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A GENERAL MEAN VALUE THEOREM

ZSOLT PÁLES

Abstract. In this note a general a Cauchy-type mean value theorem for the ratio of functional
determinants is offered. It generalizes Cauchy’s and Taylor’s mean value theorems as well as other
classical mean value theorems.

1. Introduction

The aim of the present note is to offer a unified approach to most of the mean value theorems
known in elementary analysis.

Let x1, . . . , xk be arbitrary points in the real interval [a, b]. Then, one can uniquely determine
a permutation π of the set {1, . . . , k}, n ∈ N, ξ1 < · · · < ξn in [a, b] and k1, . . . , kn in N with
k1 + · · ·+ kn = k such that

(1) (xπ(1), . . . , xπ(k)) = (ξ1, . . . , ξ1
︸ ︷︷ ︸

k1 times

, . . . , ξn, . . . , ξn
︸ ︷︷ ︸

kn times

).

If w1, . . . , wm+k : [a, b] → R is a system of (k − 1) times differentiable functions (m > 0), and
u1, . . . , um+k ∈ R

m are vectors, then we define

W

(
w1, . . . , wm+k

u1, . . . , um+k

)

(x1, . . . , xk)

:=

∣
∣
∣
∣
∣
∣
∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w1(ξn) . . . w

(kn−1)
1 (ξn)

...
...

...
...

...
...

um+k,1 . . . um+k,m wm+k(ξ1) . . . w
(k1−1)
m+k (ξ1) . . . wm+k(ξn) . . . w

(kn−1)
m+k (ξn)

∣
∣
∣
∣
∣
∣
∣

,

where the right hand side of this equation is an (m+ k)× (m+ k) determinant, w(i) stands for
the ith derivative of the function w, ui,j denotes the jth coordinate of the vector ui, and ξi, ki
is determined by (1).

We also allow m to take the value 0, with the following notational conventions: R
0 := {0}

and

W

(
w1, . . . , wk

u1, . . . , uk

)

(x1, . . . , xk) := W(w1, . . . , wk)(x1, . . . , xk)

:=

∣
∣
∣
∣
∣
∣
∣

w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w1(ξn) . . . w

(kn−1)
1 (ξn)

...
...

...
...

wk(ξ1) . . . w
(k1−1)
k (ξ1) . . . wk(ξn) . . . w

(kn−1)
k (ξn)

∣
∣
∣
∣
∣
∣
∣

,
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2 ZSOLT PÁLES

Observe that if here x1 = · · · = xk = ξ, then the above definition reduces to

W(w1, . . . , wk)(ξ, . . . , ξ) =

∣
∣
∣
∣
∣
∣
∣

w1(ξ) · · · w
(k−1)
1 (ξ)

...
. . .

...

wk(ξ) · · · w
(k−1)
k (ξ)

∣
∣
∣
∣
∣
∣
∣

,

which is known as the Wronski determinant of the system w1, . . . , wk.
The class of functions f : [a, b] → R that are k − 1 times continuously differentiable on [a, b]

and k times differentiable on the open interval ]a, b[ will be denoted by Dk([a, b]).

Now we are able to formulate the main result of this paper.

Theorem 1. Let 1 ≤ k, 0 ≤ m be integers and u1, . . . , um+k ∈ R
m such that (if 0 < m then)

u1, . . . , um are linearly independent, i.e.,

(2) V0 :=

∣
∣
∣
∣
∣
∣

u1,1 · · · u1,m
...

. . .
...

um,1 · · · um,m

∣
∣
∣
∣
∣
∣

6= 0.

In addition, let w1, . . . , wm+k ∈ Dk([a, b]) be a system of functions satisfying

(3) Vn(ξ) := W

(
w1, . . . , wm+n

u1, . . . , um+n

)

(ξ, . . . , ξ
︸ ︷︷ ︸

n times

) 6= 0

for all ξ ∈ [a, b] and n = 1, . . . , k. Then, for all nonidentical points x1, . . . , xk+1 ∈ [a, b], vectors
p, q ∈ R

m and functions f, g ∈ Dk([a, b]), there exists an intermediate point ξ ∈] min xi,maxxi[
such that

(4) W

(
w1, . . . , wm+k, f

u1, . . . , um+k, p

)

(ξ, . . . , ξ) ·W
(
w1, . . . , wm+k, g

u1, . . . , um+k, q

)

(x1, . . . , xk+1)

= W

(
w1, . . . , wm+k, g

u1, . . . , um+k, q

)

(ξ, . . . , ξ) ·W
(
w1, . . . , wm+k, f

u1, . . . , um+k, p

)

(x1, . . . , xk+1).

The proof of this theorem is given in the next section. Now we list some of its consequences.

Corollary 1. (Cauchy’s Mean Value Theorem.) Let f, g ∈ D1[a, b] Then there exists ξ ∈]a, b[
such that

f ′(ξ)(g(a)− g(b)) = g′(ξ)(f(a)− f(b)).

Proof. Let k = 1, m = 0, w1 ≡ 1 and x1 = a, x2 = b in Theorem 1. Then the statement follows
immediately from (4). �

Corollary 2. (Taylor’s Mean Value Theorem.) Let f ∈ Dk([a, b]). Then, for all x ∈]a, b], there
exists ξ ∈]a, b[ such that

f(x) = f(a) + f ′(a)(x− a) + · · ·+
f (k−1)(a)

(k − 1)!
(x− a)k−1 +

f (k)(ξ)

k!
(x− a)k.

Proof. Let m = 0,

wi(x) =
(x− a)i−1

(i− 1)!
for i = 1, . . . , k and g(x) =

(x− a)k

k!
.
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Then, for all ξ ∈ [a, b],

W(w1)(ξ) = · · · = W(w1, . . . , wk)(ξ, . . . , ξ) = 1,

therefore, (2) and (3) are satisfied. Thus, taking x1 = · · · = xk = a and xk+1 = x in Theorem
1, we obtain that there exists ξ ∈]a, x[ satisfying

(5) W(w1, . . . , wk, f)(ξ, . . . , ξ, ξ) ·W(w1, . . . , wk, g)(a, . . . , a, x)

= W(w1, . . . , wk, g)(ξ, . . . , ξ, ξ) ·W(w1, . . . , wk, f)(a, . . . , a, x).

A simple computation yields that

W(w1, . . . , wk, f)(a, . . . , a, x) = f(x)− f(a)− f ′(a)(x− a)− · · · −
f (k−1)(a)

(k − 1)!
(x− a)k−1,

W(w1, . . . , wk, g)(a, . . . , a, x) =
(x− a)k

k!
,

furthermore

W(w1, . . . , wk, f)(ξ, . . . , ξ, ξ) = f (k)(ξ) and W(w1, . . . , wk, g)(ξ, . . . , ξ, ξ) = 1.

Thus, Taylor’s theorem follows from (5) at once. �

Let w1(x) = 1, . . . , wk(x) = xk−1, wk+1 = xk for x ∈ [a, b] and let a ≤ x1 ≤ · · · ≤ xk+1 ≤ b

with a < xk+1 and x1 < b. Then the ratio

[x1, . . . , xk+1]f :=
W(w1, . . . , wk, f)(x1, . . . , xk, xk+1)

W(w1, . . . , wk, wk+1)(x1, . . . , xk, xk+1)

is called the kth order divided difference of f ∈ Dk([a, b]) over the points x1, . . . , xk+1 (c.f.
[Sch81, p. 45]). Divided differences are usually defined in an inductive way in the literature,
see e.g. [AH79, Sect. 3.17] and [HA38, Sect. 2.3]. The proof of the equivalence of the above
definition to the usual one can be found in [Sch81, Theorem 2.51, p.47].

Concerning divided differences, the following result is well known (c.f. [AH79, p. 274] and
[Sch81, (2.93)]).

Corollary 3. Let f ∈ Dk([a, b]) and a ≤ x1 ≤ · · · ≤ xk+1 ≤ b with x1 < xk+1. Then there
exists ξ ∈]x1, xk+1[ such that

(6) [x1, . . . , xk+1]f =
f (k)(ξ)

k!
.

Proof. Apply Theorem 1 when m = 0 with the function g(x) = wk+1(x) = xk. Then we find
that there exists ξ ∈]x1, xk+1[ such that

[x1, . . . , xk+1]f = [ξ, . . . , ξ
︸ ︷︷ ︸

k+1 times

]f =
f (k)(ξ)

k!
.

Thus (6) is proved. �

The following result, called Cauchy Mean Value Theorem, is due to Rätz and Russel [RR87].
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Corollary 4. Let f, g ∈ Dk([a, b]) such that g(k)(ξ) 6= 0 for ξ ∈]a, b[ and let a ≤ x1 ≤ · · · ≤
xk+1 ≤ b with x1 < xk+1. Then there exists ξ ∈]x1, xk+1[ such that

(7)
[x1, . . . , xk+1]f

[x1, . . . , xk+1]g
=
f (k)(ξ)

g(k)(ξ)
.

Proof. Applying Corollary 3 for the function g first, we can observe that

[x1, . . . , xk+1]g 6= 0.

Hence the left hand side of (7) exists. Clearly,

[x1, . . . , xk+1]f

[x1, . . . , xk+1]g
=

W(w1, . . . , wk, f)(x1, . . . , xk, xk+1)

W(w1, . . . , wk, g)(x1, . . . , xk, xk+1)

Therefore, by Theorem 1, there exists ξ ∈]x1, xk+1[ such that

[x1, . . . , xk+1]f

[x1, . . . , xk+1]g
=

W(w1, . . . , wk, f)(ξ, . . . , ξ, ξ)

W(w1, . . . , wk, g)(ξ, . . . , ξ, ξ)
=
f (k)(ξ)

g(k)(ξ)
,

whence (7) follows. �

2. Proof of the main result

In the proof of Theorem 1, we shall need the following notion: A function f ∈ Dk([a, b])
vanishes k + 1 times in [a, b] if there exist points x1 < · · · < xn in [a, b] with x1 < b, a < xn
and natural numbers k1, . . . , kn with k1 + · · ·+ kn = k + 1 such that

(8) f (j)(xi) = 0 for j = 0, . . . , ki − 1, i = 1, . . . , n.

For instance, the function f(x) = x(x − 1) vanishes twice in [0, 1]. However the function
f(x) = x2 does not vanish twice in [0, 1], but it does in [−1, 1], (that is, all the zeroes of f
should not be concentrated at the endpoints of the interval).

We recall the following lemmas from [Pal94] and, for readers convenience, we also provide
their proofs.

Lemma 1. If f, g ∈ Dk([a, b]) and f vanishes k+1 times in [a, b], then fg also vanishes k+1
times in [a, b].

Proof. By the assumption, there are x1 < · · · < xn in [a, b] with x1 < b, a < xn and k1, . . . , kn ∈
N with k1 + · · ·+ kn = k + 1 such that (8) holds. Then, using Leibniz’s Product Rule, one can
check that

(fg)(j)(xi) = 0 for j = 0, . . . , ki − 1, i = 1, . . . , n.

Thus fg also vanishes k + 1 times in [a, b]. �

Lemma 2. If f ∈ Dk([a, b]) vanishes k + 1 times in [a, b], then f ′ vanishes k times in [a, b].

Proof. We have (8) for some x1 < · · · < xn with x1 < b, a < xn and k1, . . . , kn ∈ N with
k1 + · · · + kn = k + 1. If n = 1, then there is nothing to prove. Otherwise, by Rolle’s Mean
Value Theorem, there exist xi < ξi < xi+1 such that

f ′(ξi) = 0 for i = 1, . . . , n− 1.

These equalities combined with (8) yield that f ′ vanishes k times on [a, b]. �
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The following lemma generalizes [Pal94, Lemma 3]. The result obtained therein corresponds
the case m = 0 below.

Lemma 3. Let 1 ≤ k, 0 ≤ m be integers and u1, . . . , um+k ∈ R
m such that (2) holds (if

m > 0). Let w1, . . . , wm ∈ Dk([a, b]) be a system of functions satisfying (3) for all ξ ∈ [a, b].
For f ∈ Dk([a, b]), define the following operators

Wn(f)(ξ) := W

(
w1, . . . , wm+n, f

u1, . . . , um+n, 0

)

(ξ, . . . , ξ
︸ ︷︷ ︸

n+1 times

), n = 0, . . . , k.

where ξ ∈ [a, b] if n < k, and ξ ∈]a, b[ if n = k. Then the following recursive formula

(9) Wn(f)(ξ) =
d

dξ

(
Wn−1(f)(ξ)

Vn(ξ)

)

·
[Vn(ξ)]

2

Vn−1(ξ)

holds for all ξ ∈ [a, b] if 1 ≤ n < k, and for all ξ ∈]a, b[ if n = k. (Here V0 and Vn (1 ≤ n ≤ k)
are defined in (2) and in (3), respectively. In the case m = 0 we set V0 = 0.)

Proof. The argument described below works for m 6= 0. The m = 0 case is completely analo-
gous, therefore omitted.

The vectors u1, . . . , um are linearly independent in R
m, hence they form a basis of Rm. Thus,

we can find real numbers γ1,n, . . . , γm,n such that, for n = 1, . . . , k,

(10) − um+n = γ1,nu1 + · · ·+ γm,num.

Then define the functions vn : [a, b] → R by

(11) vn := wm+n + γ1,nw1 + · · ·+ γm,nwm.

Now we show that the functions v1, . . . , vn form a linearly independent system of solutions of
the equation

(12) Wn(f)(ξ) = 0, ξ ∈]a, b[

which is an nth order homogeneous linear differential equation for the unknown function f .
To see this, we first compute Wn(vj) for any 1 ≤ j ≤ k and 0 ≤ n ≤ k. Multiplying the first

m rows of the determinant Wn(vj) by γ1,j, . . . , γm,j, respectively, subtracting their sum from
the last row, then using (10), we get

Wn(vj)(ξ) = W

(
w1, . . . , wm+n, wm+j +

∑m

i=1 γi,jwi

u1, . . . , um+n, 0

)

(ξ, . . . , ξ)

= W

(
w1, . . . , wm+n, wm+j

u1, . . . , um+n, −
∑m

i=1 γi,jui

)

(ξ, . . . , ξ)

= W

(
w1, . . . , wm+n, wm+j

u1, . . . , um+n, um+j

)

(ξ, . . . , ξ) = 0

If j ≤ n, then this formula results Wn(vj) = 0. On the other hand, with j = n + 1, we have
Wn(vn+1) = Vn+1.

The function v1 cannot be identically zero because W0(v1) = V1 6= 0. Hence {v1} is a
linearly independent set of solutions of W1(f) = 0. Assume now that v1, . . . , vn form a linearly
independent system of solutions of Wn(f) = 0. The function vn+1 is not a solution of this
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equation, hence, it cannot be a linear combination of v1, . . . , vn. Thus, v1, . . . , vn+1 is also a
linearly independent system.

Temporarily, denote the operator defined by the right hand side of (9) by W
∗

n(f). It is clear
that W∗

n(f) is also an nth-order linear differential operator of f . We show that v1, . . . , vn also
solves the equation W

∗

n(f) = 0. This is obvious if f = v1, . . . , vn−1 (since these functions are
solutions of the equation Wn−1(f) = 0). On the other hand

W
∗

n(vn)(ξ) =
d

dξ

(
Wn−1(vn)(ξ)

Vn(ξ)

)

·
[Vn(ξ)]

2

Vn−1(ξ)
=

d

dξ

(
Vn(ξ)

Vn(ξ)

)

·
[Vn(ξ)]

2

Vn−1(ξ)
= 0.

Observe that the coefficients of f (n) in Wn(f) and W
∗

n(f) are equal to Vn which does not
vanish anywhere in [a, b]. Therefore, having the same solution space, these two operators have
to coincide for all 1 ≤ n ≤ k. �

Lemma 4. Let 1 ≤ k, 0 ≤ m be integers and u1, . . . , um+k ∈ R
m such that (2) holds (if m > 0).

Let w1, . . . , wm ∈ Dk([a, b]) be a system of functions satisfying (3) for all ξ ∈ [a, b]. Assume
that the function f ∈ Dk([a, b]) vanishes k + 1 times in [a, b]. Then, for each 0 ≤ n ≤ k, the
function Wn(f) defined in Lemma 3 vanishes k + 1− n times in [a, b].

Proof. We prove by induction. If n = 0, then W0(f) = V0f , hence, in this case, there is nothing
to prove. Let n ≥ 1 and assume that Wn−1(f) vanishes k + 1− (n− 1) times. Then, applying
Lemma 1 and Lemma 2, one sees that the function

d

dξ

(
Wn−1(f)(ξ)

Vn(ξ)

)

·
[Vn(ξ)]

2

Vn−1(ξ)
(ξ ∈ [a, b])

vanishes k+1−(n−1)−1 = k+1−n times. Therefore, due to the recursive formula established
in Lemma 3, Wn(f) vanishes k + 1− n times. �

Now we are ready to prove the main result of the paper.

Proof of Theorem 1. Let x1 ≤ · · · ≤ xk+1 be in [a, b] with min xi < maxxi. Then there exist
a permutation π of {1, . . . , xk+1}, n ∈ N, ξ1 < · · · < ξn in [a, b] and k1, . . . , kn ∈ N with
k1 + · · ·+ kn = k + 1 such that

(13) (xπ(1), . . . , xπ(k+1)) = (ξ1, . . . , ξ1
︸ ︷︷ ︸

k1 times

, . . . , ξn, . . . , ξn
︸ ︷︷ ︸

kn times

)

holds. Define the function F : [a, b] → R by

F (x) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn) w1(x)

...
...

...
...

...
...

um+k,1 . . . um+k,m wm+k(ξ1) . . . w
(k1−1)
m+k (ξ1) . . . w

(kn−1)
m+k (ξn) wm+k(x)

p1 . . . pm f(ξ1) . . . f (k1−1)(ξ1) . . . f (kn−1)(ξn) f(x)
q1 . . . qm g(ξ1) . . . g(k1−1)(ξ1) . . . g(kn−1)(ξn) g(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

It is obvious at once that

F (j)(ξi) = 0 for j = 0, . . . , ki − 1, i = 1, . . . , n,
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therefore F vanishes k + 1 times in [a, b]. Thus, by Lemma 4, there exists ξ ∈]a, b[ such that

(14) Wk(F )(ξ) = W

(
w1, . . . , wm+k, F

u1, . . . , um+k, 0

)

(ξ, . . . , ξ
︸ ︷︷ ︸

k+1 times

) = 0.

Now determine the contstants γi,n such that they satisfy (10) and define v1, . . . , vk by (11).
Similarly, choose α1, . . . , αm and β1, . . . , βm such that

(15) − p = α1u1 + · · ·+ αmum and − q = β1u1 + · · ·+ βmum.

and define

(16) φ = f + α1w1 + · · ·+ αmwm and ψ = g + β1w1 + · · ·+ βmwm.

Using these choices of the constants, add linear combination of the first m rows of F to the
rest of the rows to obtain

F (x) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn) w1(x)

...
...

...
...

...
...

um,1 . . . um,m wm(ξ1) . . . w
(k1−1)
m (ξ1) . . . w

(kn−1)
m (ξn) wm(x)

0 . . . 0 v1(ξ1) . . . v
(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn) v1(x)

...
...

...
...

...
...

0 . . . 0 vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn) vk(x)

0 . . . 0 φ(ξ1) . . . φ(k1−1)(ξ1) . . . φ(kn−1)(ξn) φ(x)
0 . . . 0 ψ(ξ1) . . . ψ(k1−1)(ξ1) . . . ψ(kn−1)(ξn) ψ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= V0 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

v1(ξ1) . . . v
(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn) v1(x)

...
...

...
...

vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn) vk(x)

φ(ξ1) . . . φ
(k1−1)(ξ1) . . . φ(kn−1)(ξn) φ(x)

ψ(ξ1) . . . ψ
(k1−1)(ξ1) . . . ψ(kn−1)(ξn) ψ(x)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Expanding by the last column, we get

F (x) =

k∑

i=1

Ci · vi(x)−Aφ(x) +Bψ(x),

where A,B,Ci are the values of the corresponding subdeterminants. Substituting the above
form of F into (14), and using that Wk(vi) = 0, we get that

(17) A ·Wk(φ)(ξ) = B ·Wk(ψ)(ξ)

In the rest of the proof we show that (17) reduces to (4).
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Indeed, adding a certain linear combination to the last row of Wk, we get

Wk(φ)(ξ) = W

(
w1, . . . , wm+k, f +

∑m

i=1 αiwi

u1, . . . , um+k, 0

)

(ξ, . . . , ξ)

= W

(
w1, . . . , wm+k, f

u1, . . . , um+k, −
∑m

i=1 αiui

)

(ξ, . . . , ξ)

= W

(
w1, . . . , wm+k, f

u1, . . . , um+k, p

)

(ξ, . . . , ξ).

For the constant A, due to its origin, we have

A = V0 ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

v1(ξ1) . . . v
(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn)

...
...

...

vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn)

ψ(ξ1) . . . ψ
(k1−1)(ξ1) . . . ψ(kn−1)(ξn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Now, using an argument similar to that applied in the computation of F , one can get that

A =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn)

...
...

...
...

...

um,1 . . . um,m wm(ξ1) . . . w
(k1−1)
m (ξ1) . . . w

(kn−1)
m (ξn)

0 . . . 0 v1(ξ1) . . . v
(k1−1)
1 (ξ1) . . . v

(kn−1)
1 (ξn)

...
...

...
...

...

0 . . . 0 vk(ξ1) . . . v
(k1−1)
k (ξ1) . . . v

(kn−1)
k (ξn)

0 . . . 0 ψ(ξ1) . . . ψ(k1−1)(ξ1) . . . ψ(kn−1)(ξn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

u1,1 . . . u1,m w1(ξ1) . . . w
(k1−1)
1 (ξ1) . . . w

(kn−1)
1 (ξn)

...
...

...
...

...

um+k,1 . . . um+k,m wm+k(ξ1) . . . w
(k1−1)
m+k (ξ1) . . . w

(kn−1)
m+k (ξn)

q1 . . . qm g(ξ1) . . . g(k1−1)(ξ1) . . . g(kn−1)(ξn)

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

= W

(
w1, . . . , wm+k, g

u1, . . . , um+k, q

)

(x1, . . . , xk+1).

Thus, we have checked that the left hand side of (17) coincides with that of (4). The equality
of the right hand sides follows similarly, and therefore, the proof is complete. �

We now derive a useful consequence of Theorem 1.

Theorem 2. Let I ⊂ R be an interval and [a, b] be a proper subinterval ofI. Let 1 ≤ k, 1 ≤ m

be integers and y1, . . . , ym ∈ I \ [a, b]. Assume that w1, . . . , wm+k : I → R are sufficently many
times differentiable functions such that

(18) W(w1, . . . , wm+n)(y1, . . . , ym, ξ, . . . , ξ
︸ ︷︷ ︸

n times

) 6= 0

for all ξ ∈ [a, b] and n = 0, . . . , k. Then, for all nonidentical points x1, . . . , xk+1 ∈ [a, b], and
functions sufficently many times differentiablef, g : I → R, there exists an intermediate point
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ξ ∈] min xi,maxxi[ such that

(19) W(w1, . . . , wm+k, f)(y1, . . . , ym, ξ, . . . , ξ
︸ ︷︷ ︸

k+1 times

) ·W(w1, . . . , wm+k, g)(y1, . . . , ym, x1, . . . , xk+1)

= W(w1, . . . , wm+k, g)(y1, . . . , ym, ξ, . . . , ξ
︸ ︷︷ ︸

k+1 times

)·W(w1, . . . , wm+k, f)(y1, . . . , ym, x1, . . . , xk+1).

Proof. Let π be a permutation of the set {1, . . . , m}, η1, . . . , ηl ∈ I, and m1, . . . , ml ∈ N with
m1 + · · ·+ml = m such that

(yπ(1), . . . , yπ(m)) = (η1, . . . , η1
︸ ︷︷ ︸

m1 times

, . . . , ηl, . . . , ηl
︸ ︷︷ ︸

ml times

).

Set, for i = 1, . . . , m+ k,

ui := (ui1, . . . , uim) := (wi(η1), . . . , w
(m1−1)
i (η1), . . . , wi(ηl), . . . , w

(ml−1)
i (ηl)),

and
p := (p1, . . . , pm) := (f(η1), . . . , f

(m1−1)(η1), . . . , f(ηl), . . . , f
(ml−1)(ηl)),

q := (q1, . . . , qm) := (g(η1), . . . , g
(m1−1)(η1), . . . , g(ηl), . . . , g

(ml−1)(ηl)).

Observe, that with this notations, the conditions of Theorem 1 are satisfied and therefore there
exists ξ such that (4) holds. It is immediate to see that (4) is equivalent to (19). �
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