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Abstract 
While phototoxicity can be a useful therapeutic modality not only for eliminating malignant cells but also in treating fungal infec-
tions, mycologists aiming to observe morphological changes or molecular events in fungi, especially when long observation periods 
or high light fluxes are warranted, encounter problems owed to altered regulatory pathways or even cell death caused by various 
photosensing mechanisms. Consequently, the ever expanding repertoire of visible fluorescent protein toolboxes and high-reso-
lution microscopy methods designed to investigate fungi in vitro and in vivo need to comply with an additional requirement: to 
decrease the unwanted side effects of illumination. In addition to optimizing exposure, an obvious solution is red-shifted illumi-
nation, which, however, does not come without compromises. This review summarizes the interactions of fungi with light and 
the various molecular biology and technology approaches developed for exploring their functions on the molecular, cellular, and 
in vivo microscopic levels, and outlines the progress towards reducing phototoxicity through applying far-red and near-infrared light. 

Key points
• Fungal biological processes alter upon illumination, also under the microscope
• Red shifted fluorescent protein toolboxes decrease interference by illumination
• Innovations like two-photon, lightsheet, and near IR microscopy reduce phototoxicity
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Introduction

It is an outstanding feature of the creatures belonging to the 
Kingdom of Fungi that they can sense light (Idnurm et al. 
2010; Molin et al. 2020) and filamentous fungi can even 

distinguish between colours owing to their versatile pho-
toreceptors (Yu and Fischer 2019; Yu et al. 2020, 2021). 
Not surprisingly, these organisms respond to incident light 
adequately and this response will affect nearly all aspects 
of fungal life (Yu and Fisher 2019). Excessive light elicits 
stress response as well, and vivid communication with vari-
ous stress sensing, signalling, and stress response pathways 
have been elucidated (Fuller et al. 2013; Yu et al. 2016, 2019, 
2021; Bodvard et al. 2017; Igbalajobi et al. 2019; Molin 
et al. 2020). Well-documented overlaps with oxidative stress 
responses (Chen et al. 2009; Fuller et al. 2013, 2015; Molin 
et al. 2020; Tagua et al. 2020) clearly indicate the generation 
of harmful reactive oxygen species (ROS) alarming oxidative 
stress defence especially at short wavelengths (Fuller et al. 
2015; Igbalajobi et al. 2019).

Importantly, increasing the toxic effects of light on fungi 
is the primary aim in the development of novel tools to 
control fungal growth by illumination. For example, the 
growth inhibitory effects of extensive light can be further 
accelerated by concomitantly exposing fungal cells to 
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photosensitizing agents, which have led to the development 
of various antifungal photodynamic therapies (Rodrigues 
et al. 2020; Shen et al. 2020; Rodríguez-Cerdeira et al. 
2021).

Nevertheless, the very same phototoxicity phenomenon 
can be detrimental especially when prolonged time-lapse 
imaging techniques are applied in order to visualize cellu-
lar and subcellular structures and dynamics in living fun-
gal cells (Frigault et al. 2009). The development of novel 
fluorescent reporter proteins with excitation/emission wave-
lengths in the red, far-red, and near-infrared spectra may 
ameliorate phototoxicity in time-dependent long-exposure 
microscopic techniques (Bialecka-Fornal et al. 2016; Icha 
et al. 2017). This approach may require the elaboration of 
new technical setups with higher intensity illumination and/
or increased camera exposure time (Frigault et al. 2009; 
Mubaid and Brown 2017). The high translucency of host 
tissues towards red, far-red, and infrared light in animal-
fungus and plant-fungus interaction studies has also fuelled 
the development of new long-wavelength reporting protein 
systems in a number of fungal species (Leal Jr. et al. 2010; 
Su et al. 2018; Vallarino et al. 2018). In addition, red, far-
red, and infrared light have been used successfully to study 
host-fungus interactions deep in tissues (Bruns et al. 2010; 
Hasenberg et al. 2011; Sørensen et al. 2012; Vasilchenko 
et al. 2016; Lee et al. 2018). Combining red-shifted fluo-
rophores with two-photon microscopy afforded increased 
spatial resolution in addition to better penetration (Tolić-
Nørrelykke et al. 2004; Lemar et al. 2005, 2007; García-
Marcos et al. 2008; Váchová et al. 2009).

In time-lapse imaging, proper selection of excitation 
light, exposition frequency, and time, as well as fluores-
cence marker proteins, may help minimize phototoxicity 
(Escorcia et al. 2019). Future tendencies may include the 
application of near-infrared fluorescent reporter proteins in 
fungi (Wosika et al. 2016) and the use of diodes emitting 
light in the infrared spectrum, e.g. at λ = 940 nm to monitor 
fungal growth (Nagy et al. 2014; Talas et al. 2019). Here, we 
provide an overview of fungus-light interactions, the exploi-
tation and minimization of phototoxicity in fungal cultures, 
the development of assays based on fluorescent reporter 
proteins as well as the tendency of shifting the wavelengths 
used towards the red, far-red, and near-infrared. Overall, the 
accumulated evidence argues for the more widespread appli-
cation of far-red and infrared microscopic techniques in the 
daily routine of mycologists.

Fungi and light

Filamentous fungi cannot only sense the presence and 
absence of light but they are able to detect differences in the 
intensity and wavelength of light and even sense its direction 

(Corrochano and Galland 2016; Yu and Fischer 2019). Most 
filamentous fungi evolved complex and sophisticated light 
sensing systems, consisting of blue-, green-, and red-light 
photoreceptors (Idnurm et al. 2010; Yu et al. 2020). The 
blue-light photoreceptors include the well-characterized WC 
and MAD proteins (Froehlich et al. 2002; Silva et al. 2006; 
Sanz et al. 2009) and also some less known blue-light photo-
receptors like photolyases/cryptochromes and BLUF (“Blue 
Light Using Flavin”) proteins (Berrocal-Tito et al. 2007; 
Bayram et al. 2008; Brych et al. 2016; Cohrs and Schu-
macher 2017). Opsins sense green light (García-Martínez 
et al. 2015) while phytochromes respond to red and far-red 
light (Blumenstein et al. 2005; Froehlich et al. 2005). For 
example, putative phytochrome (FphA), WC-1 (LreA), opsin 
(NopA), and cryptochrome (CryA) orthologues have been 
identified in the genome of Alternaria alternata, a common 
plant pathogen and post-harvest contaminant fungus (Igbala-
jobi et al. 2019).

Light can inform fungi on their orientation, e.g. whether 
they are growing on the ground or below that, or on the 
expected or unexpected changes in their environment, e.g. 
intensity of UV radiation, temperature, or consequences of 
elevated temperature such as decreased humidity. Genome-
wide transcription studies demonstrated that large groups of 
genes are controlled by this important environmental factor 
(Rosales-Saavedra et al. 2006; Chen et al. 2009; Fuller et al. 
2013; Bayram et al. 2016; Tagua et al. 2020; Yu et al. 2020, 
2021). Light of different wavelengths can regulate germina-
tion, vegetative growth, asexual and sexual development, 
stress responses, pathogenic or symbiotic relationships, 
metabolism including mycotoxin production and circadian 
rhythm in fungi (Ruger-Herreros et al. 2011; Yu and Fischer 
2019; Díaz and Larrondo 2020; Schumacher and Gorbushina 
2020), and these observations should always be taken into 
consideration in any illuminated fungal cultures.

In addition to light informing fungi of impending stresses, 
light itself can also be a stressor for them. The near UV-blue 
spectrum can induce DNA damages, while the far-red spec-
trum can lead to heat stress (Fuller et al. 2013, 2015; Tagua 
et al. 2020). Moreover, a slight reduction of growth in light-
exposed fungi is considered a general phenomenon, which 
can be coupled to the formation of ROS elicited by the short 
wave components of the visible light (Fuller et al. 2015). 
In addition to oxidative damages, a number of metabolic 
pathways are light responsive in fungi (Fuller et al. 2013), 
which may also be disadvantageous for growth.

It is noteworthy that only few ascomycetous yeasts con-
tain any homologs of dedicated photoreceptors commonly 
found in most filamentous fungi (Idnurm et al. 2010; Oka-
moto et al. 2013). Nevertheless, components of visible light 
can interact with porphyrins and flavins in the baker’s yeast 
Saccharomyces cerevisiae causing extensive cytochrome 
damage (Robertson et al. 2013) and the generation of H2O2 



Applied Microbiology and Biotechnology	

1 3

by flavin-containing oxidases like Pox1 peroxisomal acyl-
CoA oxidase (Bodvard et al. 2017; Molin et al. 2020). As 
a consequence, the activity of important protein kinases 
like the cAMP-dependent protein kinase A and the Hog1 
mitogen-activated protein kinase (MAPK) is modulated and 
the stress response transcription factors Msn2/4 translocate 
to the nuclei to combat light-induced stress in yeast cells 
(Bodvard et al. 2017; Molin et al. 2020). In addition, the 
transcriptions of genes coding for key elements of the oxida-
tive stress defence system like TRX2 encoding cytoplasmic 
thioredoxin are upregulated (Robertson et al. 2013).

In filamentous fungi, several signalling pathways are also 
under the control of light. FphA phytochrome-dependent 
light signalling activates SakA/HogA MAPK in A. nidu-
lans hyphae, where this MAPK pathway responds to various 
environmental stress stimuli (Yu et al. 2016). Similar FphA-
dependent nuclear accumulation of the A. alternata HogA 
orthologue has also been observed (Igbalajobi et al. 2019). 
Interestingly, TcsB hybrid kinase and FphA phytochrome 
seem to be responsible for the temperature sensing of A. 
nidulans and this environmental signal is channelled into the 
SakA/HogA MAPK pathway (Yu et al. 2019). In Aspergillus 
fumigatus, LreA and FphA blue and red light receptors act 
together in the white light to induce tolerance of oxidative 
stress elicited by H2O2 (Fuller et al. 2013). At the same time, 
elimination of either FphA or LreA results in an increased 
oxidative stress tolerance of A. alternata owing to the upreg-
ulation of genes coding for oxidative stress defence enzymes 
(catalase, superoxide dismutases) (Igbalajobi et al. 2019).

All these observations indicate that both yeasts and fila-
mentous fungi are well-armoured to cope with stresses either 
predicted or induced by light.

Incorporation of red, far‑red, 
and near‑infrared fluorescent proteins 
into imaging toolboxes

The application of fluorescent proteins, highlighters, fluores-
cent probes, and biosensors is part of the daily routine today 
in any cell biological laboratory and needs the continuous 
monitoring of cell death processes to avoid cellular photo-
damages especially when UV-light excitation is employed 
(Frigault et al. 2009). Although eukaryotic cells including 
yeasts and filemantous fungi possess a remarkable capabil-
ity to defend themselves against the deleterious effects of 
high intensity illumination, proper selection of equipment, 
image acquisition platforms and accessories, and optimal 
settings are necessary to avoid phototoxic effects of either 
transmitted light as well as that of excitation light in the 
fluorescence microscopy of these cells (Frigault et al. 2009; 
Magidson and Khodjakov 2013; Icha et al. 2017; Laissue 
et al. 2017; Ojha and Ojha 2021). One obvious option to 

solve this problem could be to limit the formation of ROS 
by reducing O2 partial pressure in the cultures and/or to 
increase the resilience of cells against light stress and con-
comitant oxidative stress by the addition of antioxidants like 
Trolox (Douthwright and Sluder 2017). Nevertheless, reduc-
ing O2 and supplementing fungal cultures with antioxidants 
are likely to induce significant, unwanted morphological and 
physiological changes (Emri et al. 2004; Raspor et al. 2005; 
Barker et al. 2012; Kowalski et al. 2019).

Selecting red, far-red, or near-infrared light for excita-
tion may also decrease phototoxicity but may require higher 
intensity illumination to get satisfactorily bright images 
(Bialecka-Fornal et al. 2016; Icha et al. 2017), which may 
cause localized heating (Frigault et al. 2009; Mubaid and 
Brown 2017). Reducing excitation light intensity with a con-
comitant increase in the camera exposure time may attenu-
ate phototoxicity especially in long-term time-lapse imag-
ing of living cells (Mubaid and Brown 2017). The use of 
red-shifted wavelengths in super-resolution microscopy may 
also be applicable for reducing phototoxicity (Tosheva et al. 
2020). In addition, the high translucency of animal tissues 
to far-red and near-infrared light has enforced the develop-
ment of novel fluorescent proteins, which are excited and 
emit light in this light range (Olenych et al. 2007; Filonov 
et al. 2011; Piatkevich and Verkhusha 2011; Miyawaki et al. 
2012; Piatkevich et al. 2013; McIsaac et al. 2014; Bindels 
et al. 2016; Yu et al. 2016; Rodriguez et al. 2016; Ding et al. 
2018; Hou et al. 2019a, b; Wu et al. 2021).

Red fluorescent proteins in use

Red fluorescent proteins can be divided into three 
groups based on their emission maxima: orange 
(λmax = 550–590 nm), red (λmax = 590–630 nm), and far-
red (λmax > 630 nm in the visible spectrum of light) (Piat-
kevich and Verkhusha 2011; Miyawaki et al. 2012). Some 
of these red-shifted fluorophores are employed routinely for 
tagging proteins in Mycology (Swayne et al. 2009; Bial-
ecka-Fornal et al. 2016), and their excitation and emission 
wavelengths are summarized in Table 1. For example, the 
red–orange emitting DsRed (Olenych et al. 2007; Chapuis 
et al. 2019), and their derivatives like DsRed2, DsRed-
Express, DsRed-Express2, mRFP1, and mCherry (Shaner 
et al. 2004; Olenych et al. 2007; Strack et al. 2008) are popu-
lar reporters used extensively in both yeasts and filamen-
tous fungi (Table 1). Although the application of DsRed 
in various fungi is widespread and successful, there were 
difficulties with the use of this fluorescent tagging protein 
including faint emission, incomplete maturation and forma-
tion of large protein aggregates inside living cells due to 
the obligate tetrameric structure of DsRed (Chapuis et al. 
2019). This technical challenge stimulated the development 
of improved and monomeric variants of DsRed (Table 1; 
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https://​www.​fpbase.​org/​prote​in/​dsred/; Chapuis et al. 2019). 
It is noteworthy that protein engineering of slowly maturing, 
tetrameric DsRed has provided yeast experts with valuable 
tools to meet the challenges coming from the red fluorescent 
protein labelling of rapidly growing S. cerevisiae cultures 
(Gavin et al. 2002; Janke et al. 2004). Codon optimization 
and additional mutations are also frequently carried out to 
enhance the performance of various fluorescent proteins in 
yeasts (Van Genechten at el. 2021). For example, the yeast-
enhanced mRFP (yEmRFP) is a convenient red emitting 
marker for genetic studies in S. cerevisiae (Keppler-Ross 
et al. 2008; Misumi et al. 2019), C. albicans (Keppler-Ross 
et al. 2008) and Kluyveromyces marxianus (Suzuki et al. 
2015). A yEmCherry labelling system is also available for 
subcellular localization studies in the emerging pathogen 
Candida auris (Defosse et al. 2018). In in vivo assays, yEm-
RFP was expressed in C. albicans, which strain was used 
in murine macrophage up-take assays (Keppler-Ross et al. 
2010). GFP and C. albicans codon-adapted RFP (dTOM2) 
were employed to label C. albicans cells in mouse gut colo-
nization assays, which made precise quantification of fungal 
populations possible via both standard in vitro cultures and 
flow cytometry (Prieto et al. 2014). Although the phototoxic 
characteristics of engineered fluorescent proteins were only 

rarely considered and quantified until recently (Strack et al. 
2008), this aspect is gaining ground in fluorescent protein 
design (Strack et al. 2008, 2009; Lam et al. 2012; Vegh et al. 
2014; Bajar et al. 2016; Zhang and Ai 2020; Wu et al. 2021).

Multicolor fluorescent imaging systems including red 
fluorescent proteins are available for a number of yeasts. 
For example, mCherry was included in a 3-colour (mTFP1/
mCitrine/mCherry) live-cell imaging tool box in budding 
yeast (Higuchi-Sanabria et al. 2016), and other 3-colour 
and 4-colour imaging systems with fluorescent proteins 
also emitting light in the red (TagRFP-T or mRuby2) spec-
tra are available now for S. cerevisiae and the fission yeast 
Schizosaccharomyces pombe as well (Bialecka-Fornal et al. 
2016). Importantly, TagRFP-T and mRuby2 outperformed 
mCherry as a red fluorescent protein label in baker’s yeast 
after assessing and comparing brightness, photostability, and 
perturbation of tagged proteins (Lee et al. 2013). Red and 
orange fluorescent proteins (the DsRed derivatives mCherry, 
mOrange2, and tdTomato) together with the Entacmaea 
quadricolor fluorescent protein monomers TagRFP-T and 
mKate were systematically tested to tag microtubules in the 
fission yeast S. pombe (Snaith et al. 2010) (Table 1).

A 3-colour imaging toolbox (incorporating mCherry) 
available for C. albicans could also be employed to construct 

Table 1   Red, far-red, and near-
infrared fluorescent reporter 
proteins available in mycology 
(https://​www.​fpbase.​org/)

Protein Organism Oligomeriza-
tion

Excitation λ Emission λ

(nm) (nm)
DsRed Discosoma sp. 4 558 583
DsRed.T3 Discosoma sp. 4 560 587
DsRed.T4 Discosoma sp. 4 555 586
DsRed Express Discosoma sp. 4 554 586
DsRed Express2 Discosoma sp. ? 554 591
DsRed Max Discosoma sp. 4 561 594
DsRed2 Discosoma sp. 4 561 587
tdTomato Discosoma sp. 2 554 581
mRFP1 (mRFP) Discosoma sp. 1 584 607
mCherry Discosoma sp. 1 587 610
mRaspberry Discosoma sp. 1 598 625
mPlum Discosoma sp. 1 590 649
E2-Crimson Discosoma sp. 4 611 646
TagRFP Entacmaea quadricolor 2 555 584
TagRFP-T Entacmaea quadricolor 1 555 584
mRuby2 Entacmaea quadricolor 1 559 600
mRuby3 Entacmaea quadricolor 1 558 592
Katushka Entacmaea quadricolor 2 588 635
mKate Entacmaea quadricolor 1 588 635
mKate2 Entacmaea quadricolor 1 588 633
HcRed Heteractis crispa 4 592 645
iRFP682 Rhodopseudomonas palustris 2 663 682
iRFP713 (iRFP) Rhodopseudomonas palustris 2 690 713

https://www.fpbase.org/protein/dsred/
https://www.fpbase.org/
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fluorescent fusion proteins in Candida parapsilosis (Gonia 
et al. 2016) and, furthermore, a 3-colour toolbox includ-
ing mCherry has been developed for C. glabrata (Yáñez-
Carrillo et al. 2015) and other Candida spp. (Gonia et al. 
2017). In a novel approach, the Clox marker recycling sys-
tem was adapted to pFA backbone vectors in C. albicans, 
and the new toolkit contains several fluorescent reporter 
proteins including mCherry (Dueñas-Santero et al. 2019). 
A 4-colour fluorescent imaging toolbox incorporating cyan, 
green, yellow, and red (mCherry) tagging proteins was also 
developed for the emerging human pathogen yeast Candida 
guilliermondii (Courdavault et al. 2011). In the human path-
ogenic encapsulated basidiomycetous yeast Cryptococcus 
neoformas, a number of fluorescent reporter proteins are 
applicable including the red mRuby3 in addition to DsRed 
and mCherry (Spencer et al. 2020), and mCherry was also 
incorporated and expressed in the “Safe Heaven 2” gene-
free intergenic site in the C. neoformans genome (Upadhya 
et al. 2017).

Considering heterologous protein expression in the 
methylotrophic yeast Pichia pastoris, mCherry and mTFP 
(a cyan fluorescent protein; https://​www.​fpbase.​org/​prote​in/​
mtfp/) labelled K28 S. cerevisiae killer toxin variants were 
expressed with good yields and were used in yeast cell bind-
ing studies (Giesselmann et al. 2017). The high efficiency 
of an episomal expression plasmid pPICZαBHF was dem-
onstrated by expression of RFP in P. pastoris (Chen et al. 
2017), and the efficiency of a hybrid protein secretion signal 
consisting of the S. cerevisiae Ost1 signal sequence and the 
α-factor pro-region was tested in P. pastoris expressing the 
red fluorescent protein E2-Crimson (Barrero et al. 2018). 
The CL7-tagged fluorescent proteins sfGFP (superfolder 
GFP) and mCherry were also used to demonstrate the effi-
ciency of a novel CL7/Im7 ultra-high-affinity-based surface 
display system in P. pastoris (Li et al. 2019a).

Red fluorescent protein reporters are used frequently 
in industrially and biomedically important filamentous 
fungi as well. For example, DsRed was expressed in the 
mesophilic, cellulolytic enzyme producer Trichoderma 
reesei under the control of the promoter of the major cel-
lular gene cbh1, and the germinated spores were screened 
for cellulase hyperproducers by fluorescence-assisted 
cell sorting (Gao et al. 2018). Engineering of the T. ree-
sei cbh1 promoter significantly increased DsRed protein 
expression (Sun et al. 2020), and controlled expression 
of codon-optimised monomeric superfolder GFP and 
mCherry from a “soft-landing” site juxtaposed to the sdi1 
succinate dehydrogenase locus may be a helpful tool in 
studying the secretory pathway in this important cellu-
lose producer fungi (Kilaru et al. 2020). T. reesei strains 
expressing DsRed-tagged endoglucanase, cellobiohydro-
lase, and β-glucosidase played a valuable role in mapping 
the localization and dynamics of cellulose production in 

this industrially important fungus (Li et al. 2019b), and 
to test a versatile T. reesei heterologous protein expres-
sion system, RFP and the Humicola insolens egv3 alka-
line endoglucanase reporter genes were expressed (Zhang 
et al. 2018). Conidiospores of the opportunistic human 
pathogenic fungus A. fumigatus were DsRed-labelled 
and employed in an immunosuppressed mouse model 
to test the clearance of this pathogen by ultrashort cati-
onic lipopeptides (Vallon-Eberhard et al. 2008). Further-
more, dual labelling of A. fumigatus conidia with DsRed 
(expressed constitutively only in live conidia) and Alexa 
Fluor 633 dye (it stains both live and dead cells) allowed 
the researchers to study the interactions between human 
primary immune cells and A. fumigatus in vitro (Brunel 
et al. 2017). RFP-expressing A. fumigatus was constructed 
and used to gain a deeper insight in the pathogenesis of A. 
fumigatus keratitis (Leal Jr. et al. 2010).

Considering plant pathogenic fungi, signal intensity and 
bleaching were compared for the red fluorescent proteins 
mRFP, TagRFP, mCherry, and tdTomato in Zymoseptoria 
tritici (a wheat pathogen) both in and ex planta (Schuster 
et al. 2015). While mCherry gave the highest intensity sig-
nal, it bleached fast and, hence, mRFP was recommended 
for long-term observation experiments (Schuster et al. 
2015). Red fluorescent protein reporters (DsRed, DsRed2, 
DsRed-Express, mRFP1, tdTomato, and mCherry) have 
also been used in a number of studies to visualize infect-
ing hyphae of plant pathogenic fungi penetrating various 
plant tissues. Recent publications in this field include 
Penicillium digitatum (on citrus fruit, DsRed; Vu et al. 
2018), Penicillium rubens (on tomato roots, DsRed; Val-
larino et al. 2018), Verticillium dahlia (on tobacco seed-
lings, mCherry; Su et al. 2018), and Epichloȅ strains (on 
ryegrass seedlings, DsRed; Hettiarachchige et al. 2019). 
Furthermore, DsRed-labelled Verticillium longisporum 
was used to test the hypothesis that disease transmission 
may occur by seeds from European winter oilseed rape 
production (Zheng et al. 2019), and the role of arthro-
pod vectors in the propagation of grapevine trunk disease 
pathogenic fungi was demonstrated by the application of 
DsRed-Express tagged Phaeomoniella chlamydospora 
(Moyo et al. 2014). GFP and DsRed expressing endophytes 
like Diaporthe schini seem to be especially useful when 
these strains are tracked in their natural environments 
(Felber et al. 2019). It is important to note that interfer-
ence with autofluorescence of chlorophylls and other cell 
constituents may mask GFP fluorescence in above-ground 
photosynthesizing plant tissues (Zhou et al. 2005; Berg 
and Beachy 2008). Meanwhile, the interference between 
chlorophylls and red fluorescent proteins can be minimal-
ized by suitable filter sets (Jach et al. 2001; Okwuonu et al. 
2015) or can be resolved by spectral unmixing techniques 
(Berg and Beachy 2008).

https://www.fpbase.org/protein/mtfp/
https://www.fpbase.org/protein/mtfp/
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Far‑red and near‑infrared fluorescent protein 
probes

To decrease phototoxicity further and facilitate deep-tissue 
analyses, a new set of far-red emitting fluorescent proteins 
has been developed with red-shifted excitation wavelengths 
(Table 1), and transmission imaging performed at wave-
lengths in the near-infrared spectrum is gaining ground in 
Mycology.

The fluorescent protein mPlum with far-red emission was 
evolved in a mammalian B cell-line using somatic hypermu-
tation (Wang and Tsien 2006) producing a red fluorescent 
protein variant mRFP1.2 (Table 1), which can be incorpo-
rated into 3-colour and 4-colour imaging systems recom-
mended for use in budding yeast (Bialecka-Fornal et al. 
2016). Whole-body imaging in small laboratory animals 
required the development of further fluorescent proteins 
emitting in the far-red spectrum with high brightness and 
photostability like Katushka, mKate, and mKate2 (Table 1) 
(Shcherbo et al. 2009). After thorough optimization of illu-
mination and other experimental conditions, Katushka, 
mRaspberry, and mCherry proved to be highly suitable 
for deep-tissue molecular imaging applications (Deliolanis 
et al. 2008). When applied together with a lipophilic fluores-
cent dye, Katushka was successfully used to track multiple 
bacterial strains in the intestine of mouse both temporally 
and spatially in 3D by fluorescence molecular tomography 
(Peñate-Medina et al. 2019).

In response to increasing demands for even further red-
shifted probes, a novel phytochrome-based near-infrared 
fluorescent protein, iRFP (iRFP713; Table 1), characterized 
with higher effective brightness, intracellular stability, and 
photostability than earlier phytochrome-derived fluorescent 
probes was produced for in vivo imaging (Filonov et al. 
2011). Later, together with other fluorescent proteins (yem-
CFP, sfGFP, mCitrine, mCherry), the tandem dimer iRFP 
(tdiRFP) was incorporated in a set of budding yeast single 
integration vectors replacing the entire deficient auxotrophy 
marker locus and used as gene tagging plasmids, ideally for 
tagging abundant proteins (Wosika et al. 2016).

The near-infrared fluorescent protein iRFP713 (Table 1) 
was expressed in lactobacilli and E. coli that were visualized 
in the intestine of living mice using epifluorescence imag-
ing or fluorescence tomography. Another fluorescent protein 
iRFP682 (Table 1) was also expressed in Lactobacillus plan-
tarum, enabling the concomitant detection of two bacterial 
populations in living mice (Berlec et al. 2015).

The far-red, near-infrared, phytochrome-based fluorescent 
proteins like phycobiliproteins of cyanobacteria are becom-
ing widely used even in mammalian cells, where biliverdin is 
typically present and accessible for these proteins (Chernov 
et al. 2017; Ding et al. 2017, 2018; Hou et al. 2019a, b; Li 
et al. 2019c). The application of these fluorescent proteins, 

however, is limited to chromophore producing fungi, e.g. in 
genetically engineered S. cerevisiae (Hochrein et al. 2017).

It is important to note that fungi can differentiate between 
less and more red shifted (e.g. λ ≅ 700 nm and λ ≅ 760 nm) 
illumination with marked alterations in conidiogenesis, ger-
mination of conidia, and even in illumination-responsive 
changes in global gene expression patterns (Yu et al. 2021). 
In order to facilitate the shift towards the near-infrared spec-
trum in microscopic techniques used in Mycology, the scope 
of on-going and future fungal physiological, developmental, 
and omics-based studies should be expanded to cover the 
near-infrared spectrum of light as well. Although our knowl-
edge on sensing infrared light by fungi is rather scarce, the 
involvement of FphA phytochrome in temperature sensing 
in A. nidulans (Yu et al. 2019) warns us that infrared light 
might not be neutral for fungi either.

Live‑cell imaging, time‑lapse, 
high‑resolution, and special microscopies

Red fluorescent proteins are also commonly used to visu-
alize cellular movements and positioning of labelled pro-
teins within live fungal cells. Nevertheless, the intrinsic 
properties of excitation light limit resolution and may 
cause photobleaching and photoxicity especially during 
prolonged image acquisition (Escorcia et al. 2019). To bal-
ance optimally resolution and photodamage in answering 
specific research questions, various advanced microscopy 
approaches and appropriate model systems have been devel-
oped. Advantages and disadvantages of currently applied 
microscopic techniques are summarized in Table 2.

Time‑resolved microscopy of cellular processes

Phototoxicity can be countered by not exposing cells to short 
wavelengths for too long or too frequently in time-lapse 
microscopy. In fission yeast, the proper selection of illumi-
nation conditions, strains, and fluorescence markers made 
possible the examination of nuclear dynamics during mitotic 
cycles and meiosis (Escorcia et al. 2019). In this study, chro-
mosome dynamics (Hht1-mRFP or Hht1-GFP) and segrega-
tion (Sad1-DsRed), cytoskeleton dynamics (Atb2-mRFP), 
transcriptional activation (Tos4-GFP), and cohesion stabil-
ity in meiosis (Rec8-GFP) could all be monitored using the 
reporter proteins indicated in parentheses (Escorcia et al. 
2019). Chromosome dynamics was also tracked in live S. 
cerevisiae cells using fluorescent proteins. For example, 
arrays of tet and lac operators were inserted into each repeat 
of the two rDNA homologs in budding yeast and the opera-
tors were visualized and tracked by time-lapse 3D fluores-
cence microscopy via the expression of tet-repressor-fused 
GFP and lac-repressor-fused RFP (Li et al. 2011).
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The Rosella biosensor system based on the fast-maturing 
pH-stable DsRed.T3 (Table 1) fused with the green ratiomet-
ric protein pHluorin (https://​www.​fpbase.​org/​prote​in/​phluo​
rin-​ratio​metric/) was constructed to study the vacuolar turno-
ver of cytosol and organelles and successfully employed to 
visualize nitrogen-starvation induced mitophagy in S. cer-
evisiae (Mijaljica et al. 2011).

Caspofungin exposure triggered rapid phosphatidylinosi-
tol 4,5-bisphosphate [PI(4,5)P2]-septin and protein kinase 
C-Mkc1 response in C. albicans. The PI(4,5)P2-septin 
responses were recorded in live-cell microscopy by express-
ing a GFP-pleckstrin homology domain, which binds PI(4,5)
P2, and the RFP-septin fusion proteins in both wild-type and 
mkc1 mutant cells (Badrane et al. 2016).

GFP and mCherry labelling were also employed to study 
spatiotemporal protein–protein interactions in single yeast 
cells after fusing a-mating type and α-mating type S. cer-
evisiae cells using two-channel fluorescence time-lapse 
microscopy with the SPLIFF method. In this approach, one 
protein of interest is attached to a linear mCherry-Cub (the 
C-terminal half of ubiquitin)-GFP fusion in one mating type 
and the other protein is fused to the N-terminal half of ubiq-
uitin (Nub) in the other mating type. After mating, if the 
two proteins of interest interact, the two halves of ubiquitin 
complement each other, which causes, the GFP to be cleaved 
and degraded. As a result, the originally balanced red-to-
green fluorescence ratio will shift towards the red marking 
in space and time where the two proteins have interacted 
(Dünkler et al. 2015).

Tandem fluorescent protein timers are constructed via 
the combination of faster maturing enhanced superfolder 
GFP and slower-maturing mCherry. Such constructs are 
applicable to study protein turnover and trafficking e.g. in 
S. cerevisiae cells but a special care should be taken of the 
proteasomal degradation of these dimers (Khmelinskii et al. 
2016). A dynamic protein synthesis translocation reporter 
(dPSTR) was designed to avoid problems arising from the 
slow maturation of fluorescent proteins. dPSTR consists of 
two transcriptional units the first of which constitutively 
expresses a fluorescent protein freely diffusing between the 
cytosol and the nuclei. The second unit incorporates two 
nuclear localization signals (NLSs) driven by the promoter 
under investigation. Both these units also contain a synthetic 
bZip domain. The activated promoter driving the synthesis 
of the NLS-bZIP fusion protein instantaneously disrupts the 
equilibrium of the already matured FP-bZIP fusion protein, 
causing the increase of its presence in the nucleus, propor-
tionally to the activity of the promoter in each individual cell 
(Aymoz et al. 2016).

To decrease the general phototoxicity of visible light in 
time-lapse microscopy, diodes emitting light in the infra-
red spectrum (LED, λ = 940 nm) were introduced by Nagy 
et al. (2014) to monitor and quantify the adherence time, 

hyphal outgrowth time, and hyphal growth rate of C. albi-
cans cultured in RPMI plus 10% foetal bovine serum in a 
CO2 incubator. The system was highly suitable for quantify-
ing the effects of tyrosol and farnesol treatments as well as 
Cappz1 and hgc1 mutations on cell motility, morphological 
transition, and hyphal growth rate (Nagy et al. 2014). Later 
the same group used similar experimental arrangements 
to monitor the effects of the antimycotics amphotericin B 
and voriconazole on the adherence and germination of A. 
fumigatus conidia and the growth dynamics (elongation and 
branching) of A. fumigatus hyphae (Talas et al. 2019).

Spatially resolved microscopy

Long-term and frequent illumination of fluorescent proteins 
may cause radiation-dependent DNA damage. Responses to 
such DNA damage were monitored expressing Rad52-GFP 
(Rad52 is a DNA double strand break repair protein) and 
mCherry-alpha-tubulin in S. cerevisiae and the persistence 
of Rad52-GFP fluorescence clearly depended on the 488 nm 
excitation light dose applying spinning disk confocal micros-
copy (SDCM). Interestingly, the topoisomerase 1 inhibitor 
camptothecin resulted in extended cell cycle and persistent 
Rad52-GFP fluorescence, and a mec1Δ sml1 S. cerevisiae 
strain defective in DNA damage-elicited cell-cycle arrest 
showed persistent Rad52-GFP fluorescence in the presence 
of camptothecin and underwent cell death a few cycles later 
(Montecchi and Schwob 2018).

In SDCM, rather than using a single pinhole as in classi-
cal confocal laser scanning microscopy (CLSM), hundreds 
of pinholes arranged in spirals are applied on an opaque 
disk, which rotates at high speeds. This arrangement ena-
bles fast image acquisition and reduces the excitation energy, 
which mitigates phototoxicity on the observed species as 
well as reduces the rate of photobleaching of the applied 
fluorophores. This renders SDCM a system of choice for 
microscopic observation of living cells or organisms. 
Although the resolution is not as good as in CLSM because 
a bit less out-of-focus light is removed in the SDCM system 
than in CLSM, the increase in acquisition speed presents an 
advantage worth this compromise (Bayguinov et al 2018).

Total internal reflection fluorescence (TIRF, Oheim et al. 
2019) microscopy provides a mechanism that can limit the 
region where the fluorophores are excited (and therefore 
detected) to a thin section of the sample, thereby eliminat-
ing unwanted background fluorescence, which would ema-
nate from other planes when using conventional illumina-
tion. This increases the signal-to-noise ratio, and improves 
z-resolution. The principle behind TIRF microscopy is 
the exploitation of the critical angle at which light beams 
impinging on the surface of an optically less dense medium 
(e.g. entering from the coverslip into the cell) cannot pen-
etrate into this medium. Beyond this angle, light beams are 

https://www.fpbase.org/protein/phluorin-ratiometric/
https://www.fpbase.org/protein/phluorin-ratiometric/
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reflected from the border of the two substances; however, 
an evanescent electromagnetic wave penetrates into the less 
dense medium, with an intensity that decreases exponen-
tially. This fast decay allows the excitation of only those 
fluorophores that are within a few hundred nanometers to 
the surface. Thus, TIRF microscopy is most often utilized 
to monitor events at the plasma membrane such as endocytic 
processes. A good example for this is the study of Kaksonen 
et al. (2005) where GFP-labelled clathrin and mRFP-tagged 
actin marker protein Abp1p were expressed and visualized 
in vivo in S. cerevisiae.

More recently, multicolour light-sheet fluorescence 
microscopy (LSFM) systems were developed using static 
illumination light-sheets and decoupling the excitation and 
detection optical paths. Here, the planar illumination causes 
less photodamage and allows faster wide-field imaging with 
high-efficiency cameras while minimizing out-of-focus fluo-
rescence. One version of LSFM, selective plane illumination 
microscopy (SPIM, Langowski 2017) was applied to detect 
GFP-tagged microtubules and RFP-labelled nuclei simul-
taneously in growing N. crassa hyphae. Time-lapse images 
were merged to show the dynamics of these structures in 
the apices of living hyphae. The system was suitable for 
the rapid and simultaneous acquisition of multifluorescence 
images, which were useful in three-dimensional imaging of 
hyphal structures (Licea-Rodriguez et al. 2019).

Molecular dynamics and interactions

Time-resolved fluorescence recovery after photobleaching 
(FRAP) combined with model convolution microscopy was 
employed to measure nanometer scale gradients in spindle 
microtubule dynamics in budding yeast monitoring the fluo-
rescence of GFP fused to Tub1 (tubulin marker); meanwhile, 
Spc29-RFP was used to label spindle pole bodies (Pearson 
et al. 2006). F-actin dynamics was first studied in N. crassa 
by visualizing actin using the Lifeact system incorporat-
ing a GFP- or TagRFP-labelled 17 amino acid peptide of S. 
cerevisiae Abp140p actin-binding protein (Berepiki et al. 
2010). Time-lapse imaging and the expression of GFP- and 
mCherry (optionally tdTomato)-labelled formins (For3, 
Cdc12), formin fusions (Tea1-For3, Tea1-Cdc12), and 
myosin were employed to check the functional behaviour of 
actin filaments (dynamics, actin-binding protein, and myo-
sin motor activities) modulated by formins in fission yeast 
(Johnson et al. 2014).

Fluorescence correlation spectroscopy setups like one-
colour fluorescence auto-correlation (FCS, Vámosi et al. 
2019) and dual-colour cross-correlation (FCCS) micros-
copies based on GFP- and mCherry-labelled proteasome 
proteins played a predominant role in shedding light on the 
spatio-temporal dynamics and cytoplasmic assembly of the 
26S proteasome in live budding yeast (Pack et al. 2014). 

FCS is based on monitoring fluctuation in fluorescence 
intensity detected from a tiny volume determined by the 
confocal illumination. The obtained fluorescence auto-cor-
relation function allows the measurement of the concentra-
tion of fluorescent molecules and the mobility parameter of 
these molecules reflecting their molecular size. Dual-colour 
FCCS provides a cross-correlation function and two auto-
correlation functions allowing the measurement of direct 
interaction, and stable co-mobility of two spectrally dis-
tinct (e.g. green and red) fluorescent molecules transiting 
through the observation volume. Using this approach, the 
authors revealed that 26S proteasome completes its assembly 
process in the cytoplasm and translocates into the nucleus 
through the nuclear pore complex as a holoenzyme.

GFP and mCherry fluorescent proteins were successfully 
employed to set up live-cell FCS and FCCS, complemented 
with FRET (Förster (fluorescence) resonance energy trans-
fer, Vereb et al 2004) protocols to map dynamic protein 
interactions between elements of the Fus3 mitogen-activated 
protein kinase signalling pathway in S. cerevisiae (Slaugh-
ter et al. 2007). The authors detected interaction between 
Ste5 and Fus3 by FCCS and they wanted to confirm this 
interaction by FRET measurement. Significant FRET effi-
ciency was detected between the donor (GFP) and acceptor 
(mStrawberry) labelled proteins using the acceptor pho-
tobleaching version of FRET methods (Roszik et al 2008). 
In this method, the increase in donor fluorescence intensity 
after acceptor photobleaching was utilized to calculate FRET 
efficiency, which proved that the Ste5 and Fus3 proteins are 
within 10 nm in the shmoo tip in the yeast cell.

In a more recent study, transient interactions between 
Ydj1-GFP and Ssa1-mCherry fluorescent protein–labelled 
chaperones were investigated in live budding yeast cells 
using raster image correlation spectroscopy (RICS) (Moreno 
and Aldea 2019). RICS is a spatial variant of fluctuation 
microscopies in which the sample is repeatedly raster 
scanned using appropriately fine-tuned scan and pixel times 
that enable the revelation of intensity changes in pixels 
occurring on the same timescale. From the data, both the 
diffusion coefficient and concentration of the mobile species 
can be extracted.

Super‑resolution microscopy (SRM)

An imaging tool based on super-resolution localization 
microscopy (SRM, Tosheva et al. 2020) with millisecond 
time resolution, convolution analysis, and automated image 
segmentation was developed to determine GFP-tagged and 
mCherry-tagged proteins in single functional S. cerevisiae 
cells (Wollman and Leake 2015). Super-resolution micros-
copy has many modalities. Of these, stochastic optical 
reconstruction microscopy (STORM) and photoactivated 
localisation microscopy (PALM) exploit the possibility of 
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exciting and observing the emission from only a few spa-
tially distant molecules and fitting the point-spread-function 
(PSF) on the cumulated, spatially spread emitted photons. In 
another variant, structured illumination microscopy (SIM), 
the cumulative information from diverse illumination pat-
terns is analyzed to obtain resolution beyond the Abbe limit. 
Finally, stimulated emission depletion (STED) microscopy 
reduces the observation volume by using beam shaping 
optics to project strong laser light in the spectral domain 
of the expected emission to only the outer regions of the 
excited confocal volume to cause immediate relaxation in 
those areas, thereafter detecting the spontaneous emission 
from the fluorophores remaining excited in the central, con-
siderably smaller region.

Expansion microscopy (ExM, Chen et al. 2015) per-
formed on U. maydis sporidia expressing fluorescent fungal 
rhodopsins or on hyphae of F. oxysporum expressing histone 
H1-mCherry and Lifeact-sGFP and A. fumigatus expressing 
mRFP targeted to mitochondria resulted in about 30 nm spa-
tial resolution of details of subcellular structures (Götz et al. 
2020). ExM is a cheap alternative providing quasy-super-
resolution images but using a conventional fluorescence 
microscope. In ExM, cells are fixed and immunostained 
before amino groups are modified by glutaraldehyde and 
then the sample is soaked in a monomer solution, which is 
consecutively polymerized (gelated). Then, the gel is iso-
tropically expanded in water to uniformly extend the dis-
tances four to ten times between fluorophores. The sample 
is analyzed by fluorescence confocal microscopy at its regu-
larly provided resolution; however, the preceding isotropic 
physical expansion of the specimen still allows bypassing the 
diffraction limit. Distortion and differences in the specific 
expansion factors of different organelles could be a prob-
lem; therefore, control experiments of the same structure 
before and after the expansion are required. In addition, the 
application of modern tetrahedron like monomers makes the 
expansion highly isotropic (Gao et al. 2021a). This method 
is difficult to apply to fungi, mainly due to their complex cell 
wall structure. Götz et al. (2020) successfully modified the 
method to be applicable to fungal cells using treatment with 
cell wall degrading enzymes before the fixation step. The 
authors have demonstrated that ExM with this modification 
is well suited for studying fungi at sub-diffraction resolution 
using conventional and confocal laser scanning fluorescence 
microscopes.

Multiphoton microscopy for greater penetration 
depth

Furthermore, two-photon microscopy techniques are becom-
ing popular tools for visualizing subcellular events in fungi 
and also hyphal structures and their complex interactions 
with other cells.

Multiphoton microscopy can take advantage of the excel-
lent penetration of red and infrared light in deep tissue (up to 
1 mm) complemented with the good visibility and brightness 
of conventional fluorophores emitting in the visible range 
(Chapuis et al. 2019). Moreover, since the excitation of the 
convential fluorophores happens only in a very thin layer 
of the sample, where the flux of the photons is high enough 
for simultaneous absorption of two photons, the bleaching 
and phototoxic effects are negligible for the whole sample. 
Two-photon microscopy techniques were successfully used 
to track the localization of nuclei in hyphae of arbuscular 
mycorrhizal fungi (Bago et al. 1999), to monitor the hyphal 
distribution of GFP-tagged reporter proteins, and to visual-
ize the orientation of hyphae in a calcofluor-stained cath-
eter model of C. albicans biofilm (Zhao et al. 2006). Simi-
lar microscopic methods were also employed to study (i) 
the spatial positioning and elongation of S. pombe mitotic 
spindle (Tolić-Nørrelykke et al. 2004), (ii) the in vivo ribo-
somal stalk heterogeneity of S. cerevisiae (García-Marcos 
et al. 2008), (iii) the architecture of developing multicellular 
budding yeast colony (Váchová et al. 2009), and (iv) the 
progression of allyl alcohol, diallyl disulphide, and garlic 
(Allium sativum) extract induced oxidative stress in C. albi-
cans (Lemar et al. 2005, 2007). Cells of the non-Saccharo-
myces yeast species Torulaspora delbrueckii, Metschnikowia 
pulcherrima, and Lachancea thermotolerans tolerated better 
dehydration stress when they were enriched in glutathione 
or trehalose as analyzed by flow cytometry and two-photon 
laser scanning microscopy (Câmara et al. 2019).

Two-photon microscopy can also help mycologists to 
reveal the subcellular localization of melanin, NAD(P)H, 
and protein-bound NAD(P)H in spores (Aspergillus ochra-
ceus; Herbrich et al. 2012), and to estimate the metabolic 
state of Agaricus bisporus (Knaus et al. 2013). The uptake 
of phenanthrene by the white-rot fungus Phanerochaete 
chrysosporium was also followed by this technique (Gu 
et al. 2016).

Laser power-dependence of photo-oxidation was studied 
in S. cerevisiae by two-photon microscopy (λ = 830 nm) as 
well (Grangeteau et al. 2018). Fungal destruction (plasma 
membrane permeabilization, cell necrosis) was initiated eas-
ily using high-density light flux, which may facilitate the 
development of future photo-oxidation-based antifungal 
therapies (Grangeteau et al. 2018).

3D imaging of temporal and spatial development of 
haustoria on host plants can also be studied by two-photon 
microscopy (e.g. during the infection of wheat with the rust 
fungus Puccinia striiformis; Sørensen et al. 2012). Moreo-
ver, the interaction of the antimicrobial hairpin-like protein 
EcAMP1 with Fusarium solani conidia was also studied by 
two-photon microscopy (Vasilchenko et al. 2016).

Fine cellular details of animal-fungal pathogen inter-
actions can also be visualized and studied by two-photon 
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microscopy on thick viable lung slices (Hasenberg et al. 
2011) or in intact lungs (Bruns et al. 2010) of mice infected 
by A. fumigatus. Using two-photon second harmonic gen-
eration microscopy, Lee et al. (2018) were able to detect 
C. albicans and A. fumigatus cells in infected corneas in a 
fungal keratitis rabbit model ex vivo.

Conclusions, future tendencies

The last decades have seen a vast expansion of molecular 
biology toolsets applying various fluorescent proteins for 
observing cells at all levels—starting from single molecule 
observation and manipulation, through observing molecular 
interactions in situ, to showing morphological and functional 
changes at the microscopic level in vitro and in vivo. At the 
same time, microscopy itself has undergone a spectacular 
development, bypassing the diffraction limit in several dif-
ferent and complementary ways, and bringing high-resolu-
tion and/or highly specialized imaging modalities to every-
day use. Mycologists have been at the forefront of many of 
these developments, and have ingeniously adapted others 
to the fungi of their interest. However, it has also become 
clear that fungi have photosensors and react to various vis-
ible wavelengths of illumination, thereby altering multiple 
aspects of their behaviour as an unwanted side effect of 
microscopic observation. Consequently, new ways of micro-
scopic imaging are necessary to avoid illumination-derived 
artefacts. One obvious route is to shift wavelengths away 
from those most efficiently detected by fungi. Conveniently, 
based on the success of red fluorescent proteins, the novel 
far-red emitting variants are now gaining space, and some 
(very) near infrared species are also being considered. In 
addition, for long period transmitted light microscopy, NIR 
has appeared on the palette, allowing further reduction in 
the unwanted effects of illumination. Detection of longer 
wavelengths, however, has its drawbacks, both in terms of 
sensor quantum efficiency and optical resolution. One-way 
around is to use two-photon excitation, which eliminates 
the visible spectrum from the illumination, which represents 
the greatest portion of exposure, yet allows high-resolution 
detection of the emitted visible photons. Given the special 
technical requirements for this approach, other new devel-
opments are also needed to achieve a fine balance between 
reducing phototoxicity and achieving acceptable resolution 
and signal-to-noise ratio. These goals could be well aided by 
recent and ongoing efforts in improving resolution as well 
as optimizing the use of information in special microscopy 
approaches such as FRAP, FCS, FRET, RICS, and ExM.
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