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Abstract

T. A. Dowling introduced Whitney numbers of the first and second kind con-
cerning the so-called Dowling lattices of finite groups. It turned out that they
are generalizations of Stirling numbers. Later, I. Mező defined r-Whitney num-
bers as common generalizations of Whitney numbers and r-Stirling numbers.
Additionally, G.-S. Cheon and J.-H. Jung defined r-Whitney-Lah numbers.

In our paper, we give new combinatorial interpretations of r-Whitney and
r-Whitney-Lah numbers, which correspond better with the combinatorial defi-
nitions of Stirling, r-Stirling, Lah and r-Lah numbers. These allow us to explain
their properties in a purely combinatorial manner, as well as derive several new
identities.
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1. Introduction

Stirling numbers
[
n
k

]
and

{
n
k

}
are fundamental objects in enumerative com-

binatorics. A. Z. Broder [4], and later R. Merris [16] defined combinatorially a
generalization of these numbers, the r-Stirling numbers, although they appeared
in a previous work of L. Carlitz [5], who reached them in a different way.

[
n
k

]
r

5

counts those permutations of 1, . . . , n+r which are the product of k+r disjoint
cycles such that 1, . . . , r belong to distinct cycles, while

{
n
k

}
r

counts the parti-
tions of {1, . . . , n+ r} into k+r nonempty subsets, where 1, . . . , r are contained
in distinct blocks (0 ≤ k ≤ n, r ≥ 0). For r = 0 and r = 1, they give back the
ordinary Stirling numbers directly and with shifted parameters, respectively.10

Recently, an alternative approach to r-Stirling numbers of the second kind was
found by E. Gyimesi and G. Nyul [12] using combinatorial subspaces.
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Lah numbers
⌊
n
k

⌋
are close relatives of Stirling numbers. Their r-generalized

variants, the r-Lah numbers were extensively studied by G. Nyul and G. Rácz
[21].

⌊
n
k

⌋
r

is the number of partitions of {1, . . . , n+ r} into k + r nonempty15

ordered subsets such that 1, . . . , r belong to distinct ordered blocks (0 ≤ k ≤ n,
r ≥ 0). As above, 0-Lah and 1-Lah numbers coincide with Lah numbers.

T. A. Dowling [11] constructed a certain lattice for a finite group of order
m, now called Dowling lattice, and using the Möbius function, he introduced
the corresponding Whitney numbers of the first kind wm (n, k) and Whitney20

numbers of the second kind Wm (n, k) (0 ≤ k ≤ n, m ≥ 1), which are inde-
pendent of the group itself, but depend only on its order. Here and hereafter,
we use these notations for unsigned Whitney numbers even in the first kind
case. For the trivial group, we have w1 (n, k) =

[
n+1
k+1

]
and W1 (n, k) =

{
n+1
k+1

}
.

M. Benoumhani [2] gave a detailed description of properties of these numbers.25

It was the idea of I. Mező [17] to give a common generalization of r-Stirling
numbers and Whitney numbers. He defined r-Whitney numbers of the first kind
by equation

mnxn =

n∑
k=0

wm,r(n, k) (mx− r)k , (1)

and r-Whitney numbers of the second kind by

(mx+ r)
n

=

n∑
k=0

Wm,r(n, k)mkxk. (2)

However, r-Whitney numbers also appear from other directions under differ-
ent names. As a special case of Stirling number pairs introduced by L. C. Hsu
and P. J.-S. Shiue [13], R. B. Corcino, C. B. Corcino and R. Aldema [8], [7]
studied the so-called (r, β)-Stirling numbers, which turn out to be equivalent to
r-Whitney numbers. Moreover, B. Voigt [25] defined a generalization of Stir-30

ling numbers of the second kind with a sequence as a further parameter, and
this variant gives back r-Whitney numbers of the second kind for arithmetic
progressions, see A. Ruciński and B. Voigt [23].

G.-S. Cheon and J.-H. Jung [6] gave a detailed study of r-Whitney numbers
of both kinds, based on an interpretation in connection with Dowling lattices.
In addition, they introduced r-Whitney-Lah numbers by identity

WLm,r (n, k) =

n∑
j=k

wm,r (n, j)Wm,r (j, k) . (3)

Ordinary Whitney-Lah numbers WLm (n, k) could be defined similarly.
We mention here that M. Merca [15] connected r-Whitney numbers to sym-35

metric polynomials.
The above summarized results do not contain any purely combinatorial

meaning of r-Whitney and r-Whitney-Lah numbers, not even in the ordinary
case. There have been some attempts in this direction.
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J. B. Remmel and M. L. Wachs [22] gave two combinatorial interpretations40

of Whitney numbers of the first kind and one for Whitney numbers of the second
kind. I. Mező [18] derived some formulas for Whitney numbers of the second
kind by the help of this latter interpretation.

M. Mihoubi and M. Rahmani [20] described r-Whitney and r-Whitney-Lah
numbers using only set partitions for all of them. They obtained these interpre-45

tations through the partial r-Bell polynomials.
Finally, we remark that coloured set partitions of D. G. L. Wang [26] are

actually counted by r-Whitney numbers of the second kind. H. Belbachir and
I. E. Bousbaa [1] introduced a modification of these numbers, which they called
translated r-Whitney and r-Whitney-Lah numbers, these are just equal to mn−k

50

times the r-Stirling and r-Lah numbers.
In the present paper we provide new combinatorial interpretations for all of

these numbers.
For ordinary Whitney numbers of the second kind, this will coincide essen-

tially with the interpretation of J. B. Remmel and M. L. Wachs [22], while55

for r-Whitney numbers of the second kind it is similar to that of M. Mihoubi
and M. Rahmani [20]. But for r-Whitney numbers of the first kind and r-
Whitney-Lah numbers, our interpretations are completely new, and really fit to
the combinatorial definitions of r-Stirling and r-Lah numbers. We emphasize
that these are new combinatorial interpretations in the ordinary case, as well.60

In the rest of the paper, we shall choose the following strategy: We use our
combinatorial interpretations as the definitions of r-Whitney and r-Whitney-
Lah numbers. Thereafter, based on these definitions we proceed to derive some
known properties by purely combinatorial proofs, as well as many new results.
Among the identities, equations (1), (2) and (3) will appear, which shows that65

our definitions are equivalent to the original ones. In those theorems which state
identities for each of these numbers, we give the proofs mainly in the first kind
case, and point out the differences in the other cases if necessary.

2. Combinatorial definitions

First of all, we formulate our combinatorial definitions for r-Whitney and70

r-Whitney-Lah numbers.

Definition 2.1. Let 0 ≤ k ≤ n, r ≥ 0, n + r ≥ 1 and m ≥ 1. Denote by
wm,r (n, k) the number of coloured permutations in Sn+r which are the product
of k + r disjoint cycles such that

• the distinguished elements 1, . . . , r belong to distinct cycles,75

• the smallest elements of the cycles are not coloured,

• an element in a cycle containing a distinguished element is not coloured
if there are no smaller numbers on the arc from the distinguished element
to this element,

• the remaining elements are coloured with m colours.80

3



Moreover, let wm,0 (0, 0) = 1. We call these numbers r-Whitney numbers of
the first kind, and such permutations r-Whitney coloured permutations.

Definition 2.2. Let 0 ≤ k ≤ n, r ≥ 0, n + r ≥ 1 and m ≥ 1. Denote
by Wm,r (n, k) the number of coloured partitions of {1, . . . , n+ r} into k + r
nonempty subsets such that85

• the distinguished elements 1, . . . , r belong to distinct blocks,

• the smallest elements of the blocks are not coloured,

• elements in blocks containing a distinguished element are not coloured,

• the remaining elements are coloured with m colours.

Moreover, let Wm,0 (0, 0) = 1. We call these numbers r-Whitney numbers of90

the second kind, and such partitions r-Whitney coloured partitions.

Definition 2.3. Let 0 ≤ k ≤ n, r ≥ 0, n + r ≥ 1 and m ≥ 1. Denote
by WLm,r (n, k) the number of coloured partitions of {1, . . . , n+ r} into k + r
nonempty ordered subsets such that

• the distinguished elements 1, . . . , r belong to distinct ordered blocks,95

• the smallest elements of the ordered blocks are not coloured,

• an element in an ordered block containing a distinguished element is not
coloured if there are no smaller numbers between the distinguished element
and this element,

• the remaining elements are coloured with m colours.100

Moreover, let WLm,0 (0, 0) = 1. We call these numbers r-Whitney-Lah num-
bers, and such partitions r-Whitney-Lah coloured partitions.

In the cases of r = 1; m = 1; m = 1, r = 0 and r = 0, the r-Whitney numbers
give back Whitney numbers, r-Stirling numbers, classical Stirling numbers and
multiples of Stirling numbers, respectively, and it holds similarly for r-Whitney-
Lah numbers. More precisely, in the first kind case we have

wm,1 (n, k) = wm (n, k) , w1,r (n, k) =

[
n

k

]
r

,

w1,0 (n, k) =

[
n

k

]
, wm,0 (n, k) = mn−k

[
n

k

]
.

In the proofs of the next section, we will often need to additionally colour
with m colours the smallest elements of those cycles, blocks or ordered blocks
which contain no distinguished element. We shall refer to them as extended105

r-Whitney coloured permutations, partitions or r-Whitney-Lah coloured parti-
tions. If we have k + r cycles, blocks or ordered blocks, then their numbers are
mkwm,r (n, k), mkWm,r (n, k) and mkWLm,r (n, k), respectively.
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3. Identities and properties

In the sequel, we will need the notion of rising and falling factorials with
difference m defined by

(x|m)
0

= 1, (x|m)
n

= x (x+m) · · · (x+ (n− 1)m) ,

(x|m)
0

= 1, (x|m)
n

= x (x−m) · · · (x− (n− 1)m) ,

where m,n ≥ 1. Especially, (x|1)
n

= xn and (x|1)
n

= xn are the simple110

rising and falling factorials. We will often need that (mx|m)
n

= mnxn and
(mx|m)

n
= mnxn.

For the smallest and largest possible values of k, we obtain by direct combi-
natorial arguments the following special values:

• wm,r (n, 0) = (r|m)
n
, Wm,r (n, 0) = rn, WLm,r (n, 0) = (2r|m)

n
115

• Wm,r (n, 1) = 1
m ((m+ r)

n − rn),

WLm,r (n, 1) = 1
m

(
(m+ 2r|m)

n − (2r|m)
n
)

(n ≥ 1)

• wm,r (n, n− 1) = Wm,r (n, n− 1) = m
(
n
2

)
+ rn,

WLm,r (n, n− 1) = mn (n− 1) + 2rn (n ≥ 1)

• wm,r (n, n) = Wm,r (n, n) = WLm,r (n, n) = 1120

Different forms of the following polynomial identities can be found in several
papers, in the first kind case see [11] (for r = 1), [6], [7], in the second kind
case [11] (for r = 1), [6], [8], and for r-Whitney-Lah numbers [6]. We note that
equivalent formulations (1), (2) of the first two equations serve as definitions by
I. Mező [17].125

Theorem 3.1. If n, r ≥ 0 and m ≥ 1, then

(x+ r|m)
n

=
n∑

k=0

wm,r (n, k)xk,

(x+ r)
n

=

n∑
k=0

Wm,r (n, k) (x|m)
k
,

(x+ 2r|m)
n

=

n∑
k=0

WLm,r (n, k) (x|m)
k
.

Proof. In the proof we count r-Whitney coloured permutations of Sn+r with m
colours such that we additionally colour with c colours the smallest elements of
those cycles which contain no distinguished element.

If the number of cycles is k+r, then we have wm,r (n, k) r-Whitney coloured
permutations (k = 0, . . . , n). Since there are k cycles containing no distinguished130
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element, their smallest elements can be coloured with c colours in ck ways.

Summing up, we have
n∑

k=0

wm,r (n, k) ck possibilities.

On the other hand, first place the distinguished elements into distinct cycles.
Then r+i can open a new cycle, when it is coloured with c colours (i = 1, . . . , n).
Furthermore, we can put r + i after a distinguished element, when it gets no135

colour, or after a previously placed non-distinguished element, in which case it
is coloured with m colours. This means that r+ i can be placed and coloured in
c+r+(i− 1)m ways, hence the number of possibilities is (c+ r|m)

n
, altogether.

For r-Whitney numbers of the second kind and r-Whitney-Lah numbers, the
above approach does not work in the present form, it is not enough to colour140

the smallest elements of the blocks containing no distinguished element. We
discuss the details in the second kind case.

We are interested in the number of extended r-Whitney coloured partitions
of {1, . . . , n+ r} with m colours such that we secondarily colour with c colours
(c ≥ n) the smallest elements of the blocks containing no distinguished element,145

where secondary colours have to be distinct.
On the one hand, we can partition the elements into k + r blocks in ex-

tended r-Whitney sense in mkWm,r (n, k) ways (k = 0, . . . , n), thereafter colour
secondarily the non-distinguished smallest elements in ck ways, which results in
n∑

k=0

Wm,r (n, k) (mc|m)
k

possibilities, since mkck = (mc|m)
k
.150

Or, after placing the first r elements into distinct blocks, consider the element
r + i (i = 1, . . . , n). Suppose that the first r + i − 1 elements are partitioned
into l+ r blocks. If r + i opens a new block, its primary and secondary colours
come from m and c − l colours, respectively. If we put r + i into a block
containing a distinguished element, it is uncoloured, while if it is placed into155

one of the l blocks without distinguished elements, it is coloured with m colours.
Summarizing, r + i can be placed and coloured in m (c− l) + r + lm = mc+ r
ways, consequently the number of all possibilities is (mc+ r)

n
.

Substituting −x into these equations, we obtain the following important
consequences immediately.160

Corollary 3.1. If n, r ≥ 0 and m ≥ 1, then

(x− r|m)
n

=

n∑
k=0

(−1)
n−k

wm,r (n, k)xk,

(x− r)n =

n∑
k=0

(−1)
n−k

Wm,r (n, k) (x|m)
k
,

(x− 2r|m)
n

=

n∑
k=0

(−1)
n−k

WLm,r (n, k) (x|m)
k
.
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Remark 3.1. As a special case, for x = 1, Theorem 3.1 gives that the sum of
r-Whitney numbers of the first kind with fixed n is

n∑
k=0

wm,r (n, k) = (r + 1|m)
n
.

We notice that the similar sum of r-Whitney numbers of the second kind yields

n∑
k=0

Wm,r (n, k) = Dn,m,r,

a so-called r-Dowling number [6] (in case of r = 1, see also [2]).

The recurrences of r-Whitney numbers appear earlier in the literature, in
the first kind case see [11] (for r = 1), [6], [7], [17], in the second kind case
[2], [11] (for r = 1), [6], [8], [17], [26], while the recurrence for r-Whitney-Lah
numbers can be found in [6]. Now, our combinatorial definitions allow us to165

prove them in a purely combinatorial way.

Theorem 3.2. If 1 ≤ k ≤ n, r ≥ 0 and m ≥ 1, then

wm,r (n+ 1, k) = wm,r (n, k − 1) + (mn+ r)wm,r (n, k) ,

Wm,r (n+ 1, k) = Wm,r (n, k − 1) + (mk + r)Wm,r (n, k) ,

WLm,r (n+ 1, k) = WLm,r (n, k − 1) + (m (n+ k) + 2r)WLm,r (n, k) .

Proof. We enumerate the r-Whitney coloured permutations of Sn+r+1 with m
colours which are the product of k + r disjoint cycles.

If n + r + 1 stands in a cycle alone, then the other elements constitute an
r-Whitney coloured permutation of Sn+r with k − 1 + r disjoint cycles, which170

gives us wm,r (n, k − 1) possibilities. If it is contained in a cycle of length at
least 2, then the other elements can be arranged into k+ r cycles in r-Whitney
sense in wm,r (n, k) ways, and we can insert n + r + 1 after one of the n non-
distinguished elements, in which case it is coloured with m colours, or after a
distinguished element getting no colour.175

In the following theorem, we present new vertical recurrences for these num-
bers.

Theorem 3.3. If 0 ≤ k ≤ n, r ≥ 0 and m ≥ 1, then

wm,r (n+ 1, k + 1) =

n∑
j=k

(mn+ r|m)
n−j

wm,r (j, k) ,

Wm,r (n+ 1, k + 1) =

n∑
j=k

(m (k + 1) + r)
n−j

Wm,r (j, k) ,

WLm,r (n+ 1, k + 1) =

n∑
j=k

(m (n+ k + 1) + 2r|m)
n−j

WLm,r (j, k) .
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Proof. To prove this theorem, we need to count the r-Whitney coloured permu-
tations of Sn+r+1 with m colours which are the product of k + r + 1 disjoint
cycles.180

Let j + r + 1 be the largest one among the smallest elements of the cycles
(j = k, . . . , n). Start with an arrangement of the first j + r elements into k + r
disjoint cycles in r-Whitney sense, which can be done in wm,r (j, k) ways. After
that, in increasing order each remaining element can be inserted after a non-
distinguished element, when it is coloured, or after one of the r distinguished185

elements. This gives ((j + 1)m+ r|m)
n−j

= (mn+ r|m)
n−j

possibilities for the
last n− j elements.

The explicit formula for r-Whitney numbers of the second kind is derived
from their exponential generating function in [2] (for r = 1), [6], [8], [17].
Now, based on our combinatorial interpretations, we can prove it applying the190

inclusion-exclusion principle, as well as a new formula for r-Whitney-Lah num-
bers.

Theorem 3.4. If 0 ≤ k ≤ n, r ≥ 0, m ≥ 1, then

Wm,r (n, k) =
1

mkk!

k∑
j=0

(−1)
j

(
k

j

)
(m (k − j) + r)

n
,

WLm,r (n, k) =
1

mkk!

k∑
j=0

(−1)
j

(
k

j

)
(m (k − j) + 2r|m)

n
.

Proof. In this proof we count the extended r-Whitney coloured partitions of
{1, . . . , n+ r} with m colours, where the smallest elements of the blocks are
coloured secondarily with k + r colours such that their colours are distinct and195

we use all of the secondary colours.
First, observe that the number of blocks is k + r since we have to use all

of the secondary colours exactly once. Therefore, the number of extended r-
Whitney coloured partitions is mkWm,r (n, k) and we can assign the secondary
colours to the smallest elements of the blocks in (k + r)! ways, which gives200

(k + r)!mkWm,r (n, k) possibilities.
On the other hand, we can enumerate them by the inclusion-exclusion prin-

ciple. Let X be the set of the extended r-Whitney coloured partitions together
with the secondary colouring, where we not necessarily use all of the secondary
colours, and let Yh be the subset of X which contains those possibilities which205

do not use the hth secondary colour (h = 1, . . . , k + r).
To derive the cardinality of X, we can place the first r elements into distinct

blocks and colour them with their secondary colours in (k + r)
r

ways. Then,
similarly to the last paragraph in the proof Theorem 3.1, we obtain that r + i
(i = 1, . . . , n) can be placed and coloured in mk + r ways. Therefore, |X| =210

(k + r)
r

(mk + r)
n
.

Since the distinguished elements belong to disctinct blocks, we have to use
at least r secondary colours, hence the intersection of j sets of type Yh has no
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elements if j = k + 1, . . . , k + r. On the other hand, the cardinality of the
intersection of j sets of type Yh is (k + r − j)r (m(k − j) + r)

n
for j = 1, . . . , k,

which can be deduced similarly as by |X| above. Then the inclusion-exclusion
principle gives that the number of possibilities is

|X \ (Y1 ∪ · · · ∪ Yk+r)| =
k∑

j=0

(−1)
j

(
k + r

j

)
(k + r − j)r (m (k − j) + r)

n

altogether, and the assertion follows after some simplification.

A simpler explicit formula appeared in [6] for r-Whitney-Lah numbers, which
can be proved again combinatorially.

Theorem 3.5. If 0 ≤ k ≤ n, r,m ≥ 1, then

WLm,r (n, k) =

(
n

k

)
(2r|m)

n

(2r|m)
k
.

Proof. We need to enumerate the extended r-Whitney-Lah coloured partitions215

of {1, . . . , n+ r} with m colours into k + r nonempty ordered subsets. First,
we place the distinguished elements into distinct ordered blocks. Then, we
can choose and colour the first elements of the other ordered blocks in

(
n
k

)
mk

ways. Finally, considering the remaining elements in increasing order, there are
2r +m(k + j − 1) possibilities for the jth element (j = 1, . . . , n− k), since it is220

uncoloured if it is placed just before or after a distinguished element, and it is
coloured at the other k + j − 1 places.

This gives us mkWLm,r (n, k) =
(
n
k

)
mk (2r +mk|m)

n−k
, from which the

assertion follows by some simplification. (We notice that this form of the formula
is also valid for r = 0.)225

In the following two theorems we give two different expressions of r-Whitney
and r-Whitney-Lah numbers with m colours by s-Whitney and s-Whitney-Lah
numbers with l colours.

Theorem 3.6. If 0 ≤ k ≤ n, r, s ≥ 0 and m, l ≥ 1, then

ln−kwm,r (n, k) =

n∑
j=k

(
n

j

)
mj−kwl,s (j, k) (lr −ms|ml)n−j ,

ln−kWm,r (n, k) =

n∑
j=k

(
n

j

)
mj−kWl,s (j, k) (lr −ms)n−j ,

ln−kWLm,r (n, k) =

n∑
j=k

(
n

j

)
mj−kWLl,s (j, k) (2lr − 2ms|ml)n−j .
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Proof. By Theorem 3.1, we can easily get

(mlx+ lr|ml)n = ln (mx+ r|m)
n

= ln
n∑

k=0

wm,r (n, k)mkxk.

On the other hand, the binomial theorem for rising factorials and Theo-
rem 3.1 give230

(mlx+ lr|ml)n =

n∑
j=0

(
n

j

)
(mlx+ms|ml)j (lr −ms|ml)n−j

=

n∑
j=0

(
n

j

)
mj (lx+ s|l)j (lr −ms|ml)n−j

=

n∑
j=0

(
n

j

)
mj

j∑
k=0

wl,s (j, k) lkxk (lr −ms|ml)n−j

=

n∑
k=0

n∑
j=k

(
n

j

)
lkmjwl,s (j, k) (lr −ms|ml)n−j xk.

In the second kind case, when r ≥ s and l ≥ m, we can give an interesting
combinatorial background of this identity. (We notice that the same idea also
works for r-Whitney numbers of the first kind and r-Whitney-Lah numbers if
r ≥ s and l = m.) We enumerate extended r-Whitney coloured partitions of
{1, . . . , n+ r} with m colours into k+ r nonempty subsets, where we colour all235

but the smallest elements of the blocks with l secondary colours. Obviously,
there are ln−kmkWm,r (n, k) possibilities.

Let j be the number of those non-distinguished elements which are in a block
containing no distinguished element, or which belong to the blocks of 1, . . . , s
such that they are coloured by one of the first m colours among the secondary240

colours (j = k, . . . , n). These j elements can be chosen in
(
n
j

)
ways. There are

Wl,s (j, k) possibilities to partition these j elements together with 1, . . . , s into
k+ s blocks in s-Whitney sense, where the coloured elements are now coloured
by their secondary colours. But all of these j elements still need to be coloured
by m colours, by their primary colours if they belong to a block containing no245

distinguished element, and by their secondary colours if they share a block with
one of the first s numbers.

The other r−s distinguished elements are placed into distinct blocks without
any colours. Then there are s(l−m)+(r−s)l = lr−ms possibilities for each of
the remaining n− j non-distinguished elements, since they can be put into the250

blocks of 1, . . . , s when they get colours from the last l −m secondary colours,
or they belong to a block of one of the other r− s distinguished elements when
they are simply coloured by their secondary colours.

Summarizing, the number of possibilities is
n∑

j=k

(
n
j

)
mjWl,s (j, k) (lr −ms)n−j .

255
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Theorem 3.7. If 0 ≤ k ≤ n, r, s ≥ 0 and m, l ≥ 1, then

ln−kwm,r (n, k) =

n∑
j=k

mn−jwl,s (n, j)

(
j

k

)
(lr −ms)j−k ,

ln−kWm,r (n, k) =

n∑
j=k

mn−jWl,s (n, j)

(
j

k

)
(lr −ms|ml)j−k ,

ln−kWLm,r (n, k) =

n∑
j=k

mn−jWLl,s (n, j)

(
j

k

)
(2lr − 2ms|ml)j−k .

Proof. As we have seen in the proof of Theorem 3.6, we have

(mlx+ lr|ml)n = ln
n∑

k=0

wm,r (n, k)mkxk.

A non-straightforward application of Theorem 3.1 and the binomial theorem
give

(mlx+ lr|ml)n = mn

(
l

(
x+

lr −ms
ml

)
+ s|l

)n

= mn
n∑

j=0

wl,s (n, j)

(
l

(
x+

lr −ms
ml

))j

=

n∑
j=0

mn−jwl,s (n, j) (mlx+ lr −ms)j

=

n∑
j=0

mn−jwl,s (n, j)

j∑
k=0

(
j

k

)
(mlx)

k
(lr −ms)j−k

=

n∑
k=0

n∑
j=k

lkmn+k−jwl,s (n, j)

(
j

k

)
(lr −ms)j−k xk.

If l = m, then the identities of the above two theorems become slightly
simpler. A few of these special forms can be found in [6], [15].260

Corollary 3.2. If 0 ≤ k ≤ n, r, s ≥ 0 and m ≥ 1, then

wm,r (n, k) =

n∑
j=k

(
n

j

)
wm,s (j, k) (r − s|m)

n−j
,

Wm,r (n, k) =

n∑
j=k

(
n

j

)
Wm,s (j, k) (r − s)n−j ,

WLm,r (n, k) =

n∑
j=k

(
n

j

)
WLm,s (j, k) (2r − 2s|m)

n−j
.

11



Corollary 3.3. If 0 ≤ k ≤ n, r, s ≥ 0 and m ≥ 1, then

wm,r (n, k) =

n∑
j=k

wm,s (n, j)

(
j

k

)
(r − s)j−k ,

Wm,r (n, k) =

n∑
j=k

Wm,s (n, j)

(
j

k

)
(r − s|m)

j−k
,

WLm,r (n, k) =

n∑
j=k

WLm,s (n, j)

(
j

k

)
(2r − 2s|m)

j−k
.

Remark 3.2. By more special choices of the parameters, we could obtain sev-
eral interesting identities, but we shall not give them in full detail. We can ex-
press r-Whitney numbers with m colours by r-Whitney numbers with l colours
(for s = r), Whitney numbers with l colours (for s = 1), Whitney numbers with
m colours (for s = 1, l = m), s-Stirling numbers (for l = 1), r-Stirling numbers265

(l = 1, s = r), and ordinary Stirling numbers (for l = 1, s = 0), and it holds
similarly for r-Whitney-Lah numbers. We notice that the expressions by the
latter two types of numbers partly appear in [6], [15], [17].

The following proposition will be useful to derive consequences of some up-
coming general theorems.270

Theorem 3.8. If 0 ≤ k ≤ n, r ≥ 0 and m, l ≥ 1, then

ln−kwm,r (n, k) = wml,lr (n, k) ,

ln−kWm,r (n, k) = Wml,lr (n, k) ,

ln−kWLm,r (n, k) = WLml,lr (n, k) .

Proof. Applying Theorem 3.1, we obtain

ln
n∑

k=0

wm,r (n, k)mkxk = (mlx+ lr|ml)n =

n∑
k=0

wml,lr (n, k)mklkxk.

For r-Whitney numbers of the second kind, we can also give a direct com-
binatorial proof. Let L be an l-element set of secondary colours. We con-
sider r-Whitney coloured partitions of {1, . . . , n+ r} with m colours into k + r
nonempty subsets, where we colour every element with a secondary colour from
L, except the smallest elements of the blocks. The number these doubly coloured275

partitions is ln−kWm,r (n, k).
We can assign a partition of ({1, . . . , r} × L)∪ {r + 1, . . . , n+ r} to a parti-

tion of the above type, as follows. Handle the elements of {1, . . . , r} × L as the
distinguished ones. Let a further element belong to the block of (i, c) (1 ≤ i ≤ r,
c ∈ L) if previously it shared a block with i and had secondary colour c, and280

leave the other blocks unchanged. This is an lr-Whitney coloured partition of
n + lr elements with ml colours into k + lr blocks. This assignment gives a
bijective correspondence between these two types of partitions.
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Now we prove that the binomial convolution of r-Whitney numbers with m
colours and s-Whitney numbers with l colours is just equal to the product of a285

binomial coefficient and an (lr +ms)-Whitney number with ml colours.

Theorem 3.9. If n, k, h, r, s ≥ 0, k + h ≤ n and m, l ≥ 1, then(
k + h

k

)
wml,lr+ms (n, k + h) =

n−h∑
j=k

(
n

j

)
lj−kmn−j−hwm,r (j, k)wl,s (n− j, h) ,

(
k + h

k

)
Wml,lr+ms (n, k + h) =

n−h∑
j=k

(
n

j

)
lj−kmn−j−hWm,r (j, k)Wl,s (n− j, h) ,

(
k + h

k

)
WLml,lr+ms (n, k + h) =

n−h∑
j=k

(
n

j

)
lj−kmn−j−hWLm,r (j, k)WLl,s (n− j, h) .

Proof. Consider the (lr+ms)-Whitney coloured permutations of Sn+lr+ms with
ml colours which are the product of k + h + lr + ms disjoint cycles, where we
secondarily colour the smallest elements of the cycles by green or red such that
the first lr numbers are green, the other ms distinguished elements are red, and290

the number of green elements is k + lr.
The number of these configurations is

(
k+h
k

)
wml,lr+ms (n, k + h) since after

arranging the elements into cycles with the colouring of Whitney sense, we
have to choose those cycles which contain no distinguished element, but whose
smallest element is green.295

On the other hand, let j be the number of those non-distinguished elements
which belong to a cycle having green minimal element (j = k, . . . , n− h). They
can be chosen in

(
n
j

)
ways. By Theorem 3.8, these j elements together with the

lr green distinguished elements, and the remaining n− j +ms elements can be
arranged into k+ lr and h+ms disjoint cycles in wml,lr (j, k) = lj−kwm,r (j, k)300

and wml,ms (n− j, h) = mn−j−hwl,s (n− j, h), respectively.

In the case of l = m, we have the following consequences by Theorem 3.8.

Corollary 3.4. If n, k, h, r, s ≥ 0, k + h ≤ n and m ≥ 1, then(
k + h

k

)
wm,r+s (n, k + h) =

n−h∑
j=k

(
n

j

)
wm,r (j, k)wm,s (n− j, h) ,

(
k + h

k

)
Wm,r+s (n, k + h) =

n−h∑
j=k

(
n

j

)
Wm,r (j, k)Wm,s (n− j, h) ,

(
k + h

k

)
WLm,r+s (n, k + h) =

n−h∑
j=k

(
n

j

)
WLm,r (j, k)WLm,s (n− j, h) .

In the following theorem and corollary, we present generalized orthogonality
relations and some other connections of r-Whitney and r-Whitney-Lah numbers.
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Theorem 3.10. Let 0 ≤ k ≤ n, r, s ≥ 0 and m, l ≥ 1. Then

n∑
j=k

(−1)
j−k

ln−jmj−kwm,r (n, j)Wl,s (j, k) =

(
n

k

)
(lr −ms|ml)n−k ,

n∑
j=k

(−1)
j−k

ln−jmj−kWm,r (n, j)wl,s (j, k) =

(
n

k

)
(lr −ms)n−k ,

n∑
j=k

(−1)
j−k

ln−jmj−kWLm,r (n, j)WLl,s (j, k) =

(
n

k

)
(2lr − 2ms|ml)n−k ,

wml,2lr−ms (n, k) =

n∑
j=k

(−1)
j−k

ln−jmj−kWLm,r (n, j)wl,s (j, k) if 2lr ≥ ms,

Wml,2ms−lr (n, k) =

n∑
j=k

(−1)
n−j

ln−jmj−kWm,r (n, j)WLl,s (j, k) if 2ms ≥ lr,

WLml, lr+ms
2

(n, k) =

n∑
j=k

ln−jmj−kwm,r (n, j)Wl,s (j, k)

if lr and ms have the same parity.305

Proof. Applying Theorem 3.1 and Corollary 3.1, it follows that

(mlx+ lr −ms|ml)n = ln
(
m
(
x− s

l

)
+ r|m

)n
= ln

n∑
j=0

wm,r (n, j)mj
(
x− s

l

)j
=

n∑
j=0

ln−jmjwm,r (n, j) (lx− s)j

=

n∑
j=0

ln−jmjwm,r (n, j)

j∑
k=0

(−1)
j−k

Wl,s (j, k) lkxk

=

n∑
k=0

n∑
j=k

(−1)
j−k

ln+k−jmjwm,r (n, j)Wl,s (j, k)xk.

The same expression can be expanded by the binomial theorem for rising
factorials to obtain

(mlx+ lr −ms|ml)n =

n∑
k=0

(
n

k

)
(mlx|ml)k (lr −ms|ml)n−k

=

n∑
k=0

(
n

k

)
lkmk (lr −ms|ml)n−k xk.
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Corollary 3.5. Let 0 ≤ k ≤ n, r, s ≥ 0 and m ≥ 1. Then

n∑
j=k

(−1)
j−k

wm,r (n, j)Wm,s (j, k) =

(
n

k

)
(r − s|m)

n−k
,

n∑
j=k

(−1)
j−k

Wm,r (n, j)wm,s (j, k) =

(
n

k

)
(r − s)n−k ,

n∑
j=k

(−1)
j−k

WLm,r (n, j)WLm,s (j, k) =

(
n

k

)
(2r − 2s|m)

n−k
,

wm,2r−s (n, k) =

n∑
j=k

(−1)
j−k

WLm,r (n, j)wm,s (j, k) if 2r ≥ s,

Wm,2s−r (n, k) =

n∑
j=k

(−1)
n−j

Wm,r (n, j)WLm,s (j, k) if 2s ≥ r,

WLm, r+s
2

(n, k) =

n∑
j=k

wm,r (n, j)Wm,s (j, k)

if r and s have the same parity.310

Remark 3.3. We remark that if we additionally assume that s = r, then Kro-
necker’s δn,k stands on the right-hand sides of the first three equations in this
corollary. For this reason, we can call these identities generalized orthogonality.
They partly appear in [11] (for r = 1) and [6], [17], [19].

Similarly, under the assumption s = r the last equation becomes simply (3),315

which was used to originally define r-Whitney-Lah numbers by G.-S. Cheon and
J.-H. Jung [6]. Now we give a combinatorial argument which directly results in
this identity.

To prove it, we produce an r-Whitney-Lah coloured partition of the first
n+ r positive integers into k + r ordered blocks in the following way: First, we320

decompose them into j + r disjoint cycles in r-Whitney sense (j = k, . . . , n),
and after identifying the cycles with their smallest elements, we partition them
into k + r blocks in r-Whitney sense. In each block rearrange the cycles into
canonical form (list the least number first in the cycles, and sort the cycles
in decreasing order of their first elements), finally shift the cycles containing a325

distinguished element to the front of their block in reverse order. Then, through
the usual way, the blocks can be handled as ordered blocks of numbers. This
construction ensures that the hereditary colours of the elements coincide with
their colours by the r-Whitney-Lah rules.

In [2], [9] (for r = 1) and [6], [8], [15], r-Whitney numbers are expressed330

by the help of symmetric polynomials. We do the same for r-Whitney-Lah
numbers, and we provide the combinatorial meanings of these identities.
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Theorem 3.11. If 0 ≤ k ≤ n, r ≥ 0 and m ≥ 1, then

wm,r (n, k) =
∑

0≤i1<i2<···<in−k≤n−1

n−k∏
j=1

(ijm+ r) ,

Wm,r (n, k) =
∑

0≤i1≤i2≤···≤in−k≤k

n−k∏
j=1

(ijm+ r) ,

WLm,r (n, k) =
∑

0≤i1≤i2≤···≤in−k≤k

n−k∏
j=1

((2ij + j − 1)m+ 2r) ,

in other words, wm,r (n, k) is the (n − k)th elementary symmetric polynomial
of r,m + r, . . . , (n− 1)m + r, and Wm,r (n, k) is the the (n − k)th complete
symmetric polynomial of r,m+ r, . . . , km+ r.335

Proof. For an r-Whitney coloured permutation of 1, . . . , n+r which is the prod-
uct of k + r disjoint cycles, denote by r + 1 ≤ j1 < j2 < · · · < jn−k ≤ n + r
those elements which are not minimal in their cycles.

First, place the k + r minimal elements into distinct cycles. Then we can
put jh after one of the distinguished elements, when it remains uncoloured, or
after any of the other jh − r − 1 previously placed smaller numbers, when it is
coloured by m colours (h = 1, . . . , n− k). Therefore, we have

wm,r (n, k) =
∑

r+1≤j1<j2<···<jn−k≤n+r

n−k∏
h=1

((jh − r − 1)m+ r) ,

and the assertion follows by changing indices.

It is known that the finite sequences of r-Whitney numbers of the first kind340

[9] (for r = 1), [7] and r-Whitney numbers of the second kind [3], [9], [24] (for
r = 1), [6], [8], [26] are log-concave if we fix n. The explicit formula enables us
to immediately deduce the same property for r-Whitney-Lah numbers.

Theorem 3.12. Let n,m ≥ 1 and r ≥ 0. Then the sequence (WLm,r (n, k))
n
k=0

is strictly log-concave, therefore it is unimodal.345

Proof. For 1 ≤ k ≤ n − 1, it follows from Theorem 3.5 that the inequality
WL2

m,r (n, k) > WLm,r (n, k − 1)WLm,r (n, k + 1) to be proven is equivalent
to (k + 1) (n− k + 1) (2r + km) > k (n− k) (2r + (k − 1)m).

In the following theorem we describe the connection between r-Whitney
transformations of the first and second kind, r-Whitney-Lah transformation350

and their inverses. Its second part appears in [11], but only for r = 1.

Theorem 3.13. Let (an)∞n=0, (bn)∞n=0 be sequences of complex numbers and let
r ≥ 0, m ≥ 1. Then
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• bn =
n∑

k=0

wm,r (n, k) ak (n ≥ 0) if and only if an =
n∑

k=0

(−1)
n−k

Wm,r (n, k) bk

(n ≥ 0),355

• bn =
n∑

k=0

Wm,r (n, k) ak (n ≥ 0) if and only if an =
n∑

k=0

(−1)
n−k

wm,r (n, k) bk

(n ≥ 0),

• bn =
n∑

k=0

WLm,r (n, k) ak (n ≥ 0) if and only if an =
n∑

k=0

(−1)
n−k

WLm,r (n, k) bk

(n ≥ 0).

Proof. Suppose that bn =
n∑

k=0

wm,r (n, k) ak (n ≥ 0). Then orthogonality gives360

n∑
k=0

(−1)
n−k

Wm,r (n, k) bk =

n∑
k=0

(−1)
n−k

Wm,r (n, k)

k∑
j=0

wm,r (k, j) aj

=

n∑
j=0

n∑
k=j

(−1)
n−k

Wm,r (n, k)wm,r (k, j) aj

=

n∑
j=0

δn,jaj = an.

The same direction of the second statement can be proved similarly. Ap-
plying these for the sequences ((−1)

n
bn)
∞
n=0 and ((−1)

n
an)
∞
n=0, the opposite

directions follow.

L. L. Liu [14] proved that Whitney transformation of both kinds preserves
log-convexity. Giving a direct proof, we extend this result to r-Whitney trans-365

formations, as well as, to r-Whitney-Lah transformation. To derive this, we
need the following identities for 0-Whitney and 0-Whitney-Lah numbers, which
can be proved similarly to the combinatorial proof of Theorem 3.6.

Lemma 3.1. If 0 ≤ k ≤ n and m ≥ 1, then

wm,0 (n+ 1, k + 1) =
n∑

j=k

(
n

j

)
wm,0 (j, k) (n− j)!mn−j ,

Wm,0 (n+ 1, k + 1) =

n∑
j=k

(
n

j

)
Wm,0 (j, k)mn−j ,

WLm,0 (n+ 1, k + 1) =

n∑
j=k

(
n

j

)
WLm,0 (j, k) (n− j + 1)!mn−j .

Theorem 3.14. The r-Whitney transform of both kinds and the r-Whitney-
Lah transform of a log-convex sequence of nonnegative real numbers are also370

log-convex.
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Proof. Let (an)∞n=0 be a sequence of nonnegative real numbers. In this proof,
denote by (bn)∞n=0, (cn)∞n=0 its 0-Whitney and r-Whitney transforms of the first
kind, and let (dn)∞n=0 be the 0-Whitney transform of the first kind of (an+1)∞n=0,

that is bn =
n∑

k=0

wm,0 (n, k) ak, cn =
n∑

k=0

wm,r (n, k) ak, dn =
n∑

k=0

wm,0 (n, k) ak+1375

(n ≥ 0).
First, we prove by induction on N that (bn)Nn=0 is log-convex if (an)Nn=0 is

log-convex. It can be easily checked for N = 1 or 2, and assume that it holds for
some N . To prove this statement for N+1, suppose that (an)N+1

n=0 is log-convex.
Then (bn)Nn=0 and (dn)Nn=0 are log-convex by the induction hypothesis.380

By Lemma 3.1, we can show that (bn+1)Nn=0 is the binomial convolution of
the log-convex sequences (n!mn)Nn=0 and (dn)Nn=0, since

bn+1 =

n+1∑
k=0

wm,0 (n+ 1, k) ak =

n∑
k=0

wm,0 (n+ 1, k + 1) ak+1

=

n∑
k=0

n∑
j=k

(
n

j

)
wm,0 (j, k) (n− j)!mn−jak+1

=

n∑
j=0

(
n

j

)
(n− j)!mn−j

j∑
k=0

wm,0 (j, k) ak+1 =

n∑
j=0

(
n

j

)
(n− j)!mn−jdj .

The Davenport-Pólya Theorem [10] gives that (bn+1)Nn=0, hence (bn)N+1
n=0 are

log-convex.
Finally, applying Corollary 3.2 we have385

cn =

n∑
k=0

wm,r (n, k) ak =

n∑
k=0

n∑
j=k

(
n

j

)
wm,0 (j, k) (r|m)

n−j
ak

=

n∑
j=0

(
n

j

)
(r|m)

n−j
j∑

k=0

wm,0 (j, k) ak =

n∑
j=0

(
n

j

)
(r|m)

n−j
bj ,

and the log-convexity of (cn)∞n=0 follows again by the Davenport-Pólya Theorem,

since (bn)∞n=0 and ((r|m)
n
)∞n=0 are log-convex.

Since (1)∞n=0 is trivially log-convex, Theorem 3.14 implies the following con-
sequence.

Corollary 3.6. If r ≥ 0 and m ≥ 1, then the sequence (Dn,m,r)∞n=0 is log-390

convex.
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