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1 Introduction

The aim of this Thesis is threefold. First, to elaborate a (partly
new) calculative background for Lie derivatives in the framework of
Finsler bundles. Second, to apply the Finslerian Lie derivative, com-
bining with other technical tools, for studying curvature collineations
in spray manifolds. Third, to study projective and conformal (in par-
ticular, homothetic and Killing) vector �elds on a Finsler manifold and
describe some interrelations between them.

The theory of the above-mentioned `geometric' vector �elds has a
vast literature. Let us quote here Mike Crampin. `The transformation
theory of sprays and Berwald connections was in vogue towards the
middle of last century � Chapter VIII of Yano's book `The Theory of
Lie Derivatives and its Applications' [34] gives an excellent survey on
the state of the art in 1957 � but went out of fashion; the subject has
been taken up again very recently by Lovas [17]. The de�nition of
an in�nitesimal a�ne transformation of a Berwald connection is not
entirely straightforward, because a Berwald connection is de�ned on
a pull-back bundle (a pull back of a tangent bundle in fact). We feel
that a concept of the Lie derivative of a section of such a pull-back
bundle has not received the careful geometrical consideration that it
deserves.' (See the Introduction of [8]; the numbering of items [17],
[34] corresponds to the References in our Thesis.) In their just cited
paper, Crampin and Saunders make an attempt to remedy the defect
� and we continue their attempts here.

Going back to the historical roots, we mention that Gy. Soós impor-
tant paper `Über Gruppen von A�nitäten und Bewegungen in Finsler-
schen Räumen'([27]) has already been quoted in Yano's monograph.
A good overview of the developments of the next two decades can be
found in R. B. Misra's paper [23], written in 1981, revised and updated
in 1993. In a two-part paper, M. Matsumoto clari�ed and improved
some results of Yano in the framework of his theory of Finsler connec-
tions ([19], [20]). From the modern (and relatively modern, partly
tensor calculus based) literature, beside the paper of R. L. Lovas,
H. Akbar-Zadeh and J. Grifone works ([2], [3], [12], [13]) are worth
mentioning. Grifone applies systematically the `τTM : TTM → TM
tangent bundle formalism', combining with the Frölicher�Nijenhuis cal-
culus of vector-valued di�erential forms; Lovas formulates and proves
his results in terms of the `pull-back formalism'. This Thesis, is some
sense, is a continuation of Grifone's and Lovas's work. The greater
part of the theory is developed on a pull-back of a tangent bundle,
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however, the concepts and techniques of the tangent bundle geometry,
including vertical calculus on TM , play an eminent role in our anal-
ysis. We use two types of Lie derivatives: the classical Lie derivative
on the tensor algebra of a manifold and the Lie derivative of Finsler
tensor �elds with respect to projectable vector �elds. (It turns out, as
is expect, that the two types are closely related.) We also need the
Lie derivative of a covariant derivative on a Finsler bundle as it has
been introduced in [17]. In this Thesis, we de�ne the concept of the
Lie derivative of an Ehresmann connection H; after that we can speak
about H-Killing vector �elds.

We say, roughly speaking, that a vector �eld X on a manifold M is
a curvature collineation of a curvature object C of a spray manifold if
L̃XcC = 0, where Xc is the complete lift of X and L̃Xc is the Finslerian
Lie derivative with respect to Xc. Curvature collineations play an
important role in the study of geometry and physics of classical space-
times; for an excellent account on the subject we refer to G. S. Hall's
book [14], especially its last chapter. Similar investigations in the
context of spray manifolds are new.

Most of our results are summarized in 18.2 (in English) and in
19.2 (in Hungarian), that is why we do not touch them here. To make
the Thesis more readable, in Part I we brie�y present the background
material used throughout the other chapters.
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Part I

Preliminary material

2 Manifolds and bundles

2.0 In general, we follow the notation and terminology of [29]. How-
ever, for convenience of the reader, we start here with some basic con-
ventions which will be followed throughout this Thesis.

2.0.1 The identity transformation of a set S is denoted by 1S. If
S → T is a mapping and A ⊂ S, then f � A denotes the restriction of
f to A. The (canonical) inclusion of A into S is jA := 1S � A. Given
two mappings ϕ : M → S and ψ : M → T , (ϕ, ψ) denotes the mapping

M → S × T, p 7→ (ϕ(p), ψ(p)). (2.1)

The product ϕ1×ϕ2 of two mappings ϕ1 : M1 → S1 and ϕ2 : M2 → S2

is given by

ϕ1 × ϕ2 (s1, s2) := (ϕ1(s1), ϕ2(s2)); (2.2)

it maps M1 ×M2 into S1 × S2.

2.0.2 The set {0, 1, 2, . . . } of natural numbers is denoted by N. The
symbols Z, Q and R denote the integers, rationals and reals, respec-
tively. If A ⊂ R, we write A∗ := A \ {0} and A+ := {a ∈ A| a = 0}.
Then A∗+ = {a ∈ A| a > 0}. Real-valued mappings will usually be
mentioned as functions.

2.0.3 For every n ∈ N∗, we write Jn := {1, . . . , n}. The group of
permutations of Jn is denoted by Sn, and ε(σ) ∈ {−1, 1} stands for the
sign of σ ∈ Sn.

2.0.4 By a ring we mean a commutative ring with unit element 1. The
zero element of a ring (and any additive group) will usually be denoted
by the same symbol 0.

2.0.5 Let R be a ring and V a module over R (or an R-module for
short). Then V ∗ := L(V,R) := {f : V → R| f is R-linear} is the dual
of V , EndR(V ) := End(V ) := {ϕ : V → V | ϕ is R-linear} is the ring of
endomorphisms of V .
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2.0.6 Let V be an R-module and k ∈ N∗. The R-module of k-linear
mappings V k → R (resp. V k → V ) is denoted by Tk(V ) (resp. T 1

k (V ))
and their elements are called covariant tensors (resp. vector-valued
tensors) of degree k. Then T1(V ) = V ∗, T 1

1 (V ) = End(V ). We agree
that T0(V ) := R, T 1

0 (V ) := V . In this Thesis, by a tensor we shall
always mean a covariant tensor or vector-valued tensor, so we use the
term tensor in a restricted sense. The symbol ⊗ will stand for tensor
product.

2.0.7 Let V be an R-module, and letA ∈ Tk(V )∪T 1
k (V ), where k ∈ N∗.

Given a permutation σ ∈ Sk, we de�ne a tensor σA by

σA(v1, . . . , vk) := A(vσ(1), . . . , vσ(k)). (2.3)

The tensor A is called symmetric (resp. alternating) if σA = A (resp.
σA = ε(σ)A). Both the symmetric and the alternating tensors form
a submodule in Tk(V ) and T 1

k (V ). These submodules will be denoted
by Sk(V ) and S1

k(V ) in the symmetric case, Ak(V ) and A1
k(V ) in the

alternating case.

2.0.8 Let V 6= {0} be an n-dimensional real vector space. A vol-
ume form on V is an element of An(V ) \ {0}. Given a volume form
µ ∈ An(V ), for every linear transformation ϕ ∈ End(V ) there exists a
unique scalar trϕ ∈ R such that

n∑
i=1

µ(v1, . . . , ϕ(vi), . . . , vn) = tr(ϕ)µ(v1, . . . , vn), (2.4)

where v1, . . . , vn ∈ V (see [10], 4.23). This scalar is called the trace
of ϕ. Obviously, trϕ depends linearly on ϕ. We de�ne the trace of
a vector valued tensor A ∈ T 1

k (V ) (k ∈ N∗) as the covariant tensor
trA ∈ Tk−1(V ) given by

(trA)(v1, . . . , vk−1) := tr(v ∈ V 7→ A(v, v1, . . . , vk−1) ∈ V ). (2.5)

2.0.9 We continue to assume that V is an n-dimensional, non-trivial
real vector space. The nullspace of a tensor b ∈ S2(V ) is the subspace

Nb := {v ∈ V | b(u, v) = 0 for all u ∈ V }

of V . If Nb = {0}, then b is called non-degenerate, and we write

Met(V ) := {b ∈ S2(V )|Nb = {0}}.

A tensor b ∈ S2(V ) is positive de�nite if b(v, v) > 0 for all v ∈ V \ {0};

Euc(V ) := {b ∈ S2(V )| b is positive de�nite }.
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2.0.10 In coordinate terms, we shall use Einstein's summation con-
vention in two forms. The weak form: `The summation sign is not
omitted, but summation is understood over all repeated indices. Fre-
quently (but not always) the repeated index occurs exactly twice � once
up, once down.' (See [25], p. 10.) The standard form: Whenever a
term contains a repeated index, one as a superscript and the other as
a subscript, summation is implied over this index.

2.1 By a manifold we mean a second countable Hausdor� space en-
dowed with a maximal smooth atlas. The letterM will be deserved for
a manifold. The dimension of M is denoted by dimM . All manifolds
will be assumed at least 1-dimensional.

2.2 The set of k-times continuously di�erentiable mappings between
manifolds M and N is denoted by Ck(M,N). Here k is a natural
number or k = ∞ with the convention that C0(M,N) stands for the
set of continuous mappings of M into N . Elements of C∞(M,N) are
called smooth mappings. If ϕ ∈ C∞(M,N) has a smooth inverse, we
say that ϕ is a di�eomorphism. We write

Diff(M,N) := {ϕ ∈ C∞(M,N)|ϕ is a di�eomorphism}

and Diff(M) := Diff(M,M).

2.3 The set of smooth real-valued functions on a manifold M is de-
noted by C∞(M). If f, g ∈ C∞(M), λ ∈ R, and for any p ∈M

(f + g)(p) := f(p) + g(p), (λf)(p) := λf(g), (fg)(p) := f(p)g(p),

then these operations make C∞(M) into a ring and also an alge-
bra over R. The unit element of C∞(M) is the constant function
1 : M → R, p 7→ 1(p) := 1.

2.4 A triple (E, π,M) is a (smooth) �bre bundle with typical �bre F ,
brie�y an F -bundle, if E, M, F are manifolds, π is a smooth mapping
of E into M , and the following condition of local triviality is satis�ed:

(LT) For every point p ∈M there exists a neighbourhood U of p in M
together with a di�eomorphism ψ : U × F → π−1(U) such that

π(ψ(q, v)) = q for all (q, v) ∈ U × F.
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Then E, M and π are called the total manifold, the base manifold,
and the projection of the F -bundle (E, π,M), respectively. For each
point p ∈ M , Ep := π−1(p) is the �bre over p (or through p). The
di�eomorphism ψ in condition (LT) is a trivializing map for π (or for
E). A family (Ui, ψi)i∈I is called a trivializing covering for π (or for E
by abuse of language), if (Ui)i∈I is an open covering of M and (ψi)i∈I
is a family of trivializing maps ψi : Ui × F → π−1(U) for π. We shall
frequently use the terms 'π : E → M is a �bre bundle','π is a �bre
bundle', or, less consequently, 'E is a �bre bundle'.

2.5 Let (Ei, πi,Mi) be Fi-bundles, where i ∈ {1, 2}. A smooth
mapping ϕ : E1 → E2 is called �bre preserving if π1(z1) =
π2(z2) implies π2(ϕ(z1)) = π2(ϕ(z2)) (z1, z2 ∈ E1). Equivalently, ϕ
is �bre preserving if there exists a smooth mapping ϕB : M1 → M2

such that ϕB ◦ π1 = π2 ◦ ϕ. We say that ϕB is the mapping induced
by the bundle map ϕ between the base manifolds.

2.6 A mapping s : M → E is a section of a �ber bundle π : E →M if
π ◦ s = 1M . The set of smooth sections of π is denoted by Γ(π) or (by
abuse of notation) Γ(E).

2.7 Let V be a �nite-dimensional real vector space. A �bre bundle
(E, π,M) with typical �bre V is said to be a vector bundle of rank
dimV if every �bre Ep (p ∈ M) is a real vector space, and there is a
trivializing covering (Ui, ψi)i∈I for π such that the mappings

(ψi)p : V → Ep, v 7→ (ψi)p(v) := ψi(p, v) (i ∈ I, p ∈ Ui)

are linear isomorphisms. A vector bundle π′ : E ′ →M is a subbundle of
a vector bundle π : E →M if, for every p ∈M , E ′p is a linear subspace
of Ep, and the induced inclusion mapping jE′ : E ′ → E, jE′ � E ′p :=
jE′p is smooth. (For the de�nition of jE′p see 2.0.1)

2.8 Let (E1, π1,M1) and (E2, π2,M2) be vector bundles. A smooth
mapping ϕ : E1 → E2 is called a bundle map if ϕ is �bre preserving and
the restrictions ϕp := ϕ � (E1)p : (E1)p → (E2)ϕB(p), p ∈M1, are linear
mappings (ϕB is the mapping induced by ϕ, see 2.5). If M1 = M2 =:
M and ϕB = 1M , then we say that ϕ is a strong bundle map. A bundle
map ϕ called an isomorphism if it is a di�eomorphism; this holds if, and
only if, ϕB ∈ Diff(M1,M2) and the restrictions ϕp : (E1)p → (E2)ϕB(p)

are linear isomorphisms.
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2.9 The set Γ(π) of smooth sections of a vector bundle π : E → M
forms a C∞(M)-module under the pointwise operations

(s1 + s2)(p) := s1(p) + s2(p), (fs)(p) := f(p)s(p), p ∈M,

where s, s1, s2 ∈ Γ(π), f ∈ C∞(M). The zero element of this module
is the zero section o de�ned by o(p) := 0p := the zero vector of the
�bre Ep, p ∈M.

2.10 The fundamental lemma of strong bundle maps. Let
π1 : E1 → M and π2 : E2 → M be vector bundles over the same base
manifoldM . If ϕ : E1 → E2 is a strong bundle map, then the mapping

Φ: Γ(π1)→ Γ(π2), s 7→ Φ(s) := ϕ ◦ s

is C∞(M)-linear. Conversely, let Φ: Γ(π1) → Γ(π2) be a module ho-
momorphism. Then there exists a strong bundle map ϕ : E1 → E2

such that
Φ(s) = ϕ ◦ s for all s ∈ Γ(π1).

For a sketchy proof of this result, see [29], Proposition 2.2.31.

2.11 Let π : E → M be a vector bundle. A scalar product on π is a
mapping

g : p ∈M 7→ gp ∈ S2(Ep)

such that the function

g(s1, s2) : M → R, p 7→ g(s1, s2)(p) := gp(s1(p), s2(p))

is smooth for each s1, s2 ∈ Γ(π). A vector bundle π : E → M with
scalar product g is called semi-Euclidean if gp ∈ Met(Ep) for all p ∈M ;
Euclidean if gp ∈ Euc(Ep) for all p ∈ M . Every vector bundle admits
a Euclidean scalar product.

3 Tangent bundle and vector �elds

3.1 A tangent vector to M at a point p of M is an R-linear function
v : C∞(M)→ R such that

v(fg) = v(f)g(p) + f(p)v(g) for all f, g ∈ C∞(M).

Under the usual linear operations the tangent vectors form an n-
dimensional real vector space Tp(M), called the tangent space of M
at p.



14 3 TANGENT BUNDLE AND VECTOR FIELDS

3.2 Let (U , u) = (U , (ui)ni=1) be a chart of M at a point p of M . Here

ui := ei ◦ u : U ⊂M → u(U) ⊂ Rn → R;

(ei)ni=1 is the canonical coordinate system on Rn, i.e., the dual of the
canonical basis of Rn. Then the functions

(
∂
∂ui

)
p
de�ned by(

∂

∂ui

)
p

(f) =

(
∂f

∂ui

)
(p) := Di(f ◦ u−1)(u(p)), f ∈ C∞(M) (3.1)

are the tangent vectors to M at p. The family
((

∂
∂ui

)
p

)n
i=1

is a basis

of TpM . Using this basis, every tangent vector v ∈ TpM can uniquely
be written in the form v =

∑n
i=1 v(ui)

(
∂
∂ui

)
p
.

3.3 Let TM :=
◦⋃
p∈MTpM (disjoint union) and de�ne the projec-

tion τ : TM →M by τ(v) := p if v ∈ TpM. The topology and the
smooth structure of M induce a unique (Hausdor� and second count-
able) topology and a smooth structure on TM such that for every chart
(U , u) = (U , (ui)ni=1) on M ,{

(τ−1(U), (x, y)) = (τ−1(U), ((xi)ni=1, (y
i)ni=1)))

xi := ui ◦ τ, yi(v) := v(ui)
(3.2)

is a chart on TM . We say that (τ−1(U), (x, y)) is the chart induced by
(U , u). The triple (TM, τ,M) is a vector bundle with typical �bre Rn

whose �bre over a point p ∈M is the tangent space TpM . The vector
bundle obtained in this way is called the tangent bundle ofM ; its total
manifold TM is the tangent manifold of M . The tangent bundle of
TM will be denoted by τTM : TTM → TM , or simply by τTM , or less
precisely by TTM .

3.4 Let ϕ : M → N be a smooth mapping between manifolds. Given
any point p ∈M , the mapping{

(ϕ∗)p : TpM → Tϕ(p)N, v 7→ (ϕ∗)p(v),
(ϕ∗)p(v)(h) := v(h ◦ ϕ) for all h ∈ C∞(N)

(3.3)

is a linear mapping, called the derivative of ϕ at p. The mapping

ϕ∗ : TM → TN, ϕ∗ � TpM := (ϕ∗)p (p ∈M)

is a bundle map with induced mapping (ϕ∗)B = ϕ between the base
manifolds. This bundle map is the derivative of ϕ.
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3.5 A smooth section of the tangent bundle of M is called a vector
�eld on M . The C∞(M)-module of vector �elds on M is denoted by
X(M). Thus

X(M) := Γ(TM) = {X ∈ C∞(M,TM)| τ ◦X = 1M}.

If U is an open subset of M , then a vector �eld on U is a smooth
mapping X : U → TM such that τ ◦ X = 1U . They form a module
over C∞(U) denoted by X(U). If, in particular, U is the domain of a
local coordinate system (ui)ni=1 of M , then the mappings

∂

∂ui
: U → TM, p 7→

(
∂

∂ui

)
p

∈ TpM (i ∈ Jn),

where the right-hand side is de�ned by (3.1), are vector �elds on U ,
called the coordinate vector �elds of the chart (U , (ui)ni=1). A family
(Xi)

n
i=1 of vector �elds on U is a frame �eld on U if ((Xi)p)

n
i=1 is a basis

of TpM for all p ∈ U . Thus the coordinate vector �elds of a chart form
a special frame �eld on their domain.

As an example consider the real line R, endowed with its canonical
smooth structure de�ned by the single chart (R, r) := (R, 1R). The
coordinate vector �eld of this chart is the mapping

d

dr
: t ∈ R 7→

(
d

dr

)
t

∈ TtR,

where the tangent vectors ( d
dr

)t (t ∈ R) act as ordinary di�erentiations:(
d

dr

)
t

(h) := h′(t) for all h ∈ C∞(R). (3.4)

3.6 Given a vector �eld X ∈ X(M), the mapping

f ∈ C∞(M) 7→ Xf ∈ C∞(M)

is a derivation of the R-algebra C∞(M): it is R-linear and satis�es the
Leibniz rule

X(fh) = (Xf)(h) + f Xh; f, h ∈ C∞(M).

Conversely, every derivation of C∞(M) comes from a vector �eld. Thus
vector �elds onM can be freely interpreted as derivations in the algebra
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C∞(M). The Lie bracket [X, Y ] of two vector �elds X, Y ∈ X(M) is
the unique vector �eld such that

[X, Y ](f) = X(Y f)− Y (Xf) for all f ∈ C∞(M). (3.5)

This bracket operation is R-bilinear, skew symmetric and satis�es the
Jacobi identity, making X(M) into a (real) Lie algebra. Moreover, for
f ∈ C∞(M) we have

[fX, Y ] = f [X, Y ]− (Y f)X and [X, fY ] = f [X, Y ] + (Xf)Y.
(3.6 a-b)

3.7 Let ϕ : M → N be a smooth mapping between manifolds. Two
vector �elds X ∈ X(M) and Y ∈ X(N) are called ϕ-related if

ϕ∗ ◦X = Y ◦ ϕ. (3.7)

Then we write X∼
ϕ
Y . We say that a vector �eld X onM is projectable

(by ϕ) if there exists a vector �eld Y on N such that X∼
ϕ
Y .

3.8 Let X1, X2 ∈ X(M); Y1, Y2 ∈ X(N). If Xi∼ϕ Yi (i ∈ {1, 2}), then
[X1, X2]∼

ϕ
[Y1, Y2] (related vector �eld lemma). Suppose, in particular,

that ϕ ∈ Diff(M,N). The push-forward of a vector �eld X ∈ X(M)
by ϕ is

ϕ#X := ϕ∗ ◦X ◦ ϕ−1 ∈ X(N); (3.8)

it is the unique vector �eld on N which is ϕ-related toX. The mapping

ϕ# : X(M)→ X(N), X 7→ ϕ#X

is a Lie algebra isomorphism, i.e., we have

ϕ#[X, Y ] = [ϕ#X,ϕ#Y ]; X, Y ∈ X(M). (3.9)

A vector �eld X on M is called invariant under a di�eomorphism ψ
of M , if ψ#X = X, i.e, ψ∗ ◦X = X ◦ ψ.

4 Integral curves and �ows

4.0 Throughout this section I ⊂ R is a nonempty open interval. To
obtain coordinate expressions, we use a chart (U , (ui)ni=1) on M and
the induced chart given by (3.2) on TM .
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4.1 A smooth mapping α : I →M is also called a smooth curve in M .
The tangent vector (or velocity vector) α̇(t) ∈ Tα(t)M of α at t ∈ I is
de�ned by

α̇(t)(f) := (α ◦ f)′(t) = lim
s→0

f(α(t+ s))− f(α(t))

s
, f ∈ C∞(M).

Then we have

α̇(t) = (α∗)t

(
d

dr

)
t

, t ∈ I. (4.1)

The curve α is regular if α̇(t) 6= 0 for all t ∈ I. If (U , (ui)ni=1) is a chart
at α(t) and αi := ui ◦ α, then

α̇(t) =
n∑
i=1

(αi)′(t)

(
∂

∂ui

)
α(t)

. (4.2)

4.2 Let α : I → M be a smooth curve. A vector �eld along α is a
smooth mapping X : I → TM such that X(t) ∈ Tα(t)M for all t ∈ I,
i.e., τ ◦X = α. The set of all vector �elds along α forms the C∞(I)-
module Xα(M) := {X ∈ C∞(I, TM)| τ ◦X = α}. The velocity vector
�eld

α̇ := α∗ ◦
d

dr
(4.3)

of α is an example of a vector �eld along α. By the acceleration vector
�eld α̈ ∈ Xα̇(TM) of α we mean the velocity vector �eld of the curve
α̇ : I → TM , i.e.,

α̈ := (α̇)˙ = (α̇)∗ ◦
d

dr
.

If α(t) is in the chart domain U , then

α̈(t) =
n∑
i=1

(
(αi)′(t)

(
∂

∂xi

)
α̇(t)

+ (αi)′′(t)

(
∂

∂yi

)
α̇(t)

)
. (4.4)

4.3 Let V be an n-dimensional, non-trivial real vector space, en-
dowed with the canonical smooth structure determined by a single
chart (V, ϕ), where ϕ : V → Rn is a linear isomorphism. Given any
point p in V , V may be naturally identi�ed with its tangent space
TpV via the mapping ιp : V → TpV, v 7→ ιp(v) := α̇p(0), where
αp(t) := p+ tv, t ∈ R.
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4.4 A curve α : I → M is an integral curve of a vector �eld X on M
if α̇ = X ◦ α, i.e, α̇(t) = X(α(t)) for all t ∈ I. If Ĩ is an open
interval containing I, then an integral curve α̃ : Ĩ → M of X is an
extension of α if α̃ � I = α. An integral curve of X is maximal if it
has no proper extension. A vector �eld onM is called complete if each
of its maximal integral curves is de�ned on the entire real line.

4.5 LetX be a vector �eld onM and let a point p ∈M be given. There
exists a unique integral curve γp : Ip → M of X such that γp(0) = p.
We say that the integral curve γp starts at p. A function f ∈ C∞(M)
is called a �rst integral for X ∈ X(M) if Xf = 0. This holds if, and
only if, X is constant along the integral curves of f , i.e., the function
f ◦ α : I → R is constant for every integral curve α : I →M of X.

4.6 Given a vector �eld X on M , there exists an open subset D(X) in
R×M and a smooth mapping ϕX : D(X)→M satisfying the following
conditions:

(a) For each p ∈ M , {t ∈ R|(t, p) ∈ D(X)} = Ip, and the mapping
Ip →M, t→ ϕX(t, p) is the maximal integral curve ofX starting
at p. Thus, in particular, ϕX(0, p) = p.

(b) For each t ∈ R, Dt(X) := {p ∈ M | (t, p) ∈ D(X)} is an open
subset of M and the mapping

ϕXt : p ∈ Dt(X) 7→ ϕXt (p) := ϕX(t, p) ∈M

has the following properties:

(i) If (t, p) and (s, ϕXt (p)) are elements of D(X), then (s+ t, p)
is also an element of D(X), and we have

ϕXs ◦ ϕXt = ϕXs+t. (4.5)

(ii) ϕXt is a di�eomorphism of Dt(X) onto D−t(X) with inverse
ϕX−t.

The mapping ϕX is called the local �ow of X; it is uniquely determined
by its (in�nitesimal) generator X. In view of relation (4.5) we also say,
less precisely, that (ϕXt ) is the local one-parameter group generated by
X, whose t th stage is the (local) di�eomorphism ϕXt from Dt(X) onto
D−t(X). When the vector �eld X is clear from the context, we simply
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write (ϕt). If X is complete, then D(X) = R ×M , and the smooth
mapping ϕX is called the global �ow of X. In this case we have:

ϕX0 = 1M ;ϕXs ◦ ϕXt = ϕXs+t for all s, t ∈ R( so the stages of ϕXcommute);

every stage ϕXt is a di�eomorphism of M with (ϕXt )−1 = ϕX−t.

We also say that (ϕXt )t∈R (or (ϕt)t∈R) is the (global) one-parameter
group generated by X. Every vector �eld on compact manifold is com-
plete.

4.7 Let X be a vector �eld on M , and let ϕX : D(X) → M its local
�ow. Suppose that (t, p) ∈ D(X). Then for every smooth function f
on M

(Xf)(p) = lim
t→0

1

t
(f ◦ ϕXt (p)− f(p)) = lim

t→0

1

t
(f ◦ αp(t)− f(p))

= (f ◦ αp)′(0) = α̇p(0)(f)
(4.6)

where αp is the maximal integral curve of X starting at p. If Y is
another vector �eld on M , then

[X, Y ](p) = lim
t→0

1

t

(
((ϕX−t)#Y )p − Y (p)

)
= lim

t→0

1

t

(
(ϕX−t)∗ ◦ Y ◦ ϕXt (p)− Y (p)

)
.

(4.7)

We abbreviate formulas (4.6) and (4.7) as

Xf = lim
t→0

1

t
(f ◦ ϕXt − f) (4.8)

and

[X, Y ] = lim
t→0

1

t
((ϕX−t)#Y − Y ), (4.9)

respectively. Notice that relation (4.9) can also be written in the form

[X, Y ] = lim
t→0

1

t
(Y ◦ ϕXt − (ϕXt )∗ ◦ Y ). (4.10)

To see this, note �rst that

lim
t→0

1

t
(Y ◦ ϕXt − (ϕXt )∗ ◦ Y ) = lim

t→0
(ϕXt )∗((ϕ

X
−t)∗ ◦ Y ◦ ϕXt − Y )

= lim
t→0

(ϕXt )∗(
1

t
((ϕX−t)#Y − Y )).
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Now let p ∈M be a �xed point and introduce the mappings

η : Ip × TpM →M, (t, v) 7→ η(t, v) := (ϕXt )∗(v)

and

Z : Ip → TpM, t→ Z(t) :=
1

t
(((ϕX−t)#Y )p − Yp).

Then Z is continuous and lim
t→0

Z(t)
(4.7)
= [X, Y ]p, so we obtain

lim
t→0

1

t
(YϕXt (p) − (ϕXt )∗(Yp)) = lim

t→0
η(t, Z(t)) = η(0, lim

t→0
Z(t))

= (ϕX0 )∗([X, Y ]p) = [X, Y ]p,

as we claimed.

4.8 Let X and Y be vector �elds on M with local �ows ϕX and ϕY ,
respectively. Then following assertions are equivalent: The Lie bracket
[X, Y ] vanishes; `the vector �eld Y is invariant under the �ow of X',
i.e.,

(ϕX−t)#Y = Y � Dt(X)

whenever Dt(X) 6= ∅; `the local �ows of X and Y commute', i.e.,
ϕXs ◦ ϕYt = ϕYt ◦ ϕXs whenever either side is de�ned.

5 Tensor �elds and di�erential forms

5.1 Let M be a manifold. By a tensor �eld on M we mean a tensor
in

Tk(X(M)) ∪ T 1
k (X(M)), k ∈ N.

Then we write

Tk(M) := Tk(X(M)), T1
k(M) := T 1

k (X(M))

In particular (see 2.0.6)

T0(M) = C∞(M), T1
0(M) = X(M), T1(M) = X∗(M) := (X(M))∗,

T1
1(M) = EndC∞(M)(X(M)).

Instead of `tensor �eld on M ' we also say simply that `tensor on M '.
The elements of X∗(M) are called 1-forms on M . If f ∈ C∞(M), then

df : X(M)→ C∞(M), X 7→ df(X) := Xf (5.1)
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is a 1-form on M , the di�erential of f .
Given a tensor �eld A ∈ Tk(M) ∪ T1

k(M) and a point p of M , A
has a well-de�ned value

Ap ∈ Tk(TpM) ∪ T 1
k (TpM)

at p (see, e.g., [24], pp. 37-38). Using this fact, we de�ne the trace of
a tensor A ∈ T1

1(M) as the smooth function

trA : M → R, p 7→ (trA)p := tr(Ap),

where the right-hand side is given by (2.5). This de�nition is extended
to tensors B ∈ T1

k(M), k > 1, as follows: trB ∈ Tk−1(M) such that

trB(X1, . . . , Xk) := tr(X ∈ X(M) 7→ B(X,X1, . . . , Xk−1)) ∈ X(M).
(5.2)

5.2 The Grassmann algebra of a manifold The elements of

Ak(M) := Ak(X(M)) and A1
k(M) := A1

k(X(M))

are called k-forms and vector k-forms on M , respectively. Notice that
Ak(M) = {0} if k > n = dimM ; we agree that Ak(M) := {0}, if k
is a negative integer. We de�ne the wedge product α ∧ β of a k-form
α ∈ Ak(M) and an l-form β ∈ Al(M) by

α ∧ β(X1, . . . , Xk+l)

:=
1

k!l!

∑
σ∈Sk+l

ε(σ)α(Xσ(1), . . . Xσ(k))β(Xσ(k+1),...,Xσ(k+l)),
(5.3)

Then α ∧ β ∈ Ak+l(M). The wedge product makes the direct sum
A(M) := ⊕nk=0Ak(M) into an algebra over the ring C∞(M), called the
Grassmann algebra of M . This algebra is

graded, i.e., α ∧ β ∈ Ak+l(M) if α ∈ Ak(M) and β ∈ Al(M);

associative, i.e., (α∧ β)∧ γ = α∧ (β ∧ γ) for all α, β, γ ∈ A(M);

graded commutative, i.e., if α ∈ Ak(M) and β ∈ Al(M), then

α ∧ β = (−1)klβ ∧ α. (5.4)

5.3 Derivations of the Grassmann algebra Let r ∈ Z. An
R-linear mapping D : A(M) → A(M) is a graded derivation of degree
r of A(M) if
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(i) D(Ak(M)) ⊂ Ak+r(M) for all k ∈ Z;

(ii) for any α ∈ Ak(M) and β ∈ A(M) we have

D(α ∧ β) = (Dα) ∧ β + (−1)rkα ∧Dβ. (5.5)

Lemma 5.3.1. Every graded derivation of the Grassmann algebra
A(M) is uniquely determined by its action on the smooth functions
on M and on their di�erentials.

For a proof we refer to [29], Lemma 3.3.23.

5.3.2 If D1 and D2 are graded derivations of A(M) of degree r1 and
r2, respectively, then their graded commutator

[D1, D2] := D1 ◦D2 − (−1)r1r2D2 ◦D1 (5.6)

is a graded derivation of A(M) of degree r1 + r2. The graded commu-
tator is graded anticommutative in the sense that

[D1, D2] = −(−1)r1r2 [D2, D1], (5.7)

and satis�es the graded Jacobi identity

(−1)r1r3 [D1, [D2, D3]] + (−1)r2r1 [D2, [D3, D1]]

+ (−1)r3r2 [D3, [D1, D2]] = 0,
(5.8)

where ri is the degree of Di, i ∈ {1, 2, 3}.

5.3.3 The classical graded derivations ofA(M) are the substitution op-
erator iX , the Lie derivative LX (X ∈ X(M)) and the exterior deriva-
tive d. Their degrees are -1,0 and 1, respectively, and they are de�ned
by the following formulas:

(iXα)(X2, . . . , Xk) := α(X,X2, . . . , Xk), (5.9)

(LXα)(X1, . . . , Xk) := X(α(X1, . . . , Xk))

−
k∑
i=1

α(X1, . . . , [X,Xi], . . . , Xk),
(5.10)

dα(X0, . . . , Xk) :=
k∑
i=0

(−1)iXi α(X0, . . . , X̆i, . . . , Xk)

+
∑

06i<j6k

(−1)i+jα([Xi, Xj], X0, . . . , X̆i, . . . , X̆j, . . . , Xk);

(5.11)
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iXf := 0, LXf := Xf, df(X) := Xf ; f ∈ C∞(M). (5.12 a-c)

In formulas (5.9)-(5.11), α ∈ Ak(M), k > 1. In (5.11) the notation X̆i

means that the argument Xi is deleted. These operators satisfy the
identities

[iX , iY ]
(5.6)
= iX ◦ iY + iY ◦ iX = 0, (5.13)

[LX , iY ] = LX ◦ iY − iY ◦ LX = i[X,Y ], (5.14)

[iX , d] = iX ◦ d+ d ◦ iX = LX , (5.15)

[LX ,LY ] = LX ◦ LY − LY ◦ LX = L[X,Y ], (5.16)

[LX , d] = LX ◦ d− d ◦ LX = 0, (5.17)

d2 := d ◦ d = 0. (5.18)

6 Covariant derivatives

6.1 A covariant derivative on a vector bundle π : E →M is a mapping

D : X(M)× Γ(π)→ Γ(π), (X, s) 7→ DXs

which is tensorial in X and derivation in s, i.e, which satis�es the
conditions DfXs = fDXs, DXfs = (Xf)s + fDXs (f ∈ C∞(M)).
The smooth section DXs is called the covariant derivative of s with
respect to X. The covariant di�erential of a section s ∈ Γ(π) is the
mapping

Ds : X(M)→ Γ(π), X 7→ Ds(X) := DXs.

More generally, let k ∈ N∗ and suppose that

A : (Γ(π))k → C∞(M) and B : (Γ(π))k → Γ(π)

are C∞(M)-multilinear mappings. Then we say that A and B are
π-tensor �elds of type (0, k) and (1, k), respectively. We de�ne their
covariant di�erentials DA and DB by

DA(X, s1, s2, . . . , sk) := (DXA)(s1, . . . , sk) := X(A(s1, . . . , sk))

−
k∑
i=1

A(s1, . . . , DXsi, . . . , sk)
(6.1)

and

DB(X, s1, . . . , sk) := (DXB)(s1, . . . , sk) := DX(B(s1, . . . , sk))

−
k∑
i=1

B(s1, . . . , DXsi, . . . , sk),
(6.2)
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respectively. Then DXA is also a type (0, k), DXB is also a type (1, k)
π-tensor �eld.

If g is a scalar product on π (2.11), then a covariant derivative D
on π is called compatible with g or a metric derivative if Dg = 0.

Lemma 6.1.1 (localization). Let π : E →M be a vector bundle and D
is a covariant derivative on π. Suppose that two sections s1, s2 ∈ Γ(π)
coincide in a neighbourhood of a point p ∈M . Then

(DXs1)(p) = (DXs2)(p) for all X ∈ X(M).

For a proof, see, e.g., [5], Lemma 1.3.
Using this lemma we may de�ne the covariant derivatives of

(smooth) local sections of π.

6.2 The curvature tensor �eld (brie�y the curvature tensor) of a co-
variant derivative D on π : E →M is the mapping

R : X(M)× X(M)× Γ(π)→ Γ(π),

(X, Y, s) 7→ R(X, Y )s := DXDY s−DYDXs−D[X,Y ]s.
(6.3)

It can quickly be checked thatR is C∞(M)-linear in all three arguments
and skew-symmetric in the �rst two arguments.

6.3 By a covariant derivative on a manifold M we mean a covariant
derivative

D : X(M)× X(M)→ X(M), (X, Y ) 7→ DXY

on its tangent bundle. Then we de�ne the torsion tensor T ∈ T1
2(M)

of D by

T (X, Y ) := DXY −DYX − [X, Y ]; X, Y ∈ X(M). (6.4)

If T = 0 we say that D is torsion-free or symmetric.
Given a chart (U , (ui)ni=1) of M , and using the localization lemma

6.1.1, we de�ne the Christo�el symbols Γijk ∈ C∞(U) (i, j, k ∈ Jn) of
D with respect to the chosen chart by

D ∂

∂uj

∂

∂uk
=
∑

Γijk
∂

∂ui
. (6.5)
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6.4 A di�eomorphism ϕ : U → V between two open subsets of M is
called a local automorphism of a covariant derivative D on M if

ϕ#(DXY � U) = (Dϕ#X
ϕ#Y ) � V for all X, Y ∈ X(M). (6.6)

Then we also say that ϕ is a (local) D-automorphism. We de-
�ne a vector �eld X on M to be D-Killing if the stages of its local
one-parameter group are local automorphisms of D. We denote by
KillD(M) the set of D-Killing vector �elds on M . (Here we follow the
terminology and notation of Serge Lang [16].)

Proposition 6.4.1. Let M be a manifold together with a covariant
derivative D on M . Then we have:

X ∈ KillD(M) ⇐⇒ LXD = 0. (6.7)

For a proof see, e.g., [26], 2.123 Proposition, (i).

6.5 Suppose that D is a covariant derivative on M . Given a vector
�eld X ∈ X(M), let

(LXD)(Y, Z) := LX(DYZ)−DLXYZ −DY (LXZ)

= [X,DYZ]−D[X,Y ]Z −DY [X,Z]
(6.8)

It is easily checked that LXD is C∞(M)-linear in both of its arguments.
So LXD is a type (1, 2) tensor �eld on M , called the Lie derivative of
D.

Lemma 6.5.1 (see [26], 2.123 Proposition (ii)). Let D be a covariant
derivative on M with curvature R. If D is torsion-free, then

(LXD)(Y, Z) = (R(X, Y ) +DY (DX))(Z) (6.9)

for all X, Y, Z ∈ X(M). Thus

(LXD) = 0 ⇐⇒ DYDX = R(Y,X) for all Y ∈ X(M). (6.10)

(where R(X, Y ) means the endomorphism

X(M)→ X(M), Z 7→ R(X, Y )Z := DXDYZ −DYDXZ −D[X,Y ]Z.)

The proof is a straightforward calculation.
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7 Constructions on the tangent bundle

7.1 Throughout this section, M is an n-dimensional manifold,
τ : TM → M is the tangent bundle of M , and τTM : TTM → TM is
the tangent bundle of TM . For local descriptions and calculations, we
�x a chart (U , u) = (U , (ui)ni=1) on M , and consider the induced chart
(τ−1(U), (xi)ni=1, (y

i)ni=1) (see(3.2)) on TM . If f is a smooth function
on M , then f v := f ◦ τ and f c : TM → R, v 7→ f c(v) := v(f) are
smooth functions on TM , called the vertical lift and the complete lift
of f , respectively. Locally,

f c =
(U)

∑
yi
(
∂f

∂ui
◦ τ
)
. (7.1)

7.2 The vertical bundle of TTM Given a vector v ∈ TM , the
vector space

VvTM := Ker(τ∗)v := {w ∈ TvTM |(τ∗)v(w) = 0} ⊂ TvTM (7.2)

is called the vertical subspace of TvTM . The elements of VvTM are
mentioned as vertical vectors at v. Since (τ∗)v : TvTM → Tτ(v)M is a
surjective linear mapping, it follows that dimVvTM = dimTτ(v)M =

n. A basis for VvTM is the family
((

∂
∂yi

)
v

)n
i=1

. Let

V TM :=
◦⋃
v∈TM

TvTM, τ vTM := τTM � V TM.

Then V TM has a unique smooth structure such that τ vTM becomes a
subbundle of τTM (or TTM). This vector bundle is called the vertical
bundle of τTM . We denote by Xv(TM) the C∞(M)-module of smooth
sections of τ vTM , and we call the elements of Xv(TM) vertical vector
�elds on TM . It is easy to show that for a vector �eld ξ ∈ X(TM) the
following are equivalent:

(i) ξ ∈ Xv(TM);

(ii) ξ∼
τ
o, where o ∈ X(M) is the zero vector �eld;

(iii) ξ(f v) = 0 for all f ∈ C∞(M)

(see, e.g., [29], Lemma 4.1.28). From this and from the related vector
�eld lemma 3.7.8 we conclude immediately that

ξ1, ξ2 ∈ Xv(TM) implies [ξ1, ξ2] ∈ Xv(TM),

and hence Xv(TM) is a subalgebra of the Lie algebra X(TM).



27

7.3 Vertical lift Given a point p ∈ M and two tangent vectors
u, v at p, de�ne a tangent vector v↑(u) ∈ TuTM by

v↑(u) := (ip ◦ α).(0), (7.3)

where ip : TpM → TM is the canonical inclusion, and α : R→ TpM is
a smooth curve given by α(t) := u+ tv, t ∈ R. Applying (4.2), we �nd
that

(ip ◦ α).(0) =
∑

((xi ◦ ip ◦ α)′(0)

(
∂

∂xi

)
u

+ (yi ◦ ip ◦ α)′(0)

(
∂

∂yi

)
u

=
∑

yi(v)

(
∂

∂yi

)
u

,

i.e.,

v↑(u) =
∑

yi(v)

(
∂

∂yi

)
u

. (7.4)

Thus v↑(u) is a vertical vector at u, called the vertical lift of v ∈ TpM
to u ∈ TpM . The vertical lift of a vector �eld X ∈ X(M) is the vertical
vector �eld

Xv : u ∈ TM 7→ Xv(u) := (X(τ(u)))↑(u) ∈ VvTM.

If X =
(U)

∑
X i ∂

∂ui
, then

Xv =
(U)

∑
(X i ◦ τ)

∂

∂yi
. (7.5)

This implies immediately that

(X + Y )v = Xv + Y v, (fX)v = f vXv, (7.6)

for all X, Y ∈ X(M), f ∈ C∞(M).

Lemma 7.3.1. Let X be a vector �eld on M .

(i) The vertical lift Xv of X is the unique vertical vector �eld on
TM such that

Xvf c = (Xf)v for all f ∈ C∞(M). (7.7)

(ii) The vector �eld Xv is complete, and its �ow is given by

ϕX
v

(t, v) = v + tX(τ(v)) for all (t, v) ∈ R× TM. (7.8)
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7.4 The Liouville vector �eld We have a canonical vertical vector
�eld on TM , the Liouville vector �eld

C : TM → TTM, v 7→ C(v) := v↑(v). (7.9)

Locally,

C =
(U)

∑
yi

∂

∂yi
. (7.10)

Lemma 7.4.1. (i) The Liouville vector �eld is the unique vertical vec-
tor �eld on TM such that

Cf c = f c for all f ∈ C∞(M). (7.11)

(ii) De�ne the dilatations µt (t ∈ R∗) and positive dilatations µ+
t (t is

a real number) of TM by

µt(v) := tv and µ+
t (v) := etv, (7.12)

respectively. Then

C∼
µt
C, i.e., (µt)∗ ◦ C = C ◦ µt for all t ∈ R∗. (7.13)

The Liouville vector �eld is complete, its �ow is given by

ϕC(t, v) = etv for all (t, v) ∈ R× TM, (7.14)

i.e., the one-parameter group generated by C is (µ+
t )t∈R.

7.5 The complete lift of a vector �eld Given a vector �eld X on
M , there exists a unique vector �eld Xc on TM such that for every
smooth function f on M ,

Xcf v = (Xf)v and Xcf c = (Xf)c (7.15 a-b)

The vector �eld Xc is called the complete lift of X. Locally, if

X =
(U)

∑
X i ∂

∂ui
, then

Xc =
∑(

(X i ◦ τ)
∂

∂xi
+
∑

yj
(
∂X i

∂uj
◦ τ
)

∂

∂yi

)
(7.1)
=
∑(

(X i)v
∂

∂xi
+ (X i)c

∂

∂yi

)
.

(7.16)
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We have, in particular,(
∂

∂ui

)c

=
∂

∂xi
i ∈ Jn. (7.17)

It can be seen immediately from (7.16), that Xc is τ -related to X, i.e.,

τ∗ ◦Xc = X ◦ τ. (7.18)

A further consequence of (7.16) is that

(X + Y )c = Xc + Y c, (fX)c = f vXc + f cXv (7.19)

for all X, Y ∈ X(M), f ∈ C∞(M). It can also easily be shown that

(ϕ∗)#X
c = (ϕ#X)c for all ϕ ∈ Diff(M). (7.20)

Lemma 7.5.1. Let X be a vector �eld on M with local �ow ϕX . Then
the local �ow ϕX

c
: DXc ⊂ R× TM → TM of Xc is given by

ϕX
c

(t, v) = (ϕXt )∗(v) for all (t, v) ∈ DXc . (7.21)

Otherwise stated, if X generates the local one-parameter group (ϕXt ),
then Xc generates the local one-parameter group ((ϕXt )∗).

7.6 Formulas for Lie brackets For any vector �elds X, Y on M
we have

[Xv, Y v] = 0, [Xv, Y c] = [X, Y ]v, [Xc, Y c] = [X, Y ]c (7.22 a-c)

[C,Xv] = −Xv, [C,Xc] = 0. (7.23 a-b)

7.7 Homogeneity

7.7.1 Let T̃M ⊂ TM be an open subset, and let τ̃ := τ � T̃M . We
say that T̃M is a conic subset of TM if τ̃(T̃M) = M and

µ+
t (v) ∈ T̃M for all v ∈ T̃M, t ∈ R. (7.24)

Obviously, TM is a conic subset of itself. A further important example
is

◦
TM := TM \ o(M), o ∈ X(M) is the zero vector �eld.

Then we write
◦
τ := τ �

◦
TM , and call

◦
τ :

◦
TM → M the slit tangent

bundle of M .
If (U , (ui)ni=1) is a chart on M , then we de�ne the induced chart

(τ̃−1(U), (xi)ni=1, (y
i)ni=1) on T̃M in the same way as in (3.2). For sim-

plicity, the restriction of a vector �eld ξ ∈ X(TM) to T̃M will usually
be denoted also by ξ.



30 7 CONSTRUCTIONS ON THE TANGENT BUNDLE

7.7.2 Let T̃M be a conic subset of TM , and let r be an integer. A
function F : T̃M → R is called positive-homogeneous of degree r (or
r+-homogeneous for short) if F ◦ µ+

t = ertF for all t ∈ R.
The following basic results are well-known:

(i) A C1-function F : T̃M → R is r+-homogeneous if, and only if,
CF = rF (Euler's theorem).
(ii) If a function F : TM → R is continuous on o(M) and 0+-
homogeneous, then it is �brewise constant.
(iii) If F ∈ C1(TM,R) and F is 1+-homogeneous, then F is �brewise
linear, i.e., F � TpM ∈ (TpM)∗ for all p ∈M.
(iv) If F ∈ C2(TM,R) and F is 2+-homogeneous, then F � TpM is a
quadratic form for all p ∈M .

(v) Suppose that r ∈ N∗, and let
◦
F :

◦
TM → R be an r+homogeneous

continuous function. Then its extension

F : TM → R, v 7→ F (v) :=

{ ◦
F (v) if v ∈

◦
TM

0 if v ∈ o(M)

is a continuous function on TM . If r ≥ 2 and
◦
F is of class C1, then F

is also of class C1. For proofs see [29], 4.2.9 � 4.2.11.

7.7.3 We continue to assume that T̃M ⊂ TM is a conic subset and
r ∈ Z. A di�erential form ω ∈ A(T̃M), resp. a vector k-form L in
A1
k(T̃M) is called r+-homogeneous if

LCω = r ω, resp. LCL = (r − 1)L. (7.25 a-b)

In the special case L := ξ ∈ X(T̃M) = A1
0(T̃M) condition (7.25 b)

takes the form

[C, ξ] = (r − 1)ξ. (7.26)

From this and from (7.23 a-b) it follows that the vertical lift of a
vector �eld is 0+-homogeneous, the complete lift of a vector �eld is
1+-homogeneous. Thus, in particular, for every i ∈ Jn,[

C,
∂

∂xi

]
=

[
C,

(
∂

∂ui

)c]
= 0, (7.27)[

C,
∂

∂yi

]
=

[
C,

(
∂

∂ui

)v]
= − ∂

∂yi
. (7.28)
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If ξ =
(U)

∑(
ξi

∂

∂xi
+ ξn+i ∂

∂yi

)
, then

[C, ξ] =
(U)

∑(
(Cξi)

∂

∂xi
+ ξi

[
C,

∂

∂xi

]
+ (Cξn+i)

∂

∂yi
+ ξn+i

[
C,

∂

∂yi

])
(7.27), (7.28)

=
∑(

(Cξi)
∂

∂xi
+ (Cξn+i − ξn+i)

∂

∂yi

)
,

therefore ξ is r+-homogeneous if, and only if, the component functions
ξi are (r − 1)+-homogeneous and the component functions ξn+i are
r+-homogeneous.
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Part II

Lie derivatives in Finslerian

setting

8 Finsler bundles and canonical construc-

tions

8.1 LetM be an n-dimensional manifold. Consider the tangent bundle
τ : TM → M of M , and let τ̃ : T̃M → M be a `conic subbundle' of τ
as described in 7.7.1. Form the �bre product

T̃M ×M TM := {(u, v) ∈ T̃M × TM | τ̃(u) = τ(v)},

and let π̃ := pr1 � T̃M ×M TM . Then π̃ : T̃M ×M TM → T̃M turns
out to be a vector bundle of rank n over T̃M with �bres

π̃−1(u) = {(u, v) ∈ T̃M×TM | v ∈ Tτ̃(u)M} = {u}×Tτ̃(u)M ∼= Tτ(u)M.

This vector bundle is called the Finsler bundle over T̃M . The most
important special cases are

π : TM ×M TM → TM − the Finsler bundle over TM,

◦
π :

◦
TM ×M TM →

◦
TM − the slit Finsler bundle.

8.2 Finsler vector �elds The smooth sections of π̃ are of the form

X̃ = (1T̃M , X) : u ∈ T̃M 7→ (u,X(u)) ∈ T̃M ×M TM, (8.1)

where X ∈ C∞(T̃M, TM) is such that τ ◦ X = τ̃ . We say that X is
the principal part of X̃. Elements of the C∞(T̃M)-module Γ(π̃) are
also called Finsler vector �elds on T̃M . Finsler vector �elds can be
identi�ed canonically with their principal parts.

We have a canonical section δ̃ in Γ(π̃) with principal part 1T̃M .
Thus

δ̃ : T̃M → T̃M ×M TM, u 7→ δ̃(u) := (u, u). (8.2)

If X ∈ X(M), then

X̂ := (1T̃M , X ◦ τ̃) : u ∈ T̃M 7→ (u,X(τ̃(u))) (8.3)
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is a Finsler vector �eld on T̃M . Finsler vector �elds of this type are
called basic. The C∞(T̃M)-module Γ(π̃) is locally generated by the
basic Finsler vector �elds. If (U , (ui)ni=1) is a chart on M with induced
chart (τ̃−1(U), (xi)ni=1, (y

i)ni=1) on T̃M , then

δ̃ =
(U)

∑
yi

∂̂

∂ui
, (8.4)

X̂ =
∑

(X i ◦ τ)
∂̂

∂ui
if X ∈ X(M), X =

(U)

∑
X i ∂

∂ui
(8.5)

Given a Finsler vector �eld X̃ ∈ Γ(π) and a di�eomorphism ϕ of
M , the mapping

ϕ#X̃ := (ϕ∗ × ϕ∗) ◦ X̃ ◦ (ϕ∗)
−1 (8.6)

is also a Finsler vector �eld, called the push-forward of X̃ by ϕ (or,
more precisely, by (ϕ∗ × ϕ∗). Here the `×' is de�ned by (2.2). If
ϕ#X̃ = X̃, then we say that X̃ is invariant under ϕ (cf. 4.8). We
use the same terminology if ϕ is a di�eomorphism between two open
subsets of M . The following equalities can easily be checked:

ϕ#X̂ = ϕ̂#X (X ∈ X(M)), ϕ#δ̃ = δ̃. (8.7 a-b)

8.3 Finsler tensor �elds The elements of the C∞(T̃M)-modules
Tk(Γ(π̃)) and T 1

k (Γ(π̃)) are called Finsler tensor �elds of type (0, k)
and (1, k), respectively. Then, for example, a Finsler tensor �eld
A ∈ T 1

k (Γ(π̃)) (k = 1) is a C∞(T̃M)-multilinear mapping from (Γ(π̃))k

to Γ(π̃). As a tensor �eld on a manifold, a Finsler tensor �eld also has
a well-de�ned value at each point of T̃M . To illustrate this, we con-
sider two examples.
(a) Let A ∈ T 1

1 (Γ(π̃)). Then, for every v ∈ T̃M ,

Av ∈ T 1
1 ({v} × Tτ(v)M) ∼= T 1

1 (Tτ(v)M) = End(Tτ(v)M)

such that (A(X̃))(v) = Av(X̃(v)) for all X̃ ∈ Γ(π̃).
(b) If g ∈ T2(Γ(π̃)), then for every v ∈ T̃M ,

gv ∈ T2({v} × Tτ(v)M) ∼= T2(Tτ(v)M),

i.e., gv : Tτ(v)M × Tτ(v)M → R is a bilinear function such that

g(X̃, Ỹ )(v) = gv(X̃(v), Ỹ (v)) for all X̃, Ỹ ∈ Γ(π̃).
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This interpretation makes it possible to de�ne the crucial concept of
the trace of a Finsler tensor �eld A ∈ T 1

k (Γ(π̃)) (k = 1) on the analogy
of 5.2. If k > 1, then trA ∈ Tk−1(Γ(π̃)) is given by

(trA)(X̃1, . . . , X̃l−1) := tr(X̃ 7→ A(X̃, X̃1, . . . , X̃l−1)) ∈ Γ(π̃). (8.8)

8.4 The bundle maps i, j and J In what follows, for simplicity,
we consider the Finsler bundle π : TM ×M TM → TM. However, our
constructions may be carried out without changes to the more general
case π̃ : T̃M ×M TM → T̃M .

De�nition and Lemma 8.4.1. (i) The mapping

i : TM ×M TM → V TM, (u, v) 7→ i(u, v) := v↑(u) (8.9)

is a strong bundle isomorphism of the Finsler bundle π onto the
vertical bundle τ vTM : V TM → TM .

(ii) The mapping

j := (τTM , τ∗) : TTM → TM ×M TM, w 7→ (τTM(w), τ∗(w))
(8.10)

is a surjective strong bundle map from the tangent bundle of TM
onto the Finsler bundle over TM . Its kernel is the vertical bundle
of TTM .

(iii) The composite mapping j ◦ i : TM ×M TM → TM ×M TM
is the zero mapping, i.e., for all (u, v) ∈ TM ×M TM we have
j ◦ i(u, v) = (τ(u), 0), where 0 ∈ Tτ(u)M is the zero vector.

(iv) The composite mapping

J := i ◦ j : TTM → TM ×M TM → TTM (8.11)

is a strong bundle map from TTM into itself, called the vertical
endomorphism of TTM . We have

Im(J) = Ker(J) = V TM, J2 = 0. (8.12 a-b)

(v) The sequence

0→ TM ×M TM
i→ TTM

j→ TM ×M TM → 0 (8.13)

is a short exact sequence of strong bundle maps in the sense that

i is injective, j is surjective and Im(i) = Ker(j). (8.14)

(The zeros mean trivial vector bundles over TM , whose typical
�bre is the trivial R-vector space {0}.)
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For a proof we refer to [29], Subsection 4.1.3.
Now, by 2.10, it follows that we also have a short exact sequence

0→ Γ(π)
i→ X(TM)

j→ Γ(π)→ 0 (8.15)

of C∞(TM)-homomorphisms, where, for simplicity, we denote the
module homomorphisms by the same symbols as the corresponding
bundle maps in (8.13). In this interpretation,

J := i ◦ j : X(TM)→ X(TM)

is an endomorphism of the C∞(TM)-module of vector �elds on TM
such that

Im(J) = Ker(J) = Xv(TM). (8.16)

We say that a di�erential form α ∈ Ak(TM) (resp. A ∈ A1
k(TM))

is semibasic if

iJξα = 0 (resp. iJξA = 0 and J ◦ A = 0) for all ξ ∈ X(TM). (8.17)

It can easily be seen that the mapping

Ã ∈ T 1
1 (Γ(π)) = End(Γ(π)) 7→ A := i ◦ Ã ◦ j ∈ End(X(TM)) (8.18)

is a canonical isomorphism between the module of endomorphisms of
Γ(π) and the module of semibasic endomorphisms of X(TM).

For a general discussion of such type of isomorphisms we refer to
[28], 2.22.

Lemma 8.4.2. Concerning the C∞(TM)-homomorphisms i, j and the
endomorphism J ∈ End (X(TM)) we have

iX̂ = Xv, jXc = X̂, (8.19 a-b)

JXc = Xv, JXv = 0, (8.20 a-b)

[J, Xc] = [J, Xv] = 0, (8.21 a-b)

where X ∈ X(M), and, furthermore

iδ̃ = C, [J, C] = J. (8.22 a-b)

The proof is routine.

Lemma 8.4.3. If ϕ is a smooth transformation of M , then

ϕ∗∗ ◦ i = i ◦ (ϕ∗ × ϕ∗), (ϕ∗ × ϕ∗) ◦ j = j ◦ ϕ∗∗ (8.23 a-b)

For a proof we refer to [29], Lemma 4.1.64.
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9 Vertical calculus

9.1 The vertical endomorphism J ∈ A1
1(TM) = End(X(TM)) induces

two graded derivations of the Grassmann algebra A(TM): a deriva-
tion iJ of degree 0 and a derivation dJ of degree 1. Referring to
Lemma 5.3.1, we de�ne the derivation iJ by its action on smooth func-
tions and on their di�erentials:

iJF := 0 and iJdF := dF ◦ J for all F ∈ C∞(TM). (9.1)

Then the operator dJ is de�ned as the graded commutator

dJ := [iJ, d]
(5.6)
= iJ ◦ d− d ◦ iJ. (9.2)

Then

dJF = iJdF = dF ◦ J, dJdF = −d(dF ◦ J). (9.3 a-b)

9.2 Given a Finsler vector �eld X̃ ∈ Γ(π), we de�ne a derivation ∇v
X̃

prescribing its action on smooth functions and Finsler vector �elds as
follows:

∇v
X̃
F := (iX̃)F = (dF ◦ i)(X̃), F ∈ C∞(TM); (9.4){

∇v
X̃
Ỹ := j[iX̃, η], Ỹ ∈ Γ(π),

η ∈ X(TM) is such that jη = Ỹ .
(9.5)

Then ∇v
X̃
Ỹ is well-de�ned: does not depend on the choice of the vector

�eld η satisfying jη = Ỹ . The mapping

∇v
X̃

: Ỹ ∈ Γ(π) 7→ ∇v
X̃
Ỹ ∈ Γ(π)

is R-linear and satis�es the Leibniz rule

∇v
X̃
FỸ = (∇v

X̃
F )Ỹ + F∇v

X̃
Ỹ . (9.6)

Now we extend the operator ∇v
X̃
to act on any Finsler tensor �eld in

such a way that Leibniz's rule remains valid. For any Finsler tensor
�eld A ∈ Tk(Γ(π))∪T 1

k (Γ(π)) (k = 1) we de�ne the tensor ∇v
X̃
A of the

same type by

(∇v
X̃
A)(X̃1, . . . , X̃k) := ∇v

X̃
(A(X̃1, . . . , X̃k))

−
k∑
i=1

A(X̃1, . . .∇v
X̃

˜̃
X i, . . . , X̃k).

(9.7)
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We say that ∇v
X̃
A is the canonical vertical covariant derivative, brie�y

the vertical derivative, of A with respect to the Finsler vector �eld X̃.
The (canonical) vertical di�erential of A is the Finsler tensor �eld ∇vA
of type (0, k + 1) or (1, k + 1) given by

∇vA(X̃, X̃1, . . . , X̃k) := (∇v
X̃
A)(X̃1, . . . , X̃k). (9.8)

Examples. (a) If F ∈ C∞(TM), then ∇vF = dF ◦ i, therefore

∇vF (X̂) = XvF for all X ∈ X(M). (9.9)

The 1-form dJF and the Finsler 1-form ∇vF are related by
dJF = ∇vF ◦ j.
(b) For every section X̃ ∈ Γ(π) and vector �eld Y ∈ X(M),

∇v
X̃
Ŷ = 0. (9.10)

Indeed, ∇v
X̃
Ŷ = j[iX̃, Y c]. Since iX̃∼

τ
0 and Y c∼

τ
0, by the related

vector �eld lemma (3.7.8) it follows that [iX̃, Y c] is vertical, hence
j[iX̃, Y c] = 0.
(c) The vertical di�erential of the canonical section is the identity trans-
formation of Γ(π):

∇vδ̃ = 1Γ(π). (9.11)

This can be seen, for example, by an easy local calculation.

10 The classical Lie derivative

10.1 Let M be a manifold and let X ∈ X(M). If A ∈ Tk(M), then we
de�ne the Lie derivative LXA by (5.10) and (5.12 b). Thus, if k = 1,

(LXA)(X1, . . . , Xk) := X(A(X1, . . . , Xk))

−
k∑
i=1

A(X1, . . . , [X,Xi], . . . , Xk)
(10.1)

If B ∈ T1
k(M) (k = 1), then we de�ne

(LXB)(X1, . . . , Xk) := [X,B(X1, . . . , Xk)]

−
k∑
i=1

B(X1, . . . , [X,Xi], . . . , Xk).
(10.2)
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If, in particular, B ∈ End(X(M)), then we write

[B, Y ] := −LYB, (Y ∈ X(M)),

and we say that [B, Y ] is the Frölicher-Nijenhuis bracket of B and Y .
From (10.2) we obtain

[B, Y ]X = [BX, Y ]−B([X, Y ]); X ∈ X(M). (10.3)

Lemma 10.1.2. Let A ∈ Tl(M), X ∈ X(M). Given a point p ∈ M ,
we have

(LXA)p = lim
t→0

1

t
(((ϕXt )∗A)p − Ap), (10.4)

where (ϕXt ) is the local one-parameter group generated by X.

Proof. (cf. [21], pp. 147-148 and [24], p. 250). First we note that, for
small t 6= 0, the di�erence quotient at the right-hand side of (10.4)
has meaning, because ϕXt is de�ned in a neighbourhood of p, and
((ϕXt )∗A)p and Ap are elements of the �nite-dimensional real vector
space Tl(TpM).

Note further that, on the analogy of (4.8) and (4.9), relation (10.4)
can be abbreviated as

LXA = lim
t→0

1

t
((ϕXt )∗A− A). (10.5)

Now we turn to the actual proof. To simplify the writing, we assume
that l = 2. Then we have to show that

(LXA)p(Yp, Zp) = lim
t→0

1

t
(((ϕXt )∗A)p(Yp, Zp)− Ap(Yp, Zp)), (∗)

for all Y, Z ∈ X(M). By (10.1), the left-hand side of (∗) is equal to

Xp(A(Y, Z))− Ap([X, Y ]p, Zp)− Ap(Yp, [X,Z]p).

Adding and subtracting a suitable term, the right hand-side of (∗) can
be manipulated as follows:

lim
t→0

1

t
(((ϕXt )∗A)p(Yp, Zp)− Ap(Yp, Zp)) =

lim
t→0

1

t
(AϕXt (p)((ϕ

X
t )∗(Yp), (ϕ

X
t )∗(Zp))− AϕXt (p)(YϕXt (p), ZϕXt (p)))

+ lim
t→0

1

t
(AϕXt (p)(YϕXt (p), ZϕXt (p))− Ap(Yp, Zp) =: L1 + L2.
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Here

L2 = lim
t→0

1

t
(A(Y, Z) ◦ ϕXt (p)− A(Y, Z)(p))

(4.6)
= Xp(A(Y, Z)).

To manipulate expression L1, we use the telescoping identity

A(u′, v′)− A(u, v) = A(u′ − u, v′) + A(u, v′ − v).

Then we �nd that

L1 = lim
t→0

1

t
AϕXt (p)((ϕXt )∗(Yp)− YϕXt (p), (ϕ

X
t )∗(Zp))

+ lim
t→0

1

t
AϕXt (p)(YϕXt (p), (ϕ

X
t )∗(Zp)− ZϕXt (p))

= Ap(lim
t→0

1

t
(ϕXt )∗(Yp)− YϕXt (p)), Zp)

+ Ap(Yp, lim
t→0

1

t
(ϕXt )∗(Zp)− ZϕXt (p))

(4.10)
= −Ap([X, Y ]p, Zp)− Ap(Yp, [X,Z]p),

Thus

L1 + L2 = L2 + L1 = Xp(A(Y, Z))−Ap([X, Y ]p, Zp)−Ap(Yp, [X,Z]p),

as was to be shown.

Lemma 10.1.3. Let B ∈ End(X(M)) and X ∈ X(M). Then for every
vector �eld Y on M ,

(LXB)(Y ) = lim
t→0

1

t
(ϕX−t)#B(Y )−B((ϕX−t)#Y )), (10.6)

where (ϕXt ) is the local one-parameter group generated by X.

Proof. We have immediately that

lim
t→0

1

t
(ϕX−t)#B(Y )−B((ϕX−t)#Y ))

lim
t→0

1

t
(ϕX−t)#B(Y )−B(Y ))−B(lim

t→0

1

t
(ϕX−t)#Y − Y )

= [X,BY ]−B([X, Y ])
(10.2)
= (LXB)(Y ).
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Equality (10.6) can be abbreviated as follows:

LXB = lim
t→0

1

t
(ϕX−t)# ◦B −B ◦ (ϕX−t)#). (10.7)

The next result belongs to the folklore, but we were unable to �nd
a proof for it in the literature which was completely satisfactory for us.
Due to its key importance, after the preparations above, we include
here our own proof.

Proposition 10.1.4. Let B ∈ End(X(M)), and let X be a vector �eld
on M with local �ow

ϕX : D(X) ⊂ R×M →M.

Then LXB = 0 if, and only if, B commutes with the derivative of every
stage of ϕX , i.e,

(ϕXt )∗ ◦B = B ◦ (ϕXt )∗,

where B is regarded as a smooth section of the vector bundle

π :
◦⋃
p∈M

End(TpM)→M, π(ψ) := m if ψ ∈ End(TmM).

Proof. Suppose �rst that for every stage ϕXt of ϕX we have (ϕXt )∗◦B =
B ◦ (ϕXt )∗. Then, for any Y ∈ X(M),

((ϕX−t)# ◦B −B ◦ (ϕX−t)#)(Y ) = (ϕX−t)∗ ◦B(Y ) ◦ ϕXt
−B ◦ (ϕX−t)∗ ◦ Y ◦ ϕXt = ((ϕX−t)∗ ◦B(Y )−B ◦ (ϕX−t)∗ ◦ Y ) ◦ ϕXt = 0,

which implies by the previous lemma that LXB = 0.
Conversely, suppose that LXB = 0. Choose a point p ∈ M and a

tangent vector v ∈ TpM . Note �rst that by our assumption, we have

[X,BY ] = B[X, Y ] for all Y ∈ X(M).

Applying (4.10), we �nd that

[X,BY ]p = lim
t→0

1

t
((BY )ϕXt (p) − (ϕXt )∗(BY )p)

= lim
t→0

1

t
(B(YϕXt (p))− (ϕXt )∗(B(Yp)));

B[X, Y ]p = B(lim
t→0

1

t
(YϕXt (p))− (ϕXt )∗(Yp))

= lim
t→0

1

t
(B(YϕXt (p) −B((ϕXt )∗(Yp))),
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from which it follows that

lim
t→0

(B(ϕXt )∗(Yp))− (ϕXt )∗(B(Yp)) = 0.

Thus LXB = 0 implies that

lim
t→0

1

t
(B ◦ (ϕXt )∗(v)− (ϕXt )∗ ◦B(v)) = 0. (∗)

Now we de�ne a mapping h : Ip → TpM by

h(t) := (ϕX−t)∗ ◦B ◦ (ϕXt )∗(v).

Our next goal is to show that h is constant.
Let t ∈ Ip be arbitrary, and let, for short, w := (ϕXt )∗(v). Then

h′(t) = lim
s→0

h(t+ s)− h(t)

s

= lim
s→0

(ϕX−t−s)∗ ◦B ◦ (ϕXt+s)∗(v)− (ϕX−t)∗ ◦B ◦ (ϕXt )∗(v)

s

(ϕX−t)∗ lim
s→0

(ϕX−s)∗
B ◦ (ϕXs )∗(w)− (ϕXs )∗ ◦B(w)

s
:= (ϕX−t)∗(L(w)).

Continuing as in 4.7, we de�ne the mappings

η : Ip × TpM → TpM, (s, u) 7→ η(s, u) := (ϕX−s)∗(u)

and

Z : Ip → TpM, s 7→ Z(s) :=
B ◦ (ϕXs )∗(w)− (ϕXs )∗ ◦B(w)

s

Then η(s, Z(s)) = (ϕX−s)∗
B◦(ϕXs )∗(w)−(ϕXs )∗◦B(w)

s
, so we obtain that

L(w) = lim
s→0

η(s, Z(s)) = η(0, lim
s→0

Z(s))

= lim
s→0

B ◦ (ϕXs )∗(w)− (ϕXs )∗ ◦B(w)

s

(∗)
= 0.

Thus h′(t) = 0 for every t ∈ Ip, and hence h is constant. Since h(0) =
B(v), our assertion follows.
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11 The Finslerian Lie derivative

11.0 For simplicity, throughout this subsection we work on the Finsler
bundle π : TM ×M TM → TM . What we say remains valid without
any change in the more general context of Finsler bundles over T̃M ,
where T̃M is a conic subbundle of TM (see 8.1). The conventions
�xed in 7.1 will be in force. We say that a vector �eld ξ on TM is
projectable if it is τ -equivalent to a vector �eld on M , i.e., there exists
a vector �eld X ∈ X(M) such that τ∗ ◦ ξ = X ◦ τ (cf. 3.7).

11.1 As a �rst step, we introduce the Lie derivative of a Finsler vector
�eld with respect to a projectable vector �eld on TM . We note that our
Lie derivative concept � suggested by M. Crampin and D. J. Saunders
[8] � is a common generalization of the Lie derivatives with respect
to the vertical, the complete and (in the presence of an Ehresmann
connection) of the horizontal lift of a vector �eld on the base manifold;
see [28], Section 2.39 and [18], �2.

De�nition and Lemma 11.1.1. Let ξ be a projectable vector �eld
on TM , and Ỹ be a section in Γ(π).
(i) If

L̃ξỸ := i−1[ξ, iỸ ], (11.1)

then L̃ξỸ is a well-de�ned section in Γ(π), called the Lie-derivative of
Ỹ with respect to ξ.
(ii) The mapping L̃ξ : Γ(π) → Γ(π), Ỹ → L̃ξỸ satis�es the product
rule

L̃ξFỸ = (ξF )Ỹ + F L̃ξỸ , F ∈ C∞(TM). (11.2)

(iii) If η is another projectable vector �eld on TM , then

[L̃ξ, L̃η] = L̃[ξ,η], (11.3)

i.e.,

L̃ξ ◦ L̃η(Z̃)− L̃η ◦ L̃ξ(Z̃) = L̃[ξ,η]Z̃ for all Z̃ ∈ Γ(π). (11.4)

(iv) We have the following formulae:

L̃Xc δ̃ = 0, L̃XcŶ = [̂X, Y ]; X, Y ∈ X(M). (11.5 a-b)
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Proof. (i) Since the vector �eld ξ is a projectable, we have ξ∼
τ
X, where

X ∈ X(M). On the other hand iỸ ∼
τ

0, because iỸ ∈ Xv(TM). Thus,
by the related vector �eld lemma (3.7.8) we conclude that [ξ, iỸ ]∼

τ
0,

and hence [ξ, iỸ ] is vertical. The injective C∞(TM)-linear mapping
i : Γ(π)→ X(TM) is a bijection onto Xv(TM), so we have the inverse
mapping i−1 : Γ(π)→ X(TM), and we can form the section i−1[ξ, iỸ ],
as was to be shown.
(ii)

L̃XcFỸ := i−1[ξ, i(FỸ )] = i−1[ξ, F (iỸ )]
(3.6 b)

= F i−1[ξ, iỸ ]

+ i−1(ξF (iỸ )) = (ξF )Ỹ + F L̃ξỸ .

(iii) From the de�nition of L̃ξ and L̃η,

L̃ξ ◦ L̃η(Z̃) = L̃ξ(i−1[η, iZ̃]) = i−1[ξ, [η, iZ̃]].

Interchanging ξ and η and subtracting, we �nd that

L̃ξ ◦ L̃η(Z̃)− L̃η ◦ L̃ξ(Z̃) = i−1([ξ, [η, iZ̃]] + [η, [iZ̃, ξ]])

Jacobi
= i−1[[ξ, η], iZ̃] =: L̃[ξ,η]Z̃,

as wanted.
(iv) Since Xc is projectable (see (7.18)), formulae (11.5 a-b) have
meaning. We obtain by an easy calculation that

L̃Xc δ̃ := i−1[Xc, iδ̃]
(8.22 a)

= i−1[Xc, C]
(7.23 b)

= 0.

and

L̃XcŶ := i−1[Xc, iŶ ]
(8.19 a)

= i−1[Xc, Y v]
(7.22 b)

= i−1[X, Y ]v = [̂X, Y ],

which complete the proof.

Proposition 11.1.2. Let X and Y be vector �elds on M . We have
the following relations:

L̃Xv Ỹ = ∇v
X̂
Ỹ for all Ỹ ∈ Γ(π); (11.6)

i ◦ L̃Xc = LXc ◦ i; (11.7)

L̃Xc ◦ j = j ◦ LXc ; (11.8)

L̃Xc ◦ ∇v
Ŷ
−∇v

Ŷ
◦ L̃Xc = L̃[X,Y ]v (11.9)



44 11 THE FINSLERIAN LIE DERIVATIVE

Proof. (i) Let Ỹ = jη, η ∈ X(TM). Then, on the one hand,

iL̃Xv Ỹ = iL̃Xvjη := [Xc,Jη].

On the other hand,

i∇v
X̂
Ỹ = i∇v

X̂
jη

(9.5)
:= J[Xv, η].

Since 0
(8.21 b)

= [J, Xv]η
(10.3)
= [Jη,Xv]− J[η,Xv], and hence

J[Xv, η] = [Xv,Jη], (11.10)

the equality (11.6) follows.
(ii) For every Ỹ ∈ Γ(π),

i ◦ L̃Xc(Ỹ ) := [Xc, iỸ ] = L̃Xc(iỸ ) = (L̃Xc ◦ i)(Ỹ ).

(iii) Let η ∈ X(TM). Observe that, as above, we have

0
(8.21 a)

= [J, Xc]η = [Jη,Xc]− J[η,Xc],

whence

J[Xc, η] = [Xc,Jη]. (11.11)

Taking this into account,

iL̃Xcjη := [Xc,Jη] = J[Xc, η] = JLXcη,

from which (11.8) follows.
(iv) Consider a section Z̃ = jζ ∈ Γ(π), where ζ ∈ X(TM). Then
iZ̃ = Jζ, and we obtain

i ◦ (L̃Xc ◦ ∇v
Ŷ
−∇v

Ŷ
◦ L̃Xc)(Z̃)

(9.5), (11.1)
= iL̃Xcj[Y v, ζ]

− i∇v
Ŷ

(i−1[Xc,Jζ])
(11.1), (11.11)

= [Xc,J[Y v, ζ]]− i∇v
Ŷ
j[Xc, ζ]

(11.10), (9.5)
= [Xc, [Y v,Jζ]]− J[Y v, [Xc, ζ]]

(11.10), (11.11)
= [Xc, [Y v,Jζ]]

+ [Y v, [Jζ,Xc]]
Jacobi

= −[Jζ, [Xc, Y v]]
(7.22 b)

= −[Jζ, [X, Y ]v]

= [[X, Y ]v, iZ̃] = iL̃[X,Y ]vZ̃.

This proves (11.9), and �nishes the proof of the Proposition.
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Remark 11.1.3. In formula (11.9), ∇v
Ŷ
and L̃[X,Y ]v

(11.6)
= ∇v

[̂X,Y ]
annu-

late the basic sections, so it follows that

∇v
Ŷ
◦ L̃XcẐ = 0 for all X, Y, Z ∈ X(M). (11.12)

Obviously, this relation can also be checked by an easy direct calcula-
tion.

Proposition 11.1.4. Let X be a vector �eld on M , and let (ϕt) be
the local one-parameter group of X. Then, for a Finsler vector �eld
Ỹ ∈ Γ(π), L̃XcỸ = 0 if, and only if, Ỹ is invariant under the stages
of (ϕt), i.e., for every possible t ∈ R we have

((ϕt)∗ × (ϕt)∗) ◦ Ỹ = Ỹ ◦ (ϕt)∗.

Proof. By (11.7), iL̃XcỸ = LXciỸ . Since i is injective, this implies
that

L̃XcỸ = 0 ⇐⇒ LXciỸ = 0.

Thus, taking into account 4.8 and Lemma 7.5.1, it follows that

L̃XcỸ = 0 ⇐⇒ (ϕt)∗∗ ◦ (iỸ ) = (iỸ ) ◦ (ϕt)∗.

Here (ϕt)∗∗ ◦ i
(8.23 a)

= i ◦ ((ϕt)∗ × (ϕt)∗), so our assertion follows.

11.2 Let ξ again be a projectable vector �eld on TM . Now we extend
the derivation

L̃ξ : Γ(π)→ Γ(π), Ỹ 7→ L̃ξỸ

to a derivation of Finsler tensor �elds of type (0, k) and (1, k).
(a) We set L̃ξF := ξF if F ∈ C∞(TM) =: T 0

0 (Γ(π)). We note that
relations (11.3) and (11.9) remain valid over C∞(TM). This is obvi-
ous in the �rst case, while in the second case it can be seen an easy
calculation: for every smooth function F on TM we have

(L̃Xc ◦ ∇v
Ŷ
− L̃Y c ◦ ∇v

X̂
)F = Xc(Y vF )− Y c(XvF ) = [Xc, Y v]F

(7.22 b)
= [X, Y ]vF = L̃[X,Y ]vF,

as wanted.
(b) The Lie derivative of a Finsler tensor �eld

A ∈ T 0
l (Γ(π)) ∪ T 1

l (Γ(π)) (l = 1)
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with respect to ξ is de�ned by

(L̃ξA)(X̃1, . . . , X̃l) := L̃ξ(A(X̃1, . . . , X̃l))

−
l∑

i=1

A(X̃1, . . . , L̃ξX̃i, . . . X̃l),
(11.13)

where X̃1, . . . , X̃l ∈ Γ(π).

11.3 Now let D : X(TM) × Γ(π) → Γ(π) be a covariant derivative
on the Finsler bundle π (for the general de�nition see 6.1). Given a
projectable vector �eld ξ on TM , we de�ne the Lie derivative L̃ξD of
D by

(L̃ξD)(η, Z̃) := L̃ξ(DηZ̃)−DLξηZ̃ −Dη(L̃ξZ̃)

= L̃ξ(DηZ̃)−D[ξ,η]Z̃ −Dη(L̃ξZ̃),
(11.14)

where η ∈ X(TM), Z̃ ∈ Γ(π). Then the mapping

L̃ξD : X(TM)× Γ(π)→ Γ(π), (η, Z̃) 7→ (L̃ξD)(η, Z̃)

is C∞(TM)-linear in both of its argument. Indeed, for example, if
F ∈ C∞(TM), then

(L̃ξD)(Fη, Z̃) := L̃ξ(DFηZ̃)−D[ξ,Fη]Z̃ −DFη(L̃ξZ̃)

(3.6 b), (6.1)
= L̃ξ(FDηZ̃)− FD[ξ,η]Z̃ − (ξF )DηZ̃ − FDη(L̃ξZ̃)

(11.2)
= F (L̃ξD)(η, Z̃),

as wanted.

11.4 We continue to assume that D is a covariant derivative on π.
Consider a di�eomorphism ϕ : U → V between two open subsets ofM .
On the analogy of de�nition (6.6), if

ϕ#((DξỸ ) � τ−1(U)) = (D(ϕ∗)#ξϕ#Ỹ ) � τ−1(V) (11.15)

for all ξ ∈ X(TM), Ỹ ∈ Γ(π), then we say that ϕ is a (local) D-
automorphism. (The push-forward of a Finsler vector �eld was de-
�ned in 8.2). To continue the analogy, a vector �eld X on M is
called D-Killing, if the stages of its local one-parameter group are D-
automorphisms, and the set of D-Killing �elds is denoted by KillD(π).
Finally, the analogue of Proposition 6.4.1 is the following result:

X ∈ KillD(π) ⇐⇒ L̃XcD = 0. (11.16)
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Part III

Lie symmetries

12 Semisprays and sprays

We follow the conventions described in 7.1

12.1 A mapping S : TM → TTM is called a semispray for M (or over
M) if it satis�es the following conditions:

(S1) τTM ◦ S = 1TM , i.e., S is a section of the vector bundle
τTM : TTM → TM .

(S2) S is of class C1 on TM and smooth on
◦
TM .

(S3) τ∗ ◦ S = 1TM or, equivalently, JS = C.

If, in addition, we have

(S4) [C, S] = S, i.e., S is 2+-homogeneous, then S is called a spray.

A spray is said to be a�ne or (quadratic) if it is of class C2 (and hence
smooth) on TM . A manifold together with a spray is called a spray
manifold.

If S : TM → TTM is a semispray, then it can be expressed locally
as

S =
(U)

∑(
yi

∂

∂xi
− 2Gi ∂

∂yi

)
, (12.1)

where the semispray coe�cients Gi : τ−1(U) → R are of class C1 and

their restrictions to τ−1(U) ∩
◦
TM are smooth. In the special case

when S is a spray, the spray coe�cients Gi : τ−1(U) → R are 2+-
homogeneous and hence, by 7.7.2 (i), we have∑

yj
∂Gi

∂yj
= 2Gi, i ∈ Jn. (12.2)

Suppose, �nally, that S is an a�ne spray. Then the spray coe�cients
Gi are 2+-homogeneous functions of class C2, so, in view of 7.7.2 (iii)
their restrictions Gi � TpM (p ∈ U) are quadratic functions. Thus
there exist smooth functions

Γijk : U → R; i, j, k ∈ Jn
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such that

Gi =
1

2

∑
yjyk(Γijk ◦ τ) and Γijk = Γikj. (12.3)

Lemma 12.1.1. Let S : TM → TTM be a semispray for M . Then

(i) Sf v = f c for all f ∈ C∞(M);

(ii) [Xv, S]∼
τ
X for all X ∈ X(M);

(iii) [Xc, S] ∈ Xv(
◦
TM) for all X ∈ X(M).

Proof. For every v ∈ TM ,

(S, f v)(v) = S(v)(f ◦ τ)
(3.3)
= τ∗(S(v))(f)

(S3)
= v(f) =: f c(v),

which proves (i). Given a smooth function f on M , we have

[Xv, S](f ◦ τ) = Xv(Sf v)− S(Xvf v)
(i),7.2

= Xvf c (7.7)
= (Xf) ◦ τ.

This implies that [Xv, S]∼
τ
X (see, e.g., [24], p.14). Similarly, we �nd

that

[Xc, S]f v = Xc(Sf v)− S(Xcf v)
(i) ,(7.15 a)

= Xcf c − S(Xf)v

(7.15 b), (i)
= (Xf)c − (Xf)c = 0.

This implies (see 7.2) that [Xc, S] is vertical, and completes the proof.

Lemma 12.1.2. Let S be a semispray for M . Then, for every vector
�eld ξ on TM ,

J[Jξ, S] = Jξ (12.4)

(Grifone's identity). In particular,

J[Xv, S] = Xv for all X ∈ X(M). (12.5)

For a proof, see [11], Proposition I.7 or [29] Lemma 5.1.9 and Corol-
lary 5.1.10.

12.2 Automorphisms and symmetries

Lemma 12.2.1. If S : TM → TTM is a semispray and ϕ ∈ Diff(M),
then (ϕ∗)#S = ϕ∗∗ ◦ S ◦ ϕ−1

∗ is also a semispray. This semispray is a
spray whenever S is a spray.
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Proof. We show that (ϕ∗)#S satis�es (S3) if S is a semispray, and
[C, (ϕ∗)#S] = (ϕ∗)#S if S is a spray. Indeed, in the �rst case we �nd

τ∗ ◦ (ϕ∗)#S = τ∗ ◦ ϕ∗∗ ◦ S ◦ ϕ−1
∗ = (τ ◦ ϕ∗)∗ ◦ S ◦ ϕ−1

∗

= (ϕ ◦ τ)∗ ◦ S ◦ ϕ−1
∗ = ϕ∗ ◦ τ∗ ◦ S ◦ ϕ−1

∗
(S2)
= ϕ∗ ◦ ϕ−1

∗ = 1TM ,

as desired. Now suppose that S is a spray. Since (ϕ∗)#C = C (see
[29], (4.1.112)), we get

[C, (ϕ∗)#S] = [(ϕ∗)#C, (ϕ∗)#S]
(3.9)
= (ϕ∗)#[C, S]

(S4)
= (ϕ∗)#S,

as was to be shown.

De�nition and Lemma 12.2.2. Let S be a semispray for M .

(i) A di�eomorphism ϕ of M is called an automorphism of S if
S is invariant under ϕ∗ ∈ Diff(TM),i.e., (ϕ∗)#S = S. The
automorphisms of S form a group under composition.

(ii) Let ϕ : U → V be a di�eomorphism between two open subsets of
M . We say that ϕ is local automorphism of S if S � (τ−1(U)) is
invariant under ϕ∗, i.e.,

(ϕ∗)#(S � τ−1(U)) = S � τ−1(V).

(iii) A vector �eld X on M is called a Lie symmetry of S if the
stages of the local one-parameter group (ϕt) generated by X are
local automorphisms of S.

(iv) A vector �eld X ∈ X(M) is a Lie symmetry of S if, and only if,
[Xc, S] = 0. The Lie symmetries of S form a subalgebra LieS(M)
of the Lie algebra X(M).

Proof. Only part (iv) requires some comments. IfX generates the local
one-parameter group (ϕt), then Xc generates the local one-parameter
group ((ϕt)∗) by Lemma 7.5.1. So, as in 4.8, [Xc, S] = 0 if, and only
if, the local one-parameter group of X consists of local automorphisms
of S.

If X, Y ∈ LieS(M), then we obviously have

λX + µY ∈ XS
Lie(M); λ, µ ∈ R.

Since

[[X, Y ]c, S]
(7.22 c)

= [Xc, Y c], S]
Jacobi

= −[[Y c, S], Xc]− [[S,Xc], Y c] = 0,

[X, Y ] also belongs to XS
Lie(M), thus proving that LieS(M) is a subal-

gebra of X(M).
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The last part of 12.2.2 can also be found in Lovas's paper [17] as a
part of his Proposition 5.2 and his Corollary 5.3, in the framework of
spray manifolds and with partly di�erent proof.

Proposition 12.2.3 (cf. [7], Prop. 4.5.1). Let S be a semispray for
M with semispray coe�cients Gi (i ∈ Jn), and let X be a vector �eld
on M with local expression X � U =

∑
X i ∂

∂ui
.

(i) The vector �eld X is a Lie symmetry of S if, and only if, locally
we have

XcGi = Gr(
∂X i

∂ur
◦ τ)− 1

2
yrys(

∂2X i

∂ur∂us
◦ τ) (i ∈ Jn) (12.6)

(ii) If, in addition, S is a spray, then X ∈ XS
Lie(M) if, and only if,

XcGi
jk = − ∂2X i

∂uj∂uk
◦τ+(

∂X i

∂ur
◦τ)Gr

jk−(
∂Xr

∂uj
◦τ)Gi

rk−(
∂Xr

∂uk
◦τ)Gi

jr

(12.7)
(i, j, k ∈ Jn), where

Gi
j :=

∂Gi

∂yi
, Gi

jk :=
∂Gi

j

∂yk
=

∂Gi

∂yj∂yk
. (12.8)

Proof. Step 1 We check assertion (i). This is just a calculation:

[Xc, S] =
(U)

[
Xc, yr

∂

∂xr
− 2Gr ∂

∂yr

]
(3.6)
= yr

[
Xc,

∂

∂xr

]
+ (Xcyr)

∂

∂xr

− 2Gr

[
Xc,

∂

∂yr

]
− 2(XcGi)

∂

∂yi
(7.15 b), (7.16)

= yr
[
(X i)v

∂

∂xi
,
∂

∂xr

]
+ yr

[
(X i)c

∂

∂yi
,
∂

∂xr

]
+ (X i)c

∂

∂xi
− 2Gr

[
(X i)v

∂

∂xi
,
∂

∂yr

]
− 2Gr

[
(X i)c

∂

∂yi
,
∂

∂yr

]
− 2(XcGi)

∂

∂yi
(7.1)
= −yr

(
∂X i

∂ur
◦ τ
)

∂

∂xi

− yr
(

∂

∂xr

(
ys
(
∂X i

∂us
◦ τ
))

∂

∂yi

)
+ yr

(
∂X i

∂ur
◦ τ
)

∂

∂xi

+ 2Gr

(
∂

∂yr

(
ys
(
∂X i

∂us
◦ τ
))

∂

∂yi

)
= −yrys

(
∂2X i

∂ur∂us
◦ τ
)

∂

∂yi

= +2Gr

(
∂X i

∂ur
◦ τ
)

∂

∂yi
− 2

(
XcGi

) ∂

∂yi
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whence

− 1

2
[Xc, S] =

(U)

(
XcGi −Gr

(
∂X i

∂ur

)
◦ τ) +

1

2
yrys

(
∂2X i

∂ur∂us
◦ τ
))

∂

∂yi
.

Thus [Xc, S] = 0 if, and only if, we have (locally) relation (12.6).
Step 2. We show that (12.6) implies (12.7). To see this, we di�er-

entiate both side of (12.6) with respect to yj and yk. We �nd, on the
one hand, that

∂

∂yj
(XcGi) =

[
∂

∂yj
, Xc

]
Gi +XcGi

j

(7.22 b)
=

[
∂

∂uj
, X

]v
Gi +XcGi

j

=

(
∂Xr

∂uj
◦ τ
)
Gi
r +XcGi

j,

therefore

∂

∂yk

(
∂

∂yj
XcGi

)
=

(
∂Xr

∂uj
◦ τ
)
Gi
rk +

[
∂

∂yk
, Xc

]
Gi
j +XcGi

jk

=

(
∂Xr

∂uj
◦ τ
)
Gi
rk +

(
∂Xr

∂uk
◦ τ
)
Gi
jr +XcGi

jk.

On the other hand,

∂

∂yk

(
∂

∂yj

(
Gr

(
∂X i

∂ur
◦ τ
))
− 1

2
yrys

(
∂2X i

∂ur∂us
◦ τ
))

=
∂

∂yk

((
∂X i

∂ur
◦ τ
)
Gr
j − ys

(
∂2X i

∂ui∂us
◦ τ
))

=

(
∂X i

∂ur
◦ τ
)
Gr
jk −

∂2X i

∂uj∂uk
◦ τ,

so our claim follows.
Step 3. Now we assume that S is a spray, and we show that in

this case (12.7) implies (12.6). Under our assumption the functions Gi

and Gi
j are positive-homogeneous of degree 2 and 1, respectively, so we

have

Gi
jy
j = 2Gi, Gi

jky
k = Gi

j. (12.9)

Now we multiply both sides of (12.7) by yjyk. Then the left-hand side
gives

(XcGi
jk)y

jyk = Xc
(
Gi
jky

jyk
)
−Gi

jk(X
c(uj)c)yk −Gi

jky
j(Xc(uk)c)

(12.9), (7.15 b)
= 2XcGi −Gi

j(X
j)c −Gi

k(X
k)c = 2

(
XcGi −Gi

r(X
r)c
)
.
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The right-hand side takes the form

−
(

∂2X i

∂uj∂uk
◦ τ
)
yjyk + 2Gr

(
∂X i

∂ur
◦ τ
)
− 2Gi

r(X
r)c,

so we obtain that

XcGi = Gr

(
∂X i

∂ur
◦ τ
)
− 1

2

(
∂2X i

∂uj∂uk
◦ τ
)
yiyk.

This proves our claim, and completes the proof of the proposition.

We note that in the book [7] of Bucataru and Miron, Lie symmetries
of a semispray were de�ned by the condition 12.2.2 (iv), and were
characterized locally, by (12.6).

13 H-Killing vector �elds
13.1 Ehresmann connections

13.1.1 Let M be a manifold and consider its slit tangent bun-

dle
◦
τ :

◦
TM →M . By an Ehresmann connection in

◦
TM we mean a

C∞(
◦
TM)-linear mapping H : Γ(

◦
π)→ X(

◦
TM) such that

j ◦ H = 1
Γ(
◦
π)
. (13.1)

The fundamental lemma of strong bundle maps (2.10) assures us that
H can be equivalently be regarded as a strong bundle map

H :
◦
TM ×M TM → T

◦
TM.

Then, for every v ∈
◦
TM ,

Hv := H � {v} × Tτ(v)M : {v} × Tτ(v)M ∼= Tτ(v)M → Tv
◦
TM

is an R-linear mapping, and condition (13.1) reads as follows: for all

(v, w) ∈
◦
TM ×M TM , j ◦ Hv(w)

(8.10)
= (v, τ∗ ◦ Hv(w)) = (v, w), i.e.,

j ◦ Hv = 1Tτ(v)M for all v ∈
◦
TM. (13.2)
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13.1.2 Let H : Γ(
◦
π) → X(

◦
TM) be an Ehresmann connection in

◦
TM .

Then Xh(
◦
TM) := Im(H) is a submodule of X(

◦
TM), and we have the

direct sum decomposition

X(
◦
TM) = Xv(

◦
TM)⊕ Xh(

◦
TM). (13.3)

Vector �elds on
◦
TM belonging to Xh(

◦
TM) are called horizontal (with

respect to H). Notice that horizontal vector �elds do not form, in

general, a subalgebra of the Lie algebra X(
◦
TM).

The mappings

h := H ◦ j, v = 1
X(
◦
TM)
− h, (13.4 a-b)

V := i−1 ◦ v : X(
◦
TM)→ Xv(

◦
TM)→ Γ(

◦
π) (13.5)

are the horizontal projection, the vertical projection and the vertical
mapping associated to H, respectively. Then h and v are indeed pro-
jections, i.e., we have h2 = h and v2 = v. The vertical mapping V has
properties

V ◦ i = 1
Γ(
◦
π)
, Ker(V) = Im(H). (13.6)

Since C = i(δ̃) by (8.22 a), thus it follows that

V(C) = δ̃. (13.7)

Obviously, h,v and V can be also regarded as strong bundle maps. If

hv := h � Tv
◦
TM , vv := v � Tv

◦
TM , then hv, vv ∈ End(Tv

◦
TM), and

hv(w) = H(v, (τ∗)v(w)) for all w ∈ Tv
◦
TM. (13.8)

13.1.3 The horizontal lift of a vector �eld X ∈ X(M) with respect to

an Ehresmann connection H : Γ(
◦
π)→ X(

◦
TM) is

Xh := H(X̂) = H(jXc)
(13.4)
= h(Xc). (13.9)

(In this formula, X̂ and Xc are regarded as a section in Γ(
◦
π) and

a vector �eld on
◦
TM , resp.; for simplicity, we make no notational

distinction between them and the corresponding objects in Γ(π) and
X(TM).) The horizontal lift Xh of X is a projectable vector �eld,

Xh∼
τ
X, i.e., τ∗ ◦Xh = X ◦ τ. (13.10)
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Indeed, for every v ∈
◦
TM we have

τ∗ ◦Xh(v) := τ∗ ◦ H ◦ X̂(v)
(8.3)
= τ∗ ◦ H(v,X ◦ τ(v))

= τ∗ ◦ Hv(X ◦ τ(v))
(13.2)
= X ◦ τ(v).

13.1.4 An Ehresmann connection H : Γ(
◦
π)→ X(

◦
TM) is called homo-

geneous if

[C,Xh] = 0 for all X ∈ X(M). (13.11)

By 4.8 and Lemma 7.4.1 (ii), this hold if, and only if,

(µ+
t )∗ ◦Xh = Xh ◦ µ+

t for all t ∈ R. (13.12)

Then H, as a strong bundle map of
◦
TM × TM into T

◦
TM , may be

continuously extended to mapping from TM ×M TM into TTM such
that

H(0p, w) = (σ∗)p(w) for all p ∈M, w ∈ TpM.

Thus, in what follows, we shall always assume that a homoge-
neous Ehresmann connection is de�ned on the entire Finsler bundle
TM ×M TM .

13.1.5 Given an Ehresmann connection H : Γ(
◦
π) → X(

◦
TM) and a

Finsler vector �eld X̃ ∈ Γ(
◦
π), we de�ne a di�erential operator ∇h

X̃
,

following the scheme of section 9.2. First we prescribe its action

on smooth functions by ∇h
X̃
F := (HX̃)F (F ∈ C∞(

◦
TM)); (13.13)

on Finsler vector �elds by ∇h
X̃
Ỹ := V [HX̃, iỸ ] (Ỹ ∈ Γ(

◦
π)). (13.14)

Then the Leibniz rule ∇h
X̃
FỸ = (∇h

X̃
F )Ỹ + F∇h

X̃
Ỹ is satis�ed (cf.

(9.6)). The mapping

∇h : Γ(
◦
π)× Γ(

◦
π)→ Γ(

◦
π), (X̃, Ỹ ) 7→ ∇h

X̃
Ỹ

de�ned by (13.14) is called the horizontal Berwald derivative (or h-
Berwald derivative for short) induced by H. In the next step, we
extend to the operators ∇h

X̃
(X̃ ∈ Γ(

◦
π)) to arbitrary Finsler tensor

�elds in such a way that derivation property be satis�ed. Finally, we
de�ne the ∇h−di�erential of Finsler tensor �elds, formally in the same
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way as the ∇v-di�erential in 9.2. Thus, for example, if Ỹ ∈ Γ(
◦
π),

g ∈ T 0
2 (Γ(

◦
π)), B ∈ T 1

k (Γ(
◦
π)) (k = 1), then the Finsler tensor �elds

∇hỸ ∈ T 1
1 (Γ(

◦
π)) ∼= End(Γ(

◦
π)), ∇hg ∈ T 0

3 ((Γ(
◦
π)), ∇hB ∈ T 1

k+1(Γ(
◦
π))

are given by

(∇hỸ )(X̃) := ∇h
X̃
Ỹ , (13.15)

(∇hg)(X̃, Ỹ , Z̃) := (∇h
X̃
g)(Ỹ , Z̃)

:= (HX̃)g(Ỹ , Z̃)− g(∇h
X̃
Ỹ , Z̃)− g(Ỹ ,∇h

X̃
Z̃),

(13.16)

(∇hB)(X̃, Ỹ1, Ỹ2, . . . , Ỹl) := (∇h
X̃
B)(Ỹ1, . . . , Ỹl)

:= ∇h
X̃

(B(Ỹ1, . . . , Ỹl))−
k∑
i=1

B(Ỹ1, . . . ,∇h
X̃
Ỹi, . . . , Ỹk).

(13.17)

It is useful to note that

i∇h
X̂
Ŷ = [Xh, Y v] for all X, Y ∈ X(M). (13.18)

13.1.6 Let an Ehresmann connection H be given in
◦
TM . Putting

together the vertical derivative∇v and the h-Berwald derivative∇h, we
obtain a particularly important covariant derivative on

◦
π, the Berwald

derivative ∇ induced by H. To be explicit,

∇ : X(
◦
TM)× Γ(

◦
π) 7→ Γ(

◦
π),

(ξ, Ỹ ) 7→ ∇ξỸ := ∇v
VξỸ +∇h

jξỸ = j[vξ,HỸ ] + V [hξ, iỸ ].
(13.19)

Then we have especially

∇iX̃ Ỹ = ∇v
X̃
Ỹ , ∇HX̃ Ỹ = ∇h

X̃
Ỹ . (13.20 a-b)

With the help of the induced Berwald derivative ∇, we de�ne the
torsion T of an Ehresmann connection H by

T(X̃, Ỹ ) := ∇HX̃ Ỹ −∇HỸ X̃ − j[HX̃,HỸ ]; X̃, Ỹ ∈ Γ(
◦
π). (13.21)

Evaluating on basic sections, we obtain the more attractive formula

iT(X̂, Ŷ ) = [Xh, Y v]− [Y h, Xv]− [X, Y ]v; X, Y ∈ X(M). (13.22)
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13.1.7 Coordinate description Suppose that H is an Ehresmann

connection in
◦
TM . Given a chart (U , (ui)ni=1) on M , consider the

induced chart (
◦
τ
−1

(U), (xi)ni=1, (y
i)ni=1) on

◦
TM .

(a) There exist unique smooth functions

N i
j :
◦
τ
−1

(U)→ R; i, j ∈ Jn

such that

H

(
∂̂

∂uj

)
=

(
∂

∂uj

)h

=
∂

∂xj
−N i

j

∂

∂yj
, j ∈ Jn. (13.23)

We say that (N i
j) is the family of Christo�el symbols H with respect

to the chosen chart. If X ∈ X(M) and X =
(U)
X i ∂

∂ui
, then

Xh =
(U)

(X i ◦ τ)
∂

∂xi
− (Xj ◦ τ)N i

j

∂

∂yi
. (13.24)

Thus

[C,Xh] =
(U)

[
C, (X i ◦ τ)

∂

∂xi

]
−
[
C, (Xj ◦ τ)N i

j

∂

∂yi

]
= (X i ◦ τ)

[
C,

(
∂

∂ui

)c]
− (Xj ◦ τ)(CN i

j)
∂

∂yi

− (Xj ◦ τ)N i
j

[
C,

(
∂

∂ui

)v]
(7.23 b)

= (Xj ◦ τ)(N i
j − CN i

j)
∂

∂yi
,

from which we conclude, taking into account 7.7.2 (ii), that an Ehres-
mann connection is homogeneous if, and only if, its Christo�el symbols
are 1+-homogeneous functions.
(b) The Christo�el symbols of the induced Berwald derivative ∇
with respect to the chosen chart are the unique smooth function

N i
jk :

◦
τ
−1

(U)→ R such that

∇h
∂̂

∂uj

∂̂

∂uk
= N i

jk

∂̂

∂ui
; j, k ∈ Jn.

Since

i

(
∇h

∂̂

∂ui

∂̂

∂uk

)
=

[(
∂

∂uj

)h

,
∂

∂yk

]
=
∂N i

j

∂yk
∂

∂yi
,
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it follows that

N i
jk =

∂N i
j

∂yk
; i, j, k ∈ Jn. (13.25)

Now, taking into account (13.22), we �nd easily, that the components
of the torsion of H are

T ijk = N i
jk −N i

kj =
∂N i

j

∂yk
− ∂N i

k

∂yj
. (13.26)

Then T( ∂̂
∂uj
, ∂̂
∂uk

) = T ijk
∂̂
∂ui

.

(c) Let SH := H(δ̃). Since

H(δ̃) =
(U)
H

(
yi

∂̂

∂ui

)
= yiH

(
∂̂

∂ui

)
(13.23)

= yi
∂

∂xi
− yjN i

j

∂

∂yi
,

it follows (see 12.1) that SH is a semispray with semispray coe�cients

Gi :=
1

2
yjN i

j . (13.27)

We say that SH is the semispray associated to H. IfH is homogeneous,
then

CGi =
1

2
(Cyj)N i

j +
1

2
yjCN i

j

(7.11),(a)
= yjN i

j = 2Gi,

therefore SH is a 2+-homogeneous, so it is a spray.

13.1.8 Let an Ehresmann connection H be speci�ed in
◦
TM , and let

ξ ∈ X(
◦
TM) be a projectable vector �eld. For every Finsler vector �eld

Ỹ ∈ Γ(
◦
π), the vector �eld [ξ, iỸ ] is vertical, as we have seen in 11.1.1.

Thus
[ξ, iỸ ] = v[ξ, iỸ ]

(13.5)
= iV [ξ, iỸ ],

so it follows that

L̃ξỸ = V [ξ, iỸ ]. (13.28)

Since, as we have also seen above, the horizontal lift of a vector �eld
X ∈ X(M) is projectable, the Lie derivative operator LXh is de�ned.
For every Ỹ ∈ Γ(

◦
π),

LXhỸ
(13.28)

= V [Xh, iỸ ] = V [H(X̂), iỸ ]
(13.14)

= ∇ĥ̃
X
Ỹ .

As a conclusion, we �nd that

∇h
X̂

= L̃Xh for all X ∈ X(M). (13.29)

Now we add to Proposition 11.1.2 the following result.
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Proposition 13.1.1. With the notation above, we have

L̃Xc ◦ ∇h
Ŷ
−∇h

Ŷ
◦ L̃Xc = L̃[Xc,Y h]; X, Y ∈ X(M). (13.30)

Proof. It is clear that the left-hand side and the right-hand side

of (13.30) act in the same way on C∞(
◦
TM). We show that

(L̃Xc ◦ ∇h
Ŷ
−∇h

Ỹ
◦ L̃Xc) � Γ(

◦
π) = L̃[Xc,Y h] � Γ(

◦
π) also holds; then our

claim follows.
For every Finsler vector �eld Ỹ ∈ Γ(

◦
π) we have

i ◦ (L̃Xc ◦ ∇h
Ŷ
−∇h

Ŷ
◦ L̃Xc)(Z̃)

(13.14), (11.1)
= i(L̃XcV [Y h, iZ̃])

− i∇h
Ỹ
i−1[Xc, iZ̃] = [Xc, iV [Y h, iZ̃]]− iV [Y h, [Xc, iZ̃]]

= [Xc,v[Y h, iZ̃]]− v[Y h, [Xc, iZ̃]]
(∗)
= [Xc, [Y h, iZ̃]] + [Y h, [iZ̃,Xc]]

Jacobi
= −[iZ̃, [Xc, Y h]] = [[Xc, Y h], iZ̃] = iL̃[Xc,Y h]Z̃ ,

as was to be shown. In step (∗) we used the fact that the vector �elds
[Y h, iZ̃] and [iZ̃,Xc] are vertical.

13.2 The Lie derivative of an Ehresmann connection

13.2.1 Let H : Γ(
◦
π)→ X(

◦
TM) be an Ehresmann connection, and let

ξ ∈ X(
◦
TM) be a projectable vector �eld. We de�ne the Lie derivative

L̃ξH of H by

(L̃ξH)(Ỹ ) := Lξ(H(Ỹ ))−H(L̃ξỸ ) = [ξ,H(Ỹ )]−H(L̃ξỸ ), (13.31)

where Ỹ ∈ Γ(
◦
π).

Proposition 13.2.2. The Lie derivative

L̃ξH : Γ(
◦
π)→ X(

◦
TM), Ỹ 7→ (L̃ξH)(Ỹ )

has the following properties:

(i) It is C∞(
◦
TM)-linear.

(ii) For every vector �eld X on M ,

j ◦ L̃XcH = 0, (13.32)

and hence L̃ξH is not an Ehresmann connection.
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(iii) If h is the horizontal projection associated to H, then for every
X ∈ X(M),

LXch = (L̃XcH) ◦ j. (13.33)

Proof. (i) The additivity of L̃ξH is clear. To see the C∞(
◦
TM)-

homogeneity, let Ỹ ∈ Γ(
◦
π), F ∈ C∞(

◦
TM). Then

(L̃ξH)(FỸ ) := [ξ,H(FỸ )]−H(L̃ξFỸ )
(11.2)
= [ξ, FH(Ỹ )]

−H((ξF ))Ỹ + F L̃ξỸ ) = (ξF )H(Ỹ ) + F [ξ,H(Ỹ )]− (ξF )H(Ỹ )

− FH(L̃ξỸ ) = F ([ξ,H(Ỹ )]−H(L̃ξỸ )) = F (L̃ξH)(Ỹ ),

as wanted.
(ii) For any X ∈ X(M), Ỹ ∈ Γ(

◦
π),

(j ◦ L̃XcH)(Ỹ )
(13.31)

= j ◦ LXc(H(Ỹ ))− j ◦ H(L̃XcỸ )

(11.8),(13.1)
= L̃Xc(j(H(Ỹ )))− L̃XcỸ = L̃XcỸ − L̃XcỸ = 0.

(iii) For every vector �eld η on
◦
TM , we have

(LXch)(η)
(10.2)
= LXc(hη)− h(LXcη) = LXc(H(jη))−H(jLXcη)

(11.8)
= LXc(H(jη))−H(L̃Xc(jη)) := (L̃XcH)(jη) = (L̃XcH) ◦ j(η),

as was to be shown.

Proposition 13.2.3. With the notation as above, choose
a chart (U , (ui)ni=1) on M , and consider the induced chart

(
◦
τ
−1

(U), (xi)ni=1, (yi)ni=1) on
◦
TM . Then, for every vector �eld

X on M ,

(L̃XcH)

(
∂̂

∂uj

)
=

(
(Nk

j

(
∂X i

∂uk
◦ τ
)
−N i

k

(
∂Xk

∂uj
◦ τ
)

−XcN i
j −yk

(
∂2X i

∂uj∂uk
◦ τ
))

∂

∂yi
,

(13.34)

where (N i
j) is the family of Christo�el symbols of H with respect to the

chosen chart and X =
(U)
X i ∂

∂ui
.
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Proof. By (13.32) and (13.28)

(L̃XcH)

(
∂̂

∂uj

)
=

[
Xc,

(
∂

∂uj

)h
]
−H ◦ V

[
Xc,

∂

∂yj

]
.

Here[
Xc,

(
∂

∂uj

)h
]

=

[
Xc,

∂

∂xj

]
−
[
Xc, N i

j

∂

∂yi

]
=

[
X,

∂

∂uj

]c
− (XcN i

j)
∂

∂yi
−N i

j

[
X,

∂

∂ui

]v
= −

(
∂X i

∂uj
∂

∂ui

)c

− (XcN i
j)
∂

∂yi

+N i
j

(
∂Xk

∂ui
∂

∂uk

)v

= −
(
∂Xk

∂uj
◦ τ
)

∂

∂xk
− yk

(
∂2X i

∂ui∂uk
◦ τ
)

∂

∂yi

− (XcN i
j)
∂

∂yi
+Nk

j

(
∂X i

∂uk
◦ τ
)

∂

∂yi
;

H ◦ V
[
Xc,

∂

∂yj

]
= H ◦ V ◦ i

̂[
X,

∂

∂uj

]
=

[
Xk ∂

∂uk
,
∂

∂uj

]h
= −

(
∂Xk

∂uj
∂

∂uk

)h

= −
(
∂Xk

∂uj
◦ τ
)(

∂

∂uk

)h

= −
(
∂Xk

∂uj
◦ τ
)

∂

∂xk

+N i
k

(
∂Xk

∂ui
◦ τ
)

∂

∂yi
.

Thus, taking the di�erence
[
Xc,

(
∂
∂uj

)h] −H ◦ V [Xc, ∂
∂yj

]
, we obtain

the desired result.

We note that in [7], by abuse of notation, the `Lie derivative LXcN i
j '

was essentially de�ned by the right-hand side of (13.34); see loc.cit.
(2.46).

13.3 H-automorphisms and H-Killing vector �elds

Throughout, we assume that an Ehresmann connec-

tion H : Γ(
◦
π) 7→ X(

◦
TM) is given in

◦
TM . We recall

that it can also be regarded as a strong bundle map

H :
◦
TM ×M TM → T

◦
TM .
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A di�eomorphism ϕ : U → V between two open subsets of M is
called a (local) automorphism of H (or simply an H-automorphism) if

over
◦
τ
−1

(U)×U τ−1(U) we have

ϕ∗∗ ◦ H = H ◦ (ϕ∗ × ϕ∗) (13.35)

We say that a vector �eld X on M is an H-Killing vector �eld if its
local one-parameter group consists of H-automorphisms. We denote
by KillH(M) the set of all H-Killing vector �elds on M .

Theorem 13.3.1. Let X be a vector �eld on M , and let (ϕt) be the
local one-parameter group generated by X. The following assertions
are equivalent:

(i) X ∈ KillH(M).

(ii) For every stage ϕt of the local �ow of X we have

(ϕt)∗∗ ◦ h = h ◦ (ϕt)∗∗, (13.36)

where h is the horizontal projection associated to H.

(iii) L̃XcH = 0.

(iv) LXch = 0.

If one (and hence all) of these conditions is satis�ed, then locally we
have

XcN i
j = Nk

j

(
∂X i

∂uk
◦ τ
)
−N i

k

(
∂Xk

∂uj
◦ τ
)
− yk

(
∂2X i

∂uj∂uk
◦ τ
)

; i, j ∈ Jn

(13.37)

where (N i
j) is the family of Christo�el symbols of H with respect to a

chart induced by a chart (U , (ui)ni=1) on M .

Proof. (i) ⇐⇒ (ii) By de�nition, X ∈ KillH(M) if, and only if, for
every stage ϕt of the local �ow of X we have

(ϕt)∗∗ ◦ H = H ◦ ((ϕt)∗ × (ϕt)∗). (∗)

Since the strong bundle map j is surjective, this relation is equivalent
to

(ϕt)∗∗ ◦ H ◦ j = H ◦ ((ϕt)∗ × (ϕt)∗) ◦ j
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Here H ◦ j =: h and ((ϕt)∗ × (ϕt)∗) ◦ j
(8.23 b)

= j ◦ (ϕt)∗∗, therefore (∗) is
equivalent to (13.36), as we claimed.
(iii)⇐⇒ (iv) This is clear since LXch = (L̃XcH) ◦ j by
Proposition 13.2.2 (iii), and j is surjective.
(iv)⇐⇒ (ii) In view of Lemma 7.5.1, the local one-parameter group
of Xc is ((ϕt)∗). Thus, by Proposition 10.1.4, LXch = 0 if, and only if
(ϕt)∗∗ ◦ h = h ◦ (ϕt)∗∗ for every stage (ϕt)∗ of the local �ow of Xc.

The last statement of the theorem is immediate from Proposition
13.2.3.

13.4 Lie symmetries of spray manifolds

13.4.1 Let M be a manifold, and suppose that S : TM → TTM is a
semispray for M . Then there exists a unique Ehresmann connection

H with vanishing torsion in
◦
TM such that the horizontal lifts with

respect to H are given by

Xh := H(X̂) :=
1

2
(Xc + [Xv, S]), X ∈ X(M). (13.38)

The semispray associated to H is

SH := H(δ̃) :=
1

2
(S + [C, S]).

For a recent proof of this fundamental result we refer to [29], Propo-
sition 7.3.4. We say that the connection H so de�ned is the semispray
connection associated to S. If the semispray coe�cients of S with re-

spect to a chart are the functions Gi ∈ C∞(
◦
τ
−1

(U)) as in 12.1, then
the Christo�el symbols of the associated semispray connection (with
respect to the same chart) are

Gi
j :=

∂Gi

∂yj
; i, j ∈ Jn. (13.39)

Proposition 13.4.2. Let S : TM → TTM be a semispray for M , and
let H be the semispray connection associated to S. Then

X ∈ LieS(M) =⇒ X ∈ KillH(M). (13.40)

Proof. We calculate the Lie derivative L̃XcH. Since L̃XcH is C∞(
◦
TM)-

linear, it is su�cient to evaluate it on an arbitrary basic vector �eld
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Ŷ . Then we �nd

(L̃XcH)(Ŷ )
(13.31)

= [Xc, Y h]−H(L̃XcŶ )
(11.5 b)

= [Xc, Y h]−H([̂X, Y ])

(13.38)
=

1

2
([Xc, Y c + [Y v, S]]− [X, Y ]c − [[X, Y ]v, S])

(7.22 b−c)
=

1

2
([Xc, [Y v, S]]− [[Xc, Y v], S]) =

1

2
([Xc, [Y v, S]] + [S, [Xc, Y v]]).

Since, by condition, [Xc, S] = 0 (see 12.2.2 (iv)), the Jacobi identity
gives

0 = [Xc, [Y v, S]] + [Y v, [S,Xc]] + [S, [Xc, Y v]]

=
1

2
[Xc, [Y v, S]] + [S, [Xc, Y v]],

thus concluding the proof.

Remark 13.4.3. Applying the argument of R. L. Lovas in [17], Propo-
sition 5.2, we show that the converse of implication (13.40) is also true
when S is a spray. Indeed, if L̃XcH = 0, then the calculation above
leads to

[[Xc, S], Y v] = 0 for all Y ∈ X(M).

Since [Xc, S] is vertical by Lemma 12.1.1, this implies that [Xc, S] is
a vertical lift, and hence

[C, [Xc, S]]
(7.23 a)

= −[Xc, S]. (∗)

On the other hand, using the Jacobi identity, the 2+-homogeneity of S
and the 1+-homogeneity of Xc, we �nd that

0 = [C, [Xc, S]] + [Xc, [S,C]] + [S, [C,Xc]] = [C, [Xc, S]]− [Xc, S],

whence [C, [Xc, S]] = [Xc, S]. Comparing this with equality (∗), we
conclude that [Xc, S] = 0, and hence X ∈ LieS(M).

13.4.4 Now suppose that (M,S) is a spray manifold. Then the con-
struction described in 13.4.1 leads to a homogeneous torsion-free
Ehresmann connection H : TM ×M TM → TTM (see also the end
of 13.1.4). This spray connection will be called the Berwald connec-
tion of (M,S). Then the semispray associated to H (13.1.7(c)) is
just the initial spray S. The Christo�el symbols Gi

j = ∂Gi

∂yj
are smooth
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on
◦
τ
−1

(U) and continuous on τ−1(U). The Berwald derivative in a
spray manifold (M,S) is the covariant derivative ∇ on

◦
π induced by

the Berwald connection H according to (13.19). Its Christo�el sym-
bols with respect to an induced chart on TM are the 0+-homogeneous
functions

Gi
jk

(13.24)
:=

∂Gi
j

∂yk
=

∂Gi

∂yj∂yk
∈ C∞(

◦
τ
−1

(U)).

Our next theorem is a supplement to Lovas's Proposition 5.2 in [17].

Theorem 13.4.5. Let (M,S) be a spray manifold, equipped with the
Berwald connection H associated to S and the Berwald derivative ∇
induced by H. Let h, v and V be the data de�ned by (13.4 a-b) and
(13.5). For a vector �led X on M , the following are equivalent:

(i) X ∈ LieS(M), i.e., X is a Lie symmetry of S;

(ii) [Xc, S] = 0;

(iii) X ∈ KillH(M);

(iv) L̃XcH = 0;

(v) LXch = −[h, Xc] = 0;

(vi) LXcv = −[v, Xc] = 0;

(vii) L̃Xc∇ = 0;

(viii) For every vector �eld Y on M ;

[Xc, Y h] = [X, Y ]h; (13.41)

(ix) For every vector �eld Y on M ,

[L̃Xc , L̃Y h ] = L̃[X,Y ]h ; (13.42)

(x) We have the commutation relation

L̃Xc ◦ V = V ◦ LXc . (13.43)

Proof. We begin with some remarks.

(1) The equivalence of conditions (i), (v) and (vii) has already been
proven in Lovas's cited paper [17].
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(2) We have shown for semisprays that (i) ⇐⇒ (ii), and for general
Ehresmann connections that (iii) ⇐⇒ (iv) ⇐⇒ (v). We note
that the equivalence of (v) and (vi) is evident, since v = 1

X(
◦
TM)
−

h, and [1
X(
◦
TM)

, ξ] = 0 for every ξ ∈ X(
◦
TM).

(3) By Proposition 13.4.2 and Remark 13.4.3 (i) =⇒ (iii) for every
semispray, and (iii) =⇒(i) for sprays.

Thus, to complete the proof, it is enough to show the implications
(v) ⇐⇒ (viii), (viii) ⇐⇒ (ix) and (vi) ⇐⇒ (x). The equivalence
of conditions (i), (ii) and (iv) has already been proved in [17].

(v) ⇐⇒ (vii) For any vector �eld Y on M ,

[h, Xc]Y c (10.3)
= [hY c, Xc]− h[Y c, Xc] = [Y h, Xc]− h[Y,X]c

= [Y h, Xc]− [Y,X]h,

so [h, Xc] = 0 implies that [X, Y ]h = [Xc, Y h]. The converse is also
true, since

[h, Xc]Y v = [hY v, Xc]− h[Y,X]v = 0,

and hence [h, Xc] � Xv(
◦
TM) = 0.

(vii) ⇐⇒ (ix) This is an immediate since [L̃Xc , L̃Y h ]
(11.3)
= L̃[Xc,Y h].

(vi) ⇐⇒ (ix) For any vector �eld ξ on
◦
TM ,

iL̃Xc(Vξ) (11.1)
= [Xc, i(Vξ)] (13.5)

= [Xc,vξ],

iV(LXcξ) = v[Xc, ξ],

so L̃Xc(Vξ) = V(LXcξ) if, and only if,

0 = [vξ,Xc]− v[ξ,Xc] = [v, Xc]ξ.

This concludes the proof.

14 Curvature collineations in a spray man-

ifold

Throughout this section, (M,S) is a spray manifold, H is
the Berwald connection in (M,S) and ∇ is the Berwald
derivative induced by H. As always, we denote by h, v and
V the horizontal projection, the vertical projection and the
vertical map associated to H, respectively.
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14.1 In the language of classical tensor calculus, the basic curvature
data of a spray manifold were introduced by Ludwig Berwald in his
epoch-making, posthumously published paper [6], in an illuminating
manner. Here we follow his approach, but we use an index-free formal-
ism. In this spirit, we start with Jacobi endomorphism K ∈ T 1

1 (Γ(
◦
π))

(called a�ne deviation by Berwald) given by

K(X̃) := V [S,H(X̃)], X̃ ∈ Γ(
◦
π). (14.1)

Next, with the help of K, we de�ne the fundamental a�ne curvature
R ∈ T 1

2 (Γ(
◦
π)) and the a�ne curvature H ∈ T 1

3 (Γ(
◦
π)) by the formulae

R(X̃, Ỹ ) :=
1

3
(∇vK(X̃, Ỹ )−∇vK(Ỹ , X̃)) (14.2)

and

H(X̃, Ỹ )Z̃ := −∇vR(Z̃, X̃, Ỹ ). (14.3)

If C ∈ {K,R,H}, X ∈ X(M) and L̃XcC = 0, then we say X is a
curvature collineation of C. Notice that

L̃XcK = 0 ⇐⇒ L̃Xc ◦K = K ◦ L̃Xc . (14.4)

Indeed, for every Ỹ ∈ Γ(
◦
π) we have

(L̃XcK)(Ỹ )
(11.13)

= L̃Xc(K(Ỹ ))−K(L̃XcỸ ).

Proposition 14.1.1. (i) Let K0 be the semibasic 1-form corresponding
to the Jacobi endomorphism under the isomorphism given by (8.18).
Then

L̃XcK0 = 0 ⇐⇒ L̃XcK = 0 (X ∈ X(M)).

(ii) A vector �eld X on M is a curvature collineation of K if, and only
if, K is invariant under the local �ow of X in the sense that

((ϕt)∗ × (ϕt)∗)) ◦K = K ◦ ((ϕt)∗ × (ϕt)∗)

for every stage ϕt of the local �ow (here K is interpreted as a strong

bundle endomorphism of
◦
TM ×M TM).

Proof. (i) Suppose that L̃XcK = 0. Then

L̃XcK0 (8.18)
= LXc ◦ i ◦K ◦ j (11.7)

= i ◦ L̃Xc ◦K ◦ j (14.4)
= i ◦K ◦ L̃Xc ◦ j

(11.8)
= i ◦K ◦ j ◦ LXc = K0 ◦ LXc ,



67

which implies (as above) that L̃XcK0 = 0.
Conversely, suppose that L̃XcK0 = 0. Then LXc ◦K0 = K0 ◦ LXc ,

and we obtain

i ◦ L̃XcK ◦ j = LXcK0 = LXc ◦ i ◦K ◦ j = i ◦ L̃Xc ◦K ◦ j.

Since i is injective, j is surjective, from this we conclude that L̃Xc ◦K =
K ◦ L̃Xc , and hence L̃XcK = 0.
(ii) By part (i), Lemma 7.5.1 and Proposition 10.1.4,

L̃XcK = 0 ⇐⇒ (ϕt)∗∗ ◦K0 = K0 ◦ (ϕt)∗∗

⇐⇒ (ϕt)∗∗ ◦ i ◦K ◦ j = i ◦K ◦ j ◦ (ϕt)∗∗
(8.23 a−b)⇐⇒ i ◦ ((ϕt)∗ × (ϕt)∗) ◦K ◦ j = i ◦K ◦ ((ϕt)∗ × (ϕt)∗) ◦ j
⇐⇒ ((ϕt)∗ × (ϕt)∗) ◦K = K ◦ ((ϕt)∗ × (ϕt)∗),

where ϕt is any stage of the local �ow of X.

Theorem 14.1.2. If a vector �eld X on M is a Lie symmetry of
S, then it is a curvature collineation of the Jacobi endomorphism of
(M,S).

Proof. Suppose that X ∈ LieS(M). Then, for every vector �eld Y on
M ,

(L̃XcK)(Ŷ ) = L̃Xc(K(Ŷ ))−K(L̃XcŶ )
(14.1)
= L̃Xc(V [S, Y h])

−V [S,H(L̃XcŶ )]
(11.1), (11.5 b)

= i−1[Xc,v[S, Y h]]− V [S,H[̂X, Y ]]
(13.9)
= i−1[Xc,v[S, Y h]]− V [S, [X, Y ]h] = i−1([Xc,v[S, Y h]]

−v[S, [X, Y ]h])
(13.41)

= i−1([Xc,v[S, Y h]]− v[S, [Xc, Y h]])
Jacobi

= i−1([Xc,v[S, Y h]] + v[Xc, [Y h, S]]

+[Y h, [S,Xc]])
X is a Lie symmetry

= i−1([Xc,v[S, Y h]]− v[Xc, [S, Y h]]

= −i−1([v, Xc][S, Y h])
(13.4.5), (vi)

= 0,

so we have the desired equality L̃XcK = 0.

Corollary 14.1.3. If X ∈ LieS(M), then L̃XcR = 0, i.e., X is a
curvature collineation of the fundamental a�ne curvature of (M,S).

Proof. Since L̃XcR is C∞(
◦
TM)-linear in its both arguments, it is su�-

cient to show that (L̃XcR)(Ŷ , Ẑ) = 0 for all Y, Z ∈ X(M). By (11.13),

(L̃XcR)(Ŷ , Ẑ) = L̃Xc(R(Ŷ , Ẑ))−R(L̃XcŶ , Ẑ)−R(Ŷ , L̃XcẐ). (∗)
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We calculate the three terms at the right-hand side of (∗):

(1) L̃Xc(R(Ŷ , Ẑ))
(14.2)
=

1

3
L̃Xc(∇vK(Ŷ , Ẑ)−∇vK(Ẑ, Ŷ ))

=
1

3
L̃Xc((∇v

Ŷ
K)(Ẑ)− (∇v

Ẑ
K)(Ŷ ))

(9.10)
=

1

3
L̃Xc(∇v(K(Ẑ)))

− 1

3
∇v
Ẑ

(K(Ŷ ))
(11.9)
=

1

3
(∇v

Ŷ
◦ L̃Xc(K(Ẑ)) + L̃[X,Y ]v(K(Ẑ)))

− 1

3
(∇v

Ẑ
◦ L̃Xc(K(Ŷ ))− L̃[X,Z]v(K(Ŷ )));

(2) R(L̃XcŶ , Ẑ) :=
1

3
((∇vK)(L̃XcŶ , Ẑ))− (∇vK)(Ẑ, L̃XcŶ )

=
1

3
(∇v
L̃Xc Ŷ

(K(Ẑ))−∇v
Ẑ

(K(L̃XcŶ )))

(11.5 b), (14.4)
=

1

3
(∇v

[̂X,Y ]
(K(Ẑ))−∇v

Ẑ
◦ L̃Xc(K(Ŷ ))).

(3) Interchanging Y and Z in the above result,

R(Ŷ , L̃XcẐ) = −R(L̃XcẐ, Ŷ )

= −1

3
(∇v

[̂X,Z]
(K(Ŷ ))− (∇v

Ŷ
◦ L̃Xc(K(Ẑ)))).

Thus we obtain that

3 times the right-hand side of (∗)

= ∇v
Ŷ
◦ L̃Xc(K(Z̃)) + L̃[X,Y ]v(K(Ẑ))−∇v

Ẑ
◦ L̃Xc(K(Ŷ ))

− L̃[X,Z]v(K(Ŷ ))−∇v

[̂X,Y ]
(K(Ẑ))−∇v

Ẑ
◦ L̃Xc(K(Ŷ ))

+∇v

[̂X,Z]
(K(Ŷ ))−∇v

Ŷ
◦ L̃Xc(K(Ẑ))

(11.6)
= ∇v

[̂X,Y ]
(K(Z̃))

−∇v

[̂X,Z]
(K(Ỹ ))−∇v

[̂X,Y ]
(K(Z̃)) +∇v

[̂X,Z]
(K(Ỹ )) = 0,

as was to be shown.

Notice that by (11.13) for all Y, Z ∈ X(M) we have

L̃XcR = 0 ⇐⇒ L̃Xc(R(Ŷ , Ẑ)) = R(L̃XcŶ , Ẑ) + R(Ŷ , L̃XcẐ).
(14.5)

Corollary 14.1.4. If X ∈ LieS(M), then L̃XcH = 0, i.e., X is a
curvature collineation of the a�ne curvature of (M,S).
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Proof. By the previous corollary, X ∈ LieS(M) implies that L̃XcR =

0. Now we evaluate the Lie derivative L̃XcH on an arbitrary triple
(Ŷ , Ẑ, Û), where Y, Z, U are vector �elds on M . Then we �nd that

(L̃XcH)(Ŷ , Ẑ, Û)
(11.13)

= L̃Xc(H(Ŷ , Ẑ, Û)−H(L̃XcŶ , Ẑ, Û)

−H(Ŷ , L̃XcẐ, Û)−H(Ŷ , Ẑ, L̃XcÛ)
(14.3)
= −L̃Xc((∇vR)(Û , Ŷ , Ẑ))

+(∇vR)(Û , L̃XcŶ , Ẑ) + (∇vR)(Û , Ŷ , L̃XcẐ) + (∇vR)(L̃XcÛ , Ŷ , Ẑ)
(9.10), (11.5 b)

= −L̃Xc(∇v
Û

(R(Ŷ , Ẑ))) + (∇v
Û
R)(L̃XcŶ , Ẑ)

+(∇v
Û
R)(Ŷ , L̃XcẐ) + (∇v

[̂X,U ]
R)(Ŷ , Ẑ)

(11.9), (11.12)
=

−∇v
Û
◦ L̃Xc(R(Ŷ , Ẑ))− L̃[X,U ]v(R(Ŷ , Ẑ)) +∇v

Û
(R(L̃XcŶ , Ẑ))

+∇v
Û

(R(Ŷ , L̃XcẐ)) +∇v

[̂X,U ]
(R(Ŷ , Ẑ))

(14.5)
= ∇v

[̂X,U ]
R(Ŷ , Ẑ)

−L̃[X,U ]v(R(Ŷ , Ẑ))
(11.6)
= 0,

as was to be proved.

14.2 Projective relatedness First we recall that a geodesic of S is
a smooth curve γ : I → M whose velocity vector �eld is an integral
curve of S, i.e., S ◦ γ̇ = γ̈. If a smooth curve γ̃ : Ĩ →M has a positive
reparametrization as a geodesic, i.e., there exists a smooth function
θ : I → Ĩ with positive derivative such that γ := γ̃ ◦ θ : I → M is
a geodesic, then γ̃ is called a pregeodesic of S. Two sprays over M
are projectively related if they have the same pregeodesic. Projective
relatedness of sprays is an equivalence relations, the projective class of
S is denoted by [S]. Let S be another spray for M . By a classical
result of the geometry of paths, S ∈ [S] if, and only if, there exists a

function P ∈ C∞(
◦
TM) such that

S = S − 2PC. (14.6)

Then the projective factor P is necessarily 1+-homogeneous.
Let A be a Finsler tensor �eld constructed from S, and let A be

a tensor constructed from S ∈ [S] by the same rule. If A = A for all
S ∈ [S], then A is called a projectively invariant tensor of the spray
manifold (M,S). The fundamental projectively invariant tensors of
a spray manifold are the Weyl tensors W1,W2,W3 and the Douglas
tensor D. We recall here their de�nitions:

W1 := K−K 1− 1

n+ 1
(tr∇vK−∇vK)⊗ δ̃ (14.7)
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where K is the Jacobi endomorphism de�ned above, K := 1
n−1

trK,
n := dimM = 2, 1 := 1

Γ(
◦
π)
.

W2(X̃, Ỹ ) :=
1

3
(∇vW1(X̃, Ỹ )−∇v W1(Ỹ , X̃)), (14.8)

W3(X̃, Ỹ )Z̃ := ∇vW2(Z̃, X̃, Ỹ ); X̃, Ỹ Z̃ ∈ Γ(
◦
π). (14.9)

The tensors W1, W2, W3 are called the Weyl endomorphism, the
fundamental projective curvature tensor and the projective curvature
tensor of (M,S), respectively.

To introduce the Douglas tensor, �rst we de�ne the Berwald tensor
B ∈ T 1

3 (Γ(
◦
π)) of (M,S) by

B(X̂, Ŷ )Ẑ := (∇v∇hẐ)(X̂, Ŷ )

= ∇v
X̂

(∇hẐ)(Ŷ )
(9.10)
= ∇v

X̂
(∇h

Ŷ
Ẑ).

(14.10)

Locally, with the notation of 13.4.4 (see also 13.1.7 (b)),

B

(
∂̂

∂uj
,
∂̂

∂uk

)
∂̂

∂ul
= ∇v

∂̂

∂uj

(
Gi
kl

∂̂

∂ui

)
=
∂Gi

kl

∂yz
∂

∂yi
,

so the components of B with respect to an induced chart on TM are
the (−1)+-homogeneous functions

Gi
jkl :=

∂Gi
kl

∂yj
=

∂3Gi

∂yj∂yk∂yl
∈ C∞(

◦
τ
−1

(U)),

where the functions Gi are the spray coe�cients of S. After this
preparatory step, we de�ne the Douglas tensor of (M,S) by

D := B− 1

n− 1
((∇vtrB)⊗ δ̃ + (trB)� 1), (14.11)

where the symbol � stands for the symmetric product without nu-
merical factor. For a coordinate description we refer to [29], Remark
8.4.25.

Next we show that if X ∈ LieS(M), then X is a curvature
collineation of the Weyl tensors, the Berwald tensor and the Douglas
tensor in the same sense as above.

Theorem 14.2.1. If X ∈ LieS(M), then L̃XcW1 = 0, i.e., X is a
curvature collineation of the Weyl endomorphism of (M,S).
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Proof. If X ∈ LieS(M), then L̃XcK = 0 by Theorem 14.1.2. Taking

into account that L̃Xc1 = 0, L̃Xc δ̃
(11.5 a)

= 0 and L̃Xc ◦ tr = tr ◦ L̃Xc , we
readily �nd that

L̃Xc(K 1) =
1

n− 1
(L̃XctrK)1 =

1

n− 1
tr(L̃XcK)1 = 0.

Next we show that

L̃Xc∇vK = 0. (14.12)

For every vector �eld Y on M ,

(L̃Xc∇vK)(Ŷ ) = Xc(Y vK)−∇vK(L̃XcŶ ) = Xc(Y vK)−∇vK [̂X, Y ]

= Xc(Y vK)− [X, Y ]vK = [Xc, Y v]K + Y v(XcK)− [X, Y ]vK

(7.22 b)
= Y v(XcK) =

1

n− 1
Y v(Xc trK) =

1

n− 1
Y v(tr L̃XcK) = 0,

as we claimed. Taking these into account, we obtain

L̃XcW1 = − 1

n− 1
(L̃Xc tr∇vK)⊗ δ̃.

To �nish the proof we show that L̃Xc tr∇vK = 0. From Corollary
8.2.8 in [29],

tr∇vK = 3 trR +∇vtrK.

By Corollary 14.1.3, L̃XcR = 0. Thus

L̃Xc tr∇vK = 3 trL̃XcR + L̃Xc∇vtrK = L̃Xc∇vtrK = (n− 1) L̃Xc∇vK

(14.12)
= 0,

which concludes the proof.

Corollary 14.2.2. If X ∈ LieS(M), then X is a curvature collineation
both of the fundamental projective curvature and the projective curva-
ture of (M,S).

This can be shown in the same way as Corollaries 14.1.3 and 14.1.4,
so we omit the analogous calculation.

Proposition 14.2.3. If X ∈ LieS(M) and B is the Berwald tensor of
(M,S), then L̃XcB = 0.
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Proof. For any vector �elds Y, Z, U on M ,

(L̃XcB)(Ŷ , Ẑ, Û)
(11.13)

= L̃Xc(B(Ŷ , Ẑ) Û)−B(L̃XcŶ , Ẑ) Û

−B(Ŷ , L̃XcẐ)Û −B(Ŷ , Ẑ)L̃XcÛ
(14.10), (11.5 b)

= L̃Xc((∇v∇hÛ)(Ŷ , Ẑ))

−((∇v∇hÛ)([̂X, Y ], Ẑ))− ((∇v∇hÛ)(Ŷ , [̂X,Z]))

−((∇v∇hL̃XcÛ)(Ŷ , Ẑ))
(14.10)

= L̃Xc(∇v
Ŷ
∇h
Ẑ
Û)−∇v

[̂X,Y ]
∇h
Ẑ
Û

−∇v
Ŷ
∇h

[̂X,Z])
Û −∇v

Ŷ
∇h
Ẑ
L̃XcÛ

(11.9), (13.30)
= ∇v

Ŷ
(L̃Xc∇h

Ẑ
Û)

+L̃[X,Y ]v∇h
Ẑ
Û −∇v

[̂X,Y ]
∇h
Ẑ
Û −∇v

Ŷ
∇h

[̂X,Z]
Û −∇v

Ŷ
(L̃Xc∇h

Ẑ
Û)

+∇v
Ŷ
L̃[Xc,Zh]Û

(11.6), (13.40)
= −∇v

Ŷ
∇h

[̂X,Z]
Û +∇v

Ŷ
L̃[X,Z]hÛ

(13.29)
= 0,

as was to be shown.

Corollary 14.2.4. If X ∈ LieS(M), then L̃XcD = 0, i.e., X is a
curvature collineation for the Douglas tensor.

Proof. By the previous proposition, L̃Xc kills the �rst and the third
member of the right-hand side of (14.11), so it remains only to show
that L̃Xc(∇vtrB) = 0. Given any three vector �elds Y, Z, U on M , we
calculate:

(L̃Xc(∇v trB))(Ŷ , Ẑ, Û) = Xc((∇vtrB)(Ŷ , Ẑ, Û))

−(∇vtrB)([̂X, Y ], Ẑ, Û)− (∇vtrB)(Ŷ , L̃XcẐ, Û)

−(∇vtrB)(Ŷ , Ẑ, L̃XcÛ) = XcY v(trB(Ẑ, Û))− [X, Y ]v(trB(Ẑ, Û))

−Y v(trB(L̃XcẐ, Û))− Y v(trB(Ẑ, L̃XcÛ))
(7.22 b)

= Y v(Xc(trB)(Ẑ, Û)

−trB(L̃XcẐ, Û)− trB(Ẑ, L̃XcÛ)) = Y v((L̃Xc trB)(Ẑ, Û))

= Y v((tr L̃XcB)(Ẑ, Û))
Prop. 14.2.3

= 0.

This proves our assertion.

The main results of this chapter have been published in our paper [31].
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Part IV

Geometric vector �elds on

Finsler manifolds

15 Basic objects of a Finsler manifold

Throughout this part, M is a manifold of dimension n = 2.

15.1 We recall that a positive continuous function F : TM → R is

called a Finsler function forM if it is smooth on
◦
TM , 1+-homogeneous,

and the fundamental tensor

g :=
1

2
∇v∇vF 2 =: ∇v∇vE ∈ T 0

2 (Γ(
◦
π)) (15.1)

is �brewise non-degenerate. A Finsler manifold is a pair (M,F ), where
M is a manifold and F is a Finsler function for M . The function
E = 1

2
F 2 is the energy function associated to F , or the energy of

(M,F ). Clearly, it is 2+-homogeneous. An easy calculation shows
that the energy function can be obtained from the fundamental tensor
by

g(δ̃, δ̃) = 2E. (15.2)

The Hilbert 1-form of (M,F ) is

in the pull-back formalism θg := ∇vE = F ∇vF, (15.3)

in the τTM formalism θE := dJE. (15.4)

The one-forms θg and θE are related by

θE = θg ◦ j (15.5)

The two-form

ωE := dθE = d dJE ∈ A2(
◦
TM) (15.6)

is called the fundamental 2-form of (M,F ). Its relation to the funda-
mental tensor is given by

ωE(Jξ, η) = g(jξ, jη); ξ, η ∈ X(
◦
TM). (15.7)

The non-degeneracy of g implies the non-degeneracy of ωE, and vice
versa.
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Proposition 15.1.1. Let (M,F ) be a Finsler manifold and X a vector
�eld on M . With the notation above,

(L̃Xcθg) ◦ j = LXcθE, (15.8)

(L̃Xcg)(jξ, jη) = (LXcωE)(Jξ, η). (15.9)

Proof. For every vector �eld ξ on
◦
TM ,

(L̃Xcθg)(jξ)
(11.13)

= LXc(θg(jξ))− θg(L̃Xc(jξ))
(15.5)
= LXc(θE(ξ))

− θg(L̃Xc ◦ j(ξ)) (11.8) ,(15.5)
= LXc(θE(ξ))− θE(LXcξ) = (LXcθE)(ξ),

whence (15.8). A little more calculation is necessary to prove (15.9).
Starting with the de�nition of the classical Lie derivative, we �nd

(LXcωE)(Jξ, η) = XcωE(Jξ, η)− ωE(LXcJξ, η)− ωE(Jξ,LXcη)
(11.8), (15.7)

= Xcg(jξ, jη)− ωE(LXcJξ, η)− g(jξ, L̃Xcjη).

Observe now that the operators LXc and J are interchangeable, i.e.,

LXc ◦ J = J ◦ LXc for all X ∈ X(M). (15.10)

Indeed, i ◦ L̃Xc = LXc ◦ i by (11.7). Composing both sides of this
equality on the right with j and using (11.8), we obtain (15.10). Taking
this into account,

ωE(LXcJξ, η) = ωE(JLXcξ, η)
(15.7)
= g(jLXcξ, jη)

(11.8)
= g(L̃Xc(jξ), jη).

Thus

(LXcωE)(Jξ, η) = Xcg(jξ, jη)− g(L̃Xc(jξ), jη)− g(jξ, L̃Xc(jη))

= (L̃Xcg)(jξ, jη),

as was to be shown.

15.1.2 Let ωnE = ωE ∧ ... ∧ ωE (n factors). Then w := 1
n!

(−1)
n(n−1)

2 ωnE

is a volume form on
◦
TM , called the Dazord volume form for (M,F ).

The divergence of a vector �eld ξ on
◦
TM (with respect to w) is the

unique smooth function div ξ ∈ C∞(
◦
TM) such that Lξ w = (div ξ)w.

It can easily be shown that

divC = n; (15.11)

see, e.g., [32], Corollary 1.
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15.1.3 If (M,F ) is a Finsler manifold, then there exists a unique spray
S for M such that

iS d dJE = −dE over
◦
TM. (15.12)

This spray is called the canonical spray of (M,F ). Thus every Finsler
manifold is a spray manifold at the same time. The Berwald connection
of this spray manifold is called the canonical connection of (M,F ). We
denote it by H; and h, v,V stand for the associated projection opera-
tors and the vertical mapping as in 13.1.2. The canonical connection
can be characterized as the unique torsion-free Ehresmann connection
for M which is compatible with the Finsler function in the sense that
dF ◦ H = 0, or, equivalently,

H(X̂)F = XhF = 0 for all X ∈ X(M). (15.13)

With the help of the canonical connection, we de�ne the Sasaki-Finsler
metric gS by

gS(ξ, η) := g(jξ, jη) + g(Vξ,Vη); ξ, η ∈ X(
◦
TM), (15.14)

Then gS is a Riemannian metric tensor on
◦
TM .

We shall need the following technical result.

Lemma 15.1.4. If S is the canonical spray of the Finsler manifold
(M,F ), then

ωE(C, S) = 2E, divS = 0. (15.15 a-b)

Proof. Both equalities can be shown by a straightforward calculation:

ωE(C, S)
(15.7)
= g(jS, jS) = g(δ̃, δ̃)

(15.2)
= 2E;

LSωE = LSd dJE
(5.15)
= iSd d dJE + d iSd dJE

(5.18)
= d iSd dJE

= −d dE = 0,

therefore LSωE = 0, which implies (15.15 b).

15.2 Covariant derivatives on a Finsler manifold
Since every Finsler manifold (M,F ) is a spray manifold (M,S)

with the canonical spray, we have the Berwald derivative ∇ of (M,S),
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induced by the canonical connection H. In general, it is neither v-
metric, nor h-metric, i.e., neither ∇vg nor ∇hg vanishes. We give
names to these objects. The type (0, 3) Finsler tensor �elds

C[ := ∇vg = ∇v∇v∇vE and L[ := ∇hg = ∇h∇v∇vE
(15.16 a-b)

are called the Cartan-tensor and Landsberg-tensor of (M,F ), respec-
tively. We give the same names to the metrically equivalent tensors C
and L, de�ned by

g(C(X̃, Ỹ ), Z̃) := C[(X̃, Ỹ , Z̃), and g(L(X̃, Ỹ ), Z̃) = L[(X̃, Ỹ , Z̃).
(15.17 a-b)

We have three additional, important covariant derivatives on a
Finsler manifold: the Cartan derivative DC , the Chern-Rund deriva-
tive DCh and the Hashiguchi derivative DHs. They can be de�ned as
follows:

DC
ξ Ỹ := ∇ξỸ +

1

2
C(Vξ, Ỹ ) +

1

2
L(jξ, Ỹ ), (15.18)

DCh
ξ Ỹ := ∇ξỸ +

1

2
L(jξ, Ỹ ), (15.19)

DHs
ξ Ỹ := ∇ξỸ +

1

2
C(Vξ, Ỹ ). (15.20)

Notice that the Cartan derivative is metric, the Chern-Rund derivative
is h-metric, and the Hashiguchi-derivative is v-metric, i.e., we have

Dcg = 0; DCh
HX̃g = 0, DHs

iX̃
g = 0 (X̃ ∈ Γ(

◦
π)). (15.21 a-c)

Proposition 15.2.1. With the notation above, for every vector �eld
X on M we have

L̃XcC[ = ∇v(L̃Xcg). (15.22)
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Proof. For any vector �elds Y, Z, U on M

(L̃XcC[)(Ŷ , Ẑ, Û) = (L̃Xc(∇vg))(Ŷ , Ẑ, Û)
(11.13)

= L̃Xc((∇vg)(Ŷ , Ẑ, Û))

−(∇vg)([̂X, Y ], Ẑ, Û)− (∇vg)(Ŷ , L̃XcẐ, Û)− (∇vg)(Ŷ , Ẑ, L̃XcÛ)
(11.5 b)

= L̃Xc((∇Y vg)(Ẑ, Û))− (∇[X,Y ]vg)(Ẑ, Û)− (∇Y vg)(L̃XcẐ, Û)

−(∇Y vg)(Ẑ, L̃XcÛ)
(9.10)
= L̃Xc(∇Y v(g(Ẑ, Û)))−∇[X,Y ]v(g(Ẑ, Û))

−∇Y v(g(L̃XcẐ, Û))−∇Y v(g(Ẑ, L̃XcÛ))
(11.9)
= ∇Y vL̃Xc(g(Ẑ, Û))

+L̃[X,V ]v(g(Ẑ, Û))−∇[X,Y ]v(g(Ẑ, Û))−∇Y v(g(L̃XcẐ, Û))

−∇Y v(g(Ẑ, L̃XcÛ)) = ∇Y v(L̃Xc(g(Ẑ, Û))− g(L̃XcẐ, Û)

−g(Ẑ, L̃XcÛ))
(11.13)

= ∇Y v((L̃Xcg)(Ẑ, Û)) = (∇vL̃Xcg)(Ỹ , Ẑ, Û).

This proves our assertion.

Proposition 15.2.2. If X, Y, Z, U are vector �elds on M , then

g((L̃XcC)(Ŷ , Ẑ), Û) = (L̃XcC[)(Ŷ , Ẑ, Û)− (L̃Xcg)(C(Ŷ , Ẑ), Û),
(15.23)

g((L̃XcL)(Ŷ , Ẑ), Û) = (L̃XcL[)(Ŷ , Ẑ, Û)− (L̃Xcg)(L(Ŷ , Ẑ), Û).
(15.24)

Proof. From de�nition (15.17 a), L̃Xc(C[(Ŷ , Ẑ, Û)) = L̃Xc(g(C(Ŷ , Ẑ), Û)).
By the product rule for derivations, we have

L̃Xc(C[(Ŷ , Ẑ, Û)) = (L̃XcC[)(Ŷ , Ẑ, Û) + C[(L̃XcŶ , Ẑ, Û))

+ C[(Ŷ , L̃XcẐ, Û) + C[(Ŷ , Ẑ, L̃XcÛ);

Similarly,

L̃Xc(g(C(Ŷ , Ẑ), Û)) = (L̃Xcg)(C(Ŷ , Ẑ), Û)

+ g(L̃Xc(C(Ŷ , Ẑ)), Û) + g(C(Ŷ , Ẑ), L̃XcÛ).

So it follows that

(L̃XcC[)(Ŷ , Ẑ, Û)− (L̃Xcg)(C(Ŷ , Ẑ), Û) = g(L̃Xc(C(Ŷ , Ẑ)), Û)

+ g(C(Ŷ , Ẑ), L̃XcÛ)− C[(L̃XcŶ , Ẑ, Û))− C[(Ŷ , L̃XcẐ, Û)

− C[(Ŷ , Ẑ, L̃XcÛ)
(15.17 a)

= g(L̃Xc(C(Ŷ , Ẑ)) Û) + g(C(Ŷ , Ẑ), L̃XcÛ)

− g(C(L̃XcŶ , Ẑ) Û))− g(C(Ŷ , L̃XcẐ) Û)− g(C(Ŷ , Ẑ), L̃XcÛ)

= g(L̃Xc(C(Ŷ , Ẑ))− C(L̃XcŶ , Ẑ)− C(Ŷ , L̃XcẐ) Û)

= g((L̃XcC)(Ŷ , Ẑ) Û),



78 16 KILLING VECTOR FIELDS ON A FINSLER MANIFOLD

which �nishes the proof of (15.23). Formula (15.24) can be shown in
the same way, so we omit the essentially identical calculation.

16 Killing vector �elds on a Finsler mani-

fold

16.1 To motivate our subsequent development, in this section we have
a look at the semi-Riemannian metrics. We recall that if M is a man-
ifold and g ∈ T0

2(M) is a scalar product (resp. positive de�nite scalar
product) on the tangent bundle of M (see 2.11), then (M, g) is called
a semi-Riemannian (resp. Riemannian) manifold. We also say in this
case that g is a metric tensor on M . On a semi-Riemannian manifold
(M, g) there exists a unique torsion-free metric derivative D, called the
Levi-Civita derivative on M . It is characterized by the Koszul formula

2g(DXY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z]) + g(Y, [Z,X]) + g(Z, [X, Y ]),
(16.1)

where X, Y, Z ∈ X(M).

16.2 On a semi-Riemannian manifold (M, g) one can conveniently de-
�ne the well-known di�erential operators of classical vector analysis:
gradient, divergence and Laplacian.
(i) The gradient of a function f ∈ C∞(M) is the unique vector �eld
gradf ∈ C∞(M) such that

g(gradf,X) = df(X) = Xf for all X ∈ X(M). (16.2)

(ii) The divergence of a vector �eld X ∈ X(M) is the smooth function

divX := trDX
(2.5)
= tr(Y ∈ X(M) 7→ DYX ∈ X(M)), (16.3)

where D is the Levi-Civita derivative on M .
(iii) The Laplacian of a function f ∈ C∞(M) is

∆f := div(gradf). (16.4)

Suppose for simplicity that g is a Riemannian metric, and let (Ei)
n
i=1

be a g-orthonormal frame �eld over an open subset U of M . (`g-
orthonormal' means that g(Ei, Ej) = δij; i, j ∈ Jn. ) Then we have

divX =
(U)

∑
g(DEiX,Ei). (16.5)

A similar formula is valid also in the semi-Riemannian case.
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16.3 Let (M, g) be a semi-Riemannian manifold. A di�eomorphism
ϕ : U → V between two open subsets of M is called a conformal trans-
formation if there exists a positive smooth function f : U → R such
that

gϕ(p)(ϕ∗(u), ϕ∗(v)) = f(p)gp(u, v) (16.6)

holds for all p ∈ U ; u, v ∈ TpM . Particular cases are homotheties
(or dilatations) when f is a nonzero constant function, and isometries
when f(p) = 1 for all point p in U . A vector �eldX onM is called com-
formal, homothetic and Killing if the stages of its local one-parameter
group are conformal transformations, homotheties and isometries, re-
spectively. A conformal vector �eld is proper if it is not homothetic.
We use the following notation:

Confg(M) the set of conformal vector �elds on M.

Dilg(M) the set of homothetic vector �elds on M.

Killg(M) the set of Killing vector �elds on M.

The following results are well-known (see, e.g., [26]).

Proposition 16.3.1. Let (M, g) be a semi-Riemannian manifold and
X a vector �eld on M . Then

X ∈ Confg(M) ⇐⇒ LXg = 2σg for some σ ∈ C∞(M). (16.7)

In particular,

X ∈ Dilg(M) ⇐⇒ LXg = αg for some α ∈ R∗; (16.8)

X ∈ Killg(M) ⇐⇒ LXg = 0. (16.9)

The function σ in equality (16.7) is called the conformal function of
X.

Lemma 16.3.2. Suppose (for simplicity) that (M, g) is a Riemannian
manifold. If X ∈ Confg(M), then the conformal function of X is
1
n
divX.

Proof. Let (Ei)
n
i=1 be an orthonormal frame �eld over an open subset

U of M . Then

2 divX
(16.5)
=
(U)

2
∑

g(DEiX,Ei)

(16.1)
=
∑

(Eig(X,Ei) +Xg(Ei, Ei)− Eg(Ei, X))

+
∑

(−g(Ei, [X,Ei]) + g(X, [Ei, Ei]) + g(Ei, [Ei, X]))

= 2
∑

g(Ei, [Ei, X]).



80 16 KILLING VECTOR FIELDS ON A FINSLER MANIFOLD

On the other hand, we have

(LXg)(Ei, Ei)
(10.1)
= Xg(Ei, Ei)− 2g([X,Ei], Ei) = 2g(Ei, [Ei, X]).

Thus

2divX =
∑

(LXg)(Ei, Ei)
(16.7)
= 2

∑
σg(Ei, Ei) = 2σn,

whence our claim.

16.4 Let (M,F ) be a Finsler manifold. A di�eomorphism ϕ : U → V
between two open subsets of M is called a (local) isometry of (M,F )
if its derivative preserves the Finslerian norms of the tangent vectors,
i.e.,

F ((ϕ∗)p(v)) = F (v) for all p ∈ U , v ∈ TpM.

As in similar situations above, we say that a vector �eld on M is a
Killing vector �eld of (M,F ) if the stages of its local one-parameter
group are ismotries. We denote by KillF (M) the set of all Killing vector
�eld of (M,F ).

The following result is partly known (the equivalence of (i) and (ii)
is clearly folklore), and it will be generalized in the next section. How-
ever, because of its particular importance, we present it here together
with a complete proof.

Lemma 16.4.1. Let (M,F ) be a Finsler manifold and X is a vector
�eld on M . The following assertions are equivalent:

(i) X ∈ KillF (M); (iv) LXcθE = 0;
(ii) L̃Xcg = 0; (v) L̃Xcθg = 0;
(iii) XcF = 0; (vi) LXcωE = 0.

Proof. We organize our reasoning according to the following scheme:

(ii) =⇒ (iii) ⇐⇒ (i)

⇐
= ⇐
=

(vi) ⇐= (iv) ⇐⇒ (v).

(ii)=⇒ (iii) 0
(ii)
= (L̃Xcg)(δ̃, δ̃)

(15.2)
= 2XcE − 2g(L̃Xc δ̃, δ̃)

(11.5 a)
= 2XcE =

F (XcF ). Since F is positive, this implies that XcF = 0.
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(iii)=⇒ (iv) For every vector �eld Y on M ,

(LXcθE)(Y c) = Xc(θEY
c)− θE([Xc, Y c])

= Xc(dJE(Y c))− dJE([X, Y ]c) = Xc(Y vE)− [X, Y ]vE

= [Xc, Y v]E + Y v(XcE)− [X, Y ]vE
(7.22 b)

= Y v(XcE) = 0.

Since, as can easily be seen, LZcθE � Xv(
◦
TM) = 0 for every Z ∈ X(M),

our implication follows.

(iv)=⇒(vi) Indeed, LXcωE
(15.6)
= LXcdθE

(5.17)
= dLXcθE

(iv)
= 0.

(vi)=⇒ (ii) For any vector �elds ξ, η on
◦
TM , (L̃Xcg)(jξ, jη)

(15.9)
=

(L̃XcωE)(Jξ, η)
(vi)
= 0

(iv)⇐⇒ (v) This is clear from (15.5).

(i)=⇒ (iii) Let (ϕt) be the local one-parameter group of X. Then, by
Lemma 7.5.1, the local one-parameter group of Xc is ((ϕt)∗). Thus

XcF
(4.6)
= lim

t→0

1

t
(F ◦ (ϕt)∗ − F )

(i)
= 0.

(iii)=⇒ (i) Let, as above, (ϕt) be the local one-parameter group of X.
If XcF = 0, then

lim
t→0

F ◦ (ϕt)∗ − F
t

= 0. (∗)

Given a tangent vector v ∈
◦
T pM , de�ne the function

f : Ip → R, t 7→ f(t) := F ◦ (ϕt)∗(v),

where Ip is the domain of the maximal integral curve of X. At every
to ∈ Ip,

f ′(to) = lim
t→to

f(t)− f(to)

t− t0
= lim

t→t0

F ◦ (ϕt)∗(v)− F ◦ (ϕto)∗(v)

t− t0
.

Let, for a moment, u := (ϕto)∗(v). Then

v = (ϕ−to)∗(u) (ϕt)∗(v) = (ϕt−t0)∗(u).

so we obtain that

f ′(to) = lim
t−to→0

F ((ϕt−to)∗(u))− F (u)

t− to
(∗)
= 0. (16.10)
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Thus f is a constant function. Since

f(0) = F ((ϕ0)∗(v)) = F (v),

it follows that F ◦ (ϕt)∗(v) = F (v) for all t ∈ Ip. This �nishes the
proof.

Remark 16.4.2. Let (M,F ) be a Finsler manifold, S its canonical
spray, and let ϕ ∈ Diff(M). It was proved in [4] that if ϕ is an isometry
of (M,F ), then it is an automorphism of S, i.e., ϕ∗∗ ◦S = S ◦ϕ∗. From
this it follows immediately that every Killing vector �eld of (M,F ) is
a Lie symmetry of the canonical spray of (M,F ), i.e.,

KillF (M) ⊂ LieS(M). (16.11)

Proposition 16.4.3. Let (M,F ) be a Finsler manifold. If X is a Lie
symmetry of the canonical spray of (M,F ), then

L̃XcL[ = ∇hL̃Xcg. (16.12)

Proof. We recall that by Theorem 13.4.5 ,

X ∈ LieS(M) ⇐⇒ [Xc, Y h] = [X, Y ]h for all Y ∈ X(M).

We shall use this at step (∗) in our calculation below. To begin with,
let Y, Z, U be vector �elds on M . Next we calculate:

(L̃XcL[)(Ŷ , Ẑ, Û) = (L̃Xc(∇hg))(Ŷ , Ẑ, Û)
(11.13)

= L̃Xc((∇hg)(Ŷ , Ẑ, Û))

− (∇hg)(L̃XcŶ , Ẑ, Û)− (∇hg)(Ŷ , L̃XcẐ, Û)− (∇hg)(Ŷ , Ẑ, L̃XcÛ)

(11.5 b)
= L̃Xc((∇Y hg)(Ẑ, Û))− (∇[X,Y ]hg)(Ẑ, Û)− (∇Y hg)(L̃XcẐ, Û)

− (∇Y hg)(Ẑ, L̃XcÛ) = L̃Xc(∇Y h(g(Ẑ, Û))− L̃Xc(g(∇Y hẐ, Û))

− L̃Xc(g(Ẑ,∇Y hÛ))−∇[X,Y ]h(g(Ẑ, Û)) + g(∇[X,Y ]hẐ, Û)

+ g(Ẑ,∇[X,Y ]hÛ)−∇Y h(g(L̃XcẐ, Û)) + g(∇Y h(L̃XcẐ)), Û)

+ g(L̃XcẐ,∇Y hÛ)−∇Y h(g(Ẑ, L̃XcÛ)) + g(∇Y hẐ, L̃XcÛ)

+ g(Ẑ,∇Y h(L̃XcÛ))
(13.30),(13.29)

= ∇Y h(L̃Xc(g(Ẑ, Û))) + L̃[Xc,Y h](g(Ẑ, Û))

− L̃Xc(g(∇Y hẐ, Û))− L̃Xc(g(Ẑ,∇Y hÛ))− L̃[X,Y ]h(g(Ẑ, Û))
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+ g(∇[X,Y ]hẐ, Û) + g(Ẑ,∇[X,Y ]hÛ)−∇Y h(g(L̃XcẐ, Û))

+ g(∇Y h(L̃XcẐ)), Û) + g(L̃XcẐ,∇Y hÛ)−∇Y h(g(Ẑ, L̃XcÛ))

+ g(∇Y hẐ, L̃XcÛ) + g(Ẑ,∇Y h(L̃XcÛ))
(13.30);(∗)

= ∇Y h((L̃Xcg)(Ẑ, Û))

− L̃Xc(g(∇Y hẐ, Û))− L̃Xc(g(Ẑ,∇Y hÛ)) + g(L̃[Xc,Y h]Ẑ, Û)

+ g(Ẑ, L̃[Xc,Y h]Û) + g(L̃Xc(∇Y hẐ), Û)− g(L̃[Xc,Y h]Ẑ, Û)

+ g(L̃XcẐ,∇Y hÛ) + g(∇Y hẐ, L̃XcÛ) + g(Ẑ, L̃Xc(∇Y hÛ))

− g(Ẑ, L̃[Xc,Y h]Û)) = ∇Y h((L̃Xcg)(Ẑ, Û))− (L̃Xcg)(∇Y hẐ, Û)

− (L̃Xcg)(Ẑ,∇Y hÛ) =: (∇h(L̃Xcg))(Ŷ , Ẑ, Û).

This proves (16.12).

Proposition 16.4.4. If X is a Killing vector �eld of (M,F ), then

L̃XcC[ = 0, L̃XcC = 0; (16.13 a-b)

L̃XcL[ = 0, L̃XcL = 0. (16.14 a-b)

Proof. First we recall that X ∈ KillF (M) ⇐⇒ L̃Xcg = 0 by Lemma
16.4.1, and X ∈ KillF (M) =⇒ X ∈ LieSM by Remark 16.4.2. Thus
(16.13 a) follows from (15.22), (16.13 b) is a consequence of (16.13 a)
and (15.23). Equality (16.14 a) can be seen from (16.12), and, �nally
(16.14 b) is an immediate consequence of (16.14 a) and (15.24).

Theorem 16.4.5. If X is a Killing vector �eld of a Finsler manifold,
then X is also a D-Killing �eld, where D ∈ {∇, DC , DCh, DHs}.

Proof. Let X ∈ KillF (M). Then we also have X ∈ LieS(M) (Remark
16.4.2), so by Theorem 13.4.5, L̃Xc∇ = 0. We show that L̃XcDC = 0.

For every ξ ∈ X(
◦
TM) and Y ∈ X(M),

(L̃XcDC)(ξ, Ŷ )
(11.13)

:= L̃Xc(DC
ξ Ŷ )−DC

L̃Xcξ
Ŷ −DC

ξ (L̃XcŶ )

(15.18)
= L̃Xc(∇ξŶ ) +

1

2
L̃Xc(C(Vξ, Ŷ )) +

1

2
L̃Xc(L(jξ, Ŷ ))−∇L̃XcξŶ

− 1

2
C(V(L̃Xcξ), Ŷ )− 1

2
L(j(L̃Xcξ), Ŷ )−∇ξL̃XcŶ − 1

2
C(Vξ, L̃XcŶ )

− 1

2
L(jξ, L̃XcŶ ) = (L̃Xc∇)(ξ, Ŷ ) +

1

2
(L̃XcC)(Vξ, Ŷ ) +

1

2
(L̃XcL)(jξ, Ŷ )

Theo.13.4.5, Prop.16.4.4
= 0.

We obtain in the same way that L̃XcDCh = 0 and L̃XcDHs = 0.
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17 Conformal and projective vector �elds

on a Finsler manifold

17.1 Motivated by (16.7), we say thatX ∈ X(M) is a conformal vector

�eld of (M,F ) if there exists a function σ ∈ C0(TM)∩C∞(
◦
TM) such

that

L̃Xcg = σg. (17.1)

Here g is the fundamental tensor of (M,F ); the function σ is called the
conformal function of X (cf. 6.3). We have chosen this de�nition for
the sake of simplicity. Of course, the conformal property of X can also
be expressed in terms of the local �ow of X. If, in particular,

L̃Xcg = αg, α ∈ R (17.2)

then X is called a homothetic vector �eld of (M,F ). When α = 0, X is
a Killing vector �eld by Lemma 16.4.1. We denote by ConfF (M) and
DilF (M) the sets of conformal and homothetic vector �elds of (M,F ),
respectively. Obviously,

KillF (M) ⊂ DilFM ⊂ ConfF (M).

A vector �eld X on M is called a projective vector �eld of (M,F ) if

[Xc, S] = ϕC for some ϕ ∈ C0(TM) ∩ C∞(
◦
TM), (17.3)

where S is the canonical spray of (M,F ). For the geometric meaning
of this condition and some equivalent conditions we refer to section 7
of Lovas's paper [17]. The set of projective vector �elds of (M,F ) will
be denoted by ProjF (M). By Theorem 13.4.5, LieS(M) ⊂ ProjF (M).

Lemma 17.1.1. Let X be a conformal vector �eld of a Finsler mani-
fold with conformal function σ. Then

XcE = σE, (17.4)

and the conformal function is the vertical lift of a smooth function on
M .

Proof. 2XcE
(15.2)
= Xc(g(δ̃, δ̃)) = (L̃Xcg)(δ̃, δ̃) + 2g(L̃Xc δ̃, δ̃)

(17.1), (11.5 a)
=

σg(δ̃, δ̃) = 2σE, whence (17.4). Applying this observation, we �nd
that C(XcE) = C(σE) = (Cσ)E + 2σE. On the other hand,

C(XcE) = [C,Xc]E +Xc(CE)
(7.23 b)

= 2XcE
(17.4)
= 2σE.
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From these we conclude that Cσ = 0, and hence σ is 0+-homogeneous.
This implies by 7.7.2 (ii) that there exists a smooth function f on M
such that σ = f ◦ τ .

The following result is the promised generalization of Lemma 16.4.1.
Its proof is similar to the proof of the lemma, but the technical details
are a little more complicated.

Theorem 17.1.2. Let (M,F ) be a Finsler manifold. For a vector �eld
X on M , the following conditions are equivalent:

(i) X is a conformal vector �eld with conformal function σ;

(ii) XcE = σ E, σ ∈ C0(TM) ∩ C∞(
◦
TM);

(iii) LXcθE = σ θE, σ ∈ C0(TM) ∩ C∞(
◦
TM);

(iv) L̃Xcθg = σ θg, σ ∈ C0(TM) ∩ C∞(
◦
TM);

(v) LXcωE = f v ωE + df v ∧ dJE, f ∈ C∞(M).

Proof. The arrangement of our argument is displayed by the following
diagram:

(i) =⇒ (ii)

=
⇒ ⇐
=

(v) ⇐= (iii) ⇐⇒ (iv).

(i)=⇒ (ii) This has already been proved above.
(ii)=⇒ (iii) It can immediately be seen that

(LXcθE − σθE) � Xv(
◦
TM) = 0. (17.5)

On the other hand, for every vector �eld Y on M , (L̃XcθE)(Y c) =
Y v(XcE) (see the proof of (iii)=⇒ (iv) in Lemma 16.4.1). In our case,

Y v(XcE)
(ii)
= Y v(σE) = (Y vσ)E + σY vE.

We saw in the proof of Lemma 17.1.1 that XcE = σE implies that σ
is a vertical lift. So we have Y vσ = 0, therefore

(LXcθE)(Y c) = σ(Y vE) = σdJE(Y c).

This concludes the proof of the implication.
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(iii)=⇒ (v) LXcωE = LXcd θE
(5.17)
= dLXcθE

(iii)
= d(σ θE) = d σ ∧ θE +

σ d θE = σ ωE + dσ ∧ dJE.
It remains to show that the function σ is a vertical lift. To do this,

we evaluate both sides of (iii) at an arbitrary spray S. Then, one hand,

(LXcθE)(S) = Xc(θE(S))− θE([Xc, S]) = Xc(dE(JS))− dE(J[Xc, S])

Lemma 12.1.1 (ii)
= 2XcE.

On the other hand (σθE)(S) = σdJE(S) = 2σE, so it follows that
XcE = σE. This implies (see above) that σ = f v, f ∈ C∞(M).

(v)=⇒ (i) For any vector �elds ξ, η on
◦
TM,

(L̃Xcg)(jξ, jη)
(15.9)
= (LXcωE)(Jξ, η)

(v)
= (f v ωE + (d f v) ∧ dJE)(Jξ, η)

= f vωE(Jξ, η) + df v(Jξ)dJE(η)− df v(η)dJE(Jξ) = f vωE(Jξ, η)

+ (Jξ)(f v)dJE(η)− df v(η)(J2ξ)E = f vg(jξ, jη),

because the vertical vector �elds kill the vertical lifts of smooth func-
tions on M and J2 (8.12 b)

= 0. This proves what we wanted.

(iii)⇐⇒ (iv) If LXcθE = σ θE, then for any vector �eld ξ on
◦
TM ,

(L̃Xcθg)(jξ)
(15.5)
= (LXcθE)(ξ)

(iii)
= (σ θE)(ξ)

(15.5)
= σ θg(jξ),

so we have L̃Xcθg = σ θg. The reverse of the implication can be proved
in the same way.

This concludes the proof of the theorem.

We note that relation (v), as a characterization of conformal vector
�elds on a Finsler manifold, was �rst announced by J. Grifone [13]. In
terms of the local �ow (ϕt) of X, condition (ii) can be expressed as
follows:

E ◦ (ϕt)∗ = (exp ◦ tf v)E, f ∈ C∞(M),

for every possible t ∈ R; cf. the equivalence (i)⇐⇒ (iii) and its proof
in Lemma 16.4.1.

The above theorem was obtained in 2011. Two years later, our
condition (ii) was also be found by Libing Huang and Xiaohuan Mo
[15]. From Theorem 17.1.2 we obtain immediately the next

Corollary 17.1.3. If (M,F ) is a Finsler manifold and X ∈ X(M),
then the following conditions are equivalent:
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(i) X ∈ DilF (M), i.e., L̃Xcg = α g, for some α ∈ R;

(ii) the energy function associated to F is an eigenfunction of Xc

with eigenvalue α, i.e., XcE = αE;

(iii) LXcθE = α θE;

(iv) L̃Xcθg = α θg;

(v) LXcωE = αωE.

In conditions (iii)-(v), α is a real number. With the choice α := 0 we
re-obtain a part of Lemma 16.4.1.

17.2 In this concluding subsection we mainly deal with vector �elds
on M which have at least two of the properties `Lie symmetry', `con-
formal', `projective', or one of them together with some additional
property.

Theorem 17.2.1. Let (M,F ) be a Finsler manifold. If a vector �eld
X on M is a conformal vector �eld of (M,F ) and, at the same time,
X is a Lie symmetry of the canonical spray of (M,F ), then Xc is a

conformal vector �eld on the Riemannian manifold (
◦
TM, gS), where

gS is the Sasaki-Finsler metric de�ned by (15.14). Brie�y,

X ∈ ConfF (M) ∩ LieS(M) =⇒ Xc ∈ ConfgS(
◦
TM). (17.6)

Conversely, if Xc is a conformal vector �eld of the Riemannian man-

ifold (
◦
TM, gS), then X is a conformal vector �eld of (M,F ):

Xc ∈ ConfgS(
◦
TM) =⇒ X ∈ ConfF (M). (17.7)

Proof. Suppose �rst that X ∈ ConfF (M)∩LieS(M). We calculate the

Lie derivative LXcgs. For any vector �elds ξ, η on
◦
TM ,

(LXcgS)(ξ, η) = LXc(gS(ξ, η))− gS(LXcξ, η)− gS(ξ,LXcη)

(15.14)
= LXc(g(jξ, jη)) + LXc(g(Vξ,Vη))− g(jLXcξ, jη)− g(VLXcξ,Vη)

− g(jξ, jLXcη)− g(Vξ,VLXcη)
(11.8), (13.43)

= L̃Xc(g(jξ, jη))

+ L̃Xc(g(Vξ,Vη))− g(L̃Xc(jξ), jη)− g(L̃Xc(Vξ),Vη)

− g(jξ, L̃Xc(jη))− g(Vξ, L̃Xc(Vη)) = (L̃Xcg)(jξ, jη)

+ (L̃Xcg)(Vξ,Vη)
(17.1)
= σg(jξ, jη) + σg(Vξ,Vη) = σgS(ξ, η).
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which proves that Xc is a conformal vector �eld of (
◦
TM, gS).

Conversely, suppose that Xc ∈ ConfgS(
◦
TM). Then

2σ E = σ g(δ̃, δ̃) = σ g(VC,VC) = σ gS(C,C)
condition

= (LXcgS)(C,C)

= Xc(gS(C,C))− 2gS([Xc, C], C) = Xc(gS(C,C)) = Xcg(δ̃, δ̃)

= 2XcE,

so we have XcE = σE. Thus, by Theorem (17.1.2), X is a conformal
vector �eld of (M,F ).

Theorem 17.2.2. Any homothetic vector �eld of a Finsler manifold is
a Lie symmetry of the canonical spray of the Finsler manifold. Brie�y,

X ∈ DilF (M) =⇒ X ∈ LieS(M.) (17.8)

Proof. If X ∈ DilF (M), then by Corollary 17.1.3, XcE = αE, or,
equivalently, LXc ωE = αωE for some real number α. Thus

LXcdE = d(XcE) = α dE
(15.12)

= −α iS ωE = −iS(αωE) = −iS (LXcωE)

(5.14)
= −LXciS ωE + i[Xc,S]ωE = LXcdE + i[Xc,S]ωE,

therefore i[Xc,S]ωE = 0. Since ωE is non-degenerate, this implies that
[Xc, S] = 0, and hence X ∈ LieS(M).

This result, published in 2011 in our paper [30], was rediscovered
by Tian Huang-jia a few years later, see [33], Corollary 1.1.

Lemma 17.2.3. If X is a conformal vector �eld of the Finsler mani-
fold (M,F ) with conformal function σ, then the divergence of Xc with
respect to the Dazord volume form w (15.1.2) is

divXc = nσ. (17.9)

Proof. Choose a frame (Xi)
n
i=1 on an open subset U of M . Then the

family (Xv
i , X

c
i )
n
i=1 is a frame on τ−1(U) ⊂ TM , and it can be shown

by an inductive argument that

(LXcωE)(Xv
1 , X

c
1, ..., X

v
n, X

c
n) = nσ ωE(Xv

1 , X
c
1, ..., X

v
n, X

c
n).

This implies our claim.
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Theorem 17.2.4. Let (M,F ) be a connected Finsler manifold. If a
vector �eld X on M is both a projective and a conformal vector �eld
of (M,F ), then it is a homothetic vector �eld, i.e.,

X ∈ ProjF (M) ∩ ConfF (M) =⇒ X ∈ DilF (M). (17.10)

Proof. Since X ∈ ProjF (M),

[Xc, S] = ψ C, for some ψ ∈ C0(TM) ∩ C∞(
◦
TM), (∗)

where S is the canonical spray of (M,F ). On the other hand, by our
condition X ∈ ConfF (M), Theorem 17.1.2 and Lemma 17.1.1

XcE = f vE, f ∈ C∞(M). (∗∗)

Thus we �nd

2ψE = ψ(CE)
(∗)
= [Xc, S]E = Xc(SE)− S(XcE)

(∗∗)
= Xc(SE)

− (Sf v)E − f v(SE)
Lemma 12.1.1(i)

= −f cE +Xc(SE)− f v(SE)

= −f cE.

In the last step we used the fact that S is horizontal with respect to
the canonical connection of (M,F ) (see, e.g., [29] Corollary 7.3.6 ), so

we have SE
15.1.3

= S(FS) = 0. Our result 2ψE = −f cE implies that
ψ = −1

2
f c. Hence equality (∗) takes the form

[Xc, S] = −1

2
f cC. (∗∗∗)

Now we calculate the divergence of both sides of (∗∗∗) with respect to
the Dazord volume form w. Applying the formula can be found in [1],
6.5 F,

div[Xc, S] = Xc divS − S divXc (15.15 b), (17.9)
= = −nf c.

As to the right-hand side, we have

div(−1

2
f cC)

†
=

1

2
f c divC − 1

2
Cf c (15.11), (7.11)

= −n
2
f c − 1

2
f c

= −1

2
(n+ 1)f c.

Here, at step †, we used formula (8.4.28) in [29]. So it follows
(n − 1)f c = 0, whence f c = 0 (because n = 2). This implies by
the connectedness of M that f is a constant function. So the confor-
mal function f v of X is also constant, and hence X ∈ DilF (M).
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We note that this result, which is an in�nitesimal version of Theo-
rem 2 in [32], was also rediscovered by Tian ([33], Corollary 1.2).

Theorem 17.2.5. Let (M,F ) be a Finsler manifold. Suppose that a
vector �eld X on M preserves the Dazord volume form w of (M,F ),
i.e., LXcw = 0. If, in addition,

(i) X is a projective vector �eld, then X is a Lie symmetry of the
canonical spray of (M,F );

(ii) X is a conformal vector �eld, then X is a Killing vector �eld of
(M,F ).

Proof. Note �rst that our condition LXcw = 0 implies that divXc = 0.
(i) Let X ∈ ProjF (M). Then

[Xc, S] = ψ C, ψ ∈ C0(TM) ∩ C∞(
◦
TM), (∗)

where S is the canonical spray of (M,F ). As a �rst step, we show that

C ψ = ψ over
◦
TM. (∗∗)

Using the Jacobi identity,

0 = [C, [Xc, S]] + [Xc, [S,C]] + [S, [C,Xc]] = [C, [Xc, S]]− [Xc, S],

hence
[Xc, S] = [C, [Xc, S]]

(∗)
= [C,ψ C] = (Cψ)C.

Comparing this to (∗), we obtain (∗∗).
Now, as in the proof of the preceding theorem, we calculate the

divergence of both sides of (∗). Since in our case divXc = divS = 0,
we have on the one hand

div[Xc, S] = Xc(divS)− S div(Xc) = 0.

On the other hand,

div(ψ C) = ψ divC + C ψ
(15.11), (∗∗)

= (n+ 1)ψ.

So it follows that ψ = 0, hence [Xc, S] = 0. Thus X ∈ LieS(M).
(ii) We suppose that X ∈ ConfF (M). Then, by Theorem 17.1.2 and
Lemma 17.1.1, XcE = f vE, wheref ∈ C∞(M). Since

n f v (17.9)
= divXc condition

= 0,

it follows that XcE = 0, and hence XcF = 0. So, by Lemma 16.4.1,
X ∈ KillF (M).

This concludes the proof of the theorem.
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Part V

Summaries

18 Summary

18.1 Notation and background

18.1.1 Let V be a module over a ring R and let k ∈ N. The R-module
of k-linear mappings V k → R (resp. V k → V ) is denoted by Tk(V )
(resp. T 1

k (V )); T0(V ) := R, T 1
0 (V ) := V . Then T1(V ) =: V ∗ is the

dual of V , T 1
1 (V ) =: End(V ) is the ring of endomorphisms of V .

18.1.2 Throughout, M is an n-dimensional smooth manifold where
n = 1 or n = 2. The symbols C∞(M) and X(M) stand for the ring
of smooth functions on M and the C∞(M)-module of vector �elds on
M , respectively. We write

Tk(M) := Tk(X(M)), T1
k(M) := T 1

k (X(M)),

Ak(V ) := {α ∈ Tk(M)| α is alternating},
A1
k(M) := {β ∈ T1

k(M)| β is alternating}.
Then A(M) := ⊕nk=0Ak(M) is the Grassmann algebra of M . We
agree that Ak(M) := {0} if k is a negative integer. An R-linear
transformation D is a graded derivation of A(M) of degree r ∈ Z
if D(Ak(M)) ⊂ D(Ak+r(M)), and

D(α ∧ β) = (Dα) ∧ β + (−1)krα ∧Dβ; α ∈ Ak(M), β ∈ A(M),

where ∧ denotes wedge product. The classical graded derivations
of A(M) are the substitution operator iX , the Lie derivative LX
(X ∈ X(M)) and the exterior derivative d of degree -1, 0 and 1, re-
spectively.

18.1.3 The tangent bundle of M is τ : TM → M , the slit tangent

bundle is
◦
τ :

◦
TM → M , where

◦
TM ⊂ TM is the open set of nonzero

tangent vectors to M and
◦
τ := τ �

◦
TM . The derivative of a smooth

mapping ϕ : M → N is denoted by ϕ∗, it maps TM into TN . A vector

�eld ξ on TM (or on
◦
TM) is projectable if there exists a vector �eld

X on M such that τ∗ ◦ ξ = X ◦ τ . If τ∗ ◦ ξ = o ◦ τ , where o ∈ X(M) is
the zero vector �eld, then ξ is called vertical. We use the notation

Xproj(TM) := {ξ ∈ X(TM)| ξ is projectable},
Xv(TM) := {ξ ∈ X(TM)| ξ is vertical}.
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18.1.4 Let f ∈ C∞(M), X ∈ X(M). Then f v := f ◦ τ ∈ C∞(TM) is
the vertical lift of f , the smooth function

f c : TM → R, v 7→ f c(v) := v(f) ∈ R

is the complete lift of f . The vertical lift Xv ∈ Xv(TM) and the
complete lift Xc ∈ X(TM) are the unique vector �elds on TM such
that for every smooth function f on M ,

Xvf c = (Xf)v, Xvf v = 0; Xcf c = (Xf)c, Xcf v = (Xf)v.

The Liouville vector �eld C ∈ Xv(TM) is the unique vertical vector
�eld on TM such that Cf c = f c for all f ∈ C∞(M). A function

F ∈ C∞(
◦
TM) is k+-homogeneous if CF = kF (k ∈ Z).

18.1.5 The vector bundles

π : TM ×M TM → TM and
◦
π :

◦
TM ×M TM →

◦
TM

are the Finsler bundles over TM and
◦
TM , respectively. The �-

bre, e.g., of π over v ∈ TM is the n-dimensional real vector space
{v} × Tτ(v)M ∼= Tτ(v)M . The modules of smooth sections of these vec-

tor bundles are denoted by Γ(π) and Γ(
◦
π), respectively, and their ele-

ments are called Finsler vector �elds. The elements of

Tk(Γ(
◦
π)) ∪ T 1

k (Γ(
◦
π)) (k ∈ N)

are called Finsler tensor �elds on
◦
TM . We use the following typogra-

phy:

X, Y, . . .− vector �elds on M,

ξ, η, . . . − vector �elds on TM (or on
◦
TM),

X̃, Ỹ , . . .− Finsler vector �elds,

X̂, Ŷ , . . .− basic Finsler vector �elds,

δ̃ − the canonical section in Γ(π).

Here X̂(v) := (v,X(τ(v))), δ̃(v) := (v, v) (v ∈ TM).

18.1.6 We have the exact sequence of C∞(TM)-homomorphisms

0→ Γ(π)
i→ X(TM)

j→ Γ(π)→ 0,
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where i(X̂) = Xv; j(Xv) = 0, j(Xc) = X̂ (X ∈ X(M)), therefore

Im(i) = Ker(j) = Xv(TM).

We have C = i(δ̃). The vertical endomorphism of X(TM) is J := i ◦ j.
It induces graded derivation dJ of degree 1 of A(M) speci�ed by

dJF := dF ◦ J, dJdF := ddJF (F ∈ C∞(TM)).

18.1.7 We use the operator ∇v of the (canonical) vertical derivative.
It is de�ned in the following steps:

∇v
X̃
F := (iX̃)F (F ∈ C∞(TM));

∇v
X̃
Ỹ := j[iX̃, η], η ∈ X(TM) is such that jη = Ỹ ;

(∇v
X̃
A)(Ỹ1, . . . Ỹk) := ∇v

X̃
(A(Ỹ1, . . . , Yk))−

k∑
i=1

A(Ỹ1, . . . ,∇v
X̃
Ỹi, . . . Ỹk),

A ∈ Tk(Γ(π)) ∪ T 1
k (Γ(π)).

18.1.8 An Ehresmann connection in
◦
TM is a C∞(

◦
TM)-linear map-

ping H : Γ(
◦
π)→ X(

◦
TM) such that j ◦ H = 1

Γ(
◦
π)
.

Data: h := H ◦ j and v = 1
X(
◦
TM)
− h are the horizontal and verti-

cal projection associated to H, V := i−1 ◦ v is the vertical mapping,
Xh := H(X̂) = hXc is the (H−)horizontal lift of X. An Ehresmann
connection H is homogeneous if [C,Xh] = 0 for all X ∈ X(M). The
h-Berwald derivative ∇h induced by H is de�ned in the following steps:

∇h
X̃
F := (HX̃)F (F ∈ C∞(

◦
TM)); ∇h

X̃
Ỹ := V [HX̃, iỸ ];

(∇h
X̃
A)(Ỹ1, . . . , Ỹk) := ∇h

X̃
(A(Ỹ1, . . . , Ỹk))−

k∑
i=1

A(Ỹ1, . . . ,∇h
X̃
Ỹi, . . . , Ỹk).

The mapping

∇ : (ξ, Ỹ ) ∈ X(
◦
TM)× Γ(

◦
π) 7→ ∇ξỸ := ∇v

VξỸ +∇h
jξỸ ∈ Γ(

◦
π)

is a covariant derivative, the Berwald derivative on
◦
π.

18.1.9 A mapping S : TM → TTM is a semispray for M if it is of

class C1, smooth on
◦
TM and satis�es the conditions τTM ◦ S = 1TM ,
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JS = C. If [C, S] = S, then S is called a spray. Every semispray
induces an Ehresmann connection H such that

H(X̂) =
1

2
(Xc + [Xv, S]), X ∈ X(M).

This connection is torsion-free in the sense that

∇H(X̃)Ỹ −∇H(Ỹ )X̃ = j[H(X̃),H(Ỹ )]; X̃, Ỹ ∈ Γ(
◦
π).

If S is a spray, then H is a homogeneous and is called the Berwald
connection of the spray manifold (M,S).

18.2 Results

18.2.1 Lie derivatives on a Finsler bundle Given a projectable
vector �eld ξ ∈ Xproj(TM), we de�ne the Lie derivatives of Finsler
tensor �elds with respect to ξ in the following steps:

L̃ξF := LξF = ξF (F ∈ C∞(TM)); L̃ξỸ := i−1[ξ, iỸ ];

(L̃ξA)(Ỹ1, . . . , Ỹk) := L̃ξ(A(Ỹ1, . . . , Ỹk))−
k∑
i=1

A(Ỹ1, . . . , L̃ξỸi, . . . , Ỹk)

if A ∈ Tk(Γ(π)) ∪ T 1
k (Γ(π)).

If H is an Ehresmann connection in
◦
TM , then we de�ne its Lie

derivative L̃ξH by (L̃ξH)(Ỹ ) := Lξ(H(Ỹ ))−H(L̃ξỸ ). The Lie deriva-
tive of a covariant derivativeD : X(TM)×Γ(π)→ Γ(π), (η, Z̃) 7→ DηZ̃
with respect to ξ is the mapping{

L̃ξD : X(TM)× Γ(π)→ Γ(π), (η, Z̃) 7→ (L̃ξD)(η, Z̃),

(L̃ξD)(η, Z̃) := L̃ξ(DηZ̃)−D[ξ,η]Z̃ −Dη(L̃ξZ̃).

We derived the useful formulae:

(1) [L̃ξ, L̃η] = L̃[ξ,η];

(2) L̃XcŶ = [̂X, Y ];
(3)L̃Xc δ̃ = 0;
(4)L̃Xc � Γ(π) = ∇v

X̂
� Γ(π);

(5) i ◦ L̃Xc = LXc ◦ i;
(6) L̃Xc ◦ j = j ◦ LXc ;
(7)L̃Xc ◦ ∇v

Ŷ
−∇v

Ŷ
◦ L̃Xc = L̃[X,Y ]v ;

(8) L̃Xh � Γ(
◦
π) = ∇h

X̂
� Γ(

◦
π);
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(9) L̃Xc ◦ ∇h
Ŷ
−∇h

Ŷ
◦ L̃Xc = L̃[Xc,Y h].

In the formulas above, ξ, η ∈ Xproj(TM); X and Y are vector �elds on
M . In (8) and (9) we assume that an Ehresmann connection is also

speci�ed in
◦
TM .

We showed that the vanishing of L̃XcỸ has the following dynamical
interpretation:

Theorem 1. Let (ϕt) be the local �ow of X. Then L̃XcỸ = 0 if, and
only if, Ỹ is invariant under (ϕt), i.e.,

((ϕt)∗ × (ϕt)∗) ◦ Ỹ = Ỹ ◦ (ϕt)∗,

for every stage ϕt of the �ow.

18.2.2 H-Killing vector �elds Let an Ehresmann connection

H : Γ(
◦
π)→ X(

◦
TM) be given. Note �rst that for every ξ ∈ Xproj(

◦
TM),

the mapping L̃ξH : Γ(
◦
π) → X(

◦
TM), Ỹ 7→ (L̃ξH)(Ỹ ) is C∞(

◦
TM)-

linear. If X ∈ X(M), then j ◦ L̃Xc = 0, so the Lie derivative of
an Ehresmann connection is de�nitely not an Ehresmann connection.
We say that a vector �eld X on M is H-Killing and we write that
X ∈ KillH(M), if H is invariant under the local �ow of X in the sense
that (ϕt)∗∗ ◦ H = H ◦ ((ϕt)∗ × (ϕt)∗), for every stage ϕt of the �ow of

X. (Here H is interpreted as a strong bundle map from
◦
TM ×M TM

in T
◦
TM .) We have proved:

Theorem 2. For a vector �eld X on M , the following are equivalent:

(1) X ∈ KillH(M), i.e., X is a H-Killing vector �eld,

(2) For every stage ϕt of the local �ow of X,

(ϕt)∗∗ ◦ h = h ◦ (ϕt)∗∗,

where h is the horizontal projection associated to H,

(3) L̃XcH = 0,

(4) LXch = 0.

If one (and hence all) of (1)-(4) is satis�ed, then locally we have

XcN i
j = Nk

j

(
∂X i

∂uk
◦ τ
)
−N i

k

(
∂Xk

∂uj
◦ τ
)
− yk

(
∂2X i

∂uj∂uk
◦ τ
)
,
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where X i ∈ C∞(U) are the components of X relative to a chart
(U , (ui)ni=1) of M , and (N i

j) is the family of Christo�el symbols of H
relative to the induced chart (τ−1(U), ((xi)ni=1, (y

i)ni=1)) on TM .

18.2.3 Lie symmetries Let S be a semispray for M . A vector �eld
X onM is a Lie symmetry of S, if S is invariant under the local �ow of
Xc, i.e., (ϕt)∗∗ ◦S = S ◦ (ϕt)∗ for every stage ϕt of the �ow of X. Then
we write X ∈ LieS(M). It is clear from the dynamical interpretation
of the classical Lie derivative that

X ∈ LieS(M) ⇐⇒ [Xc, S] = 0.

We have: LieS(M) ⊂ KillH(M), where H is the Ehresmann connec-
tion induced by S.

Theorem 3. Let (M,S) be a spray manifold, endowed with the
Berwald connection H and the Berwald derivative ∇ induced by H.
For a vector �eld X on M , the following are equivalent:

(1) X ∈ LieS(M), (6) LXcv = 0,
(2) [Xc, S] = 0, (7) L̃Xc∇ = 0,
(3) X ∈ KillH(M), (8) [Xc, Y h] = [X, Y ]h,
(4) L̃XcH = 0, (9) [L̃Xc , L̃Y h ] = L̃[X,Y ]h,
(5) LXch = 0, (10) L̃Xc ◦ V = V ◦ LXc .

In conditions (8) and (9), Y is any vector �eld on M . We note
that the equivalence of (1), (5) and (7) has already been proved by
R. L. Lovas [17].

18.2.4 Curvature collineations Let (M,S) be a spray manifold.
(A) The Finsler tensor �elds K, R, H de�ned by

K(X̃) := V [S,H(X̃)],

R(X̃, Ỹ ) :=
1

3
(∇vK(X̃, Ỹ )−∇vK(Ỹ , X̃)),

H(X̃, Ỹ )Z̃ := −∇vR(Z̃, X̃, Ỹ )

are the Jacobi endomorphism (or a�ne deviation), the fundamental
a�ne curvature and the a�ne curvature of (M,S), respectively. If
C ∈ {K,R,H} and L̃XcC = 0, then we say that X is a curvature
collineation of C.

Theorem 4. A vector �eld X on M is a curvature collineation of the
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Jacobi endomorphism of (M,S) if, and only if, K is invariant under
the local �ow of X in the sense that

((ϕt)∗ × (ϕt)∗) ◦K = K ◦ ((ϕt)∗ × (ϕt)∗)

for every stage ϕt of the local �ow. (Here K is interpreted as a strong
bundle endomorphism of

◦
π.)

Theorem 5. If X ∈ LieSM , then X is a curvature collineation of K,
R and H.
(B) A Finsler tensor �eld constructed from S is called projectively
invariant if it remains invariant under the projective changes

S  S − 2PC, P ∈ C∞(
◦
TM)

of S. The fundamental projectively invariant tensors of (M,S) are
the Weyl tensors W1, W2, W3 and the Douglas tensor D de�ned as
follows:

W1 := K−K 1
Γ(
◦
π)
− 1

n+ 1
(tr∇vK−∇vK)⊗ δ̃ (K :=

1

n− 1
trK),

W2(X̃, Ỹ ) :=
1

3
(∇vW1(X̃, Ỹ )−∇v W1(Ỹ , X̃)),

W3(X̃, Ỹ )Z̃ := ∇vW2(Z̃, X̃, Ỹ ),

D := B− 1

n− 1
((∇vtrB)⊗ δ̃ + (trB)� 1

Γ(
◦
π)

).

In the last formula, B is the Berwald tensor of (M,S) given by
B(X̂, Ŷ )Ẑ := (∇v∇hẐ)(X̂, Ŷ ), and the symbol � means symmetric
product without numerical factor.

Theorem 6. If X ∈ LieS(M), then L̃XcWi = 0, i ∈ {1, 2, 3}.

Theorem 7. If X ∈ LieS(M), then L̃XcB = 0, which implies that
L̃XcD = 0.

18.2.5 Geometric vector �elds on a Finsler manifold A posi-
tive continuous function F : TM → R is a Finsler function for M if it
is smooth on

◦
TM , 1+-homogeneous and the fundamental tensor

g :=
1

2
∇v∇vF 2 =: ∇v∇vE

is �brewise non-degenerate. A Finsler manifold is a pair (M,F ) with
M a manifold and F a Finsler function for M . First we recall some
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basic data:
(1) θg := ∇vE or θE := dJE = θg ◦ j � the Hilbert 1-form of (M,F ).
(2) ωE := dθE = ddJE � the fundamental 2-form of (M,F ).

(3) w := 1
n!

(−1)
n(n−1)

2 ωE ∧ · · · ∧ ωE (n factors) � the Dazord volume
form of (M,F ).
(4) The canonical spray of (M,F ) is the unique spray S forM such that

iSddJE = −dE over
◦
TM . The canonical connection H of (M,F ) is

the Berwald connection of (M,S), ∇ stands for the Berwald derivative
induced by H.
(5) The Sasaki-Finsler metric gS on

◦
TM is given by

gS(ξ, η) := g(jξ, jη) + g(Vξ,Vη).

(6) C[ := ∇vg = ∇v∇v∇vE is the Cartan-tensor of (M,F ); the type
(1, 2) Cartan-tensor C is given by g(C(X̃, Ỹ )Z̃) = C[(X̃, Ỹ , Z̃).
(7) L[ := ∇hg = ∇h∇v∇vE is the Landsberg tensor of (M,F ); the
type (1, 2) Landsberg tensor is given by g(L(X̃, Ỹ )Z̃) = L[(X̃, Ỹ , Z̃).
(8) DC , DCh and DHs stand for the Cartan, the Chern-Rund and the
Hashiguchi derivative on (M,F ); they are given by

DC
ξ Ỹ := ∇ξỸ +

1

2
C(Vξ, Ỹ ) +

1

2
L(jξ, Ỹ ),

DCh
ξ Ỹ := ∇ξỸ +

1

2
L(jξ, Ỹ ), DHs

ξ Ỹ := ∇ξỸ +
1

2
C(Vξ, Ỹ ).

De�nitions: A vector �eld X on M is a Killing vector �eld of (M,F )
if the stages ϕt of its local �ow preserve the Finslerian norms of the
tangent vectors to M , i.e., F ◦ (ϕt)∗ = F for every possible t ∈ R. If

L̃Xcg = σg, σ ∈ C0(TM) ∩ C∞(
◦
TM),

then X is called a conformal vector �eld with conformal function σ.
A conformal vector �eld is homothetic if its conformal function is con-
stant. We say that X is a projective vector �eld if

[Xc, S] = ϕC, ϕ ∈ C0(TM) ∩ C∞(
◦
TM).

Notation: KillF (M), ConfF (M), DilF (M) and ProjF (M) are the sets
of Killing, conformal, homothetic and projective vector �elds of (M,F ),
respectively.

Theorem 8. (a) For every vector �eld X on M ,
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(i) (L̃Xcθg) ◦ j = LXcωE;
(ii) (L̃Xcg)(jξ, jη) = (LXcωE)(Jξ, η);
(iii) L̃XcC[ = ∇v(L̃Xcg);

(iv) g((L̃XcC)(Ŷ , Ẑ), Û) = (L̃XcC[)(Ŷ , Ẑ, Û)− (L̃Xcg)(C(Ŷ , Ẑ), Û);
(v) g((L̃XcL)(Ŷ , Ẑ), Û) = (L̃XcL[)(Ŷ , Ẑ, Û)− (L̃Xcg)(L(Ŷ , Ẑ), Û).

(b) If X ∈ LieS(M), then L̃XcL[ = ∇h(LXcg).
(c) If X ∈ KillF (M), then

L̃XcC[ = 0, L̃XcC = 0, L̃XcL[ = 0, L̃XcL = 0.

Theorem 9. If X ∈ KillF (M) and D ∈ {∇, DC , DCh, DHs}, then
L̃XcD = 0.

Theorem 10. (a) If X ∈ ConfF (M), then its conformal function is a
vertical lift.
(b) For a vector �eld X on M , the following are equivalent:

(i) X is a conformal vector �eld,
(ii) XcE = σE,
(iii) LXcθE = σθE,
(iv) L̃Xcθg = σθg,
(v) LXcωE = f vωE + df v ∧ dJE, f ∈ C∞(M).

In conditions (ii)-(iv), σ ∈ C0(TM) ∩ C∞(
◦
TM).

Theorem 11. X ∈ ConfF (M) ∩ LieS(M) =⇒ Xc ∈ Confgs(
◦
TM),

Xc ∈ ConfgS(
◦
TM) =⇒ X ∈ ConfF (M).

Theorem 12. X ∈ DilF (M) =⇒ X ∈ LieS(M).

Theorem 13. X ∈ ProjF (M) ∩ ConfF (M) =⇒ X ∈ DilF (M).

Theorem 14. (X ∈ ProjF (M) and L̃Xc w = 0) =⇒ X ∈ LieS(M).

Theorem 15. (X ∈ ConfF (M) and L̃Xcw = 0) =⇒ X ∈ KillF (M).
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19 Magyar nyelv¶ összefoglaló (Summary

in Hungarian)

19.1 Jelölések és háttérismeretek

19.1.1 Legyen V egy R gy¶r¶ fölötti modulus és legyen k ∈ N. A
V k → R (ill. V k → V ) k-lineáris leképezések R-modulusára a Tk(V )
(ill. T 1

k (V )) jelölést használjuk; T0(V ) := R, T 1
0 (V ) := V . Ekkor

T1(V ) =: V ∗ a V modulus duális modulusa, T 1
1 (V ) =: End(V ) pedig

V endomor�zmus gy¶r¶je.

19.1.2 M -mel mindvégig egy n-dimenziós sima sokaságot jelölünk,
ahol n = 1 vagy n = 2. C∞(M) az M sokaság sima függvényeinek
gy¶r¶je, X(M) az M fölötti vektormez®k C∞(M)-modulusa. Alkal-
mazzuk a

Tk(M) := Tk(X(M)), T1
k(M) := T 1

k (X(M)),

Ak(V ) := {α ∈ Tk(M)| α alternáló},
A1
k(M) := {β ∈ T1

k(M)| βalternáló}

jelöléseket. Ekkor A(M) := ⊕nk=0Ak(M) az M sokaság Grassmann
algebrája. Megállapodunk abban, hogy Ak(M) := {0}, ha k nega-
tív egész. Egy D R-lineáris transzformáció r-edfokú (r ∈ Z) gradált
derivációja A(M)-nek, ha D(Ak(M)) ⊂ D(Ak+r(M)) és

D(α ∧ β) = (Dα) ∧ β + (−1)krα ∧Dβ; α ∈ Ak(M), β ∈ A(M);

itt az ∧ szimbólum ékszorzatot jelöl. A Grassmann algebra klasszi-
kus gradált derivációi az iX helyettesítési operátor, az LX Lie-derivált
(X ∈ X(M)) és a d küls® derivált; ezek foka rendre -1, 0 és 1.

19.1.3 Az M sokaság érint®nyalábja τ : TM → M , a hasított érin-

t®nyalábja
◦
τ :

◦
TM → M . Az utóbbinál

◦
TM az M sokaság nemzérus

érint®vektorai alkotta nyílt részhalmaza TM -nek,
◦
τ := τ �

◦
TM . Egy

ϕ : M → N sima leképezés deriváltját ϕ∗ jelöli, ez TM -et TN -be ké-

pezi le. Egy TM -en (vagy
◦
TM -en) adott ξ vektormez® vetíthet®, ha

van olyan X vektormez® M -en, hogy τ∗ ◦ ξ = X ◦ τ . Ha speciálisan
τ∗◦ξ = o ◦τ , ahol o ∈ X(M) a zérus vektormez®, akkor ξ-t vertikálisnak
mondjuk. Használjuk az

Xproj(TM) := {ξ ∈ X(TM)| ξ vetíthet®},
Xv(TM) := {ξ ∈ X(TM)| ξ vertikális}.

jelöléseket.
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19.1.4 Legyen f ∈ C∞(M), X ∈ X(M). Ekkor f v := f◦τ ∈ C∞(TM)
f vertikális liftje, az f c : TM → R, v 7→ f c(v) := v(f) ∈ R sima függ-
vény pedig a teljes liftje. AzX vektormez®Xv ∈ Xv(TM) vertikális, ill.
Xc ∈ X(TM) teljes liftje az az egyetlen vektormez® TM -en, amelyre
tetsz®leges f ∈ C∞(M) esetén

Xvf c = (Xf)v, Xvf v = 0; Xcf c = (Xf)c, Xcf v = (Xf)v.

Létezik egy és csak egy olyan C ∈ Xv(TM) vertikális vektormez®, hogy
Cf c = f c minden f ∈ C∞(M) függvényre; ez a Liouville vektormez®

TM -en. Egy F ∈ C∞(
◦
TM) függvény k+-homogén, ha CF = kF

(k ∈ Z).

19.1.5 A TM , ill.
◦
TM fölötti Finsler-nyaláb a

π : TM ×M TM → TM és
◦
π :

◦
TM ×M TM →

◦
TM

vektornyaláb. Itt például a π nyaláb v ∈ TM fölötti �bruma a
{v} × Tτ(v)M ∼= Tτ(v)M n-dimenziós valós vektortér. E vektornyalá-

bok sima szeléseinek modulusát Γ(π), ill. Γ(
◦
π) jelöli. Γ(π) és Γ(

◦
π)

elemeit Finsler vektormez®knek; a Tk(Γ(
◦
π))∪T 1

k (Γ(
◦
π)) (k ∈ N) modu-

lusok elemeit
◦
TM -en adott Finsler vektormez®knek hívjuk. A követ-

kez® tipográ�ai megoldással élünk:

X, Y, . . .− vektormez®k M -en,

ξ, η, . . . − vektormez®k TM -en (vagy
◦
TM -en),

X̃, Ỹ , . . .− Finsler vektormez®k,

X̂, Ŷ , . . .− bázikus Finsler vektormez®k,

δ̃ − Γ(π) kanonikus szelése.

Itt X̂(v) := (v,X(τ(v))), δ̃(v) := (v, v) (v ∈ TM).

19.1.6 A 0 → Γ(π)
i→ X(TM)

j→ Γ(π) → 0 sor, ahol i(X̂) = Xv;
j(Xv) = 0, j(Xc) = X̂ (X ∈ X(M)) C∞(TM)-homomor�zmusok eg-
zakt sora. Így Im(i) = Ker(j) = Xv(TM), s közvetlenül adódik, hogy
C = i(δ̃). A J := i ◦ j endomor�zmus X(TM) vertikális endomor�z-
musa. Ez A(TM)-nek egy dJ els®fokú gradált derivációját indukálja,
amely a

dJF := dF ◦ J, dJdF := ddJF (F ∈ C∞(TM))

el®írással értelmezhet®.
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19.1.7 Alkalmazzuk a (kanonikus) vertikális derivált ∇v operátorát,
melynek de�níciója a következ® lépésekben adható meg:

∇v
X̃
F := (iX̃)F (F ∈ C∞(TM));

∇v
X̃
Ỹ := j[iX̃, η], η ∈ X(TM) olyan, hogy jη = Ỹ ;

(∇v
X̃
A)(Ỹ1, . . . Ỹk) := ∇v

X̃
(A(Ỹ1, . . . , Yk))−

k∑
i=1

A(Ỹ1, . . . ,∇v
X̃
Ỹi, . . . Ỹk),

A ∈ Tk(Γ(π)) ∪ T 1
k (Γ(π)).

19.1.8 Egy
◦
TM -beli Ehresmann-konnexió olyan H : Γ(

◦
π) → X(

◦
TM)

C∞(
◦
TM)-lineáris leképezés, amelyre j ◦H = 1

Γ(
◦
π)
. Adatai: h := H◦ j,

v = 1
X(
◦
TM)
−h és V := i−1 ◦ v a H-hoz csatolt vertikális és horizontális

projekció, valamint vertikális leképezés; Xh := H(X̂) = hXc az X
vektormez® (H−)horizontális liftje. Az Ehresmann-konnexió homogén,
ha [C,Xh] = 0 minden X ∈ X(M)-re. A H által indukált ∇h h-
Berwald-derivált a következ® lépésekben értelmezhet®:

∇h
X̃
F := (HX̃)F (F ∈ C∞(

◦
TM)); ∇h

X̃
Ỹ := V [HX̃, iỸ ];

(∇h
X̃
A)(Ỹ1, . . . , Ỹk) := ∇h

X̃
(A(Ỹ1, . . . , Ỹk))−

k∑
i=1

A(Ỹ1, . . . ,∇h
X̃
Ỹi, . . . , Ỹk).

A ∇ : (ξ, Ỹ ) ∈ X(
◦
TM) × Γ(

◦
π) 7→ ∇ξỸ := ∇v

VξỸ + ∇h
jξỸ ∈ Γ(

◦
π)

leképezés kovariáns derivált a
◦
π vektornyalábon, a Berwald-derivált.

19.1.9 Egy S : TM → TTM leképezés szemispray M fölött, ha C1-

osztályú,
◦
TM fölött sima, és eleget tesz a τTM ◦ S = 1TM , JS = C

feltételeknek. Ha � ráadásul � [C, S] = S, akkor S spray M fölött.
Minden szemispray indukál egy H Ehresmann-konnexiót, melyre

H(X̂) =
1

2
(Xc + [Xv, S]), bármely X ∈ X(M) esetén.

Ez a konnexió torziómentes abban az értelemben, hogy tetsz®leges
X̃, Ỹ Finsler-vektormez®kre

∇H(X̃)Ỹ −∇H(Ỹ )X̃ = j[H(X̃),H(Ỹ )] (
◦
TM fölött).

Amennyiben S spray, úgy H homogén, és azt mondjuk, hogy H az
(M,S) spray-sokaság Berwald-konnexiója.
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19.2 Eredmények

19.2.1 Lie-derivatáltak Finsler-nyalábokon Megadva egy vetít-
het® ξ ∈ X(TM) vektormez®t, a Finsler-tenzormez®k ξ szerinti Lie-
deriváltját a következ® lépésekben de�niáljuk:

L̃ξF := LξF = ξF (F ∈ C∞(TM)); L̃ξỸ := i−1[ξ, iỸ ];

(L̃ξA)(Ỹ1, . . . , Ỹk) := L̃ξ(A(Ỹ1, . . . , Ỹk))−
k∑
i=1

A(Ỹ1, . . . , L̃ξỸi, . . . , Ỹk),

itt A ∈ Tk(Γ(π))∪T 1
k (Γ(π). Egy

◦
TM -beliH Ehresmann-konnexió L̃ξH

Lie-deriváltját az

(L̃ξH)(Ỹ ) := Lξ(H(Ỹ ))−H(L̃ξỸ ).

el®írással értelmezzük; egy D : X(TM)× Γ(π)→ Γ(π), (η, Z̃) 7→ DηZ̃
kovariáns derivált ξ szerinti Lie-deriváltja az{

L̃ξD : X(TM)× Γ(π), (η, Z̃) 7→ (L̃ξD)(η, Z̃),

(L̃ξD)(η, Z̃) := L̃ξ(DηZ̃)−D[ξ,η]Z̃ −Dη(L̃ξZ̃).

leképezés. Levezettük a következ® hasznos formulákat:

(1) [L̃ξ, L̃η] = L̃[ξ,η];

(2) L̃XcŶ = [̂X, Y ];
(3) L̃Xc δ̃ = 0;
(4) L̃Xc � Γ(π) = ∇v

X̂
� Γ(π);

(5) i ◦ L̃Xc = LXc ◦ i;
(6) L̃Xc ◦ j = j ◦ LXc ;
(7) L̃Xc ◦ ∇v

Ŷ
−∇v

Ŷ
◦ L̃Xc = L̃[X,Y ]v ;

(8) L̃Xh � Γ(
◦
π) = ∇h

X̂
� Γ(

◦
π);

(9) L̃Xc ◦ ∇h
Ŷ
−∇h

Ŷ
◦ L̃Xc = L̃[Xc,Y h].

A fenti formulákban ξ, η ∈ Xproj(TM); X, Y ∈ X(M). (8)-ban és (9)-

ben föltesszük, hogy egy Ehresmann-konnexió is adva van
◦
TM -ben.

Megmutattuk, hogy L̃XcỸ elt¶nésére a következ® dinamikai interp-
retáció lehetséges

1. Tétel Legyen (ϕt) az X vektormez® lokális folyama. L̃XcỸ = 0

pontosan akkor teljesül, ha Ỹ invariáns a folyammal szemben, azaz

((ϕt)∗ × (ϕt)∗) ◦ Ỹ = Ỹ ◦ (ϕt)∗,

minden szóbajöv® t ∈ R esetén.



104 19 MAGYAR NYELV� ÖSSZEFOGLALÓ

19.2.2 H-Killing vektormez®k Legyen adva egy H Ehresmann-

konnexió
◦
TM -en. Jegyezzük meg el®ször is, hogy tetsz®leges

ξ ∈ Xproj(
◦
TM) esetén az L̃ξH : Γ(

◦
π) → X(

◦
TM), Ỹ 7→ (L̃ξH)(Ỹ ) le-

képezés C∞(
◦
TM)-lineáris. Tetsz®leges X ∈ X(M) vektormez® esetén

j◦ L̃Xc = 0, ami mutatja, hogy egy Ehresmann-konnexió Lie-deriváltja
már nem Ehresmann-konnexió.

Egy X ∈ X(M) vektormez®t H-Killing vektormez®nek nevezünk és
azt írjuk, hogy X ∈ KillH(M), ha H invariáns X lokális folyamával
szemben, abban az értelemben, hogy minden szóbajöv® valós t-re

(ϕt)∗∗ ◦ H = H ◦ ((ϕt)∗ × (ϕt)∗).

(Itt H-t
◦
TM ×M TM → T

◦
TM er®s nyalábleképezésként interpretál-

juk.) Megmutattuk a következ®t:

2. Tétel Egy X ∈ X(M) vektormez®re az alábbi feltételek ekvivalensek:

(1) X H-Killing vektormez®,

(2) Ha X lokális folyama ϕt, akkor minden szóbajöv® t-re teljesül,
hogy (ϕt)∗∗ ◦ h = h ◦ (ϕt)∗∗,

(3) L̃XcH = 0,

(4) LXch = 0.

Amennyiben (1)-(4) valamelyike - és így bármelyike fennáll, úgy

XcN i
j = Nk

j

(
∂X i

∂uk
◦ τ
)
−N i

k

(
∂Xk

∂uj
◦ τ
)
− yk

(
∂2X i

∂uj∂uk
◦ τ
)
,

ahol az X i ∈ C∞(U) függvények X komponenseiM egy (U , (ui)ni=1) tér-
képére vonatkozóan, (N i

j) pedig H Christo�el-szimbólumainak családja
a TM-en indukált (τ−1(U), ((xi)ni=1, (y

i)ni=1)) térképre vonatkozóan.

19.2.3 Lie-szimmetriák Legyen S azM sokaság fölötti szemispray.
Egy X ∈ X(M) vektormez® Lie-szimmetriája S-nek, ha S invariáns
Xc lokális folyamával szemben, azaz, (ϕt)∗∗ ◦ S = S ◦ (ϕt)∗ minden
szóbajöv® t-re, ahol (ϕt) X lokális folyama. Ekkor azt írjuk, hogy
X ∈ LieS(M). A klasszikus Lie-derivált dinamikai interpretációjából
azonnal látható, hogy

X ∈ LieS(M) ⇐⇒ [Xc, S] = 0.
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Amennyiben H az S által indukált Ehresmann-konnexió, úgy
LieS(M) ⊂ KillH(M).

3. Tétel Legyen (M,S) spray-sokaság, ellátva a H Berwald-
konnexióval és a H által indukált ∇ Berwald-deriválttal. AzM sokaság
egy X vektormez®jére a következ®k ekvivalensek:

(1) X ∈ LieS(M), (6) LXcv = 0,
(2) [Xc, S] = 0, (7) L̃Xc∇ = 0,
(3) X ∈ KillH(M), (8) [Xc, Y h] = [X, Y ]h,
(4) L̃XcH = 0, (9) [L̃Xc , L̃Y h ] = L̃[X,Y ]h,
(5) LXch = 0, (10) L̃Xc ◦ V = V ◦ LXc .

Itt (8)-ban és (9)-ben Y ∈ X(M) tetsz®leges. Megjegyezzük, hogy
(1), (5) és (7) ekvivalenciáját korábban Lovas Rezs® már igazolta, ld.
[17].

19.2.4 Görbületi kollineációk (A) Egy (M,S) spray-sokaság Ja-
cobi endomor�zmusa (vagy a�n elhajlási tenzora), fundamentális a�n
görbülete és a�n görbülete rendre az a K, R, és H Finsler tenzormez®,
amelyet a

K(X̃) := V [S,H(X̃)], R(X̃, Ỹ ) :=
1

3
(∇vK(X̃, Ỹ )−∇vK(Ỹ , X̃)),

H(X̃, Ỹ )Z̃ := −∇vR(Z̃, X̃, Ỹ )

el®írás értelmez. Ha C ∈ {K,R,H} és L̃XcC = 0, akkor azt mondjuk,
hogy X görbületi kollineációja C-nek.

4. Tétel Egy X ∈ X(M) vektormez® pontosan akkor görbületi kolli-
neációja az (M,S) spray-sokaság Jacobi endomor�zmusának, ha inva-
riáns X (ϕt) lokális folyamával szemben, abban az értelemben, hogy

((ϕt)∗ × (ϕt)∗) ◦K = K ◦ ((ϕt)∗ × (ϕt)∗),

minden lehetséges valós t-re. (Itt K-t a
◦
π vektornyaláb er®s nyaláben-

domor�zmusaként interpretáljuk.)

5. Tétel Ha X ∈ LieSM , akkor X görbületi kollineációja a K, R és
H tenzoroknak.
(B) Egy, az S sprayb®l konstruált Finsler tenzormez® projektíven in-

variáns, ha nem változik az S spray S  S − 2PC, P ∈ C∞(
◦
TM)
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projektív változtatásai során. Egy (M,S) spray-sokaság alapvet® pro-
jektíven invariáns tenzorai aW1,W2,W3 Weyl-tenzorok és aD Doug-
las tenzor. Ezek de�níciói rendre a következ®k:

W1 := K−K 1
Γ(
◦
π)
− 1

n+ 1
(tr∇vK−∇vK)⊗ δ̃ (K :=

1

n− 1
trK),

W2(X̃, Ỹ ) :=
1

3
(∇vW1(X̃, Ỹ )−∇v W1(Ỹ , X̃)),

W3(X̃, Ỹ )Z̃ := ∇vW2(Z̃, X̃, Ỹ ),

D := B− 1

n− 1
((∇vtrB)⊗ δ̃ + (trB)� 1

Γ(
◦
π)

).

Az utolsó formulában B a spray-sokaság Berwald-tenzora, amely meg-
adható a B(X̂, Ŷ )Ẑ := (∇v∇hẐ)(X̂, Ŷ ) el®írással, a � szimbólum pe-
dig numerikus faktor nélküli szimmetrikus szorzatot jelöl.

6. Tétel Ha X ∈ LieS(M), akkor L̃XcWi = 0, i ∈ {1, 2, 3}.

7. Tétel Ha X ∈ LieS(M), akkor L̃XcB = 0, és ebb®l következ®en
L̃XcD = 0.

19.2.5 Geometriai vektormez®k Finsler-sokaságokon Egy
F : TM → R pozitív, folytonos függvény M fölötti Finsler-függvény,

ha
◦
TM -en sima, 1+-homogén és a

g :=
1

2
∇v∇vF 2 =: ∇v∇vE

alaptenzor (�brumonként) nemelfajuló. Egy Finsler-sokaság olyan
(M,F ) pár, amelyet egy M sokaság és egy M fölötti Finsler-függvény
alkot. Néhány fontosabb adata:
(1) θg := ∇vE vagy θE := dJE = θg ◦ j � (M,F ) Hilbert 1-formája.
(2) ωE := dθE = ddJE � (M,F ) fundamentális 2-formája.

(3) w := 1
n!

(−1)
n(n−1)

2 ωE ∧ · · · ∧ ωE (n tényez®) � a Dazord-féle térfo-

gati forma
◦
TM -en.

(4) (M,F ) kanonikus spray-je az az S spray, amelyet
◦
TM fölött az

iSddJE = −dE feltétel határoz meg. (M,F ) H-val jelölt kanonikus
konnexiója az (M,S) spray-sokaság Berwald-konnexiója; ∇ a kanoni-
kus konnexió által indukált Berwald-derivált.
(5)

◦
TM -en a gS(ξ, η) := g(jξ, jη) + g(Vξ,Vη) el®írással értelmezett

Riemann-metrika a Sasaki-Finsler metrika.
(6) C[ := ∇vg = ∇v∇v∇vE a Finsler-sokaság Cartan-tenzora; C a vele
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metrikusan ekvivalens (1, 2)-típusú tenzor, amelyet a g(C(X̃, Ỹ )Z̃) =

C[(X̃, Ỹ , Z̃) formula értelmez.
(7) L[ := ∇hg = ∇h∇v∇vE a Landsberg-tenzor; L a vele metrikusan
ekvivalens (1, 2)-típusú tenzor, amelyet a g(L(X̃, Ỹ )Z̃) := L[(X̃, Ỹ , Z̃)
formula ad meg.
(8) DC , DCh és DHs rendre a Cartan, a Chern-Rund és a Hashiguchi-
derivált (M,F )-en. Értelmezésük:

DC
ξ Ỹ := ∇ξỸ +

1

2
C(Vξ, Ỹ ) +

1

2
L(jξ, Ỹ ),

DCh
ξ Ỹ := ∇ξỸ +

1

2
L(jξ, Ỹ ), DHs

ξ Ỹ := ∇ξỸ +
1

2
C(Vξ, Ỹ ).

De�níciók: Legyen X ∈ X(M), és legyen (ϕt) X lokális folyama. Az
X vektormez® Killing vektormez®je (M,F )-nek, ha a ϕt transzformá-
ciók meg®rzik az érint®nyalábok Finsler normáját, azaz F ◦ (ϕt)∗ = F
minden szóbajöv® t-re. Ha

L̃Xcg = σg, ahol σ ∈ C0(TM) ∩ C∞(
◦
TM),

akkor azt mondjuk, hogy X konform vektormez®, amelynek a konform
függvénye σ. Ha a konform függvény konstans, homotetikus vektorme-
z®r®l beszélünk. Az X vektormez® projektív vektormez®je (M,F )-nek,
ha

[Xc, S] = ϕC, ϕ ∈ C0(TM) ∩ C∞(
◦
TM).

Jelölés: KillF (M), ConfF (M), DilF (M) és ProjF (M) rendre (M,F )
Killing-, konform, homotetikus és projektív vektormez®inek halmaza.

8. Tétel (a) Tetsz®leges X ∈ X(M) vektormez® esetén
(i) (L̃Xcθg) ◦ j = LXcωE;
(ii) (L̃Xcg)(jξ, jη) = (LXcωE)(Jξ, η);
(iii) L̃XcC[ = ∇v(L̃Xcg);

(iv) g((L̃XcC)(Ŷ , Ẑ), Û) = (L̃XcC[)(Ŷ , Ẑ, Û)− (L̃Xcg)(C(Ŷ , Ẑ), Û);
(v) g((L̃XcL)(Ŷ , Ẑ), Û) = (L̃XcL[)(Ŷ , Ẑ, Û)− (L̃Xcg)(L(Ŷ , Ẑ), Û).

(b) Ha X ∈ LieS(M), akkor L̃XcL[ = ∇h(LXcg).
(c) Ha X ∈ KillF (M), akkor

L̃XcC[ = 0, L̃XcC = 0, L̃XcL[ = 0, L̃XcL = 0.

9. Tétel Ha X ∈ KillF (M) és D ∈ {∇, DC , DCh, DHs}, akkor
L̃XcD = 0.
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10. Tétel (a) Ha X ∈ ConfF (M), akkor X konform függvénye verti-
kális lift. (b) Egy X ∈ X(M) vektormez®re a következ®k ekvivalensek:

(i) X ∈ ConfF (M),
(ii) XcE = σE,
(iii) LXcθE = σθE,
(iv) L̃Xcθg = σθg,
(v) LXcωE = f vωE + df v ∧ dJE, f ∈ C∞(M).

Az (ii)-(iv) feltételekben σ ∈ C0(TM) ∩ C∞(
◦
TM).

11. Tétel X ∈ ConfF (M) ∩ LieS(M) =⇒ Xc ∈ Confgs(
◦
TM),

Xc ∈ ConfgS(
◦
TM) =⇒ X ∈ ConfF (M).

12. Tétel X ∈ DilF (M)⇒ X ∈ LieS(M).

13. Tétel X ∈ ProjF (M) ∩ ConfF (M)⇒ X ∈ DilF (M).

14. Tétel (X ∈ ProjF (M) és L̃Xc w = 0)⇒ X ∈ LieS(M).

15. Tétel (X ∈ ConfF (M) és L̃Xcw = 0)⇒ X ∈ KillF (M).
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