\mathbf{K}(\widehat{Y}))-\nabla_{[X, Y]}^{v}(\mathbf{K}(\widehat{Z}))-\nabla_{\widehat{Z}}^{v} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widehat{Y})) \\
& +\nabla_{[X, Z]}^{\vee}(\mathbf{K}(\widehat{Y}))-\nabla_{\widehat{Y}}^{\vee} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{K}(\widehat{Z})) \stackrel{(11.6)}{=} \nabla_{[X, Y]}^{v}(\mathbf{K}(\widetilde{Z})) \\
& -\nabla_{\widehat{X, Z]}}^{\vee}(\mathbf{K}(\widetilde{Y}))-\nabla_{\widehat{X, Y]}}^{\vee}(\mathbf{K}(\widetilde{Z}))+\nabla_{\widehat{X, Z]}}^{\vee}(\mathbf{K}(\widetilde{Y}))=0,
\end{aligned}
$$

Proof. By the previous corollary, $X \in \operatorname{Lie}_{S}(M)$ implies that $\widetilde{\mathcal{L}}_{X} \mathbf{C} \mathbf{R}=$ 0 . Now we evaluate the Lie derivative $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{H}$ on an arbitrary triple $(\widehat{Y}, \widehat{Z}, \widehat{U})$, where Y, Z, U are vector fields on M. Then we find that

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{H}\right)(\widehat{Y}, \widehat{Z}, \widehat{U}) \stackrel{(11.13)}{=} \widetilde{\mathcal{L}}_{X^{c}}\left(\mathbf{H}(\widehat{Y}, \widehat{Z}, \widehat{U})-\mathbf{H}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}, \widehat{U}\right)\right. \\
& -\mathbf{H}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right)-\mathbf{H}\left(\widehat{Y}, \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) \stackrel{(14.3)}{=}-\widetilde{\mathcal{L}}_{X^{c}}\left(\left(\nabla^{\mathrm{v}} \mathbf{R}\right)(\widehat{U}, \widehat{Y}, \widehat{Z})\right) \\
& +\left(\nabla^{\mathrm{v}} \mathbf{R}\right)\left(\widehat{U}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right)+\left(\nabla^{\mathrm{v}} \mathbf{R}\right)\left(\widehat{U}, \widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right)+\left(\nabla^{\mathrm{v}} \mathbf{R}\right)\left(\widetilde{\mathcal{L}_{X^{c}}} \widehat{U}, \widehat{Y}, \widehat{Z}\right) \\
& (9.10),(11.5 b) \\
& = \\
& +\widetilde{\mathcal{L}}_{X^{c}}\left(\nabla_{\widehat{U}}^{v}(\mathbf{R}(\widehat{Y}, \widehat{Z}))\right)+\left(\nabla_{\widehat{U}}^{v} \mathbf{R}\right)\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right) \\
& -\left(\nabla_{\widehat{U}}^{v} \mathbf{R}\right)\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right)+\left(\nabla_{[\widehat{[X, U]}}^{v} \mathbf{R}\right)(\widehat{Y}, \widehat{Z}) \stackrel{(11.9),(11.12)}{=} \\
& -\nabla_{\widehat{U}}^{v} \circ \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{R}(\widehat{Y}, \widehat{Z}))-\widetilde{\mathcal{L}}_{[X, U] \mathrm{v}}(\mathbf{R}(\widehat{Y}, \widehat{Z}))+\nabla_{\widehat{U}}^{v}\left(\mathbf{R}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right)\right) \\
& +\nabla_{\widehat{U}}^{v}\left(\mathbf{R}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right)\right)+\nabla_{[X, U]}^{v}(\mathbf{R}(\widehat{Y}, \widehat{Z})) \stackrel{(14.5)}{=} \nabla_{[X, U]}^{v} \mathbf{R}(\widehat{Y}, \widehat{Z}) \\
& -\widetilde{\mathcal{L}}_{[X, U] \mathrm{v}}(\mathbf{R}(\widehat{Y}, \widehat{Z})) \stackrel{(11.6)}{=} 0,
\end{aligned}
$$

as was to be proved.
14.2 Projective relatedness First we recall that a geodesic of S is a smooth curve $\gamma: I \rightarrow M$ whose velocity vector field is an integral curve of S, i.e., $S \circ \dot{\gamma}=\ddot{\gamma}$. If a smooth curve $\widetilde{\gamma}: \widetilde{I} \rightarrow M$ has a positive reparametrization as a geodesic, i.e., there exists a smooth function $\theta: I \rightarrow \widetilde{I}$ with positive derivative such that $\gamma:=\widetilde{\gamma} \circ \theta: I \rightarrow M$ is a geodesic, then $\widetilde{\gamma}$ is called a pregeodesic of S. Two sprays over M are projectively related if they have the same pregeodesic. Projective relatedness of sprays is an equivalence relations, the projective class of S is denoted by $[S]$. Let \bar{S} be another spray for M. By a classical result of the geometry of paths, $\bar{S} \in[S]$ if, and only if, there exists a function $P \in C^{\infty}(\stackrel{\circ}{T} M)$ such that

$$
\begin{equation*}
\bar{S}=S-2 P C \tag{14.6}
\end{equation*}
$$

Then the projective factor P is necessarily 1^{+}-homogeneous.
Let A be a Finsler tensor field constructed from S, and let \bar{A} be a tensor constructed from $\bar{S} \in[S]$ by the same rule. If $\bar{A}=A$ for all $\bar{S} \in[S]$, then A is called a projectively invariant tensor of the spray manifold (M, S). The fundamental projectively invariant tensors of a spray manifold are the Weyl tensors $\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}$ and the Douglas tensor \mathbf{D}. We recall here their definitions:

$$
\begin{equation*}
\mathbf{W}_{\mathbf{1}}:=\mathbf{K}-K \mathbf{1}-\frac{1}{n+1}\left(\operatorname{tr} \nabla^{\vee} \mathbf{K}-\nabla^{\vee} K\right) \otimes \widetilde{\delta} \tag{14.7}
\end{equation*}
$$

where \mathbf{K} is the Jacobi endomorphism defined above, $K:=\frac{1}{n-1} \operatorname{tr} \mathbf{K}$, $n:=\operatorname{dim} M \geqq 2, \mathbf{1}:=1_{\Gamma(\pi)}$.

$$
\begin{align*}
& \mathbf{W}_{\mathbf{2}}(\widetilde{X}, \widetilde{Y}):=\frac{1}{3}\left(\nabla^{\vee} \mathbf{W}_{\mathbf{1}}(\widetilde{X}, \widetilde{Y})-\nabla^{\vee} \mathbf{W}_{\mathbf{1}}(\widetilde{Y}, \widetilde{X})\right), \tag{14.8}\\
& \mathbf{W}_{\mathbf{3}}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=\nabla^{\vee} \mathbf{W}_{\mathbf{2}}(\widetilde{Z}, \widetilde{X}, \widetilde{Y}) ; \quad \widetilde{X}, \widetilde{Y} \widetilde{Z} \in \Gamma(\stackrel{\circ}{\pi}) . \tag{14.9}
\end{align*}
$$

The tensors $\mathbf{W}_{\mathbf{1}}, \mathbf{W}_{\mathbf{2}}, \mathbf{W}_{\mathbf{3}}$ are called the Weyl endomorphism, the fundamental projective curvature tensor and the projective curvature tensor of (M, S), respectively.

To introduce the Douglas tensor, first we define the Berwald tensor $\mathbf{B} \in T_{3}^{1}(\Gamma(\stackrel{\circ}{\pi}))$ of (M, S) by

$$
\begin{align*}
\mathbf{B}(\widehat{X}, \widehat{Y}) \widehat{Z} & :=\left(\nabla^{\vee} \nabla^{\mathrm{h}} \widehat{Z}\right)(\widehat{X}, \widehat{Y}) \\
& =\nabla_{\widehat{X}}^{\mathrm{v}}\left(\nabla^{\mathrm{h}} \widehat{Z}\right)(\widehat{Y}) \stackrel{(9.10)}{=} \nabla_{\widehat{X}}^{\vee}\left(\nabla_{\widehat{Y}}^{\mathrm{h}} \widehat{Z}\right) \tag{14.10}
\end{align*}
$$

Locally, with the notation of 13.4.4 (see also 13.1.7 (b)),

$$
\mathbf{B}\left(\frac{\widehat{\partial}}{\partial u^{j}}, \frac{\widehat{\partial}}{\partial u^{k}}\right) \frac{\widehat{\partial}}{\frac{\partial u^{l}}{\partial}}=\nabla_{\frac{\partial}{\partial u^{j}}}^{\frac{\partial}{\partial k}}\left(G_{k l}^{i} \frac{\widehat{\partial}}{\partial u^{i}}\right)=\frac{\partial G_{k l}^{i}}{\partial y^{z}} \frac{\partial}{\partial y^{i}},
$$

so the components of \mathbf{B} with respect to an induced chart on $T M$ are the $(-1)^{+}$-homogeneous functions

$$
G_{j k l}^{i}:=\frac{\partial G_{k l}^{i}}{\partial y^{j}}=\frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}} \in C^{\infty}\left(\stackrel{\tau}{\tau}^{-1}(U)\right)
$$

where the functions G^{i} are the spray coefficients of S. After this preparatory step, we define the Douglas tensor of (M, S) by

$$
\begin{equation*}
\mathbf{D}:=\mathbf{B}-\frac{1}{n-1}\left(\left(\nabla^{\vee} \operatorname{tr} \mathbf{B}\right) \otimes \tilde{\delta}+(\operatorname{tr} \mathbf{B}) \odot \mathbf{1}\right) \tag{14.11}
\end{equation*}
$$

where the symbol \odot stands for the symmetric product without numerical factor. For a coordinate description we refer to [29], Remark 8.4.25.

Next we show that if $X \in \operatorname{Lie}_{S}(M)$, then X is a curvature collineation of the Weyl tensors, the Berwald tensor and the Douglas tensor in the same sense as above.

Theorem 14.2.1. If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X c} \mathbf{W}_{\mathbf{1}}=0$, i.e., X is a curvature collineation of the Weyl endomorphism of (M, S).

Proof. If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X} \mathbf{C} \mathbf{K}=0$ by Theorem 14.1.2. Taking into account that $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{1}=0, \widetilde{\mathcal{L}}_{X^{c}} \delta \widetilde{\delta} \stackrel{(11.5 a)}{=} 0$ and $\widetilde{\mathcal{L}}_{X^{c}} \circ \operatorname{tr}=\operatorname{tr} \circ \widetilde{\mathcal{L}}_{X^{c}}$, we readily find that

$$
\widetilde{\mathcal{L}}_{X^{c}}(K \mathbf{1})=\frac{1}{n-1}\left(\widetilde{\mathcal{L}}_{X^{c}} \operatorname{tr} \mathbf{K}\right) \mathbf{1}=\frac{1}{n-1} \operatorname{tr}\left(\widetilde{\mathcal{L}}_{X^{c}} K\right) \mathbf{1}=0 .
$$

Next we show that

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \nabla^{\vee} K=0 . \tag{14.12}
\end{equation*}
$$

For every vector field Y on M,

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \nabla^{\vee} K\right)(\widehat{Y})=X^{\mathrm{c}}\left(Y^{\vee} K\right)-\nabla^{\vee} K\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Y}\right)=X^{\mathrm{c}}\left(Y^{\vee} K\right)-\nabla^{\vee} K \widehat{[X, Y]} \\
& =X^{\mathrm{c}}\left(Y^{\mathrm{\vee}} K\right)-[X, Y]^{\vee} K=\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right] K+Y^{\mathrm{v}}\left(X^{\mathrm{c}} K\right)-[X, Y]^{\mathrm{v}} K \\
& \stackrel{(7.22 b)}{=} Y^{\mathrm{\vee}}\left(X^{\mathrm{c}} K\right)=\frac{1}{n-1} Y^{\mathrm{v}}\left(X^{\mathrm{c}} \operatorname{tr} \mathbf{K}\right)=\frac{1}{n-1} Y^{\mathrm{v}}\left(\operatorname{tr} \widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \mathbf{K}\right)=0,
\end{aligned}
$$

as we claimed. Taking these into account, we obtain

$$
\widetilde{\mathcal{L}}_{X^{c}} \mathbf{W}_{\mathbf{1}}=-\frac{1}{n-1}\left(\widetilde{\mathcal{L}}_{X^{c}} \operatorname{tr} \nabla^{\vee} \mathbf{K}\right) \otimes \widetilde{\delta} .
$$

To finish the proof we show that $\widetilde{\mathcal{L}}_{X^{c}} \operatorname{tr} \nabla^{\vee} \mathbf{K}=0$. From Corollary 8.2.8 in [29],

$$
\operatorname{tr} \nabla^{\vee} \mathbf{K}=3 \operatorname{tr} \mathbf{R}+\nabla^{\vee} \operatorname{tr} \mathbf{K} .
$$

By Corollary 14.1.3, $\widetilde{\mathcal{L}}_{X} \mathbf{C}=0$. Thus

$$
\begin{aligned}
& \widetilde{\mathcal{L}}_{X^{c}} \operatorname{tr} \nabla^{\vee} \mathbf{K}=3 \operatorname{tr} \widetilde{\mathcal{L}}_{X^{c}} \mathbf{R}+\widetilde{\mathcal{L}}_{X^{c}} \nabla^{\vee} \operatorname{tr} \mathbf{K}=\widetilde{\mathcal{L}}_{X^{c}} \nabla^{\vee} \operatorname{tr} \mathbf{K}=(n-1) \widetilde{\mathcal{L}}_{X^{c}} \nabla^{\vee} K \\
& \quad \stackrel{(14.12)}{=} 0,
\end{aligned}
$$

which concludes the proof.
Corollary 14.2.2. If $X \in \operatorname{Lie}_{S}(M)$, then X is a curvature collineation both of the fundamental projective curvature and the projective curvature of (M, S).

This can be shown in the same way as Corollaries 14.1.3 and 14.1.4, so we omit the analogous calculation.

Proposition 14.2.3. If $X \in \operatorname{Lie}_{S}(M)$ and \mathbf{B} is the Berwald tensor of (M, S), then $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{B}=0$.

Proof. For any vector fields Y, Z, U on M,

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{B}\right)(\widehat{Y}, \widehat{Z}, \widehat{U}) \stackrel{(11.13)}{=} \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{B}(\widehat{Y}, \widehat{Z}) \widehat{U})-\mathbf{B}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right) \widehat{U} \\
& -\mathbf{B}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Z}\right) \widehat{U}-\mathbf{B}(\widehat{Y}, \widehat{Z}) \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}^{(14.10),(11.5 b)} \stackrel{\mathcal{L}_{X^{\mathrm{c}}}}{ }\left(\left(\nabla^{\mathrm{v}} \nabla^{\mathrm{h}} \widehat{U}\right)(\widehat{Y}, \widehat{Z})\right) \\
& -\left(\left(\nabla^{\vee} \nabla^{\mathrm{h}} \widehat{U}\right)(\widehat{X, Y]}, \widehat{Z})\right)-\left(\left(\nabla^{\vee} \nabla^{\mathrm{h}} \widehat{U}\right)(\widehat{Y}, \widehat{[X, Z]})\right) \\
& -\left(\left(\nabla^{\vee} \nabla^{\mathrm{h}} \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)(\widehat{Y}, \widehat{Z})\right) \stackrel{(14.10)}{=} \widetilde{\mathcal{L}}_{X^{c}}\left(\nabla_{\widehat{Y}}^{\vee} \nabla_{\widehat{Z}}^{h} \widehat{U}\right)-\nabla_{[X, Y]}^{\vee} \nabla_{\widehat{Z}}^{h} \widehat{U} \\
& -\nabla_{\widehat{Y}}^{\vee} \nabla_{[X, Z])}^{\mathrm{h}} \widehat{U}-\nabla_{\widehat{Y}}^{\vee} \nabla_{\widehat{Z}}^{h} \widetilde{\mathcal{L}}_{X c} \widehat{U}^{(11.9),(13.30)} \nabla_{\widehat{Y}}^{v}\left(\widetilde{\mathcal{L}}_{X c} \nabla_{\widehat{Z}}^{h} \widehat{U}\right) \\
& +\widetilde{\mathcal{L}}_{[X, Y]^{\vee}} \nabla_{\widehat{Z}}^{\mathrm{h}} \widehat{U}-\nabla_{[X, Y]}^{v} \nabla_{\widehat{Z}}^{\mathrm{h}} \widehat{U}-\nabla_{\widehat{Y}}^{v} \nabla_{[X, Z]}^{\mathrm{h}} \widehat{U}-\nabla_{\widehat{Y}}^{v}\left(\widetilde{\mathcal{L}}_{X^{c}} \nabla_{\widehat{Z}}^{\mathrm{h}} \widehat{U}\right) \\
& +\nabla_{\widehat{Y}}^{v} \widetilde{\mathcal{L}}_{\left[X^{c}, Z^{h}\right]} \widehat{U}^{(11.6),(13.40)}-\nabla_{\widehat{Y}}^{v} \nabla_{[X, Z]}^{\mathrm{h}} \widehat{U}+\nabla_{\widehat{Y}}^{v} \widetilde{\mathcal{L}}_{[X, Z]} \widehat{U} \stackrel{(13.29)}{=} 0,
\end{aligned}
$$

as was to be shown.
Corollary 14.2.4. If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X^{C}} \mathbf{D}=0$, i.e., X is a curvature collineation for the Douglas tensor.

Proof. By the previous proposition, $\widetilde{\mathcal{L}}_{X^{c}}$ kills the first and the third member of the right-hand side of (14.11), so it remains only to show that $\widetilde{\mathcal{L}}_{X^{c}}\left(\nabla^{\vee} \operatorname{tr} \mathbf{B}\right)=0$. Given any three vector fields Y, Z, U on M, we calculate:

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(\nabla^{\mathrm{v}} \operatorname{tr} \mathbf{B}\right)\right)(\widehat{Y}, \widehat{Z}, \widehat{U})=X^{\mathrm{c}}\left(\left(\nabla^{\vee} \operatorname{trB}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})\right) \\
& -\left(\nabla^{\vee} \operatorname{tr} \mathbf{B}\right)(\widehat{[X, Y]}, \widehat{Z}, \widehat{U})-\left(\nabla^{\vee} \operatorname{tr} \mathbf{B}\right)\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right) \\
& -\left(\nabla^{\vee} \operatorname{trB}\right)\left(\widehat{Y}, \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)=X^{\mathrm{c}} Y^{\vee}(\operatorname{trB}(\widehat{Z}, \widehat{U}))-[X, Y]^{\vee}(\operatorname{trB}(\widehat{Z}, \widehat{U})) \\
& -Y^{\mathrm{v}}\left(\operatorname{tr} \mathbf{B}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Z}, \widehat{U}\right)\right)-Y^{\mathrm{\vee}}\left(\operatorname{trB}\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X c} \widehat{U}\right)\right) \stackrel{(7.22 b)}{=} Y^{\mathrm{v}}\left(X^{\mathrm{c}}(\operatorname{trB})(\widehat{Z}, \widehat{U})\right. \\
& \left.-\operatorname{tr} \mathbf{B}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Z}, \widehat{U}\right)-\operatorname{tr} \mathbf{B}\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{U}\right)\right)=Y^{\mathrm{v}}\left(\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \operatorname{tr} \mathbf{B}\right)(\widehat{Z}, \widehat{U})\right) \\
& =Y^{\vee}\left(\left(\operatorname{tr} \widetilde{\mathcal{L}}_{X^{\mathrm{C}}} \mathbf{B}\right)(\widehat{Z}, \widehat{U})\right) \stackrel{\text { Prop. }}{=}{ }^{14.2 .3} 0 \text {. }
\end{aligned}
$$

This proves our assertion.
The main results of this chapter have been published in our paper [31].

Part IV

Geometric vector fields on Finsler manifolds

15 Basic objects of a Finsler manifold

Throughout this part, M is a manifold of dimension $n \geqq 2$.
15.1 We recall that a positive continuous function $F: T M \rightarrow \mathbb{R}$ is called a Finsler function for M if it is smooth on $\stackrel{\circ}{T} M, 1^{+}$-homogeneous, and the fundamental tensor

$$
\begin{equation*}
g:=\frac{1}{2} \nabla^{\vee} \nabla^{\vee} F^{2}=: \nabla^{\vee} \nabla^{\vee} E \in T_{2}^{0}(\Gamma(\stackrel{\circ}{\pi})) \tag{15.1}
\end{equation*}
$$

is fibrewise non-degenerate. A Finsler manifold is a pair (M, F), where M is a manifold and F is a Finsler function for M. The function $E=\frac{1}{2} F^{2}$ is the energy function associated to F, or the energy of (M, F). Clearly, it is 2^{+}-homogeneous. An easy calculation shows that the energy function can be obtained from the fundamental tensor by

$$
\begin{equation*}
g(\widetilde{\delta}, \widetilde{\delta})=2 E \tag{15.2}
\end{equation*}
$$

The Hilbert 1-form of (M, F) is

$$
\begin{align*}
& \text { in the pull-back formalism } \theta_{g}:=\nabla^{\vee} E=F \nabla^{\vee} F \text {, } \tag{15.3}\\
& \text { in the } \tau_{T M} \text { formalism } \theta_{E}:=d_{\mathbf{J}} E . \tag{15.4}
\end{align*}
$$

The one-forms θ_{g} and θ_{E} are related by

$$
\begin{equation*}
\theta_{E}=\theta_{g} \circ \mathbf{j} \tag{15.5}
\end{equation*}
$$

The two-form

$$
\begin{equation*}
\omega_{E}:=d \theta_{E}=d d_{\mathbf{J}} E \in \mathcal{A}_{2}(\stackrel{\circ}{T} M) \tag{15.6}
\end{equation*}
$$

is called the fundamental 2-form of (M, F). Its relation to the fundamental tensor is given by

$$
\begin{equation*}
\omega_{E}(\mathbf{J} \xi, \eta)=g(\mathbf{j} \xi, \mathbf{j} \eta) ; \xi, \eta \in \mathfrak{X}(\stackrel{\circ}{T} M) . \tag{15.7}
\end{equation*}
$$

The non-degeneracy of g implies the non-degeneracy of ω_{E}, and vice versa.

Proposition 15.1.1. Let (M, F) be a Finsler manifold and X a vector field on M. With the notation above,

$$
\begin{align*}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}\right) \circ \mathbf{j}=\mathcal{L}_{X^{c}} \theta_{E} \tag{15.8}\\
& \left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{j} \xi, \mathbf{j} \eta)=\left(\mathcal{L}_{X^{c}} \omega_{E}\right)(\mathbf{J} \xi, \eta) \tag{15.9}
\end{align*}
$$

Proof. For every vector field ξ on $\stackrel{\circ}{T} M$,

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}\right)(\mathbf{j} \xi) \stackrel{(11.13)}{=} \mathcal{L}_{X^{\mathrm{c}}}\left(\theta_{g}(\mathbf{j} \xi)\right)-\theta_{g}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}(\mathbf{j} \xi)\right) \stackrel{(15.5)}{=} \mathcal{L}_{X^{\mathrm{c}}}\left(\theta_{E}(\xi)\right) \\
& -\theta_{g}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \circ \mathbf{j}(\xi)\right) \stackrel{(11.8),(15.5)}{=} \mathcal{L}_{X^{c}}\left(\theta_{E}(\xi)\right)-\theta_{E}\left(\mathcal{L}_{X^{c}} \xi\right)=\left(\mathcal{L}_{X^{c}} \theta_{E}\right)(\xi)
\end{aligned}
$$

whence (15.8). A little more calculation is necessary to prove (15.9). Starting with the definition of the classical Lie derivative, we find

$$
\begin{aligned}
& \left(\mathcal{L}_{X^{c}} \omega_{E}\right)(\mathbf{J} \xi, \eta)=X^{\mathrm{c}} \omega_{E}(\mathbf{J} \xi, \eta)-\omega_{E}\left(\mathcal{L}_{X^{\mathrm{c}}} \mathbf{J} \xi, \eta\right)-\omega_{E}\left(\mathbf{J} \xi, \mathcal{L}_{X^{c}} \eta\right) \\
& \stackrel{(11.8),(15.7)}{=} X^{\mathrm{c}} g(\mathbf{j} \xi, \mathbf{j} \eta)-\omega_{E}\left(\mathcal{L}_{X^{\mathrm{c}}} \mathbf{J} \xi, \eta\right)-g\left(\mathbf{j} \xi, \widetilde{\mathcal{L}}_{X^{c}} \mathbf{j} \eta\right)
\end{aligned}
$$

Observe now that the operators $\mathcal{L}_{X^{c}}$ and \mathbf{J} are interchangeable, i.e.,

$$
\begin{equation*}
\mathcal{L}_{X^{c}} \circ \mathbf{J}=\mathbf{J} \circ \mathcal{L}_{X^{c}} \text { for all } X \in \mathfrak{X}(M) \tag{15.10}
\end{equation*}
$$

Indeed, $\mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}}=\mathcal{L}_{X^{c}} \circ \mathbf{i}$ by (11.7). Composing both sides of this equality on the right with \mathbf{j} and using (11.8), we obtain (15.10). Taking this into account,

$$
\omega_{E}\left(\mathcal{L}_{X^{\mathrm{c}}} \mathbf{J} \xi, \eta\right)=\omega_{E}\left(\mathbf{J} \mathcal{L}_{X^{c}} \xi, \eta\right) \stackrel{(15.7)}{=} g\left(\mathbf{j} \mathcal{L}_{X^{c}} \xi, \mathbf{j} \eta\right) \stackrel{(11.8)}{=} g\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}(\mathbf{j} \xi), \mathbf{j} \eta\right)
$$

Thus

$$
\begin{aligned}
& \left(\mathcal{L}_{X^{c}} \omega_{E}\right)(\mathbf{J} \xi, \eta)=X^{\mathrm{c}} g(\mathbf{j} \xi, \mathbf{j} \eta)-g\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}(\mathbf{j} \xi), \mathbf{j} \eta\right)-g\left(\mathbf{j} \xi, \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{j} \eta)\right) \\
& =\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{j} \xi, \mathbf{j} \eta)
\end{aligned}
$$

as was to be shown.
15.1.2 Let $\omega_{E}^{n}=\omega_{E} \wedge \ldots \wedge \omega_{E}\left(n\right.$ factors). Then $w:=\frac{1}{n!}(-1)^{\frac{n(n-1)}{2}} \omega_{E}^{n}$ is a volume form on $\stackrel{\circ}{T} M$, called the Dazord volume form for (M, F). The divergence of a vector field ξ on $\stackrel{\circ}{T} M$ (with respect to w) is the unique smooth function $\operatorname{div} \xi \in C^{\infty}(\stackrel{\circ}{T} M)$ such that $\mathcal{L}_{\xi} w=(\operatorname{div} \xi) w$. It can easily be shown that

$$
\begin{equation*}
\operatorname{div} C=n \tag{15.11}
\end{equation*}
$$

see, e.g., [32], Corollary 1.
15.1.3 If (M, F) is a Finsler manifold, then there exists a unique spray S for M such that

$$
\begin{equation*}
i_{S} d d_{\mathbf{J}} E=-d E \text { over } \stackrel{\circ}{T} M . \tag{15.12}
\end{equation*}
$$

This spray is called the canonical spray of (M, F). Thus every Finsler manifold is a spray manifold at the same time. The Berwald connection of this spray manifold is called the canonical connection of (M, F). We denote it by \mathcal{H}; and $\mathbf{h}, \mathbf{v}, \mathcal{V}$ stand for the associated projection operators and the vertical mapping as in 13.1.2. The canonical connection can be characterized as the unique torsion-free Ehresmann connection for M which is compatible with the Finsler function in the sense that $d F \circ H=0$, or, equivalently,

$$
\begin{equation*}
\mathcal{H}(\widehat{X}) F=X^{\mathrm{h}} F=0 \quad \text { for all } X \in \mathfrak{X}(M) . \tag{15.13}
\end{equation*}
$$

With the help of the canonical connection, we define the Sasaki-Finsler metric g^{S} by

$$
\begin{equation*}
g^{S}(\xi, \eta):=g(\mathbf{j} \xi, \mathbf{j} \eta)+g(\mathcal{V} \xi, \mathcal{V} \eta) ; \quad \xi, \eta \in \mathfrak{X}(\stackrel{\circ}{T} M) \tag{15.14}
\end{equation*}
$$

Then g^{S} is a Riemannian metric tensor on $\stackrel{\circ}{T} M$.
We shall need the following technical result.
Lemma 15.1.4. If S is the canonical spray of the Finsler manifold (M, F), then

$$
\begin{equation*}
\omega_{E}(C, S)=2 E, \quad \operatorname{div} S=0 . \tag{15.15a-b}
\end{equation*}
$$

Proof. Both equalities can be shown by a straightforward calculation:

$$
\begin{aligned}
& \omega_{E}(C, S) \stackrel{(15.7)}{=} g(\mathbf{j} S, \mathbf{j} S)=g(\widetilde{\delta}, \widetilde{\delta}) \stackrel{(15.2)}{=} 2 E ; \\
& \mathcal{L}_{S} \omega_{E}=\mathcal{L}_{S} d d_{\mathbf{J}} E \stackrel{(5.15)}{=} i_{S} d d d_{\mathbf{J}} E+d i_{S} d d_{\mathbf{J}} E \stackrel{(5.18)}{=} d i_{S} d d_{\mathbf{J}} E \\
& =-d d E=0,
\end{aligned}
$$

therefore $\mathcal{L}_{S} \omega_{E}=0$, which implies (15.15b).

15.2 Covariant derivatives on a Finsler manifold

Since every Finsler manifold (M, F) is a spray manifold (M, S) with the canonical spray, we have the Berwald derivative ∇ of (M, S),
induced by the canonical connection \mathcal{H}. In general, it is neither vmetric, nor h-metric, i.e., neither $\nabla^{\mathrm{v}} g$ nor $\nabla^{\mathrm{h}} g$ vanishes. We give names to these objects. The type (0,3) Finsler tensor fields

$$
\begin{equation*}
\mathfrak{C}_{b}:=\nabla^{\vee} g=\nabla^{\vee} \nabla^{\vee} \nabla^{\vee} E \quad \text { and } \quad \mathbf{L}_{b}:=\nabla^{\mathrm{h}} g=\nabla^{\mathrm{h}} \nabla^{\vee} \nabla^{\vee} E \tag{15.16a-b}
\end{equation*}
$$

are called the Cartan-tensor and Landsberg-tensor of (M, F), respectively. We give the same names to the metrically equivalent tensors \mathcal{C} and \mathbf{L}, defined by

$$
\begin{equation*}
g(\mathcal{C}(\widetilde{X}, \widetilde{Y}), \widetilde{Z}):=\mathfrak{C}_{b}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}), \text { and } g(\mathbf{L}(\widetilde{X}, \widetilde{Y}), \widetilde{Z})=\mathbf{L}_{b}(\widetilde{X}, \widetilde{Y}, \widetilde{Z}) \tag{15.17a-b}
\end{equation*}
$$

We have three additional, important covariant derivatives on a Finsler manifold: the Cartan derivative D^{C}, the Chern-Rund derivative $D^{C h}$ and the Hashiguchi derivative $D^{H s}$. They can be defined as follows:

$$
\begin{align*}
D_{\xi}^{C} \widetilde{Y} & :=\nabla_{\xi} \widetilde{Y}+\frac{1}{2} \mathcal{C}(\mathcal{V} \xi, \widetilde{Y})+\frac{1}{2} \mathbf{L}(\mathbf{j} \xi, \widetilde{Y}), \tag{15.18}\\
D_{\xi}^{C h} \widetilde{Y} & :=\nabla_{\xi} \widetilde{Y}+\frac{1}{2} \mathbf{L}(\mathbf{j} \xi, \widetilde{Y}), \tag{15.19}\\
D_{\xi}^{H s} \widetilde{Y} & :=\nabla_{\xi} \widetilde{Y}+\frac{1}{2} \mathcal{C}(\mathcal{V} \xi, \widetilde{Y}) \tag{15.20}
\end{align*}
$$

Notice that the Cartan derivative is metric, the Chern-Rund derivative is h-metric, and the Hashiguchi-derivative is v-metric, i.e., we have

$$
\begin{equation*}
D^{c} g=0 ; D_{\mathcal{H} \tilde{X}}^{C h} g=0, D_{\mathbf{i} \widetilde{X}}^{H s} g=0 \quad(\widetilde{X} \in \Gamma(\stackrel{\circ}{\pi})) \tag{15.21a-c}
\end{equation*}
$$

Proposition 15.2.1. With the notation above, for every vector field X on M we have

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}_{b}=\nabla^{\vee}\left(\widetilde{\mathcal{L}}_{X^{c}} g\right) . \tag{15.22}
\end{equation*}
$$

Proof. For any vector fields Y, Z, U on M

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})=\left(\widetilde{\mathcal{L}}_{X^{c}}\left(\nabla^{\vee} g\right)\right)(\widehat{Y}, \widehat{Z}, \widehat{U}) \stackrel{(11.13)}{=} \widetilde{\mathcal{L}}_{X^{c}}\left(\left(\nabla^{\vee} g\right)(\widehat{Y}, \widehat{Z}, \widehat{U})\right) \\
& -\left(\nabla^{\vee} g\right)(\widehat{[X, Y]}, \widehat{Z}, \widehat{U})-\left(\nabla^{\vee} g\right)\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{\circ}} \widehat{Z}, \widehat{U}\right)-\left(\nabla^{\vee} g\right)\left(\widehat{Y}, \widehat{Z}, \widetilde{\mathcal{L}}_{X} \subset \widehat{U}\right) \\
& \stackrel{(11.5 b)}{=} \widetilde{\mathcal{L}}_{X^{c}}\left(\left(\nabla_{Y^{v}} g\right)(\widehat{Z}, \widehat{U})\right)-\left(\nabla_{[X, Y]^{v}} g\right)(\widehat{Z}, \widehat{U})-\left(\nabla_{Y^{v}} g\right)\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right) \\
& -\left(\nabla_{Y^{\vee}} g\right)\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) \stackrel{(9.10)}{=} \widetilde{\mathcal{L}}_{X^{c}}\left(\nabla_{Y^{v}}(g(\widehat{Z}, \widehat{U}))\right)-\nabla_{[X, Y]^{\mathrm{v}}}(g(\widehat{Z}, \widehat{U})) \\
& -\nabla_{Y^{v}}\left(g\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right)\right)-\nabla_{Y^{v}}\left(g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)\right) \stackrel{(11.9)}{=} \nabla_{Y^{v}} \widetilde{\mathcal{L}}_{X^{c}}(g(\widehat{Z}, \widehat{U})) \\
& +\widetilde{\mathcal{L}}_{[X, V]^{\mathrm{v}}}(g(\widehat{Z}, \widehat{U}))-\nabla_{[X, Y]^{\mathrm{v}}}(g(\widehat{Z}, \widehat{U}))-\nabla_{Y^{\mathrm{v}}}\left(g\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Z}, \widehat{U}\right)\right) \\
& -\nabla_{Y^{\vee}}\left(g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)\right)=\nabla_{Y^{\mathrm{v}}}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}(g(\widehat{Z}, \widehat{U}))-g\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Z}, \widehat{U}\right)\right. \\
& \left.-g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)\right) \stackrel{(11.13)}{=} \nabla_{Y^{v}}\left(\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\widehat{Z}, \widehat{U})\right)=\left(\nabla^{\vee} \widetilde{\mathcal{L}}_{X^{c}} g\right)(\widetilde{Y}, \widehat{Z}, \widehat{U}) .
\end{aligned}
$$

This proves our assertion.
Proposition 15.2.2. If X, Y, Z, U are vector fields on M, then

$$
\begin{align*}
& g\left(\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}\right)(\widehat{Y}, \widehat{Z}), \widehat{U}\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathcal{C}(\widehat{Y}, \widehat{Z}), \widehat{U}), \tag{15.23}\\
& g\left(\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}\right)(\widehat{Y}, \widehat{Z}), \widehat{U}\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{L}(\widehat{Y}, \widehat{Z}), \widehat{U}) . \tag{15.24}
\end{align*}
$$

Proof. From definition (15.17 a), $\widetilde{\mathcal{L}}_{X^{c}}\left(\mathfrak{C}_{b}(\widehat{Y}, \widehat{Z}, \widehat{U})\right)=\widetilde{\mathcal{L}}_{X^{c}}(g(\mathcal{C}(\widehat{Y}, \widehat{Z}), \widehat{U}))$. By the product rule for derivations, we have

$$
\begin{aligned}
\widetilde{\mathcal{L}}_{X^{c}}\left(\mathfrak{C}_{b}(\widehat{Y}, \widehat{Z}, \widehat{U})\right) & \left.=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})+\mathfrak{C}_{b}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}, \widehat{U}\right)\right) \\
& +\mathcal{C}_{b}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right)+\mathcal{C}_{b}\left(\widehat{Y}, \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\widetilde{\mathcal{L}}_{X^{c}}(g(\mathbb{C}(\widehat{Y}, \widehat{Z}), \widehat{U})) & =\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbb{C}(\widehat{Y}, \widehat{Z}), \widehat{U}) \\
& +g\left(\widetilde{\mathcal{L}}_{X^{c}}(\mathcal{C}(\widehat{Y}, \widehat{Z})), \widehat{U}\right)+g\left(\mathbb{C}(\widehat{Y}, \widehat{Z}), \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) .
\end{aligned}
$$

So it follows that

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathcal{C}(\widehat{Y}, \widehat{Z}), \widehat{U})=g\left(\widetilde{\mathcal{L}}_{X^{c}}(\mathcal{C}(\widehat{Y}, \widehat{Z})), \widehat{U}\right) \\
& \left.+g\left(\mathcal{C}(\widehat{Y}, \widehat{Z}), \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)-\mathcal{C}_{b}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}, \widehat{U}\right)\right)-\mathcal{C}_{b}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right) \\
& -\mathfrak{C}_{b}\left(\widehat{Y}, \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) \stackrel{(15.17 a)}{=} g\left(\widetilde{\mathcal{L}}_{X^{c}}(\mathcal{C}(\widehat{Y}, \widehat{Z})) \widehat{U}\right)+g\left(\mathbb{C}(\widehat{Y}, \widehat{Z}), \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) \\
& \left.-g\left(\mathcal{C}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right) \widehat{U}\right)\right)-g\left(\mathcal{C}\left(\widehat{Y}, \widetilde{\mathcal{L}_{X^{c}}} \widehat{Z}\right) \widehat{U}\right)-g\left(\mathcal{C}(\widehat{Y}, \widehat{Z}), \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) \\
& =g\left(\widetilde{\mathcal{L}}_{X^{c}}(\mathcal{C}(\widehat{Y}, \widehat{Z}))-\mathcal{C}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}\right)-\mathcal{C}\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right) \widehat{U}\right) \\
& =g\left(\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}\right)(\widehat{Y}, \widehat{Z}) \widehat{U}\right),
\end{aligned}
$$

which finishes the proof of (15.23). Formula (15.24) can be shown in the same way, so we omit the essentially identical calculation.

16 Killing vector fields on a Finsler manifold

16.1 To motivate our subsequent development, in this section we have a look at the semi-Riemannian metrics. We recall that if M is a manifold and $g \in \mathcal{T}_{2}^{0}(M)$ is a scalar product (resp. positive definite scalar product) on the tangent bundle of M (see 2.11), then (M, g) is called a semi-Riemannian (resp. Riemannian) manifold. We also say in this case that g is a metric tensor on M. On a semi-Riemannian manifold (M, g) there exists a unique torsion-free metric derivative D, called the Levi-Civita derivative on M. It is characterized by the Koszul formula

$$
\begin{align*}
2 g\left(D_{X} Y, Z\right) & =X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y]) \tag{16.1}
\end{align*}
$$

where $X, Y, Z \in \mathfrak{X}(M)$.
16.2 On a semi-Riemannian manifold (M, g) one can conveniently define the well-known differential operators of classical vector analysis: gradient, divergence and Laplacian.
(i) The gradient of a function $f \in C^{\infty}(M)$ is the unique vector field $\operatorname{grad} f \in C^{\infty}(M)$ such that

$$
\begin{equation*}
g(\operatorname{grad} f, X)=d f(X)=X f \text { for all } X \in \mathfrak{X}(M) \tag{16.2}
\end{equation*}
$$

(ii) The divergence of a vector field $X \in \mathfrak{X}(M)$ is the smooth function

$$
\begin{equation*}
\operatorname{div} X:=\operatorname{tr} D X \stackrel{(2.5)}{=} \operatorname{tr}\left(Y \in \mathfrak{X}(M) \mapsto D_{Y} X \in \mathfrak{X}(M)\right) \tag{16.3}
\end{equation*}
$$

where D is the Levi-Civita derivative on M.
(iii) The Laplacian of a function $f \in C^{\infty}(M)$ is

$$
\begin{equation*}
\Delta f:=\operatorname{div}(\operatorname{grad} f) \tag{16.4}
\end{equation*}
$$

Suppose for simplicity that g is a Riemannian metric, and let $\left(E_{i}\right)_{i=1}^{n}$ be a g-orthonormal frame field over an open subset \mathcal{U} of M. (${ }^{\prime} g$ orthonormal' means that $g\left(E_{i}, E_{j}\right)=\delta_{i j} ; i, j \in J_{n}$.) Then we have

$$
\begin{equation*}
\operatorname{div} X \underset{(\mathcal{U})}{=} \sum g\left(D_{E_{i}} X, E_{i}\right) . \tag{16.5}
\end{equation*}
$$

A similar formula is valid also in the semi-Riemannian case.
16.3 Let (M, g) be a semi-Riemannian manifold. A diffeomorphism $\varphi: U \rightarrow V$ between two open subsets of M is called a conformal transformation if there exists a positive smooth function $f: U \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
g_{\varphi(p)}\left(\varphi_{*}(u), \varphi_{*}(v)\right)=f(p) g_{p}(u, v) \tag{16.6}
\end{equation*}
$$

holds for all $p \in U ; u, v \in T_{p} M$. Particular cases are homotheties (or dilatations) when f is a nonzero constant function, and isometries when $f(p)=1$ for all point p in U. A vector field X on M is called comformal, homothetic and Killing if the stages of its local one-parameter group are conformal transformations, homotheties and isometries, respectively. A conformal vector field is proper if it is not homothetic. We use the following notation:
$\operatorname{Conf}_{g}(M)$ the set of conformal vector fields on M.
$\operatorname{Dil}_{g}(M)$ the set of homothetic vector fields on M.
$\operatorname{Kill}_{g}(M)$ the set of Killing vector fields on M.
The following results are well-known (see, e.g., [26]).
Proposition 16.3.1. Let (M, g) be a semi-Riemannian manifold and X a vector field on M. Then

$$
\begin{equation*}
X \in \operatorname{Conf}_{g}(M) \Longleftrightarrow \mathcal{L}_{X} g=2 \sigma g \text { for some } \sigma \in C^{\infty}(M) \text {. } \tag{16.7}
\end{equation*}
$$

In particular,

$$
\begin{align*}
& X \in \operatorname{Dil}_{g}(M) \Longleftrightarrow \mathcal{L}_{X} g=\alpha g \text { for some } \alpha \in \mathbb{R}^{*} ; \tag{16.8}\\
& X \in \operatorname{Kill}_{g}(M) \Longleftrightarrow \mathcal{L}_{X} g=0 . \tag{16.9}
\end{align*}
$$

The function σ in equality (16.7) is called the conformal function of X.

Lemma 16.3.2. Suppose (for simplicity) that (M, g) is a Riemannian manifold. If $X \in \operatorname{Conf}_{g}(M)$, then the conformal function of X is $\frac{1}{n} \operatorname{div} X$.
Proof. Let $\left(E_{i}\right)_{i=1}^{n}$ be an orthonormal frame field over an open subset U of M. Then

$$
\begin{aligned}
& 2 \operatorname{div} X \stackrel{(16.5)}{\left(\mathcal{u}^{5}\right)} 2 \sum g\left(D_{E_{i}} X, E_{i}\right) \\
& \stackrel{(16.1)}{=} \sum\left(E_{i} g\left(X, E_{i}\right)+X g\left(E_{i}, E_{i}\right)-E g\left(E_{i}, X\right)\right) \\
& +\sum\left(-g\left(E_{i},\left[X, E_{i}\right]\right)+g\left(X,\left[E_{i}, E_{i}\right]\right)+g\left(E_{i},\left[E_{i}, X\right]\right)\right) \\
& =2 \sum g\left(E_{i},\left[E_{i}, X\right]\right) .
\end{aligned}
$$

On the other hand, we have

$$
\left(\mathcal{L}_{X} g\right)\left(E_{i}, E_{i}\right) \stackrel{(10.1)}{=} X g\left(E_{i}, E_{i}\right)-2 g\left(\left[X, E_{i}\right], E_{i}\right)=2 g\left(E_{i},\left[E_{i}, X\right]\right) .
$$

Thus

$$
2 \operatorname{div} X=\sum\left(\mathcal{L}_{X} g\right)\left(E_{i}, E_{i}\right) \stackrel{(16.7)}{=} 2 \sum \sigma g\left(E_{i}, E_{i}\right)=2 \sigma n,
$$

whence our claim.
16.4 Let (M, F) be a Finsler manifold. A diffeomorphism $\varphi: \mathcal{U} \rightarrow \mathcal{V}$ between two open subsets of M is called a (local) isometry of (M, F) if its derivative preserves the Finslerian norms of the tangent vectors, i.e.,

$$
F\left(\left(\varphi_{*}\right)_{p}(v)\right)=F(v) \text { for all } p \in \mathcal{U}, v \in T_{p} M .
$$

As in similar situations above, we say that a vector field on M is a Killing vector field of (M, F) if the stages of its local one-parameter group are ismotries. We denote by $\operatorname{Kill}_{F}(M)$ the set of all Killing vector field of (M, F).

The following result is partly known (the equivalence of (i) and (ii) is clearly folklore), and it will be generalized in the next section. However, because of its particular importance, we present it here together with a complete proof.

Lemma 16.4.1. Let (M, F) be a Finsler manifold and X is a vector field on M. The following assertions are equivalent:
(i) $X \in \mathcal{K i l l}_{F}(M) ;$ (iv) $\mathcal{L}_{X^{c}} \theta_{E}=0$;
(ii) $\widetilde{\mathcal{L}}_{X^{\circ}} g=0$;
(v) $\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}=0$;
(iii) $X^{c} F=0$;
(vi) $\mathcal{L}_{X c} \omega_{E}=0$.

Proof. We organize our reasoning according to the following scheme:

(ii) $\Longrightarrow($ iii $) 0 \stackrel{(\text { ii) }}{=}\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\widetilde{\delta}, \widetilde{\delta}) \stackrel{(15.2)}{=} 2 X^{\mathrm{c}} E-2 g\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widetilde{\delta}, \widetilde{\delta}\right) \stackrel{(11.5 a)}{=} 2 X^{\mathrm{c}} E=$ $F\left(X^{\mathrm{c}} F\right)$. Since F is positive, this implies that $X^{c} F=0$.
(iii) \Longrightarrow (iv) For every vector field Y on M,

$$
\begin{aligned}
& \left(\mathcal{L}_{X^{\mathrm{c}}} \theta_{E}\right)\left(Y^{\mathrm{c}}\right)=X^{\mathrm{c}}\left(\theta_{E} Y^{\mathrm{c}}\right)-\theta_{E}\left(\left[X^{\mathrm{c}}, Y^{\mathrm{c}}\right]\right) \\
& =X^{\mathrm{c}}\left(d_{\mathbf{J}} E\left(Y^{\mathrm{c}}\right)\right)-d_{\mathbf{J}} E\left([X, Y]^{\mathrm{c}}\right)=X^{\mathrm{c}}\left(Y^{\mathrm{v}} E\right)-[X, Y]^{\mathrm{v}} E \\
& =\left[X^{\mathrm{c}}, Y^{\mathrm{v}}\right] E+Y^{\mathrm{v}}\left(X^{\mathrm{c}} E\right)-[X, Y]^{\mathrm{v}} E \stackrel{(7.22 b)}{=} Y^{\mathrm{v}}\left(X^{\mathrm{c}} E\right)=0 .
\end{aligned}
$$

Since, as can easily be seen, $\mathcal{L}_{Z^{c}} \theta_{E} \upharpoonright \mathfrak{X}^{\mathrm{v}}(\stackrel{\circ}{T} M)=0$ for every $Z \in \mathfrak{X}(M)$, our implication follows.
(iv) $\Longrightarrow(\mathrm{vi})$ Indeed, $\mathcal{L}_{X^{c}} \omega_{E} \stackrel{(15.6)}{=} \mathcal{L}_{X^{\mathrm{c}}} d \theta_{E} \stackrel{(5.17)}{=} d \mathcal{L}_{X^{\mathrm{c}}} \theta_{E} \stackrel{(\mathrm{ive}}{=} 0$.
$(\mathrm{vi}) \Longrightarrow$ (ii) For any vector fields ξ, η on $\stackrel{\circ}{T} M,\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{j} \xi, \mathbf{j} \eta) \stackrel{(15.9)}{=}$ $\left(\widetilde{\mathcal{L}}_{X^{c}} \omega_{E}\right)(\mathbf{J} \xi, \eta) \stackrel{(v i)}{=} 0$
$(\mathrm{iv}) \Longleftrightarrow(\mathrm{v})$ This is clear from (15.5).
(i) \Longrightarrow (iii) Let $\left(\varphi_{t}\right)$ be the local one-parameter group of X. Then, by Lemma 7.5.1, the local one-parameter group of X^{c} is $\left(\left(\varphi_{t}\right)_{*}\right)$. Thus

$$
X^{\mathrm{c}} F \stackrel{(4.6)}{=} \lim _{t \rightarrow 0} \frac{1}{t}\left(F \circ\left(\varphi_{t}\right)_{*}-F\right) \stackrel{(i)}{=} 0
$$

(iii) \Longrightarrow (i) Let, as above, $\left(\varphi_{t}\right)$ be the local one-parameter group of X. If $X^{\mathrm{c}} F=0$, then

$$
\begin{equation*}
\lim _{t \rightarrow 0} \frac{F \circ\left(\varphi_{t}\right)_{*}-F}{t}=0 \tag{*}
\end{equation*}
$$

Given a tangent vector $v \in \stackrel{\circ}{T}_{p} M$, define the function

$$
f: I_{p} \rightarrow \mathbb{R}, t \mapsto f(t):=F \circ\left(\varphi_{t}\right)_{*}(v)
$$

where I_{p} is the domain of the maximal integral curve of X. At every $t_{o} \in I_{p}$,

$$
f^{\prime}\left(t_{o}\right)=\lim _{t \rightarrow t_{o}} \frac{f(t)-f\left(t_{o}\right)}{t-t_{0}}=\lim _{t \rightarrow t_{0}} \frac{F \circ\left(\varphi_{t}\right)_{*}(v)-F \circ\left(\varphi_{t_{o}}\right)_{*}(v)}{t-t_{0}}
$$

Let, for a moment, $u:=\left(\varphi_{t_{o}}\right)_{*}(v)$. Then

$$
v=\left(\varphi_{-t_{o}}\right)_{*}(u) \quad\left(\varphi_{t}\right)_{*}(v)=\left(\varphi_{t-t_{0}}\right)_{*}(u)
$$

so we obtain that

$$
\begin{equation*}
f^{\prime}\left(t_{o}\right)=\lim _{t-t_{o} \rightarrow 0} \frac{F\left(\left(\varphi_{t-t_{o}}\right)_{*}(u)\right)-F(u)}{t-t_{o}} \stackrel{(*)}{=} 0 \tag{16.10}
\end{equation*}
$$

Thus f is a constant function. Since

$$
f(0)=F\left(\left(\varphi_{0}\right)_{*}(v)\right)=F(v),
$$

it follows that $F \circ\left(\varphi_{t}\right)_{*}(v)=F(v)$ for all $t \in I_{p}$. This finishes the proof.

Remark 16.4.2. Let (M, F) be a Finsler manifold, S its canonical spray, and let $\varphi \in \operatorname{Diff}(M)$. It was proved in [4] that if φ is an isometry of (M, F), then it is an automorphism of S, i.e., $\varphi_{* *} \circ S=S \circ \varphi_{*}$. From this it follows immediately that every Killing vector field of (M, F) is a Lie symmetry of the canonical spray of (M, F), i.e.,

$$
\begin{equation*}
\operatorname{Kill}_{F}(M) \subset \operatorname{Lie}_{S}(M) \tag{16.11}
\end{equation*}
$$

Proposition 16.4.3. Let (M, F) be a Finsler manifold. If X is a Lie symmetry of the canonical spray of (M, F), then

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}=\nabla^{\mathrm{h}} \widetilde{\mathcal{L}}_{X^{c}} g . \tag{16.12}
\end{equation*}
$$

Proof. We recall that by Theorem 13.4.5,

$$
X \in \operatorname{Lie}_{S}(M) \Longleftrightarrow\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]=[X, Y]^{\mathrm{h}} \text { for all } Y \in \mathfrak{X}(M)
$$

We shall use this at step $(*)$ in our calculation below. To begin with, let Y, Z, U be vector fields on M. Next we calculate:

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})=\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(\nabla^{\mathrm{h}} g\right)\right)(\widehat{Y}, \widehat{Z}, \widehat{U}) \stackrel{(11.13)}{=} \widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(\left(\nabla^{\mathrm{h}} g\right)(\widehat{Y}, \widehat{Z}, \widehat{U})\right) \\
& -\left(\nabla^{\mathrm{h}} g\right)\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}, \widehat{Z}, \widehat{U}\right)-\left(\nabla^{\mathrm{h}} g\right)\left(\widehat{Y}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right)-\left(\nabla^{\mathrm{h}} g\right)\left(\widehat{Y}, \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) \\
& \stackrel{(11.5 b)}{=} \widetilde{\mathcal{L}}_{X^{c}}\left(\left(\nabla_{Y^{\mathrm{h}}} g\right)(\widehat{Z}, \widehat{U})\right)-\left(\nabla_{[X, Y]^{\mathrm{n}}} g\right)(\widehat{Z}, \widehat{U})-\left(\nabla_{Y^{\mathrm{n}}} g\right)\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right) \\
& -\left(\nabla_{Y^{\mathrm{h}}} g\right)\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)=\widetilde{\mathcal{L}}_{X^{c}}\left(\nabla_{Y^{\mathrm{h}}}(g(\widehat{Z}, \widehat{U}))-\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(g\left(\nabla_{Y^{\mathrm{h}}} \widehat{Z}, \widehat{U}\right)\right)\right. \\
& -\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(g\left(\widehat{Z}, \nabla_{Y^{h}} \widehat{U}\right)\right)-\nabla_{[X, Y]^{\mathrm{h}}}(g(\widehat{Z}, \widehat{U}))+g\left(\nabla_{[X, Y]^{h}} \widehat{Z}, \widehat{U}\right) \\
& \left.+g\left(\widehat{Z}, \nabla_{[X, Y]^{\mathrm{h}}} \widehat{U}\right)-\nabla_{Y^{\mathrm{h}}}\left(g\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Z}, \widehat{U}\right)\right)+g\left(\nabla_{Y^{\mathrm{h}}}\left(\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \widehat{Z}\right)\right), \widehat{U}\right) \\
& +g\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \nabla_{Y^{h}} \widehat{U}\right)-\nabla_{Y^{n}}\left(g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)\right)+g\left(\nabla_{Y^{\mathrm{h}}} \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right) \\
& +g\left(\widehat{Z}, \nabla_{Y^{n}}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)\right) \stackrel{(13.30),(13.29)}{=} \nabla_{Y^{\mathrm{h}}}\left(\widetilde{\mathcal{L}}_{X^{c}}(g(\widehat{Z}, \widehat{U}))\right)+\widetilde{\mathcal{L}}_{\left[X^{c}, Y^{h}\right]}(g(\widehat{Z}, \widehat{U})) \\
& -\widetilde{\mathcal{L}}_{X^{c}}\left(g\left(\nabla_{Y^{\mathrm{h}}} \widehat{Z}, \widehat{U}\right)\right)-\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}\left(g\left(\widehat{Z}, \nabla_{Y^{\mathrm{h}}} \widehat{U}\right)\right)-\widetilde{\mathcal{L}}_{[X, Y]^{\mathrm{h}}}(g(\widehat{Z}, \widehat{U}))
\end{aligned}
$$

$$
\begin{aligned}
& +g\left(\nabla_{[X, Y]^{h}} \widehat{Z}, \widehat{U}\right)+g\left(\widehat{Z}, \nabla_{[X, Y]^{h}} \widehat{U}\right)-\nabla_{Y^{\mathrm{h}}}\left(g\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \widehat{U}\right)\right) \\
& \left.+g\left(\nabla_{Y^{\mathrm{h}}}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}\right)\right), \widehat{U}\right)+g\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \nabla_{Y^{\mathrm{h}}} \widehat{U}\right)-\nabla_{Y^{\mathrm{h}}}\left(g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)\right) \\
& +g\left(\nabla_{Y^{\mathrm{h}}} \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)+g\left(\widehat{Z}, \nabla_{Y^{\mathrm{h}}}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)\right) \stackrel{(13.30) ;(*)}{=} \nabla_{Y^{\mathrm{h}}}\left(\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\widehat{Z}, \widehat{U})\right) \\
& -\widetilde{\mathcal{L}}_{X^{c}}\left(g\left(\nabla_{Y^{h}} \widehat{Z}, \widehat{U}\right)\right)-\widetilde{\mathcal{L}}_{X^{c}}\left(g\left(\widehat{Z}, \nabla_{Y^{h}} \widehat{U}\right)\right)+g\left(\widetilde{\mathcal{L}}_{\left[X^{c}, Y^{h}\right]} \widehat{Z}, \widehat{U}\right) \\
& +g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{\left[X^{c}, Y^{h}\right]} \widehat{U}\right)+g\left(\widetilde{\mathcal{L}}_{X^{c}}\left(\nabla_{Y^{h}} \widehat{Z}\right), \widehat{U}\right)-g\left(\widetilde{\mathcal{L}}_{\left[X^{c}, Y^{\mathrm{h}}\right]} \widehat{Z}, \widehat{U}\right) \\
& +g\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Z}, \nabla_{Y^{h}} \widehat{U}\right)+g\left(\nabla_{Y^{\mathrm{h}}} \widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}} \widehat{U}\right)+g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{X^{c}}\left(\nabla_{Y^{\mathrm{h}}} \widehat{U}\right)\right) \\
& \left.-g\left(\widehat{Z}, \widetilde{\mathcal{L}}_{\left[X c, Y^{h}\right]} \widehat{U}\right)\right)=\nabla_{Y^{h}}\left(\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\widehat{Z}, \widehat{U})\right)-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)\left(\nabla_{Y^{h}} \widehat{Z}, \widehat{U}\right) \\
& -\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)\left(\widehat{Z}, \nabla_{Y^{\mathrm{h}}} \widehat{U}\right)=:\left(\nabla^{\mathrm{h}}\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)\right)(\widehat{Y}, \widehat{Z}, \widehat{U}) \text {. }
\end{aligned}
$$

This proves (16.12).
Proposition 16.4.4. If X is a Killing vector field of (M, F), then

$$
\begin{array}{ll}
\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}_{b}=0, & \widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}=0 ; \\
\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}=0, & \widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}=0 . \tag{16.14a-b}
\end{array}
$$

Proof. First we recall that $X \in \operatorname{Kill}_{F}(M) \Longleftrightarrow \widetilde{\mathcal{L}}_{X^{c}} g=0$ by Lemma 16.4.1, and $X \in \operatorname{Kill}_{F}(M) \Longrightarrow X \in \operatorname{Lie}_{S} M$ by Remark 16.4.2. Thus (16.13 a) follows from (15.22), (16.13 b) is a consequence of (16.13 a) and (15.23). Equality (16.14 a) can be seen from (16.12), and, finally (16.14 b) is an immediate consequence of (16.14 a) and (15.24).

Theorem 16.4.5. If X is a Killing vector field of a Finsler manifold, then X is also a D-Killing field, where $D \in\left\{\nabla, D^{C}, D^{C h}, D^{H s}\right\}$.

Proof. Let $X \in \operatorname{Kill}_{F}(M)$. Then we also have $X \in \operatorname{Lie}_{S}(M)$ (Remark 16.4.2), so by Theorem 13.4.5, $\widetilde{\mathcal{L}}_{X^{c}} \nabla=0$. We show that $\widetilde{\mathcal{L}}_{X^{c}} D^{C}=0$. For every $\xi \in \mathfrak{X}(\stackrel{\circ}{T} M)$ and $Y \in \mathfrak{X}(M)$,

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} D^{C}\right)(\xi, \widehat{Y}) \stackrel{(11.13)}{:=} \widetilde{\mathcal{L}}_{X^{c}}\left(D_{\xi}^{C} \widehat{Y}\right)-D_{\widetilde{\mathcal{L}}^{c} \xi}^{C} \widehat{Y}-D_{\xi}^{C}\left(\widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}\right) \\
& \stackrel{(15.18)}{=} \widetilde{\mathcal{L}}_{X^{c}}\left(\nabla_{\xi} \widehat{Y}\right)+\frac{1}{2} \widetilde{\mathcal{L}}_{X^{c}}(\mathcal{C}(\mathcal{V} \xi, \widehat{Y}))+\frac{1}{2} \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{L}(\mathbf{j} \xi, \widehat{Y}))-\nabla_{\widetilde{\mathcal{L}}^{C} \epsilon} \widehat{Y} \\
& -\frac{1}{2} \mathcal{C}\left(\mathcal{V}\left(\widetilde{\mathcal{L}}_{X^{c}} \xi\right), \widehat{Y}\right)-\frac{1}{2} \mathbf{L}\left(\mathbf{j}\left(\widetilde{\mathcal{L}}_{X^{c}} \xi\right), \widehat{Y}\right)-\nabla_{\xi} \widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}-\frac{1}{2} \mathcal{C}\left(\mathcal{V} \xi, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}\right) \\
& -\frac{1}{2} \mathbf{L}\left(\mathbf{j} \xi, \widetilde{\mathcal{L}}_{X^{c}} \widehat{Y}\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} \nabla\right)(\xi, \widehat{Y})+\frac{1}{2}\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}\right)(\mathcal{V} \xi, \widehat{Y})+\frac{1}{2}\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}\right)(\mathbf{j} \xi, \widehat{Y}) \\
& \text { Theo.13.4.5, Prop.16.4.4 } 0 .
\end{aligned}
$$

We obtain in the same way that $\widetilde{\mathcal{L}}_{X^{c}} D^{C h}=0$ and $\widetilde{\mathcal{L}}_{X^{c}} D^{H s}=0$.

17 Conformal and projective vector fields on a Finsler manifold

17.1 Motivated by (16.7), we say that $X \in \mathfrak{X}(M)$ is a conformal vector field of (M, F) if there exists a function $\sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)$ such that

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{c}} g=\sigma g . \tag{17.1}
\end{equation*}
$$

Here g is the fundamental tensor of (M, F); the function σ is called the conformal function of X (cf. 6.3). We have chosen this definition for the sake of simplicity. Of course, the conformal property of X can also be expressed in terms of the local flow of X. If, in particular,

$$
\begin{equation*}
\widetilde{\mathcal{L}}_{X^{\wedge}} g=\alpha g, \alpha \in \mathbb{R} \tag{17.2}
\end{equation*}
$$

then X is called a homothetic vector field of (M, F). When $\alpha=0, X$ is a Killing vector field by Lemma 16.4.1. We denote by $\operatorname{Conf}_{F}(M)$ and $\operatorname{Dil}_{F}(M)$ the sets of conformal and homothetic vector fields of (M, F), respectively. Obviously,

$$
\operatorname{Kill}_{F}(M) \subset \operatorname{Dil}_{F} M \subset \operatorname{Conf}_{F}(M)
$$

A vector field X on M is called a projective vector field of (M, F) if

$$
\begin{equation*}
\left[X^{\mathrm{c}}, S\right]=\varphi C \text { for some } \varphi \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M) \tag{17.3}
\end{equation*}
$$

where S is the canonical spray of (M, F). For the geometric meaning of this condition and some equivalent conditions we refer to section 7 of Lovas's paper [17]. The set of projective vector fields of (M, F) will be denoted by $\operatorname{Proj}_{F}(M)$. By Theorem 13.4.5, $\operatorname{Lie}_{S}(M) \subset \operatorname{Proj}_{F}(M)$.

Lemma 17.1.1. Let X be a conformal vector field of a Finsler manifold with conformal function σ. Then

$$
\begin{equation*}
X^{\mathrm{c}} E=\sigma E, \tag{17.4}
\end{equation*}
$$

and the conformal function is the vertical lift of a smooth function on M.

Proof. $2 X^{\mathrm{c}} E \stackrel{(15.2)}{=} X^{\mathrm{c}}(g(\widetilde{\delta}, \widetilde{\delta}))=\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\widetilde{\delta}, \widetilde{\delta})+2 g\left(\widetilde{\mathcal{L}}_{X^{c}} \widetilde{\delta}, \widetilde{\delta}\right) \stackrel{(17.1),(11.5 a)}{=}$ $\sigma g(\widetilde{\delta}, \widetilde{\delta})=2 \sigma E$, whence (17.4). Applying this observation, we find that $C\left(X^{\mathrm{c}} E\right)=C(\sigma E)=(C \sigma) E+2 \sigma E$. On the other hand,

$$
C\left(X^{\mathrm{c}} E\right)=\left[C, X^{\mathrm{c}}\right] E+X^{\mathrm{c}}(C E) \stackrel{(7.23 b)}{=} 2 X^{\mathrm{c}} E \stackrel{(17.4)}{=} 2 \sigma E .
$$

From these we conclude that $C \sigma=0$, and hence σ is 0^{+}-homogeneous. This implies by $\mathbf{7 . 7 . 2}$ (ii) that there exists a smooth function f on M such that $\sigma=f \circ \tau$.

The following result is the promised generalization of Lemma 16.4.1. Its proof is similar to the proof of the lemma, but the technical details are a little more complicated.

Theorem 17.1.2. Let (M, F) be a Finsler manifold. For a vector field X on M, the following conditions are equivalent:
(i) X is a conformal vector field with conformal function σ;
(ii) $X^{\mathrm{c}} E=\sigma E, \quad \sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)$;
(iii) $\mathcal{L}_{X^{c}} \theta_{E}=\sigma \theta_{E}, \quad \sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)$;
(iv) $\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}=\sigma \theta_{g}, \quad \sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)$;
(v) $\mathcal{L}_{X} \omega_{E}=f^{v} \omega_{E}+d f^{v} \wedge d_{\mathbf{J}} E, \quad f \in C^{\infty}(M)$.

Proof. The arrangement of our argument is displayed by the following diagram:

(i) \Longrightarrow (ii) This has already been proved above.
(ii) \Longrightarrow (iii) It can immediately be seen that

$$
\begin{equation*}
\left(\mathcal{L}_{X^{c}} \theta_{E}-\sigma \theta_{E}\right) \upharpoonright \mathfrak{X}^{\vee}(\stackrel{\circ}{T} M)=0 . \tag{17.5}
\end{equation*}
$$

On the other hand, for every vector field Y on $M,\left(\widetilde{\mathcal{L}}_{X^{c}} \theta_{E}\right)\left(Y^{c}\right)=$ $Y^{\vee}\left(X^{c} E\right)$ (see the proof of (iii) \Longrightarrow (iv) in Lemma 16.4.1). In our case,

$$
Y^{\vee}\left(X^{\mathrm{c}} E\right) \stackrel{(\mathrm{ii})}{=} Y^{\vee}(\sigma E)=\left(Y^{\vee} \sigma\right) E+\sigma Y^{\vee} E .
$$

We saw in the proof of Lemma 17.1.1 that $X^{c} E=\sigma E$ implies that σ is a vertical lift. So we have $Y^{\vee} \sigma=0$, therefore

$$
\left(\mathcal{L}_{X^{c}} \theta_{E}\right)\left(Y^{\mathrm{c}}\right)=\sigma\left(Y^{\vee} E\right)=\sigma d_{\mathbf{J}} E\left(Y^{\mathrm{c}}\right)
$$

This concludes the proof of the implication.
(iii) $\Longrightarrow(\mathrm{v}) \mathcal{L}_{X^{c}} \omega_{E}=\mathcal{L}_{X^{c}} d \theta_{E} \stackrel{(5.17)}{=} d \mathcal{L}_{X^{c}} \theta_{E} \stackrel{(\mathrm{iii})}{=} d\left(\sigma \theta_{E}\right)=d \sigma \wedge \theta_{E}+$ $\sigma d \theta_{E}=\sigma \omega_{E}+d \sigma \wedge d_{\mathbf{J}} E$.

It remains to show that the function σ is a vertical lift. To do this, we evaluate both sides of (iii) at an arbitrary spray S. Then, one hand,

$$
\begin{aligned}
& \left(\mathcal{L}_{X^{c}} \theta_{E}\right)(S)=X^{\mathrm{c}}\left(\theta_{E}(S)\right)-\theta_{E}\left(\left[X^{\mathrm{c}}, S\right]\right)=X^{\mathrm{c}}(d E(\mathbf{J} S))-d E\left(\mathbf{J}\left[X^{\mathrm{c}}, S\right]\right) \\
& \text { Lemma } 12.1 .1 \text { (ii) } 2 X^{\mathrm{c}} E .
\end{aligned}
$$

On the other hand $\left(\sigma \theta_{E}\right)(S)=\sigma d_{J} E(S)=2 \sigma E$, so it follows that $X^{c} E=\sigma E$. This implies (see above) that $\sigma=f^{\vee}, f \in C^{\infty}(M)$. (v) \Longrightarrow (i) For any vector fields ξ, η on $T M$,

$$
\begin{aligned}
& \left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{j} \xi, \mathbf{j} \eta) \stackrel{(15.9)}{=}\left(\mathcal{L}_{X^{c}} \omega_{E}\right)(\mathbf{J} \xi, \eta) \stackrel{(v)}{=}\left(f^{\vee} \omega_{E}+\left(d f^{\vee}\right) \wedge d_{\mathbf{J}} E\right)(\mathbf{J} \xi, \eta) \\
& =f^{\vee} \omega_{E}(\mathbf{J} \xi, \eta)+d f^{\vee}(\mathbf{J} \xi) d_{\mathbf{J}} E(\eta)-d f^{\vee}(\eta) d_{\mathbf{J}} E(\mathbf{J} \xi)=f^{\vee} \omega_{E}(\mathbf{J} \xi, \eta) \\
& +(\mathbf{J} \xi)\left(f^{\vee}\right) d_{\mathbf{J}} E(\eta)-d f^{\vee}(\eta)\left(\mathbf{J}^{2} \xi\right) E=f^{\vee} g(\mathbf{j} \xi, \mathbf{j} \eta),
\end{aligned}
$$

because the vertical vector fields kill the vertical lifts of smooth functions on M and $\mathbf{J}^{2} \stackrel{(8.12 b)}{=} 0$. This proves what we wanted.
(iii) \Longleftrightarrow (iv) If $\mathcal{L}_{X^{c}} \theta_{E}=\sigma \theta_{E}$, then for any vector field ξ on $\stackrel{\circ}{T} M$,

$$
\left(\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}\right)(\mathbf{j} \xi) \stackrel{(15.5)}{=}\left(\mathcal{L}_{X^{c}} \theta_{E}\right)(\xi) \stackrel{(\mathrm{iiii})}{=}\left(\sigma \theta_{E}\right)(\xi) \stackrel{(15.5)}{=} \sigma \theta_{g}(\mathbf{j} \xi),
$$

so we have $\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}=\sigma \theta_{g}$. The reverse of the implication can be proved in the same way.

This concludes the proof of the theorem.
We note that relation (v), as a characterization of conformal vector fields on a Finsler manifold, was first announced by J. Grifone [13]. In terms of the local flow $\left(\varphi_{t}\right)$ of X, condition (ii) can be expressed as follows:

$$
E \circ\left(\varphi_{t}\right)_{*}=\left(\exp \circ t f^{v}\right) E, \quad f \in C^{\infty}(M),
$$

for every possible $t \in \mathbb{R}$; cf. the equivalence (i) \Longleftrightarrow (iii) and its proof in Lemma 16.4.1.

The above theorem was obtained in 2011. Two years later, our condition (ii) was also be found by Libing Huang and Xiaohuan Mo [15]. From Theorem 17.1.2 we obtain immediately the next

Corollary 17.1.3. If (M, F) is a Finsler manifold and $X \in \mathfrak{X}(M)$, then the following conditions are equivalent:
(i) $X \in \operatorname{Dil}_{F}(M)$, i.e., $\widetilde{\mathcal{L}}_{X^{c}} g=\alpha g$, for some $\alpha \in \mathbb{R}$;
(ii) the energy function associated to F is an eigenfunction of X^{c} with eigenvalue α, i.e., $X^{c} E=\alpha E$;
(iii) $\mathcal{L}_{X c} \theta_{E}=\alpha \theta_{E}$;
(iv) $\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}=\alpha \theta_{g}$;
(v) $\mathcal{L}_{X} \omega_{E}=\alpha \omega_{E}$.

In conditions (iii)-(v), α is a real number. With the choice $\alpha:=0$ we re-obtain a part of Lemma 16.4.1.
17.2 In this concluding subsection we mainly deal with vector fields on M which have at least two of the properties 'Lie symmetry', 'conformal', 'projective', or one of them together with some additional property.

Theorem 17.2.1. Let (M, F) be a Finsler manifold. If a vector field X on M is a conformal vector field of (M, F) and, at the same time, X is a Lie symmetry of the canonical spray of (M, F), then X^{c} is a conformal vector field on the Riemannian manifold $\left(\stackrel{\circ}{T} M, g^{S}\right)$, where g^{S} is the Sasaki-Finsler metric defined by (15.14). Briefly,

$$
\begin{equation*}
X \in \operatorname{Conf}_{F}(M) \cap \operatorname{Lie}_{S}(M) \Longrightarrow X^{\mathrm{c}} \in \operatorname{Conf}_{g}(\stackrel{\circ}{T} M) \tag{17.6}
\end{equation*}
$$

Conversely, if X^{c} is a conformal vector field of the Riemannian manifold $\left(\stackrel{\circ}{T} M, g^{S}\right)$, then X is a conformal vector field of (M, F) :

$$
\begin{equation*}
X^{\mathrm{c}} \in \operatorname{Conf}_{g^{s}}(\stackrel{\circ}{T} M) \Longrightarrow X \in \operatorname{Conf}_{F}(M) \tag{17.7}
\end{equation*}
$$

Proof. Suppose first that $X \in \operatorname{Conf}_{F}(M) \cap \operatorname{Lie}_{S}(M)$. We calculate the Lie derivative $\mathcal{L}_{X^{c}} g^{s}$. For any vector fields ξ, η on $\stackrel{\circ}{T} M$,

$$
\begin{aligned}
& \left(\mathcal{L}_{X^{c}} g^{S}\right)(\xi, \eta)=\mathcal{L}_{X^{c}}\left(g^{S}(\xi, \eta)\right)-g^{S}\left(\mathcal{L}_{X^{c}} \xi, \eta\right)-g^{S}\left(\xi, \mathcal{L}_{X^{c}} \eta\right) \\
& \stackrel{(1514)}{=} \mathcal{L}_{X^{c}}(g(\mathbf{j} \xi, \mathbf{j} \eta))+\mathcal{L}_{X^{c}}(g(\mathcal{V} \xi, \mathcal{V} \eta))-g\left(\mathbf{j} \mathcal{L}_{X^{c}} \xi, \mathbf{j} \eta\right)-g\left(\mathcal{V} \mathcal{L}_{X^{c}} \xi, \mathcal{V} \eta\right) \\
& -g\left(\mathbf{j} \xi, \mathbf{j} \mathcal{L}_{X^{c}} \eta\right)-g\left(\mathcal{V} \xi, \mathcal{V} \mathcal{L}_{X^{c}} \eta\right) \stackrel{(11.8),(13.43)}{=} \widetilde{\mathcal{L}}_{X^{c}}(g(\mathbf{j} \xi, \mathbf{j} \eta)) \\
& +\widetilde{\mathcal{L}}_{X^{c}}(g(\mathcal{V} \xi, \mathcal{V} \eta))-g\left(\widetilde{\mathcal{L}}_{X^{c}}(\mathbf{j} \xi), \mathbf{j} \eta\right)-g\left(\widetilde{\mathcal{L}}_{X^{c}}(\mathcal{V} \xi), \mathcal{V} \eta\right) \\
& -g\left(\mathbf{j} \xi, \widetilde{\mathcal{L}}_{X^{c}}(\mathbf{j} \eta)\right)-g\left(\mathcal{V} \xi, \widetilde{\mathcal{L}}_{X^{c}}(\mathcal{V} \eta)\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{j} \xi, \mathbf{j} \eta) \\
& +\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathcal{V} \xi, \mathcal{V} \eta) \stackrel{(17.1)}{=} \sigma g(\mathbf{j} \xi, \mathbf{j} \eta)+\sigma g(\mathcal{V} \xi, \mathcal{V} \eta)=\sigma g^{S}(\xi, \eta) .
\end{aligned}
$$

which proves that X^{c} is a conformal vector field of $\left(\stackrel{\circ}{T} M, g^{S}\right)$.
Conversely, suppose that $X^{\mathrm{c}} \in \operatorname{Conf}_{g^{S}}(\stackrel{\circ}{T} M)$. Then

$$
\begin{aligned}
& 2 \sigma E=\sigma g(\widetilde{\delta}, \widetilde{\delta})=\sigma g(\mathcal{V} C, \mathcal{V} C)=\sigma g^{S}(C, C) \stackrel{\text { condition }}{=}\left(\mathcal{L}_{X^{c}} g^{S}\right)(C, C) \\
& =X^{\mathrm{c}}\left(g^{S}(C, C)\right)-2 g^{S}\left(\left[X^{\mathrm{c}}, C\right], C\right)=X^{\mathrm{c}}\left(g^{S}(C, C)\right)=X^{\mathrm{c}} g(\widetilde{\delta}, \widetilde{\delta}) \\
& =2 X^{\mathrm{c}} E,
\end{aligned}
$$

so we have $X^{c} E=\sigma E$. Thus, by Theorem (17.1.2), X is a conformal vector field of (M, F).

Theorem 17.2.2. Any homothetic vector field of a Finsler manifold is a Lie symmetry of the canonical spray of the Finsler manifold. Briefly,

$$
\begin{equation*}
X \in \operatorname{Dil}_{F}(M) \Longrightarrow X \in \operatorname{Lie}_{S}(M .) \tag{17.8}
\end{equation*}
$$

Proof. If $X \in \operatorname{Dil}_{F}(M)$, then by Corollary 17.1.3, $X^{c} E=\alpha E$, or, equivalently, $\mathcal{L}_{X^{c}} \omega_{E}=\alpha \omega_{E}$ for some real number α. Thus

$$
\begin{aligned}
& \mathcal{L}_{X^{c}} d E=d\left(X^{c} E\right)=\alpha d E \stackrel{(15.12)}{=}-\alpha i_{S} \omega_{E}=-i_{S}\left(\alpha \omega_{E}\right)=-i_{S}\left(\mathcal{L}_{X^{c}} \omega_{E}\right) \\
& \stackrel{(5.14)}{=}-\mathcal{L}_{X^{c}} i_{S} \omega_{E}+i_{\left[X^{c}, S\right]} \omega_{E}=\mathcal{L}_{X^{c}} d E+i_{\left[X^{c}, S\right]} \omega_{E},
\end{aligned}
$$

therefore $i_{\left[X^{c}, S\right]} \omega_{E}=0$. Since ω_{E} is non-degenerate, this implies that [$\left.X^{\text {c }}, S\right]=0$, and hence $X \in \operatorname{Lie}_{S}(M)$.

This result, published in 2011 in our paper [30], was rediscovered by Tian Huang-jia a few years later, see [33], Corollary 1.1.

Lemma 17.2.3. If X is a conformal vector field of the Finsler manifold (M, F) with conformal function σ, then the divergence of X^{c} with respect to the Dazord volume form $w(15.1 .2)$ is

$$
\begin{equation*}
\operatorname{div} X^{\mathrm{c}}=n \sigma . \tag{17.9}
\end{equation*}
$$

Proof. Choose a frame $\left(X_{i}\right)_{i=1}^{n}$ on an open subset U of M. Then the family $\left(X_{i}^{\mathrm{v}}, X_{i}^{\mathrm{c}}\right)_{i=1}^{n}$ is a frame on $\tau^{-1}(U) \subset T M$, and it can be shown by an inductive argument that

$$
\left(\mathcal{L}_{X^{c}} \omega_{E}\right)\left(X_{1}^{\vee}, X_{1}^{\mathrm{c}}, \ldots, X_{n}^{\vee}, X_{n}^{\mathrm{c}}\right)=n \sigma \omega_{E}\left(X_{1}^{\vee}, X_{1}^{\mathrm{c}}, \ldots, X_{n}^{\vee}, X_{n}^{\mathrm{c}}\right) .
$$

This implies our claim.

Theorem 17.2.4. Let (M, F) be a connected Finsler manifold. If a vector field X on M is both a projective and a conformal vector field of (M, F), then it is a homothetic vector field, i.e.,

$$
\begin{equation*}
X \in \operatorname{Proj}_{F}(M) \cap \operatorname{Conf}_{F}(M) \Longrightarrow X \in \operatorname{Dil}_{F}(M) \tag{17.10}
\end{equation*}
$$

Proof. Since $X \in \operatorname{Proj}_{F}(M)$,

$$
\begin{equation*}
\left[X^{\mathrm{c}}, S\right]=\psi C, \quad \text { for some } \quad \psi \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M) \tag{*}
\end{equation*}
$$

where S is the canonical spray of (M, F). On the other hand, by our condition $X \in \operatorname{Conf}_{F}(M)$, Theorem 17.1.2 and Lemma 17.1.1

$$
\begin{equation*}
X^{c} E=f^{\vee} E, \quad f \in C^{\infty}(M) \tag{**}
\end{equation*}
$$

Thus we find

$$
\begin{aligned}
& 2 \psi E=\psi(C E) \stackrel{(*)}{=}\left[X^{\mathrm{c}}, S\right] E=X^{\mathrm{c}}(S E)-S\left(X^{\mathrm{c}} E\right) \stackrel{(* *)}{=} X^{\mathrm{c}}(S E) \\
& -\left(S f^{\vee}\right) E-f^{\vee}(S E) \stackrel{\text { Lemma 12.1.1(i) }}{=}-f^{\mathrm{c}} E+X^{\mathrm{c}}(S E)-f^{\vee}(S E) \\
& =-f^{\mathrm{c}} E
\end{aligned}
$$

In the last step we used the fact that S is horizontal with respect to the canonical connection of (M, F) (see, e.g., [29] Corollary 7.3.6), so we have $S E \stackrel{\mathbf{1 5 . 1 . 3}}{=} S(F S)=0$. Our result $2 \psi E=-f^{c} E$ implies that $\psi=-\frac{1}{2} f^{c}$. Hence equality $(*)$ takes the form

$$
\begin{equation*}
\left[X^{c}, S\right]=-\frac{1}{2} f^{c} C \tag{***}
\end{equation*}
$$

Now we calculate the divergence of both sides of $(* * *)$ with respect to the Dazord volume form w. Applying the formula can be found in [1], 6.5 F,

$$
\operatorname{div}\left[X^{\mathrm{c}}, S\right]=X^{\mathrm{c}} \operatorname{div} S-S \operatorname{div} X^{\mathrm{c}} \stackrel{(15.15 b),(17.9)}{=}=-n f^{\mathrm{c}}
$$

As to the right-hand side, we have

$$
\begin{aligned}
& \operatorname{div}\left(-\frac{1}{2} f^{c} C\right) \stackrel{\dagger}{=} \frac{1}{2} f^{c} \operatorname{div} C-\frac{1}{2} C f^{c} \stackrel{(15.11),(7.11)}{=}-\frac{n}{2} f^{c}-\frac{1}{2} f^{c} \\
& =-\frac{1}{2}(n+1) f^{c}
\end{aligned}
$$

Here, at step \dagger, we used formula (8.4.28) in [29]. So it follows $(n-1) f^{c}=0$, whence $f^{c}=0$ (because $n \geqq 2$). This implies by the connectedness of M that f is a constant function. So the conformal function f^{\vee} of X is also constant, and hence $X \in \operatorname{Dil}_{F}(M)$.

We note that this result, which is an infinitesimal version of Theorem 2 in [32], was also rediscovered by Tian ([33], Corollary 1.2).
Theorem 17.2.5. Let (M, F) be a Finsler manifold. Suppose that a vector field X on M preserves the Dazord volume form w of (M, F), i.e., $\mathcal{L}_{X^{\circ}} w=0$. If, in addition,
(i) X is a projective vector field, then X is a Lie symmetry of the canonical spray of (M, F);
(ii) X is a conformal vector field, then X is a Killing vector field of (M, F).
Proof. Note first that our condition $\mathcal{L}_{X^{c}} w=0$ implies that $\operatorname{div} X^{\mathrm{c}}=0$.
(i) Let $X \in \operatorname{Proj}_{F}(M)$. Then

$$
\begin{equation*}
\left[X^{\mathrm{c}}, S\right]=\psi C, \quad \psi \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M) \tag{*}
\end{equation*}
$$

where S is the canonical spray of (M, F). As a first step, we show that

$$
\begin{equation*}
C \psi=\psi \quad \text { over } \stackrel{\circ}{T} M . \tag{**}
\end{equation*}
$$

Using the Jacobi identity,

$$
0=\left[C,\left[X^{\mathrm{c}}, S\right]\right]+\left[X^{\mathrm{c}},[S, C]\right]+\left[S,\left[C, X^{\mathrm{c}}\right]\right]=\left[C,\left[X^{\mathrm{c}}, S\right]\right]-\left[X^{\mathrm{c}}, S\right],
$$

hence

$$
\left[X^{\mathrm{c}}, S\right]=\left[C,\left[X^{\mathrm{c}}, S\right]\right] \stackrel{(*)}{=}[C, \psi C]=(C \psi) C .
$$

Comparing this to $(*)$, we obtain $(* *)$.
Now, as in the proof of the preceding theorem, we calculate the divergence of both sides of $(*)$. Since in our case $\operatorname{div} X^{c}=\operatorname{div} S=0$, we have on the one hand

$$
\operatorname{div}\left[X^{\mathrm{c}}, S\right]=X^{\mathrm{c}}(\operatorname{div} S)-S \operatorname{div}\left(X^{\mathrm{c}}\right)=0 .
$$

On the other hand,

$$
\operatorname{div}(\psi C)=\psi \operatorname{div} C+C \psi \stackrel{(15.11),(* *)}{=}(n+1) \psi .
$$

So it follows that $\psi=0$, hence $\left[X^{c}, S\right]=0$. Thus $X \in \operatorname{Lie}_{S}(M)$.
(ii) We suppose that $X \in \operatorname{Conf}_{F}(M)$. Then, by Theorem 17.1.2 and Lemma 17.1.1, $X^{c} E=f^{\vee} E$, where $f \in C^{\infty}(M)$. Since

$$
n f^{\vee} \stackrel{(17.9)}{=} \operatorname{div} X^{\mathrm{c}} \text { condition } 0
$$

it follows that $X^{c} E=0$, and hence $X^{c} F=0$. So, by Lemma 16.4.1, $X \in \operatorname{Kill}_{F}(M)$.

This concludes the proof of the theorem.

Part V

Summaries

18 Summary

18.1 Notation and background

18.1.1 Let V be a module over a ring R and let $k \in \mathbb{N}$. The R -module of k-linear mappings $V^{k} \rightarrow \mathrm{R}$ (resp. $V^{k} \rightarrow V$) is denoted by $T_{k}(V)$ (resp. $T_{k}^{1}(V)$); $T_{0}(V):=\mathrm{R}, T_{0}^{1}(V):=V$. Then $T_{1}(V)=: V^{*}$ is the dual of $V, T_{1}^{1}(V)=: \operatorname{End}(V)$ is the ring of endomorphisms of V.
18.1.2 Throughout, M is an n-dimensional smooth manifold where $n \geqq 1$ or $n \geqq 2$. The symbols $C^{\infty}(M)$ and $\mathfrak{X}(M)$ stand for the ring of smooth functions on M and the $C^{\infty}(M)$-module of vector fields on M, respectively. We write

$$
\begin{aligned}
& \mathcal{T}_{k}(M):=T_{k}(\mathfrak{X}(M)), \quad \mathcal{T}_{k}^{1}(M):=T_{k}^{1}(\mathfrak{X}(M)), \\
& \mathcal{A}_{k}(V):=\left\{\alpha \in \mathcal{T}_{k}(M) \mid \alpha \text { is alternating }\right\}, \\
& \mathcal{A}_{k}^{1}(M):=\left\{\beta \in \mathcal{T}_{k}^{1}(M) \mid \beta \text { is alternating }\right\} .
\end{aligned}
$$

Then $\mathcal{A}(M):=\oplus_{k=0}^{n} \mathcal{A}_{k}(M)$ is the Grassmann algebra of M. We agree that $\mathcal{A}_{k}(M):=\{0\}$ if k is a negative integer. An \mathbb{R}-linear transformation D is a graded derivation of $\mathcal{A}(M)$ of degree $r \in \mathbb{Z}$ if $D\left(\mathcal{A}_{k}(M)\right) \subset D\left(\mathcal{A}_{k+r}(M)\right)$, and

$$
D(\alpha \wedge \beta)=(D \alpha) \wedge \beta+(-1)^{k r} \alpha \wedge D \beta ; \quad \alpha \in A_{k}(M), \beta \in \mathcal{A}(M)
$$

where \wedge denotes wedge product. The classical graded derivations of $\mathcal{A}(M)$ are the substitution operator i_{X}, the Lie derivative \mathcal{L}_{X} $(X \in \mathfrak{X}(M))$ and the exterior derivative d of degree $-1,0$ and 1 , respectively.
18.1.3 The tangent bundle of M is $\tau: T M \rightarrow M$, the slit tangent bundle is $\stackrel{\circ}{\tau}: \stackrel{\circ}{T} M \rightarrow M$, where $\stackrel{\circ}{T} M \subset T M$ is the open set of nonzero tangent vectors to M and $\stackrel{\circ}{\tau}:=\tau \upharpoonright \stackrel{\circ}{T} M$. The derivative of a smooth mapping $\varphi: M \rightarrow N$ is denoted by φ_{*}, it maps $T M$ into $T N$. A vector field ξ on $T M$ (or on $\stackrel{\circ}{T} M$) is projectable if there exists a vector field X on M such that $\tau_{*} \circ \xi=X \circ \tau$. If $\tau_{*} \circ \xi=o \circ \tau$, where $o \in \mathfrak{X}(M)$ is the zero vector field, then ξ is called vertical. We use the notation

$$
\begin{aligned}
\mathfrak{X}_{\text {proj }}(T M) & :=\{\xi \in \mathfrak{X}(T M) \mid \xi \text { is projectable }\}, \\
\mathfrak{X}^{\vee}(T M) & :=\{\xi \in \mathfrak{X}(T M) \mid \xi \text { is vertical }\} .
\end{aligned}
$$

18.1.4 Let $f \in C^{\infty}(M), X \in \mathfrak{X}(M)$. Then $f^{\vee}:=f \circ \tau \in C^{\infty}(T M)$ is the vertical lift of f, the smooth function

$$
f^{c}: T M \rightarrow \mathbb{R}, v \mapsto f^{c}(v):=v(f) \in \mathbb{R}
$$

is the complete lift of f. The vertical lift $X^{\vee} \in \mathfrak{X}^{\vee}(T M)$ and the complete lift $X^{c} \in \mathfrak{X}(T M)$ are the unique vector fields on $T M$ such that for every smooth function f on M,

$$
X^{\mathrm{v}} f^{c}=(X f)^{v}, X^{v} f^{\vee}=0 ; X^{c} f^{c}=(X f)^{c}, X^{c} f^{v}=(X f)^{v}
$$

The Liouville vector field $C \in \mathfrak{X}^{\vee}(T M)$ is the unique vertical vector field on $T M$ such that $C f^{c}=f^{c}$ for all $f \in C^{\infty}(M)$. A function $F \in C^{\infty}(\stackrel{\circ}{T} M)$ is k^{+}-homogeneous if $C F=k F(k \in \mathbb{Z})$.
18.1.5 The vector bundles

$$
\pi: T M \times_{M} T M \rightarrow T M \text { and } \stackrel{\circ}{\pi}: \stackrel{\circ}{T} M \times_{M} T M \rightarrow \stackrel{\circ}{T} M
$$

are the Finsler bundles over $T M$ and $\stackrel{\circ}{T} M$, respectively. The fibre, e.g., of π over $v \in T M$ is the n-dimensional real vector space $\{v\} \times T_{\tau(v)} M \cong T_{\tau(v)} M$. The modules of smooth sections of these vector bundles are denoted by $\Gamma(\pi)$ and $\Gamma(\stackrel{\circ}{\pi})$, respectively, and their elements are called Finsler vector fields. The elements of

$$
T_{k}(\Gamma(\stackrel{\circ}{\pi})) \cup T_{k}^{1}(\Gamma(\stackrel{\circ}{\pi}))(k \in \mathbb{N})
$$

are called Finsler tensor fields on $\stackrel{\circ}{T} M$. We use the following typography:

$$
\begin{aligned}
& X, Y, \ldots \text { - vector fields on } M, \\
& \xi, \eta, \ldots \text { - vector fields on } T M \text { (or on } \stackrel{\circ}{T} M \text {), } \\
& \widetilde{X}, \widetilde{Y}, \ldots \text { - Finsler vector fields, } \\
& \widehat{X}, \widehat{Y}, \ldots \text { - basic Finsler vector fields, } \\
& \widetilde{\delta},
\end{aligned} \text { - the canonical section in } \Gamma(\pi) . ~ \$
$$

Here $\widehat{X}(v):=(v, X(\tau(v))), \widetilde{\delta}(v):=(v, v)(v \in T M)$.
18.1.6 We have the exact sequence of $C^{\infty}(T M)$-homomorphisms

$$
0 \rightarrow \Gamma(\pi) \xrightarrow{\mathbf{i}} \mathfrak{X}(T M) \xrightarrow{\mathbf{j}} \Gamma(\pi) \rightarrow 0
$$

where $\mathbf{i}(\widehat{X})=X^{\vee} ; \mathbf{j}\left(X^{\vee}\right)=0, \mathbf{j}\left(X^{\mathrm{c}}\right)=\widehat{X}(X \in \mathfrak{X}(M))$, therefore

$$
\operatorname{Im}(\mathbf{i})=\operatorname{Ker}(\mathbf{j})=\mathfrak{X}^{\mathfrak{V}}(T M) .
$$

We have $C=\mathbf{i}(\widetilde{\delta})$. The vertical endomorphism of $\mathfrak{X}(T M)$ is $\mathbf{J}:=\mathbf{i} \circ \mathbf{j}$. It induces graded derivation $d_{\mathbf{J}}$ of degree 1 of $\mathcal{A}(M)$ specified by

$$
d_{\mathbf{J}} F:=d F \circ \mathbf{J}, \quad d_{\mathbf{J}} d F:=d d_{\mathbf{J}} F \quad\left(F \in C^{\infty}(T M)\right)
$$

18.1.7 We use the operator ∇^{\vee} of the (canonical) vertical derivative. It is defined in the following steps:
$\nabla_{\widetilde{X}}^{V} F:=(\mathbf{i} \widetilde{X}) F\left(F \in C^{\infty}(T M)\right) ;$
$\nabla_{\widetilde{X}}^{\vee} \widetilde{Y}:=\mathbf{j}[\mathbf{i} \widetilde{X}, \eta], \eta \in \mathfrak{X}(T M)$ is such that $\mathbf{j} \eta=\widetilde{Y} ;$
$\left(\nabla_{\widetilde{X}}^{v} A\right)\left(\widetilde{Y}_{1}, \ldots \widetilde{Y}_{k}\right):=\nabla_{\widetilde{X}}^{v}\left(A\left(\widetilde{Y}_{1}, \ldots, Y_{k}\right)\right)-\sum_{i=1}^{k} A\left(\widetilde{Y}_{1}, \ldots, \nabla_{\widetilde{X}}^{v} \widetilde{Y}_{i}, \ldots \widetilde{Y}_{k}\right)$, $A \in T_{k}(\Gamma(\pi)) \cup T_{k}^{1}(\Gamma(\pi))$.
18.1.8 An Ehresmann connection in $\stackrel{\circ}{T} M$ is a $C^{\infty}(\stackrel{\circ}{T} M)$-linear mapping $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M)$ such that $\mathbf{j} \circ \mathcal{H}=1_{\Gamma\left(\frac{\pi}{\pi}\right)}$.
Data: $\mathbf{h}:=\mathcal{H} \circ \mathbf{j}$ and $\mathbf{v}=1_{\mathfrak{X}(T M)}-\mathbf{h}$ are the horizontal and vertical projection associated to $\mathcal{H}, \mathcal{V}:=\mathbf{i}^{-1} \circ \mathbf{v}$ is the vertical mapping, $X^{\mathrm{h}}:=\mathcal{H}(\widehat{X})=\mathbf{h} X^{\mathrm{c}}$ is the $(\mathcal{H}-)$ horizontal lift of X. An Ehresmann connection \mathcal{H} is homogeneous if $\left[C, X^{\mathrm{h}}\right]=0$ for all $X \in \mathfrak{X}(M)$. The h-Berwald derivative ∇^{h} induced by \mathcal{H} is defined in the following steps:
$\nabla_{\widetilde{X}}^{\mathrm{h}} F:=(\mathcal{H} \widetilde{X}) F\left(F \in C^{\infty}(\stackrel{\circ}{T} M)\right) ; \quad \nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}:=\mathcal{V}[\mathcal{H} \widetilde{X}, \mathbf{i} \widetilde{Y}] ;$
$\left(\nabla_{\widetilde{X}}^{\mathrm{h}} A\right)\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right):=\nabla_{\widetilde{X}}^{\mathrm{h}}\left(A\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right)\right)-\sum_{i=1}^{k} A\left(\widetilde{Y}_{1}, \ldots, \nabla_{\widetilde{X}}^{\mathrm{h}} \widetilde{Y}_{i}, \ldots, \widetilde{Y}_{k}\right)$.
The mapping

$$
\nabla:(\xi, \widetilde{Y}) \in \mathfrak{X}(\stackrel{\circ}{T} M) \times \Gamma(\stackrel{\circ}{\pi}) \mapsto \nabla_{\xi} \widetilde{Y}:=\nabla_{\mathcal{V} \xi}^{\vee} \widetilde{Y}+\nabla_{\mathbf{j} \xi}^{\mathrm{h}} \widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi})
$$

is a covariant derivative, the Berwald derivative on $\stackrel{\circ}{\pi}$.
18.1.9 A mapping $S: T M \rightarrow T T M$ is a semispray for M if it is of class C^{1}, smooth on $\stackrel{\circ}{T} M$ and satisfies the conditions $\tau_{T M} \circ S=1_{T M}$,
$\mathbf{J} S=C$. If $[C, S]=S$, then S is called a spray. Every semispray induces an Ehresmann connection \mathcal{H} such that

$$
\mathcal{H}(\widehat{X})=\frac{1}{2}\left(X^{\mathrm{c}}+\left[X^{\mathrm{v}}, S\right]\right), \quad X \in \mathfrak{X}(M) .
$$

This connection is torsion-free in the sense that

$$
\nabla_{\mathcal{H}(\widetilde{X})} \widetilde{Y}-\nabla_{\mathcal{H}(\widetilde{Y})} \widetilde{X}=\mathbf{j}[\mathcal{H}(\widetilde{X}), \mathcal{H}(\widetilde{Y})] ; \widetilde{X}, \widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi}) .
$$

If S is a spray, then \mathcal{H} is a homogeneous and is called the Berwald connection of the spray manifold (M, S).

18.2 Results

18.2.1 Lie derivatives on a Finsler bundle Given a projectable vector field $\xi \in \mathfrak{X}_{\text {proj }}(T M)$, we define the Lie derivatives of Finsler tensor fields with respect to ξ in the following steps:

$$
\begin{aligned}
& \widetilde{\mathcal{L}}_{\xi} F:=\mathcal{L}_{\xi} F=\xi F\left(F \in C^{\infty}(T M)\right) ; \quad \widetilde{\mathcal{L}}_{\xi} \widetilde{Y}:=\mathbf{i}^{-1}[\xi, \mathbf{i} \widetilde{Y}] ; \\
& \left(\widetilde{\mathcal{L}}_{\xi} A\right)\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right):=\widetilde{\mathcal{L}}_{\xi}\left(A\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right)\right)-\sum_{i=1}^{k} A\left(\widetilde{Y}_{1}, \ldots, \widetilde{\mathcal{L}}_{\xi} \widetilde{Y}_{i}, \ldots, \widetilde{Y}_{k}\right)
\end{aligned}
$$

if $A \in T_{k}(\Gamma(\pi)) \cup T_{k}^{1}(\Gamma(\pi))$.
If \mathcal{H} is an Ehresmann connection in $\stackrel{\circ}{T} M$, then we define its Lie derivative $\widetilde{\mathcal{L}}_{\xi} \mathcal{H}$ by $\left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(\widetilde{Y}):=\mathcal{L}_{\xi}(\mathcal{H}(\widetilde{Y}))-\mathcal{H}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Y}\right)$. The Lie derivative of a covariant derivative $D: \mathfrak{X}(T M) \times \Gamma(\pi) \rightarrow \Gamma(\pi),(\eta, \widetilde{Z}) \mapsto D_{\eta} \widetilde{Z}$ with respect to ξ is the mapping

$$
\left\{\begin{array}{l}
\widetilde{\mathcal{L}}_{\xi} D: \mathfrak{X}(T M) \times \Gamma(\pi) \rightarrow \Gamma(\pi),(\eta, \widetilde{Z}) \mapsto\left(\widetilde{\mathcal{L}}_{\xi} D\right)(\eta, \widetilde{Z}), \\
\left(\widetilde{\mathcal{L}}_{\xi} D\right)(\eta, \widetilde{Z}):=\widetilde{\mathcal{L}}_{\xi}\left(D_{\eta} \widetilde{Z}\right)-D_{[\xi, \eta]} \widetilde{Z}-D_{\eta}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Z}\right) .
\end{array}\right.
$$

We derived the useful formulae:
(1) $\left[\widetilde{\mathcal{L}}_{\xi}, \widetilde{\mathcal{L}}_{\eta}\right]=\widetilde{\mathcal{L}}_{[\xi, \eta]}$;
(2) $\widetilde{\mathcal{L}}_{X} \widehat{Y}=\widehat{[X, Y]}$;
(3) $\widetilde{\mathcal{L}}_{x} \widetilde{\mathcal{L}}^{c} \widetilde{\mathcal{\delta}}=0$;
(4) $\widetilde{\mathcal{L}}_{X^{c}} \upharpoonright \Gamma(\pi)=\nabla_{\widehat{X}}^{v} \upharpoonright \Gamma(\pi)$;
(5) $\mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}}=\mathcal{L}_{X^{c}} \circ \mathbf{i}$;
(6) $\widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{j}=\mathbf{j} \circ \mathcal{L}_{X^{c}}$;
(7) $\widetilde{\mathcal{L}}_{X^{c}} \circ \nabla_{\widehat{Y}}^{V}-\nabla_{\widehat{Y}}^{v} \circ \widetilde{\mathcal{L}}_{X^{c}}=\widetilde{\mathcal{L}}_{[X, Y]^{c}}$;
(8) $\widetilde{\mathcal{L}}_{X^{\mathrm{h}}} \upharpoonright \Gamma(\stackrel{\circ}{\pi})=\nabla_{\widehat{X}}^{\mathrm{h}} \upharpoonright \Gamma(\stackrel{\circ}{\pi})$;
(9) $\widetilde{\mathcal{L}}_{X^{c}} \circ \nabla_{\widehat{Y}}^{h}-\nabla_{\widehat{Y}}^{h} \circ \widetilde{\mathcal{L}}_{X^{c}}=\widetilde{\mathcal{L}}_{\left[X^{c}, Y^{h}\right]}$.

In the formulas above, $\xi, \eta \in \mathfrak{X}_{\text {proj }}(T M) ; X$ and Y are vector fields on M. In (8) and (9) we assume that an Ehresmann connection is also specified in $\stackrel{\circ}{T} M$.

We showed that the vanishing of $\widetilde{\mathcal{L}}_{X^{C}} \widetilde{Y}$ has the following dynamical interpretation:
Theorem 1. Let $\left(\varphi_{t}\right)$ be the local flow of X. Then $\widetilde{\mathcal{L}}_{X} \cdot \widetilde{Y}=0$ if, and only if, \widetilde{Y} is invariant under $\left(\varphi_{t}\right)$, i.e.,

$$
\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \widetilde{Y}=\widetilde{Y} \circ\left(\varphi_{t}\right)_{*},
$$

for every stage φ_{t} of the flow.
18.2.2 \mathcal{H}-Killing vector fields Let an Ehresmann connection $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M)$ be given. Note first that for every $\xi \in \mathfrak{X}_{\mathrm{proj}}(\stackrel{\circ}{T} M)$, the mapping $\widetilde{\mathcal{L}}_{\xi} \mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M), \widetilde{Y} \mapsto\left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(\widetilde{Y})$ is $C^{\infty}(\stackrel{\circ}{T} M)$ linear. If $X \in \mathfrak{X}(M)$, then $\mathbf{j} \circ \widetilde{\mathcal{L}}_{X^{c}}=0$, so the Lie derivative of an Ehresmann connection is definitely not an Ehresmann connection. We say that a vector field X on M is \mathcal{H}-Killing and we write that $X \in \operatorname{Kill}_{\mathcal{H}}(M)$, if \mathcal{H} is invariant under the local flow of X in the sense that $\left(\varphi_{t}\right)_{* *} \circ \mathcal{H}=\mathcal{H} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right)$, for every stage φ_{t} of the flow of X. (Here \mathcal{H} is interpreted as a strong bundle map from $\stackrel{\circ}{T} M \times_{M} T M$ in $T \stackrel{\circ}{T} M$.) We have proved:

Theorem 2. For a vector field X on M, the following are equivalent:
(1) $X \in \operatorname{Kill}_{\mathcal{H}}(M)$, i.e., X is a \mathcal{H}-Killing vector field,
(2) For every stage φ_{t} of the local flow of X,

$$
\left(\varphi_{t}\right)_{* *} \circ \mathbf{h}=\mathbf{h} \circ\left(\varphi_{t}\right)_{* *},
$$

where \mathbf{h} is the horizontal projection associated to \mathcal{H},
(3) $\widetilde{\mathcal{L}}_{X^{\mathcal{C}}} \mathcal{H}=0$,
(4) $\mathcal{L}_{X^{\mathrm{c}}} \mathbf{h}=0$.

If one (and hence all) of (1)-(4) is satisfied, then locally we have

$$
X^{\mathrm{c}} N_{j}^{i}=N_{j}^{k}\left(\frac{\partial X^{i}}{\partial u^{k}} \circ \tau\right)-N_{k}^{i}\left(\frac{\partial X^{k}}{\partial u^{j}} \circ \tau\right)-y^{k}\left(\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau\right),
$$

where $X^{i} \in C^{\infty}(\mathcal{U})$ are the components of X relative to a chart $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ of M, and $\left(N_{j}^{i}\right)$ is the family of Christoffel symbols of \mathcal{H} relative to the induced chart $\left(\tau^{-1}(\mathcal{U}),\left(\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)\right)$ on TM.
18.2.3 Lie symmetries Let S be a semispray for M. A vector field X on M is a Lie symmetry of S, if S is invariant under the local flow of $X^{\text {c }}$, i.e., $\left(\varphi_{t}\right)_{* *} \circ S=S \circ\left(\varphi_{t}\right)_{*}$ for every stage φ_{t} of the flow of X. Then we write $X \in \operatorname{Lie}_{S}(M)$. It is clear from the dynamical interpretation of the classical Lie derivative that

$$
X \in \operatorname{Lie}_{S}(M) \Longleftrightarrow\left[X^{\mathrm{c}}, S\right]=0
$$

We have: $\operatorname{Lie}_{S}(M) \subset \operatorname{Kill}_{\mathcal{H}}(M)$, where \mathcal{H} is the Ehresmann connection induced by S.

Theorem 3. Let (M, S) be a spray manifold, endowed with the Berwald connection \mathcal{H} and the Berwald derivative ∇ induced by \mathcal{H}. For a vector field X on M, the following are equivalent:
(1) $X \in \operatorname{Lie}_{S}(M)$,
(6) $\mathcal{L}_{X^{\mathrm{c}}} \mathbf{V}=0$,
(2) $\left[X^{\mathrm{c}}, S\right]=0$,
(7) $\widetilde{\mathcal{L}}_{X^{c}} \nabla=0$,
(3) $X \in \operatorname{Kill}_{\mathcal{H}}(M)$,
(8) $\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]=[X, Y]^{\mathrm{h}}$,
(4) $\widetilde{\mathcal{L}}_{X \subset} \mathcal{H}=0$,
(9) $\left[\widetilde{\mathcal{L}}_{X^{\mathrm{c}}}, \widetilde{\mathcal{L}}_{Y^{\mathrm{h}}}\right]=\widetilde{\mathcal{L}}_{[X, Y]^{\mathrm{h}}}$,
(5) $\mathcal{L}_{X^{c}} \mathbf{h}=0$,
(10) $\widetilde{\mathcal{L}}_{X^{c}} \circ \mathcal{V}=\mathcal{V} \circ \mathcal{L}_{X^{c}}$.

In conditions (8) and (9), Y is any vector field on M. We note that the equivalence of (1), (5) and (7) has already been proved by R. L. Lovas [17].
18.2.4 Curvature collineations Let (M, S) be a spray manifold.
(A) The Finsler tensor fields $\mathbf{K}, \mathbf{R}, \mathbf{H}$ defined by

$$
\begin{aligned}
& \mathbf{K}(\widetilde{X}):=\mathcal{V}[S, \mathcal{H}(\widetilde{X})], \\
& \mathbf{R}(\widetilde{X}, \widetilde{Y}):=\frac{1}{3}\left(\nabla^{\vee} \mathbf{K}(\widetilde{X}, \widetilde{Y})-\nabla^{\vee} \mathbf{K}(\widetilde{Y}, \widetilde{X})\right), \\
& \mathbf{H}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=-\nabla^{\vee} \mathbf{R}(\widetilde{Z}, \widetilde{X}, \widetilde{Y})
\end{aligned}
$$

are the Jacobi endomorphism (or affine deviation), the fundamental affine curvature and the affine curvature of (M, S), respectively. If $\mathbf{C} \in\{\mathbf{K}, \mathbf{R}, \mathbf{H}\}$ and $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{C}=0$, then we say that X is a curvature collineation of \mathbf{C}.

Theorem 4. A vector field X on M is a curvature collineation of the

Jacobi endomorphism of (M, S) if, and only if, \mathbf{K} is invariant under the local flow of X in the sense that

$$
\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \mathbf{K}=\mathbf{K} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right)
$$

for every stage φ_{t} of the local flow. (Here \mathbf{K} is interpreted as a strong bundle endomorphism of $\stackrel{\circ}{\pi}$.)

Theorem 5. If $X \in \operatorname{Lie}_{S} M$, then X is a curvature collineation of \mathbf{K}, \mathbf{R} and \mathbf{H}.
(B) A Finsler tensor field constructed from S is called projectively invariant if it remains invariant under the projective changes

$$
S \rightsquigarrow S-2 P C, \quad P \in C^{\infty}(\stackrel{\circ}{T} M)
$$

of S. The fundamental projectively invariant tensors of (M, S) are the Weyl tensors $\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}$ and the Douglas tensor \mathbf{D} defined as follows:

$$
\begin{aligned}
& \mathbf{W}_{1}:=\mathbf{K}-K 1_{\Gamma(\odot)}-\frac{1}{n+1}\left(\operatorname{tr} \nabla^{\vee} \mathbf{K}-\nabla^{\vee} K\right) \otimes \widetilde{\delta} \quad\left(K:=\frac{1}{n-1} \operatorname{tr} \mathbf{K}\right), \\
& \mathbf{W}_{2}(\widetilde{X}, \widetilde{Y}):=\frac{1}{3}\left(\nabla^{\vee} \mathbf{W}_{1}(\widetilde{X}, \widetilde{Y})-\nabla^{\vee} \mathbf{W}_{1}(\widetilde{Y}, \widetilde{X})\right), \\
& \mathbf{W}_{3}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=\nabla^{\vee} \mathbf{W}_{2}(\widetilde{Z}, \widetilde{X}, \widetilde{Y}), \\
& \mathbf{D}:=\mathbf{B}-\frac{1}{n-1}\left(\left(\nabla^{\vee} \operatorname{tr} \mathbf{B}\right) \otimes \widetilde{\delta}+(\operatorname{tr} \mathbf{B}) \odot 1_{\Gamma(\overparen{\pi})}\right) .
\end{aligned}
$$

In the last formula, \mathbf{B} is the Berwald tensor of (M, S) given by $\mathbf{B}(\widehat{X}, \widehat{Y}) \widehat{Z}:=\left(\nabla^{\vee} \nabla^{\mathrm{h}} \widehat{Z}\right)(\widehat{X}, \widehat{Y})$, and the symbol \odot means symmetric product without numerical factor.

Theorem 6. If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X} \mathbf{W}_{i}=0, \quad i \in\{1,2,3\}$.
Theorem 7. If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X} \mathbf{B}=0$, which implies that $\widetilde{\mathcal{L}}_{X^{\mathrm{C}}} \mathbf{D}=0$.
18.2.5 Geometric vector fields on a Finsler manifold A positive continuous function $F: T M \rightarrow \mathbb{R}$ is a Finsler function for M if it is smooth on $\stackrel{\circ}{T} M, 1^{+}$-homogeneous and the fundamental tensor

$$
g:=\frac{1}{2} \nabla^{\vee} \nabla^{\vee} F^{2}=: \nabla^{\vee} \nabla^{\vee} E
$$

is fibrewise non-degenerate. A Finsler manifold is a pair (M, F) with M a manifold and F a Finsler function for M. First we recall some
basic data:
(1) $\theta_{g}:=\nabla^{\vee} E$ or $\theta_{E}:=d_{\mathbf{J}} E=\theta_{g} \circ \mathbf{j}$ - the Hilbert 1-form of ($\left.M, F\right)$.
(2) $\omega_{E}:=d \theta_{E}=d d_{\mathbf{J}} E$ - the fundamental 2-form of (M, F).
(3) $w:=\frac{1}{n!}(-1)^{\frac{n(n-1)}{2}} \omega_{E} \wedge \cdots \wedge \omega_{E}$ (n factors) - the Dazord volume form of (M, F).
(4) The canonical spray of (M, F) is the unique spray S for M such that $i_{S} d d_{\mathbf{J}} E=-d E$ over $\stackrel{\circ}{T} M$. The canonical connection \mathcal{H} of (M, F) is the Berwald connection of $(M, S), \nabla$ stands for the Berwald derivative induced by \mathcal{H}.
(5) The Sasaki-Finsler metric g^{S} on $\stackrel{\circ}{T} M$ is given by

$$
g^{S}(\xi, \eta):=g(\mathbf{j} \xi, \mathbf{j} \eta)+g(\mathcal{V} \xi, \mathcal{V} \eta) .
$$

(6) $\mathfrak{C}_{b}:=\nabla^{\vee} g=\nabla^{\vee} \nabla^{\vee} \nabla^{\vee} E$ is the Cartan-tensor of (M, F); the type $(1,2)$ Cartan-tensor \mathcal{C} is given by $g(\mathcal{C}(\widetilde{X}, \widetilde{Y}) \widetilde{Z})=\mathfrak{C}_{b}(\widetilde{X}, \widetilde{Y}, \widetilde{Z})$.
(7) $\mathbf{L}_{b}:=\nabla^{\mathrm{h}} g=\nabla^{\mathrm{h}} \nabla^{\vee} \nabla^{\vee} E$ is the Landsberg tensor of (M, F); the type $(1,2)$ Landsberg tensor is given by $g(\mathbf{L}(\widetilde{X}, \widetilde{Y}) \widetilde{Z})=\mathbf{L}_{b}(\widetilde{X}, \widetilde{Y}, \widetilde{Z})$. (8) $D^{C}, D^{C h}$ and $D^{H s}$ stand for the Cartan, the Chern-Rund and the Hashiguchi derivative on (M, F); they are given by

$$
\begin{aligned}
& D_{\xi}^{C} \widetilde{Y}:=\nabla_{\xi} \widetilde{Y}+\frac{1}{2} \mathcal{C}(\mathcal{V} \xi, \widetilde{Y})+\frac{1}{2} \mathbf{L}(\mathbf{j} \xi, \widetilde{Y}), \\
& D_{\xi}^{C h} \widetilde{Y}:=\nabla_{\xi} \widetilde{Y}+\frac{1}{2} \mathbf{L}(\mathbf{j} \xi, \widetilde{Y}), \quad D_{\xi}^{H s} \widetilde{Y}:=\nabla_{\xi} \widetilde{Y}+\frac{1}{2} \mathcal{C}(\mathcal{V} \xi, \widetilde{Y}) .
\end{aligned}
$$

Definitions: A vector field X on M is a Killing vector field of (M, F) if the stages φ_{t} of its local flow preserve the Finslerian norms of the tangent vectors to M, i.e., $F \circ\left(\varphi_{t}\right)_{*}=F$ for every possible $t \in \mathbb{R}$. If

$$
\widetilde{\mathcal{L}}_{X^{c}} g=\sigma g, \sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M),
$$

then X is called a conformal vector field with conformal function σ. A conformal vector field is homothetic if its conformal function is constant. We say that X is a projective vector field if

$$
\left[X^{\mathrm{c}}, S\right]=\varphi C, \quad \varphi \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)
$$

Notation: $\operatorname{Kill}_{F}(M), \operatorname{Conf}_{F}(M), \operatorname{Dil}_{F}(M)$ and $\operatorname{Proj}_{F}(M)$ are the sets of Killing, conformal, homothetic and projective vector fields of (M, F), respectively.

Theorem 8. (a) For every vector field X on M,
(i) $\left(\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}\right) \circ \mathbf{j}=\mathcal{L}_{X^{c}} \omega_{E}$;
(ii) $\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{j} \xi, \mathbf{j} \eta)=\left(\mathcal{L}_{X} \omega_{E}\right)(\mathbf{J} \xi, \eta)$;
(iii) $\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}_{b}=\nabla^{\vee}\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)$;
(iv) $g\left(\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}\right)(\widehat{Y}, \widehat{Z}), \widehat{U}\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathcal{C}(\widehat{Y}, \widehat{Z}), \widehat{U})$;
(v) $g\left(\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}\right)(\widehat{Y}, \widehat{Z}), \widehat{U}\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{L}(\widehat{Y}, \widehat{Z}), \widehat{U})$.
(b) If $X \in \operatorname{Lie}_{S}(M)$, then $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}=\nabla^{\mathrm{h}}\left(\mathcal{L}_{X^{c}} g\right)$.
(c) If $X \in \operatorname{Kill}_{F}(M)$, then

$$
\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}_{b}=0, \widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}=0, \widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}=0, \widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}=0 .
$$

Theorem 9. If $X \in \operatorname{Kill}_{F}(M)$ and $D \in\left\{\nabla, D^{C}, D^{C h}, D^{H s}\right\}$, then $\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} D=0$.

Theorem 10. (a) If $X \in \operatorname{Conf}_{F}(M)$, then its conformal function is a vertical lift.
(b) For a vector field X on M, the following are equivalent:
(i) X is a conformal vector field,
(ii) $X^{c} E=\sigma E$,
(iii) $\mathcal{L}_{X^{c}} \theta_{E}=\sigma \theta_{E}$,
(iv) $\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}=\sigma \theta_{g}$,
(v) $\mathcal{L}_{X} \omega_{E}=f^{\vee} \omega_{E}+d f^{\vee} \wedge d_{\mathbf{J}} E, \quad f \in C^{\infty}(M)$.

In conditions (ii)-(iv), $\sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)$.
Theorem 11. $X \in \operatorname{Conf}_{F}(M) \cap \operatorname{Lie}_{S}(M) \Longrightarrow X^{\mathrm{c}} \in \operatorname{Conf}_{g^{s}}(\stackrel{\circ}{T} M)$,

$$
X^{\mathrm{c}} \in \operatorname{Conf}_{g^{s}}(\stackrel{\circ}{T} M) \Longrightarrow X \in \operatorname{Conf}_{F}(M)
$$

Theorem 12. $X \in \operatorname{Dil}_{F}(M) \Longrightarrow X \in \operatorname{Lie}_{S}(M)$.
Theorem 13. $X \in \operatorname{Proj}_{F}(M) \cap \operatorname{Conf}_{F}(M) \Longrightarrow X \in \operatorname{Dil}_{F}(M)$.
Theorem 14. $\left(X \in \operatorname{Proj}_{F}(M)\right.$ and $\left.\widetilde{\mathcal{L}}_{X^{c}} w=0\right) \Longrightarrow X \in \operatorname{Lie}_{S}(M)$.
Theorem 15. $\left(X \in \operatorname{Conf}_{F}(M)\right.$ and $\left.\widetilde{\mathcal{L}}_{X^{c}} w=0\right) \Longrightarrow X \in \operatorname{Kill}_{F}(M)$.

19 Magyar nyelvű összefoglaló (Summary in Hungarian)

19.1 Jelölések és háttérismeretek

19.1.1 Legyen V egy R gyûrú fölötti modulus és legyen $k \in \mathbb{N}$. A $V^{k} \rightarrow \mathrm{R}$ (ill. $\left.V^{k} \rightarrow V\right) k$-lineáris leképezések R -modulusára a $T_{k}(V)$ (ill. $T_{k}^{1}(V)$) jelölést használjuk; $T_{0}(V):=\mathrm{R}, T_{0}^{1}(V):=V$. Ekkor $T_{1}(V)=: V^{*}$ a V modulus duális modulusa, $T_{1}^{1}(V)=: \operatorname{End}(V)$ pedig V endomorfizmus gyűrúje.
19.1.2 M-mel mindvégig egy n-dimenziós sima sokaságot jelölünk, ahol $n \geqq 1$ vagy $n \geqq 2$. $C^{\infty}(M)$ az M sokaság sima függvényeinek gyűrúje, $\mathfrak{X}(M)$ az M fölötti vektormezők $C^{\infty}(M)$-modulusa. Alkalmazzuk a

$$
\begin{aligned}
& \mathcal{T}_{k}(M):=T_{k}(\mathfrak{X}(M)), \quad \mathcal{T}_{k}^{1}(M):=T_{k}^{1}(\mathfrak{X}(M)), \\
& \mathcal{A}_{k}(V):=\left\{\alpha \in \mathcal{T}_{k}(M) \mid \alpha \text { alternáló }\right\}, \\
& \mathcal{A}_{k}^{1}(M):=\left\{\beta \in \mathcal{T}_{k}^{1}(M) \mid \beta \text { alternáló }\right\}
\end{aligned}
$$

jelöléseket. Ekkor $\mathcal{A}(M):=\oplus_{k=0}^{n} \mathcal{A}_{k}(M)$ az M sokaság Grassmann algebrája. Megállapodunk abban, hogy $\mathcal{A}_{k}(M):=\{0\}$, ha k negatív egész. Egy $D \mathbb{R}$-lineáris transzformáció r-edfokú ($r \in \mathbb{Z}$) gradált derivációja $\mathcal{A}(M)$-nek, ha $D\left(\mathcal{A}_{k}(M)\right) \subset D\left(\mathcal{A}_{k+r}(M)\right)$ és

$$
D(\alpha \wedge \beta)=(D \alpha) \wedge \beta+(-1)^{k r} \alpha \wedge D \beta ; \quad \alpha \in \mathcal{A}_{k}(M), \beta \in \mathcal{A}(M) ;
$$

itt az \wedge szimbólum ékszorzatot jelöl. A Grassmann algebra klasszikus gradált derivációi az i_{X} helyettesítési operátor, az \mathcal{L}_{X} Lie-derivált $(X \in \mathfrak{X}(M))$ és a d külső derivált; ezek foka rendre -1, 0 és 1 .
19.1.3 Az M sokaság érintőnyalábja $\tau: T M \rightarrow M$, a hasított érintőnyalábja $\stackrel{\circ}{\tau}: \stackrel{\circ}{T} M \rightarrow M$. Az utóbbinál $\stackrel{\circ}{T} M$ az M sokaság nemzérus érintővektorai alkotta nyílt részhalmaza $T M$-nek, $\stackrel{\circ}{\tau}:=\tau \upharpoonright \stackrel{\circ}{T} M$. Egy $\varphi: M \rightarrow N$ sima leképezés deriváltját φ_{*} jelöli, ez $T M$-et $T N$-be képezi le. Egy $T M$-en (vagy $\stackrel{\circ}{T} M$-en) adott ξ vektormező vetíthető, ha van olyan X vektormező M-en, hogy $\tau_{*} \circ \xi=X \circ \tau$. Ha speciálisan $\tau_{*} \circ \xi=o \circ \tau$, ahol $o \in \mathfrak{X}(M)$ a zérus vektormező, akkor ξ-t vertikálisnak mondjuk. Használjuk az

$$
\begin{aligned}
\mathfrak{X}_{\mathrm{proj}}(T M) & :=\{\xi \in \mathfrak{X}(T M) \mid \xi \text { vetíthető }\}, \\
\mathfrak{X}^{\vee}(T M) & :=\{\xi \in \mathfrak{X}(T M) \mid \xi \text { vertikális }\} .
\end{aligned}
$$

jelöléseket.
19.1.4 Legyen $f \in C^{\infty}(M), X \in \mathfrak{X}(M)$. Ekkor $f^{\vee}:=f \circ \tau \in C^{\infty}(T M)$ f vertikális liftje, az $f^{c}: T M \rightarrow \mathbb{R}, v \mapsto f^{c}(v):=v(f) \in \mathbb{R}$ sima függvény pedig a teljes liftje. Az X vektormező $X^{\vee} \in \mathfrak{X}^{\vee}(T M)$ vertikális, ill. $X^{\mathrm{c}} \in \mathfrak{X}(T M)$ teljes liftje az az egyetlen vektormező $T M$-en, amelyre tetszöleges $f \in C^{\infty}(M)$ esetén

$$
X^{\vee} f^{c}=(X f)^{\vee}, X^{\vee} f^{v}=0 ; X^{c} f^{c}=(X f)^{c}, X^{c} f^{\vee}=(X f)^{\vee} .
$$

Létezik egy és csak egy olyan $C \in \mathfrak{X}^{\vee}(T M)$ vertikális vektormező, hogy $C f^{c}=f^{c}$ minden $f \in C^{\infty}(M)$ függvényre; ez a Liouville vektormező $T M$-en. Egy $F \in C^{\infty}(\stackrel{\circ}{T} M)$ függvény k^{+}-homogén, ha $C F=k F$ $(k \in \mathbb{Z})$.
19.1.5 A $T M$, ill. $\stackrel{\circ}{T} M$ fölötti Finsler-nyaláb a

$$
\pi: T M \times{ }_{M} T M \rightarrow T M \text { és } \stackrel{\circ}{\pi}: \stackrel{\circ}{T} M \times_{M} T M \rightarrow \stackrel{\circ}{T} M
$$

vektornyaláb. Itt például a π nyaláb $v \in T M$ fölötti fibruma a $\{v\} \times T_{\tau(v)} M \cong T_{\tau(v)} M n$-dimenziós valós vektortér. E vektornyalábok sima szeléseinek modulusát $\Gamma(\pi)$, ill. $\Gamma\left(\frac{\circ}{\pi}\right)$ jelöli. $\Gamma(\pi)$ és $\Gamma(\stackrel{\circ}{\pi})$ elemeit Finsler vektormezőknek; a $T_{k}(\Gamma(\stackrel{\circ}{\pi})) \cup T_{k}^{1}(\Gamma(\stackrel{\circ}{\pi}))(k \in \mathbb{N})$ modulusok elemeit $\stackrel{\circ}{T} M$-en adott Finsler vektormezőknek hívjuk. A következő tipográfiai megoldással élünk:

$$
\begin{aligned}
& X, Y, \ldots \text { - vektormezők } M \text {-en, } \\
& \xi, \eta, \ldots \text { - vektormezők } T M \text {-en (vagy } \stackrel{\circ}{T} M \text {-en) }, \\
& \widetilde{X}, \widetilde{Y}, \ldots \text { - Finsler vektormezők, } \\
& \widehat{X}, \widehat{Y}, \ldots-\text { bázikus Finsler vektormezők, } \\
& \widetilde{\delta} \quad-\Gamma(\pi) \text { kanonikus szelése. }
\end{aligned}
$$

Itt $\widehat{X}(v):=(v, X(\tau(v))), \widetilde{\delta}(v):=(v, v)(v \in T M)$.
19.1.6 A $0 \rightarrow \Gamma(\pi) \xrightarrow{\mathbf{i}} \mathfrak{X}(T M) \xrightarrow{\mathbf{j}} \Gamma(\pi) \rightarrow 0$ sor, ahol $\mathbf{i}(\widehat{X})=X^{\text {v }}$; $\mathbf{j}\left(X^{\vee}\right)=0, \mathbf{j}\left(X^{\mathrm{c}}\right)=\widehat{X}(X \in \mathfrak{X}(M)) C^{\infty}(T M)$-homomorfizmusok egzakt sora. Így $\operatorname{Im}(\mathbf{i})=\operatorname{Ker}(\mathbf{j})=\mathfrak{X}^{\vee}(T M)$, s közvetlenül adódik, hogy $C=\mathbf{i}(\widetilde{\delta})$. A $\mathbf{J}:=\mathbf{i} \circ \mathbf{j}$ endomorfizmus $\mathfrak{X}(T M)$ vertikális endomorfizmusa. Ez $\mathcal{A}(T M)$-nek egy $d_{\mathbf{J}}$ elsőfokú gradált derivációját indukálja, amely a

$$
d_{\mathbf{J}} F:=d F \circ \mathbf{J}, \quad d_{\mathbf{J}} d F:=d d_{\mathbf{J}} F \quad\left(F \in C^{\infty}(T M)\right)
$$

előiríással értelmezhető.
19.1.7 Alkalmazzuk a (kanonikus) vertikális derivált ∇^{\vee} operátorát, melynek definíciója a következő lépésekben adható meg:
$\nabla_{\widetilde{X}}^{\nu} F:=(\mathbf{i} \widetilde{X}) F\left(F \in C^{\infty}(T M)\right) ;$
$\nabla_{\widetilde{X}}^{\mathcal{V}} \widetilde{Y}:=\mathbf{j}[\mathbf{i} \widetilde{X}, \eta], \eta \in \mathfrak{X}(T M)$ olyan, hogy $\mathbf{j} \eta=\widetilde{Y} ;$
$\left(\nabla_{\widetilde{X}}^{\vee} A\right)\left(\widetilde{Y}_{1}, \ldots \widetilde{Y}_{k}\right):=\nabla_{\widetilde{X}}^{\vee}\left(A\left(\widetilde{Y}_{1}, \ldots, Y_{k}\right)\right)-\sum_{i=1}^{k} A\left(\widetilde{Y}_{1}, \ldots, \nabla_{\widetilde{X}}^{\vee} \widetilde{Y}_{i}, \ldots \widetilde{Y}_{k}\right)$, $A \in T_{k}(\Gamma(\pi)) \cup T_{k}^{1}(\Gamma(\pi))$.
19.1.8 Egy $\stackrel{\circ}{T} M$-beli Ehresmann-konnexió olyan $\mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M)$ $C^{\infty}(\stackrel{\circ}{T} M)$-lineáris leképezés, amelyre $\mathbf{j} \circ \mathcal{H}=1_{\Gamma\left(\frac{0}{\pi}\right)}$. Adatai: $\mathbf{h}:=\mathcal{H} \circ \mathbf{j}$, $\mathbf{v}=1_{\mathfrak{X}(T M)}-\mathbf{h}$ és $\mathcal{V}:=\mathbf{i}^{-1} \circ \mathbf{v}$ a \mathcal{H}-hoz csatolt vertikális és horizontális projekció, valamint vertikális leképezés; $X^{\mathrm{h}}:=\mathcal{H}(\widehat{X})=\mathbf{h} X^{\mathrm{c}}$ az X vektormező ($\mathcal{H}-)$ horizontális liftje. Az Ehresmann-konnexió homogén, ha $\left[C, X^{\mathrm{h}}\right]=0$ minden $X \in \mathfrak{X}(M)$-re. A \mathcal{H} által indukált $\nabla^{\mathrm{h}} h$ -Berwald-derivált a következő lépésekben értelmezhető:
$\nabla_{\tilde{X}}^{h} F:=(\mathcal{H} \tilde{X}) F\left(F \in C^{\infty}(\stackrel{\circ}{T} M)\right) ; \quad \nabla_{\tilde{X}}^{h} \tilde{Y}:=\mathcal{V}[\mathcal{H} \widetilde{X}, \mathrm{i} \widetilde{Y}] ;$
$\left(\nabla_{\tilde{X}}^{h} A\right)\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right):=\nabla_{\tilde{X}}^{h}\left(A\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right)\right)-\sum_{i=1}^{k} A\left(\widetilde{Y}_{1}, \ldots, \nabla_{\tilde{X}}^{h} \widetilde{Y}_{i}, \ldots, \widetilde{Y}_{k}\right)$.
A $\nabla:(\xi, \widetilde{Y}) \in \mathfrak{X}(\stackrel{\circ}{T} M) \times \Gamma(\stackrel{\circ}{\pi}) \mapsto \nabla_{\xi} \widetilde{Y}:=\nabla_{\mathcal{V} \xi}^{\mathcal{V}} \widetilde{Y}+\nabla_{\mathbf{j} \xi}^{\mathrm{h}} \widetilde{Y} \in \Gamma(\stackrel{\circ}{\pi})$ leképezés kovariáns derivált a $\stackrel{\circ}{\pi}$ vektornyalábon, a Berwald-derivált.
19.1.9 Egy $S: T M \rightarrow T T M$ leképezés szemispray M fölött, ha C^{1} osztályú, $T M$ fölött sima, és eleget tesz a $\tau_{T M} \circ S=1_{T M}, \mathbf{J} S=C$ feltételeknek. Ha - ráadásul - $[C, S]=S$, akkor S spray M fölött. Minden szemispray indukál egy \mathcal{H} Ehresmann-konnexiót, melyre

$$
\mathcal{H}(\widehat{X})=\frac{1}{2}\left(X^{\mathrm{c}}+\left[X^{\mathrm{v}}, S\right]\right) \text {, bármely } X \in \mathfrak{X}(M) \text { esetén. }
$$

Ez a konnexió torziómentes abban az értelemben, hogy tetszőleges $\widetilde{X}, \widetilde{Y}$ Finsler-vektormezőkre

$$
\nabla_{\mathcal{H}(\widetilde{X})} \widetilde{Y}-\nabla_{\mathcal{H}(\widetilde{Y})} \widetilde{X}=\mathbf{j}[\mathcal{H}(\widetilde{X}), \mathcal{H}(\widetilde{Y})] \quad(\stackrel{\circ}{T} M \text { fölött })
$$

Amennyiben S spray, úgy \mathcal{H} homogén, és azt mondjuk, hogy \mathcal{H} az (M, S) spray-sokaság Berwald-konnexiója.

19.2 Eredmények

19.2.1 Lie-derivatáltak Finsler-nyalábokon Megadva egy vetíthető $\xi \in \mathfrak{X}(T M)$ vektormezőt, a Finsler-tenzormezők ξ szerinti Liederiváltját a következő lépésekben definiáljuk:

$$
\begin{aligned}
& \widetilde{\mathcal{L}}_{\xi} F:=\mathcal{L}_{\xi} F=\xi F\left(F \in C^{\infty}(T M)\right) ; \quad \widetilde{\mathcal{L}}_{\xi} \widetilde{Y}:=\mathbf{i}^{-1}[\xi, \mathbf{i} \widetilde{Y}] ; \\
& \left(\widetilde{\mathcal{L}}_{\xi} A\right)\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right):=\widetilde{\mathcal{L}}_{\xi}\left(A\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{k}\right)\right)-\sum_{i=1}^{k} A\left(\widetilde{Y}_{1}, \ldots, \widetilde{\mathcal{L}}_{\xi} \widetilde{Y}_{i}, \ldots, \widetilde{Y}_{k}\right),
\end{aligned}
$$

$\operatorname{itt} A \in T_{k}(\Gamma(\pi)) \cup T_{k}^{1}\left(\Gamma(\pi)\right.$. Egy $\stackrel{\circ}{T} M$-beli \mathcal{H} Ehresmann-konnexió $\widetilde{\mathcal{L}}_{\xi} \mathcal{H}$ Lie-deriváltját az

$$
\left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(\widetilde{Y}):=\mathcal{L}_{\xi}(\mathcal{H}(\widetilde{Y}))-\mathcal{H}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Y}\right) .
$$

elốrással értelmezzük; egy $D: \mathfrak{X}(T M) \times \Gamma(\pi) \rightarrow \Gamma(\pi),(\eta, \widetilde{Z}) \mapsto D_{\eta} \widetilde{Z}$ kovariáns derivált ξ szerinti Lie-deriváltja az

$$
\left\{\begin{array}{l}
\widetilde{\mathcal{L}}_{\xi} D: \mathfrak{X}(T M) \times \Gamma(\pi),(\eta, \widetilde{Z}) \mapsto\left(\widetilde{\mathcal{L}}_{\xi} D\right)(\eta, \widetilde{Z}), \\
\left(\widetilde{\mathcal{L}}_{\xi} D\right)(\eta, \widetilde{Z}):=\widetilde{\mathcal{L}}_{\xi}\left(D_{\eta} \widetilde{Z}\right)-D_{[\xi, \eta]} \widetilde{Z}-D_{\eta}\left(\widetilde{\mathcal{L}}_{\xi} \widetilde{Z}\right) .
\end{array}\right.
$$

leképezés. Levezettük a következő hasznos formulákat:
(1) $\left[\widetilde{\mathcal{L}}_{\xi}, \widetilde{\mathcal{L}}_{\eta}\right]=\widetilde{\mathcal{L}}_{[\xi, \eta]}$;
(2) $\widetilde{\mathcal{L}}_{X c} \widehat{Y}=\widehat{[X, Y]}$;
(3) $\widetilde{\mathcal{L}}_{X} \subset \widetilde{\delta}=0$;
(4) $\widetilde{\mathcal{L}}_{X^{c}} \upharpoonright \Gamma(\pi)=\nabla_{\hat{X}}^{v} \upharpoonright \Gamma(\pi)$;
(5) $\mathbf{i} \circ \widetilde{\mathcal{L}}_{X^{c}}=\mathcal{L}_{X^{c}} \circ \mathbf{i}$;
(6) $\widetilde{\mathcal{L}}_{X^{c}} \circ \mathbf{j}=\mathbf{j} \circ \mathcal{L}_{X^{c}}$;
(7) $\widetilde{\mathcal{L}}_{X^{c}} \circ \nabla_{\widehat{Y}}^{V}-\nabla_{\widehat{Y}}^{V} \circ \widetilde{\mathcal{L}}_{X^{c}}=\widetilde{\mathcal{L}}_{[X, Y]^{v}}$;
(8) $\widetilde{\mathcal{L}}_{X^{n}} \upharpoonright \Gamma\left(\frac{0}{\pi}\right)=\nabla_{\hat{X}}^{\mathrm{h}} \upharpoonright \Gamma\left(\begin{array}{c}\pi \\)\end{array}\right.$;
(9) $\widetilde{\mathcal{L}}_{X^{c}} \circ \nabla_{\widehat{Y}}^{\mathrm{h}}-\nabla_{\widehat{Y}}^{\mathrm{h}} \circ \widetilde{\mathcal{L}}_{X^{c}}=\widetilde{\mathcal{L}}_{\left[X^{c}, Y^{\mathrm{h}}\right]}$.

A fenti formulákban $\xi, \eta \in \mathfrak{X}_{\mathrm{proj}}(T M) ; X, Y \in \mathfrak{X}(M)$. (8)-ban és (9)ben föltesszük, hogy egy Ehresmann-konnexió is adva van $\stackrel{\circ}{T} M$-ben.

Megmutattuk, hogy $\widetilde{\mathcal{L}}_{X} \subset \widetilde{Y}$ eltűnésére a következő dinamikai interpretáció lehetséges

1. Tétel Legyen $\left(\varphi_{t}\right)$ az X vektormezó lokális folyama. $\widetilde{\mathcal{L}}_{X} \subset \widetilde{Y}=0$ pontosan akkor teljesül, ha \widetilde{Y} invariáns a folyammal szemben, azaz

$$
\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \tilde{Y}=\tilde{Y} \circ\left(\varphi_{t}\right)_{*},
$$

minden szóbajövoo $t \in \mathbb{R}$ esetén.
19.2.2 \mathcal{H}-Killing vektormezốk Legyen adva egy \mathcal{H} Ehresmannkonnexió $\stackrel{\circ}{T} M$-en. Jegyezzük meg először is, hogy tetszőleges $\xi \in \mathfrak{X}_{\text {proj }}(\stackrel{\circ}{T} M)$ esetén az $\widetilde{\mathcal{L}}_{\xi} \mathcal{H}: \Gamma(\stackrel{\circ}{\pi}) \rightarrow \mathfrak{X}(\stackrel{\circ}{T} M), \widetilde{Y} \mapsto\left(\widetilde{\mathcal{L}}_{\xi} \mathcal{H}\right)(\widetilde{Y})$ leképezés $C^{\infty}(\stackrel{\circ}{T} M)$-lineáris. Tetszőleges $X \in \mathscr{X}(M)$ vektormező esetén $\mathrm{j} \circ \widetilde{\mathcal{L}}_{X^{c}}=0$, ami mutatja, hogy egy Ehresmann-konnexió Lie-deriváltja már nem Ehresmann-konnexió.

Egy $X \in \mathfrak{X}(M)$ vektormezőt \mathcal{H}-Killing vektormezönek nevezünk és azt írjuk, hogy $X \in \operatorname{Kill}_{\mathcal{H}}(M)$, ha \mathcal{H} invariáns X lokális folyamával szemben, abban az értelemben, hogy minden szóbajövô valós t-re

$$
\left(\varphi_{t}\right)_{* *} \circ \mathcal{H}=\mathcal{H} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) .
$$

(Itt \mathcal{H}-t $\stackrel{\circ}{T} M \times{ }_{M} T M \rightarrow T \stackrel{\circ}{T} M$ erős nyalábleképezésként interpretáljuk.) Megmutattuk a következőt:
2. Tétel Egy $X \in \mathfrak{X}(M)$ vektormezốre az alábbi feltételek ekvivalensek:
(1) $X \mathcal{H}$-Killing vektormezô,
(2) Ha X lokális folyama φ_{t}, akkor minden szóbajövô t-re teljesül, hogy $\left(\varphi_{t}\right)_{* *} \circ \mathbf{h}=\mathbf{h} \circ\left(\varphi_{t}\right)_{* *}$,
(3) $\widetilde{\mathcal{L}}_{X^{\mathrm{c}}} \mathcal{H}=0$,
(4) $\mathcal{L}_{X} \mathrm{ch}=0$.

Amennyiben (1)-(4) valamelyike - és így bármelyike fennáll, úgy

$$
X^{\mathrm{c}} N_{j}^{i}=N_{j}^{k}\left(\frac{\partial X^{i}}{\partial u^{k}} \circ \tau\right)-N_{k}^{i}\left(\frac{\partial X^{k}}{\partial u^{j}} \circ \tau\right)-y^{k}\left(\frac{\partial^{2} X^{i}}{\partial u^{j} \partial u^{k}} \circ \tau\right),
$$

ahol az $X^{i} \in C^{\infty}(\mathcal{U})$ függvények X komponensei M egy $\left(\mathcal{U},\left(u^{i}\right)_{i=1}^{n}\right)$ térképére vonatkozóan, $\left(N_{j}^{i}\right)$ pedig \mathcal{H} Christoffel-szimbólumainak családja a TM-en indukált $\left(\tau^{-1}(\mathcal{U}),\left(\left(x^{i}\right)_{i=1}^{n},\left(y^{i}\right)_{i=1}^{n}\right)\right)$ térképre vonatkozóan.
19.2.3 Lie-szimmetriák Legyen S az M sokaság fölötti szemispray. Egy $X \in \mathfrak{X}(M)$ vektormező Lie-szimmetriája S-nek, ha S invariáns X^{c} lokális folyamával szemben, azaz, $\left(\varphi_{t}\right)_{* *} \circ S=S \circ\left(\varphi_{t}\right)_{*}$ minden szóbajövő t-re, ahol $\left(\varphi_{t}\right) X$ lokális folyama. Ekkor azt írjuk, hogy $X \in \operatorname{Lie}_{S}(M)$. A klasszikus Lie-derivált dinamikai interpretációjából azonnal látható, hogy

$$
X \in \operatorname{Lie}_{S}(M) \Longleftrightarrow\left[X^{\mathrm{c}}, S\right]=0
$$

Amennyiben \mathcal{H} az S által indukált Ehresmann-konnexió, úgy $\operatorname{Lie}_{S}(M) \subset \operatorname{Kill}_{\mathcal{H}}(M)$.
3. Tétel Legyen (M, S) spray-sokaság, ellátva a \mathcal{H} Berwaldkonnexióval és a \mathcal{H} által indukâlt ∇ Berwald-deriválttal. Az M sokaság egy X vektormezôjére a következők ekvivalensek:
(1) $X \in \operatorname{Lie}_{S}(M)$,
(6) $\mathcal{L}_{X^{\mathrm{C}}} \mathbf{V}=0$,
(2) $\left[X^{\mathrm{c}}, S\right]=0$,
(7) $\widetilde{\mathcal{L}}_{X^{c}} \nabla=0$,
(3) $X \in \operatorname{Kill}_{\mathcal{H}}(M)$,
(8) $\left[X^{\mathrm{c}}, Y^{\mathrm{h}}\right]=[X, Y]^{\mathrm{h}}$,
(4) $\widetilde{\mathcal{L}}_{X^{\mathrm{C}}} \mathcal{H}=0$,
(9) $\left[\widetilde{\mathcal{L}}_{X^{c}}, \widetilde{\mathcal{L}}_{Y^{\mathrm{h}}}\right]=\widetilde{\mathcal{L}}_{[X, Y]^{\mathrm{h}}}$,
(5) $\mathcal{L}_{X^{c}} \mathbf{h}=0$,
(10) $\widetilde{\mathcal{L}}_{X^{c}} \circ \mathcal{V}=\mathcal{V} \circ \mathcal{L}_{X^{c}}$.

Itt (8)-ban és (9)-ben $Y \in \mathfrak{X}(M)$ tetszőleges. Megjegyezzük, hogy (1), (5) és (7) ekvivalenciáját korábban Lovas Rezső már igazolta, ld. [17].
19.2.4 Görbületi kollineációk (A) Egy (M, S) spray-sokaság Jacobi endomorfizmusa (vagy affin elhajlási tenzora), fundamentális affin görbülete és affin görbülete rendre az a \mathbf{K}, \mathbf{R}, és \mathbf{H} Finsler tenzormező, amelyet a

$$
\begin{aligned}
& \mathbf{K}(\widetilde{X}):=\mathcal{V}[S, \mathcal{H}(\widetilde{X})], \quad \mathbf{R}(\widetilde{X}, \widetilde{Y}):=\frac{1}{3}\left(\nabla^{\vee} \mathbf{K}(\widetilde{X}, \widetilde{Y})-\nabla^{\vee} \mathbf{K}(\widetilde{Y}, \widetilde{X})\right), \\
& \mathbf{H}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=-\nabla^{\vee} \mathbf{R}(\widetilde{Z}, \widetilde{X}, \widetilde{Y})
\end{aligned}
$$

elốrás értelmez. Ha $\mathbf{C} \in\{\mathbf{K}, \mathbf{R}, \mathbf{H}\}$ és $\widetilde{\mathcal{L}}_{X^{C}} \mathbf{C}=0$, akkor azt mondjuk, hogy X görbületi kollineációja C-nek.
4. Tétel Egy $X \in \mathfrak{X}(M)$ vektormezô pontosan akkor görbületi kollineációja az (M, S) spray-sokaság Jacobi endomorfizmusának, ha invariáns $X\left(\varphi_{t}\right)$ lokális folyamával szemben, abban az értelemben, hogy

$$
\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right) \circ \mathbf{K}=\mathbf{K} \circ\left(\left(\varphi_{t}\right)_{*} \times\left(\varphi_{t}\right)_{*}\right),
$$

minden lehetséges valós t-re. (Itt K-t $a \stackrel{\circ}{\pi}$ vektornyaláb erốs nyalábendomorfizmusaként interpretáljuk.)
5. Tétel Ha $X \in \operatorname{Lie}_{S} M$, akkor X görbületi kollineációja a \mathbf{K}, \mathbf{R} és H tenzoroknak.
(B) Egy, az S sprayből konstruált Finsler tenzormező projektíven invariáns, ha nem változik az S spray $S \rightsquigarrow S-2 P C, \quad P \in C^{\infty}(\stackrel{\circ}{T} M)$
projektív változtatásai során. Egy (M, S) spray-sokaság alapvető projektíven invariáns tenzorai a $\mathbf{W}_{1}, \mathbf{W}_{2}, \mathbf{W}_{3}$ Weyl-tenzorok és a \mathbf{D} Douglas tenzor. Ezek definíciói rendre a következők:

$$
\begin{aligned}
& \mathbf{W}_{\mathbf{1}}:=\mathbf{K}-K 1_{\Gamma\left(\frac{\pi}{\pi}\right)}-\frac{1}{n+1}\left(\operatorname{tr} \nabla^{\vee} \mathbf{K}-\nabla^{\vee} K\right) \otimes \widetilde{\delta} \quad\left(K:=\frac{1}{n-1} \operatorname{tr} \mathbf{K}\right), \\
& \mathbf{W}_{\mathbf{2}}(\widetilde{X}, \widetilde{Y}):=\frac{1}{3}\left(\nabla^{\vee} \mathbf{W}_{\mathbf{1}}(\widetilde{X}, \widetilde{Y})-\nabla^{\vee} \mathbf{W}_{\mathbf{1}}(\widetilde{Y}, \widetilde{X})\right), \\
& \mathbf{W}_{\mathbf{3}}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}:=\nabla^{\vee} \mathbf{W}_{\mathbf{2}}(\widetilde{Z}, \widetilde{X}, \widetilde{Y}), \\
& \mathbf{D}:=\mathbf{B}-\frac{1}{n-1}\left(\left(\nabla^{\vee} \operatorname{tr} \mathbf{B}\right) \otimes \widetilde{\delta}+(\operatorname{tr} \mathbf{B}) \odot 1_{\Gamma(\tilde{\pi})}\right) .
\end{aligned}
$$

Az utolsó formulában B a spray-sokaság Berwald-tenzora, amely megadható a $\mathbf{B}(\widehat{X}, \widehat{Y}) \widehat{Z}:=\left(\nabla^{\vee} \nabla^{\mathrm{h}} \widehat{Z}\right)(\widehat{X}, \widehat{Y})$ elơírással, a \odot szimbólum pedig numerikus faktor nélküli szimmetrikus szorzatot jelöl.
6. Tétel $H a X \in \operatorname{Lie}_{S}(M)$, akkor $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{W}_{i}=0, \quad i \in\{1,2,3\}$.
7. Tétel Ha $X \in \operatorname{Lie}_{S}(M)$, akkor $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{B}=0$, és ebbôl következôen $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{D}=0$.
19.2.5 Geometriai vektormezők Finsler-sokaságokon Egy $F: T M \rightarrow \mathbb{R}$ pozitív, folytonos függvény M fölötti Finsler-függvény, ha $\stackrel{\circ}{T} M$-en sima, 1^{+}-homogén és a

$$
g:=\frac{1}{2} \nabla^{\vee} \nabla^{\vee} F^{2}=: \nabla^{\vee} \nabla^{\vee} E
$$

alaptenzor (fibrumonként) nemelfajuló. Egy Finsler-sokaság olyan (M, F) pár, amelyet egy M sokaság és egy M fölötti Finsler-függvény alkot. Néhány fontosabb adata:
(1) $\theta_{g}:=\nabla^{\vee} E$ vagy $\theta_{E}:=d_{\mathbf{J}} E=\theta_{g} \circ \mathbf{j}-(M, F)$ Hilbert 1-formája.
(2) $\omega_{E}:=d \theta_{E}=d d_{\mathbf{J}} E-(M, F)$ fundamentális 2-formája.
(3) $w:=\frac{1}{n!}(-1)^{\frac{n(n-1)}{2}} \omega_{E} \wedge \cdots \wedge \omega_{E}$ (n tényezö) - a Dazord-féle térfogati forma $T M$-en.
(4) (M, F) kanonikus spray-je az az S spray, amelyet $\stackrel{\circ}{T} M$ fölött az $i_{S} d d_{\mathbf{J}} E=-d E$ feltétel határoz meg. $(M, F) \mathcal{H}$-val jelölt kanonikus konnexiója az (M, S) spray-sokaság Berwald-konnexiója; ∇ a kanonikus konnexió által indukált Berwald-derivált.
(5) $\stackrel{\circ}{T} M$-en a $g^{S}(\xi, \eta):=g(\mathbf{j} \xi, \mathbf{j} \eta)+g(\mathcal{V} \xi, \mathcal{V} \eta)$ elớírással értelmezett Riemann-metrika a Sasaki-Finsler metrika.
(6) $\mathfrak{C}_{b}:=\nabla^{\vee} g=\nabla^{\vee} \nabla^{\vee} \nabla^{\vee} E$ a Finsler-sokaság Cartan-tenzora; \mathcal{C} a vele
metrikusan ekvivalens (1,2)-típusú tenzor, amelyet a $g(\mathcal{C}(\widetilde{X}, \widetilde{Y}) \widetilde{Z})=$ $\mathfrak{C}_{b}(\widetilde{X}, \widetilde{Y}, \widetilde{Z})$ formula értelmez.
(7) $\mathbf{L}_{b}:=\nabla^{\mathrm{h}} g=\nabla^{\mathrm{h}} \nabla^{\vee} \nabla^{\vee} E$ a Landsberg-tenzor; \mathbf{L} a vele metrikusan ekvivalens $(1,2)$-típusú tenzor, amelyet a $g(\mathbf{L}(\widetilde{X}, \widetilde{Y}) \widetilde{Z}):=\mathbf{L}_{b}(\widetilde{X}, \widetilde{Y}, \widetilde{Z})$ formula ad meg.
(8) $D^{C}, D^{C h}$ és $D^{H s}$ rendre a Cartan, a Chern-Rund és a Hashiguchiderivált (M, F)-en. Értelmezésük:

$$
\begin{aligned}
& D_{\xi}^{C} \widetilde{Y}:=\nabla_{\xi} \tilde{Y}+\frac{1}{2} \mathcal{C}(\mathcal{V} \xi, \widetilde{Y})+\frac{1}{2} \mathbf{L}(\mathbf{j} \xi, \widetilde{Y}), \\
& D_{\xi}^{C h} \widetilde{Y}:=\nabla_{\xi} \widetilde{Y}+\frac{1}{2} \mathbf{L}(\mathbf{j} \xi, \widetilde{Y}), \quad D_{\xi}^{H s} \widetilde{Y}:=\nabla_{\xi} \tilde{Y}+\frac{1}{2} \mathcal{C}(\mathcal{V} \xi, \widetilde{Y}) .
\end{aligned}
$$

Definíciók: Legyen $X \in \mathfrak{X}(M)$, és legyen $\left(\varphi_{t}\right) X$ lokális folyama. Az X vektormező Killing vektormezốje (M, F)-nek, ha a φ_{t} transzformációk megôrzik az érintőnyalábok Finsler normáját, azaz $F \circ\left(\varphi_{t}\right)_{*}=F$ minden szóbajövő t-re. Ha

$$
\widetilde{\mathcal{L}}_{X^{\wedge}} g=\sigma g, \text { ahol } \sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M),
$$

akkor azt mondjuk, hogy X konform vektormezô, amelynek a konform függvénye σ. Ha a konform függvény konstans, homotetikus vektormezôről beszélünk. Az X vektormező projektív vektormezője (M, F)-nek, ha

$$
\left[X^{\mathrm{c}}, S\right]=\varphi C, \quad \varphi \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)
$$

Jelölés: $\operatorname{Kill}_{F}(M), \operatorname{Conf}_{F}(M), \operatorname{Dil}_{F}(M)$ és $\operatorname{Proj}_{F}(M)$ rendre (M, F) Killing-, konform, homotetikus és projektív vektormezőinek halmaza.
8. Tétel (a) Tetszôleges $X \in \mathfrak{X}(M)$ vektormező esetén
(i) $\left(\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}\right) \circ \mathbf{j}=\mathcal{L}_{X^{c}} \omega_{E}$;
(ii) $\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{j} \xi, \mathbf{j} \eta)=\left(\mathcal{L}_{X^{c}} \omega_{E}\right)(\mathbf{J} \xi, \eta)$;
(iii) $\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}_{b}=\nabla^{\vee}\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)$;
(iv) $g\left(\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}\right)(\widehat{Y}, \widehat{Z}), \widehat{U}\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathcal{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathcal{C}(\widehat{Y}, \widehat{Z}), \widehat{U})$;
(v) $g\left(\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}\right)(\widehat{Y}, \widehat{Z}), \widehat{U}\right)=\left(\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}\right)(\widehat{Y}, \widehat{Z}, \widehat{U})-\left(\widetilde{\mathcal{L}}_{X^{c}} g\right)(\mathbf{L}(\widehat{Y}, \widehat{Z}), \widehat{U})$.
(b) $H a X \in \operatorname{Lie}_{S}(M)$, akkor $\widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}=\nabla^{\mathrm{h}}\left(\mathcal{L}_{X^{c}} g\right)$.
(c) $H a X \in \operatorname{Kill}_{F}(M)$, akkor

$$
\widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}_{b}=0, \quad \widetilde{\mathcal{L}}_{X^{c}} \mathcal{C}=0, \quad \widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}_{b}=0, \widetilde{\mathcal{L}}_{X^{c}} \mathbf{L}=0
$$

9. Tétel $H a X \in \operatorname{Kill}_{F}(M)$ és $D \in\left\{\nabla, D^{C}, D^{C h}, D^{H s}\right\}$, akkor $\widetilde{\mathcal{L}}_{X^{c}} D=0$.
10. Tétel (a) $H a X \in \operatorname{Conf}_{F}(M)$, akkor X konform függvénye vertikális lift. (b) Egy $X \in \mathfrak{X}(M)$ vektormezốre a következők ekvivalensek:
(i) $X \in \operatorname{Conf}_{F}(M)$,
(ii) $X^{\mathrm{c}} E=\sigma E$,
(iii) $\mathcal{L}_{X^{c}} \theta_{E}=\sigma \theta_{E}$,
(iv) $\widetilde{\mathcal{L}}_{X^{c}} \theta_{g}=\sigma \theta_{g}$,
(v) $\mathcal{L}_{X^{c}} \omega_{E}=f^{v} \omega_{E}+d f^{\vee} \wedge d_{\mathbf{J}} E, \quad f \in C^{\infty}(M)$.

Az (ii)-(iv) feltételekben $\sigma \in C^{0}(T M) \cap C^{\infty}(\stackrel{\circ}{T} M)$.
11. Tétel $X \in \operatorname{Conf}_{F}(M) \cap \operatorname{Lie}_{S}(M) \Longrightarrow X^{c} \in \operatorname{Conf}_{g^{s}}(\stackrel{\circ}{T} M)$,

$$
X^{\mathrm{c}} \in \operatorname{Conf}_{g}(\stackrel{\circ}{T} M) \Longrightarrow X \in \operatorname{Conf}_{F}(M)
$$

12. Tétel $X \in \operatorname{Dil}_{F}(M) \Rightarrow X \in \operatorname{Lie}_{S}(M)$.
13. Tétel $X \in \operatorname{Proj}_{F}(M) \cap \operatorname{Conf}_{F}(M) \Rightarrow X \in \operatorname{Dil}_{F}(M)$.
14. Tétel $\left(X \in \operatorname{Proj}_{F}(M)\right.$ és $\left.\widetilde{\mathcal{L}}_{X^{c}} w=0\right) \Rightarrow X \in \operatorname{Lie}_{S}(M)$.
15. Tétel $\left(X \in \operatorname{Conf}_{F}(M)\right.$ és $\left.\widetilde{\mathcal{L}}_{X^{c}} w=0\right) \Rightarrow X \in \operatorname{Kill}_{F}(M)$.

Hivatkozások

[1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd edition, Springer-Verlag, New York and Berlin, 1988.
[2] H. Akbar-Zadeh, Transformations infinitésimales conformes des variétés finsleriennes compactes, Ann. Polon. Math. XXXVI (1979), 213-229.
[3] H. Akbar-Zadeh, Champs de vecteurs projectifs sur le fibré unitaire, J. Math. Pures Appl. 65 (1986), 47-79.
[4] B. Aradi and D. Cs. Kertész, Isometries, submetries and distance coordinates on a Finsler manifold, Acta Math. Hungar., 143 (2014), 337-350.
[5] W. Balmann, Vector bundles and connections, http://people.mpim-bonn.mpg.de/hwbllmnn/archiv/conncurv1999.pdf
[6] L. Berwald, Ueber Finslersche und Cartansche Geometrie IV, Ann. of Math. (2) 48 (1947), 755-781.
[7] I. Bucataru and R. Miron, Finsler-Lagrange Geometry, Editura Academiei Romane, Bucuresti, 2007.
[8] M. Crampin and D. J. Saunders, Affine and projective transformations of Berwald connections, Differential Geom. Appl. 25 (2007), 235-250.
[9] A. Frölicher and A. Nijenhuis, Theory of vector valued differential forms, Indag. Math. (N. S) 18 (1956), 338-359.
[10] W. Greub, Linear Algebra (4th edition), Springer, 1975.
[11] J. Grifone, Structure presque-tangente et connexions, I. Ann. Inst. Fourier (Grenoble) 22 (1972), 287-334.
[12] J. Grifone, Transformations infinitésimales conformes d'une variété finslerienne, C.R. Acad. Sc. Paris 280, série A (1975), 519-522.
[13] J. Grifone, Sur les transformations infinitésimales conformes d'une variété finslérienne, C.R. Acad. Sc. Paris 280, série A (1975), 583-585.
[14] G. S. Hall, Symmetries and Curvature Structure in General Relativity, World Scientific, 2004.
[15] L. Huang and X. Mo, On conformal fields of a Randers metric with isotropic S-curvature, Illinois Journal of Math. 57 (2013), 685-696.
[16] S. Lang, Fundamentals of Differential Geometry, Springer, 1999.
[17] R. L. Lovas, Affine and projective vector fields on spray manifolds, Period. Math. Hungar. 48 (2004), 165-179.
[18] R. L. Lovas, On the Killing vector fields of generalized metrics, SUT J. Math. 40 (2004), 133-156.
[19] M. Matsumoto, Theory of extended point transformations of Finsler spaces I, Tensor N.S. 45 (1987), 109-115.
[20] M. Matsumoto, Theory of extended point transformations of Finsler spaces II, Tensor N.S. 47 (1988), 203-214.
[21] Y. Matsushima, Differentiable Manifolds, Marcel Dekker, New York, 1972.
[22] P. W. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics 93, AMS, 2008.
[23] R. B. Misra, Groups of transformations in Finslerian spaces, Internal Reports of the ICTP, Trieste, 1993.
[24] B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York, 1983.
[25] B. O'Neill, The Geometry of Kerr Black Holes, Dover Publications, Inc., Mineola, New York, 2014.
[26] W. A. Poor, Differential Geometric Structures, Dover Publications, Inc. Mineola, New York, 2007
[27] Gy. Soós, Über Gruppen von Affinitäten und Bewegungen in Finslerschen Räumen, Acta Math. Hungar. 5 (1954), 73-83.
[28] J. Szilasi, A Setting for Spray and Finsler Geometry, In: Handbook of Finsler Geometry (Kluwer Academic Publishers, Dordrecht, 2003) 1183-1426.
[29] J. Szilasi, R. L. Lovas and D. Cs. Kertész, Connections, Sprays and Finsler Structures, World Scientific, 2014.
[30] J. Szilasi, A. Tóth, Conformal vector fields on Finsler manifolds, Commun. Math. 19 (2011), 149-168.
[31] J. Szilasi and A. Tóth, Curvature collineations in spray manifolds, Balkan J. Geom. Appl. 17 (2012), 104-114.
[32] J. Szilasi and Cs. Vincze, On conformal equivalence of RiemannFinsler metrics, Publ. Math. Debrecen, 52 (1998), 167-185.
[33] Tian Huang-jia, Projective vector fields on Finsler manifolds, Appl. Math. J. Chinese Univ. 29(2) (2014), 217-229.
[34] K. Yano, The Theory of Lie Derivatives and its Applications, North-Holland, Amsterdam, 1957.

