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Abstract—BCI (Brain-Computer Interface) is a technology 
which goal is to create and manage a connection between the 
human brain and a computer with the help of EEG signals. In 
the last decade consumer-grade BCI devices became available 
thus giving opportunity to develop BCI applications outside of 
clinical settings. In this paper we use a device called NeuroSky 
MindWave Mobile. We investigate what type of information 
can be deducted from the data acquired from this device, and 
we evaluate whether it can help us in BCI applications. Our 
methods of processing the data involves feature extraction 
methods, and neural networks. Specifically, we make 
experiments with finding patterns in the data by binary and 
multiclass classification. With these methods we could detect 
sharp changes in the signal such as blinking patterns, but we 
could not extract more complex information successfully. 
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I. INTRODUCTION 
EEG (electroencephalography) is a type of monitoring 

method that measures the electromagnetic change in the 
brain. The measurement is usually done with electrodes 
attached to the scalp, in a non-invasive way. In medical 
application the so called wet electrodes are used, to decrease 
the noise that the electrodes get from the environment as 
much as possible. In the last decade consumer grade devices 
became available, and they usually use dry electrodes instead 
of wet. It makes them easier to use but it also introduces 
more noise to the signal. 

The BCI (Brain-Computer Interface) is a technology 
which goal is to create and manage a connection between the 
human brain and a computer. Since the birth of this 
discipline numerous applications have been created, in a 
wide variety of fields. Medical and rehabilitation fields are 
amongst the most populous fields in terms of patents and 
publications. Specifically, BCI applications can offer great 
help for people with disabilities. BCI can be used as a way of 
controlling wheelchairs [1], [2], or virtual keyboards for 
example [3]. Controlling prosthesis is also a widely 
researched area of the BCI discipline. There exists both 
invasive [4] and non-invasive [5], [6] methods. The latter 
many times utilizes the EEG patterns created when 
imagining left or right-hand movements [7], [8], [9]. Medical 
applications are not the only type of BCI applications. One 
popular field of BCI is helping car controlling. For example, 
J. Kim et al. [10] tried to derive from the EEG signals the 
exact moment where the driver started to initiate a brake. 
Alerting systems that watches the drowsiness of the driver is 
also a notable field in this field [11], [12]. 

These experiments were performed using clinical grade 
EEG devices, but in the last few years consumer grade BCI 
devices have appeared for the public. These devices usually 
take the form of some headset, and they usually have the 
means of not just processing the data but to send it over some 
forms of communication channels. These consumer grade 
devices without exception use dry electrodes, so they could 
be easily used at home. One of the most widely known 
producer is NeuroSky. The company has been producing 
their one-channeled devices since 2011 under the name of 
MindWave which comes with their EEG processing sensor, 
the ThinkGear ASIC Modul (TGAM). OpenBCI also 
produces consumer grade devices. They offer a variety of 
pre-assembled headsets, but they also offer the 3D design of 
their headset free charge. So, one can download the design, 
print it with the help of a 3D printer, and assemble it with a 
purchased OpenBCI sensor. Their devices utilize 16 to 35 
channels. Emotiv also offers multiple of headsets. They have 
devices that have fewer electrodes (5) as well as more robust 
devices that can have up to 32 electrodes. Clinical grade BCI 
devices are also available for purchase. NeuroStyle for 
example is one of those companies that offer clinical grade 
products. Besides the EEG device, they also offer softwares 
for stroke-rehabilitation.  

Many of the consumer graded devices were created with 
the intent of using them with games, but there exist examples 
of using them in scientific experiments. K. George et al. [13] 
used the Emotiv Epov headset in a seemingly simple 
experiment. They recorded EEG data with the headset while 
the wearer was looking at white and black squares on a 
monitor, and they developed a method for classifying these 
records. A. Kline et al. [14] also used Emotiv headset in their 
experiments. They tried to use the data provided by the 
headset for controlling prosthesis. N. Chumerin et al. [15] 
developed a game that can be controlled with human brain, 
and they used that as the basis of comparison between 
clinical and consumer grade BCI devices. C. Lin et al. [16] 
used one of NeuroSky's devices in an embedded system 
application that monitors the alertness of drivers. C. A. Lim 
et al. [17] and J. He et al. [18] developed methods for this 
problem also with the use of NeuroSky MindWave device. 

We used a NeuroSky MindWave Mobile device, and in 
this paper, we investigate what kind of information can be 
obtained from a consumer grade device like this and whether 
it can be used in BCI applications. In Section II. we describe 
the usual process of evaluating EEG signals. In Section III. 
we describe the data types of MindWave Mobile. Then, in 
Section IV. we demonstrate our method of processing data 
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values that were computed by the device itself. Finally, in 
Section V. we describe how we processed the raw data. 

 
Fig. 1. Examples of EEG power values. Horizontal-axis represents time, 
and vertical axis represents the EEG Power values. 

II. PROCESSING EEG SIGNALS IN GENERAL 
Our brainwaves change according to our state and our 

environment. Low frequency brainwaves are often associated 
with relaxed state while higher frequency waves are 
associated with movements, and alertness.  

Delta waves are at the lower end of the spectrum, their 
frequency is between the of 0.5 and 3 Hz. They are 
associated with deep, dreamless sleep. Theta waves are 
predominantly intense in the frontal region of the brain [19]. 
It is usually considered between the frequencies of 4-7 Hz. It 
is dominant in EEG records of wake children and sleeping 
adults. The alpha wave can be recorded more successfully in 
the posterior regions of the brain [20]. They are associated 
with relaxed, but alert state, for example being awake with 
closed eyes. The beta waves are associated with awake and 
alert state [21]. It is considered to be the basic rhythm of the 
awake adult brain. In the high-frequency end there lies the 
gamma rhythm which is associated with specific cognitive 
and motor functions. It should be noted that underlying 
diseases can influence the EEG patterns, for example slow 
wave activities in alert adults can suggest cerebral 
dysfunctions [19], [22]. But the normal EEG pattern of a 
person varies from task to task, and with a good EEG 
measurement device we can even associate a task to a given 

EEG pattern. We tried to investigate whether these normal 
states and the changes they go through in respect of time is 
observable in the acquired data. 

III. MINDWAVE MOBILE 

A. The device 
The NeuroSky MindWave Mobile is a type of consumer 

grade EEG headset that allows the user to record EEG data at 
home with the help of a one-channeled dry electrode. It 
transfers the data via Bluetooth which can be processed later 
with arbitrary devices as the communication protocol is 
available at NeuroSky’s site. 

This device includes one EEG recording electrode that 
lies on the front of the forehead, one clip that is attached to 
one of the earlobes, and the ThinkGear ASIC Module 
(TGAM). The electrode on the forehead records the activity 
of the frontal lobe. The electrode on the clip takes on the task 
of being the ground and reference. While usage the electrode 
on the forehead takes up not just the activity of the brain but 
also noise from the environment. So, the TGAM does a de-
noising with the help of the ear clip's electrode before 
sending the data on Bluetooth. The TGAM has a sampling 
frequency of 512 Hz which then becomes the raw data, and it 
also does specific computations every one second. 

B. Types of data and the communication protocol 
The device can send the 16-bit raw data (sampled on 512 

Hz) via Bluetooth and serial port at 57600 baud. The 
MindWave also sends computed values every one second. 
These values include controlling packets, like packets that 
indicate poor signal. It also sends valuable information like 
Attention and Meditation levels. The first one (a value 
between 0 and 100) indicates the alertness and the measure 
of concentration of the wearer [23]. The latter (also between 
0 and 100) represents the calmness or relaxedness of the user 
[24]. The device also sends 8 values every second that 
represents the magnitude of 8 EEG wave patterns. 

IV. PROCESSING THE PRE-COMPUTED SIGNALS 

A. EEG Power values 
These 8 values represent the following EEG wave 

patterns. Delta (0.5 – 2.75 Hz), theta (3.5 – 6.75 Hz), low-
alpha (7.5 – 9.25 Hz), high-alpha (10 – 11.75 Hz), low-beta 
(13 – 16.75 Hz), high-beta (18 – 29.75 Hz), low-gamma (31 
– 39.75 Hz), and high-gamma (41 – 49.75 Hz) [25]. These 
values are the results of various calculations thus they are 
only comparable with each other in respect of time, and they 
cannot be compared directly with magnitudes obtained from 
other type of devices [26]. 

We tried to find out whether changes in the activity of the 
subjects shows as changes in the signals. We recorded data in 
the following manner. We recorded data in a relaxed state 
while having our eyes closed. We also recorded data in a 
more alert state, with open eyes, while sitting in front of a 
computer and reading some text (which in theory is more of 
a concentration demanding task). 300 seconds of recordings 
are plotted in Fig. 1. where the first plot (named Data 1) 
belongs to the relaxed state and the second one (named Data 
2) belongs to the mindful, alert state. 

This work was supported by the construction EFOP-3.6.3-VEKOP-16-
2017-00002. The project was supported by the European Union, co-
financed by the European Social Fund. 
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One can observe that there is a conspicuous difference 
between opened and closed eyed states. The alpha waves are 
stronger while having closed eyes, which is aligned to what 
we know about EEG signals. Also, beta and gamma activity 
does become stronger while having the eyes opened. But 
other than that, no other information could be deducted from 
the signals regarding the circumstances in which these 
signals were recorded. 

B. Attention and Meditation 
As mentioned in section III.B, MindWave Mobile also 

sends two 1-byte values that indicate the alertness and 
calmness of the user. We collected data in a relaxed state 
with closed eyes, and some of the data were collected while 
having the eyes opened. We show some of the collected 
averaged Attention and Meditation values in Table. I. While 
having the eyes closed the Meditation values did reached a 
higher value most of the time. But the Attention values were 
in most cases stuck around the value 50, and it was difficult 
to have it reach higher value than 50. 

V. PROCESSING THE RAW DATA 

A. Feature extraction of the signal 
Using various feature extraction methods when 

processing EEG time-series data is a usual part of this field. 
Finding adequate methods is a widely researched area. These 
features usually are simple statistical features (mean, 
standard deviation) [27], [28]. Other more complex features 
are also frequently computed. One complex feature is the so-
called Power Spectral Entropy (PSE) [29], [30]. Other 
notable feature for EEG analysis is Hjorth’s features [31], 
[32]. 

We calculated some of these features on the raw data 
acquired in various circumstances. We gathered some of the 
results in Table. II. The data belonging to the first column 
(Closed eyes 1) was recorded while having the eyes closed 
and listening to upbeat music. The second one (Closed eyes 
2) was recorded while listening to relaxed music. The Open 

eye 1 and the Open eye 2 were both recorded while having 
the eyes opened and listening to relaxing and upbeat music 
respectively. 

 Furthermore, Open eye 1 was recorded while moderate 
concentration (reading) and Open eye 2 were recorded while 
doing no particular task.   

One can observe that every data's mean value was varied 
around the value 65. The standard deviation however is 
distinguishable regarding to the state of the eyes. This 
difference between having our eyes opened or closed is 
maintained in many of the described features. It can also be 
observed in some of the high order statistic features like 
skewness and kurtosis. Kurtosis measures whether the data is 
heavy- or light-tailed compared to that of normal 
distribution. Skewness measures the asymmetry of a 
probability distribution. Skewness for closed eyed data 
varied in the positive domain, while skewness for opened eye 
were usually around zero or below zero. Kurtosis for closed 
eye were much higher most of the time, which can be 
contributed to the fact that while having our eyes closed the 
range of values becomes smaller. Also, recordings while 
doing concentration-demanding tasks have usually higher 
number of zero-crossings, which can be contributed to the 

TABLE II.  EXAMPLES OF EXTRACTED FEATURE VALUES 

 
Feature extraction values 

Closed eyes 1 Closed eyes 2 Open eyes 1 Open eyes 2 

Mean 65 65 65 65 

Standard deviation 34 41 47 70 
Difference between minimum and 
maximum value 1319 1542 1120 1678 

Zero crossing rate 2048 1892 1631 4101 

Spectral-centroid 45.25 43.6 41.8 37.0 

Kurtosis 42 98 26 28 

Skewness 0,06 4.64 -0.8 0.58 

Petrosian Fractal Dimension 0.547 0.549 0.549 0.544 

Hjorth’s Mobility 0,0004 0,0004 0.0003 0,005 

Hjorth’s Complexity 2442 2383 2869 2043 

Power spectral entropy 0.72 0.71 0.70 0.73 

TABLE I.   EXAMPLES OF ATTENTION AND MEDITATION VALUES 

 Attention Meditation 

Open eyes 1 48 61 

Open eyes 2 52 53 

Open eyes 3 50 50 

Closed eyes 1 19 76 

Closed eyes 2 75 64 

Closed eyes 3 45 68 
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fact that while concentrating we blink less and blinking 
usually causes big changes in the signal. But other than that, 
sharp contrast between the features of the various recordings 
is not present. 

B. Frequency-domain analysis 
As mentioned previously, changes in the magnitude or 

power of the EEG waves can hold information about the 
circumstances in which the data were recorded. 

We tried to analyze data in the frequency-domain by 
plotting the Fourier-transform and the power spectral density 
of the signals. To compare two different type of data one can 
observe the power spectral density in Fig. 2. The first plotted 
data was recorded while having the wearer’s eyes closed and 
the second one while having the eyes opened. We concluded 
that the state of the eyes has influence on the signal, the 
alpha bin gets more dominant when eyes are closed, and the 
frequency bin associated to beta and gamma also get more 
prominent. But other potentially influencing circumstances 
like listening to different kind of music or doing tasks that 
demands concentration are hard to notice in these plots and 
cannot be extracted accurately. 

C. Processing data with neural networks 
1) Neural networks and BCI 
In the last few decades machine learning algorithms, 

especially neural networks have been applied to almost every 
field of science and technology imaginable. It has also 
reached the field of BCI. Y. Liu et al. [33] used neural 
networks for monitoring the alertness and fatigue of a driver. 
Applications using convolutional neural networks (CNN) are 
getting increasingly popular in the last few years, and this 
trend also reached the processing of EEG signals. J. Zhang et 
al. [34] developed a method that uses deep-learning 
convolutional neural networks to classify imagined hand 
movements. X. Li et al. [35] used CNN-s and RNN-s 
(recurrent neural networks) for recognition of human 
emotions. H. K. Lee et al. [36] took on the task of measuring 
EEG data while performing visual experiments. Then they 
showed that methods based on CNN-s can achieve higher 
accuracy than traditional machine learning algorithms. 

We also tried to apply neural networks on the processing 
of these data. We did that with the idea that maybe an 
algorithm can find patterns in the signal where human eyes 
cannot. 

2) Recording while sound stimuli 
For this experiment we have captured data with the 

following process. We recorded two classes of a data. The 
first class contains data that were recorded while playing an 
annoying, harsh sound for the wearer of the headset. The 
other class of data was recorded in a state where no sound 
was played. We wanted to find out whether a stimulus as 
harsh as this presents itself in the recorded signal. 

First, we attempted to classify the following recorded 
data with a simple neural network by the means of the 
extracted features. We used the data bandpass filtered to the 
beta frequency as this is the frequency commonly present in 
the EEG of alert adult. We extracted the previously 
mentioned features from the signal and that became the input 
of our neural network. We created a simple neural network 
with one input layer, two hidden layers, and one output layer. 
We used ReLU (rectified linear unit) activation function in 
the layers except for the output layer, where we used sigmoid 
function. We had 120 samples, 60 positive (where a sound 
had been played) and 60 negative. We used 100 samples for 
training and 20 for testing. After numerous running we 
concluded that the neural network can validate the training 
data set with 65% accuracy and can classify the test data set 
with an average of 55% accuracy.  

 
Fig. 3. Three patterns of blinking. First one represents s, second 
represents r and third represents k. 

 

Fig. 2. Power spectral density of two different data. 
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On the second approach we used the individual samples 
filtered to the beta frequency and made it as the input as is. 
The neural network used for this was identical to the first 
(other than the input dimensionalities). This succeeded more 
with validating the training set back (averaged around 85% 
accuracy), but the performance on the test data set was the 
same as previously (50%). 

We also used a convolutional neural network for 
classifying the data as images rather than numerical data. We 
extracted the spectrograms from the samples and used them 
as the input of the network. It succeeded around the same 
accuracy as classifying the extracted features. 

While processing the data with neural networks it became 
obvious that finding patterns in the signal is not an easy task, 
even with the help of neural networks. It succeeded on the 
raw, beta frequency data the best, but it is still far from 
getting a good classifier.  

3) Recognizing patterns in blinking 
Controlling devices with our minds can be achieved in 

more than one way. One way is to train machine learning 
algorithms to recognize imagined movements. Working with 
this device it became obvious that training like these cannot 
be achieved with it. But there is one type of pattern that was 
conspicuous and easily recognizable by even the human eye: 
blinking patterns. 

We decided to run a simple experiment on the data. We 
recorded data while blinking a few characters of the Morse-
code: s, r, and k. The letter s has the pattern of short-short-
short, r is defined by short-long-short, and k is assigned to 
long-short-long. Three recording of these patterns can be 
seen in Fig. 3. The three patterns are distinguishable even 
with the human eye.  

We decided to run this data through a neural network and 
confirm whether an algorithm can distinguish these patterns. 
We created a simple two-layer multiclass classification 
neural network. Then we recorded 10 of each pattern and 
used other previously recorded data for negative data. Thus, 
we obtained a 4-class classification. The results are 
promising. It could fully validate back the training data and 
running on new unseen data the network yielded promising 
results. It could extract the pattern s easily, and it could also 
extract the other two patterns with little error. It does have 
false positives, but with a larger training set it potentially 
could be used in real-time applications. 

VI. CONCLUSION 
In this paper we discussed different type of methods for 

analyzing data from a consumer-grade device. We concluded 
that using this one-channel device for complex EEG signal 
analysis is not viable. The obtained raw data is hard to 
analyze, it is noisy, and we cannot deduct concrete facts from 
it other than the general alertness of the user. So, it is not 
possible to use for BCI applications like recognizing 
imagined hand movements or recognizing any other concrete 
EEG pattern. But we did have promising results from 
recognizing blinking patterns. These type signals are easy to 
extract compared to any other information. They can 
probably be a good basis for controlling devices or robots, 
thus giving a platform for applications that may help disabled 
people. 
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