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Chapter 1

Introduction

1.1 A Historical Outline

The rough set theory (RST), among others, is a mathematical tool to man-
age inexact, uncertain, incomplete and imperfect data. It was invented by
Zdzistaw Pawlak in the early 1980s [53, 54].

The starting point is a nonempty finite set U of distinguishable objects,
called the wuniverse of discourse, and an equivalence relation € on U [55].
The partition of U generated by ¢ is denoted by U/e, and its elements are
called e-elementary sets (Fig. 1.1). An e-elementary set can be viewed as a
set of indiscernible objects characterized by the same available information
about them [58, 68]. In addition, any union of e-elementary sets is referred
to as definable set (Fig. 1.2).

Figure 1.1: e-elementary sets Figure 1.2. Definable sets

Any subset X C U can be naturally approximated by two sets called the
lower and upper e-approximations of X. The lower e-approzimation of X is
the union of all the e-elementary sets which are the subsets of X (Fig. 1.3),
whereas the upper e-approximation of X is the union of all the e-elementary
sets that have a nonempty intersection with X (Fig. 1.4).
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Figure 1.3. Lower Figure 1.4. Upper Figure 1.5. Lower-upper
approximation approximation approximation

The difference between upper and lower e-approximations is called the e-
boundary of X (Fig. 1.5). The subset X is e-crisp (exact), if its e-boundary
is the empty set, e-rough (inexact) otherwise.

Let o(U/¢e) denote the extension of U/e with all the unions of some &-
elementary sets and the empty set. It is easy to see that o(U/e) C 2V is a
o-algebra generated by U/e, i.e. it is nonempty, closed under complemen-
tations and countable unions. In other words, (U,o(U/¢)) is an Alexandrov
topological space with the basis U/e. o(U/¢) is the family of all open and
closed sets |36, 67].

In Pawlak’s theory, the lower and upper e-approximations can be defined
by three equivalent forms. These three forms are based on elements, -
elementary sets and the o-algebra o(U/e) |76, 77, 80]. In any case, both
lower and upper e-approximations of any subset X C U belong to the o-
algebra o(U/e).

The three equivalent definitions offer different interpretations of Pawlak’s
approximations. According to the element based formulation, the lower
and upper approximation operators can be interpreted as the necessity and
possibility operators of modal logic [35, 81|. The o-algebra based formulation
relates them to interior and closure operators in topological spaces [86]. The
formulation based on e-elementary sets has been served as the “pattern” of
granular computing developments [44, 69, 79, 83]. Nowadays, the granular
computing is a fast developing of the one branch of information technology.

The generalization of Pawlak’s approximations can go along one of the
three equivalent definitions mentioned above. A natural generalization of
Pawlak’s idea via the element based definition is that the equivalence relation
is replaced by any other type of binary relation on U [32, 36]. Another
generalization can be obtained by using any covering of the universe and
the imitation of the e-elementary set based definition [86, 87].
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The case of o-algebra based definition is a little more complicated. In
the language of Alexandrov topological spaces, the o-algebra o(U/¢) is the
family of clopen sets, i.e. the family of open sets coincides with the family
of closed sets. The family of open sets is related to the lower approximation
or interior operator, whereas the family of closed sets is related to the upper
approximation or closure operator. As a possible generalization, one may use
two different subsystems of the powerset of U [78]. A subsystem for the lower
approximation which must be closed under unions and another subsystem for
the upper approximation which, in turn, must be closed under intersections.
Moreover, in order to keep the duality of lower and upper approximation
operators, the elements of two subsystems must be related to each other
through the complementation. In addition, this latter restriction can also
be removed [76].

A list of some research directions on the rough set foundations and the
rough set based methods can be found in [57].

Rough set theory can be applied among others in the areas of artificial
intelligence, cognitive sciences, medicine and economics. It provides a pow-
erful foundation to reveal and discover important structures and patterns in
data and to classify complex objects. One of the main advantages of rough
set theory is that it does not need any preliminary or additional informa-
tion about data |62, 64]. This attractive property of rough set theory is
of especial importance for instance to data mining, machine learning, deci-
sion analysis, knowledge management, expert systems, patter recognition,
medicine, engineering, banking, financial and market analysis [62, 64, 85].

1.2 Basic Philosophical Background

There is a philosophical interpretation of the rough set theory too. It may
also be seen as a relatively new possible mathematical approach to vagueness
[38, 52, 57, 63]. According to the entry for ‘vagueness’ in the Stanford
Encyclopedia of Philosophy:

There is wide agreement that a term is vague to the extent that it has
borderline cases. This makes the notion of a borderline case crucial in
accounts of vagueness. ([70], the two introductory sentences.)

Vagueness is standardly defined as the possession of borderline cases.
For example, ‘tall’ is vague because a man who is 1.8 meters in height
is neither clearly tall nor clearly non-tall. No amount of conceptual
analysis or empirical investigation can settle whether a 1.8 meter man
is tall. ([70], Chapter 1. The italics are mine.)
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Borderline cases are inquiry resistant. Indeed, the inquiry resistance
typically recurses. For in addition to the unclarity of the borderline
case, there is normally unclarity as to where the unclarity begins. In
other words ‘borderline case’ has borderline cases. This higher order
vagueness shows that ‘vague’ is vague. ([70], Chapter 1.)

That is vague terms lack well-defined extensions—there is no sharp
boundary between tall people and the rest [38]. In other words a set of
objects is wvague if objects exist that cannot be classified as belonging to
either the set or its complement [58]. It should immediately be note that in
this context the notion ‘set’ is used in a pre-theoretic sense.

The ‘vagueness’ is a more than two thousand-year-old problem. Its ori-
gins back to the so-called Sorites paradoz |38, 39, 61, 73| attributed to Aristo-
tle’s contemporary Eubulides of Miletus (4th c. BC), the Megarian logician.
The word ‘sorites’ in Greek it means ‘heap’. (To be more precise, the para-
dox derives its name from the Greek word soros.) Note that the far known
Liar paradox in its purest form is also attributed to Eubulides.

One of the form of the Sorites paradox is the following. Of course, one
stone does not make a heap. Adding only one stone to what is not yet a heap
surely cannot make a heap. Repeating this step adding stones one by one
we arrive at the conclusion the heaps do not exist not even if they consist
of more than, say, 100,000 stones. Then where do we draw the line between
what is a heap of stones and what is not?

I agree with Priest [61]: the Sorites is a very hard paradox, possibly
harder than the Liar. For the Liar can be isolated, whereas the Sorites
is everywhere and can take us anywhere. And I agree that the paradox
is so hard because it systematically imposes upon us the existence of
unbelievable or otherwise unacceptable cut-off points. No solution can
avoid explaining why this happens. ([73], p. 24. The italics are mine.)

The counter-intuitiveness of Sorites phenomena lies in the fact that
there must be a cut-off, regardless of where exactly it is located in the
soritical sequence. ([73], p. 34. The italics are the author’s.)

The Sorites paradox is not mere a curiosity such as R. Keefe and P. Smith
remarked in [40]. To confirm this statement, let us look at the following
example coming from medicine.

1.1 Example. Let us consider the fasting blood glucose test [3] which is
used to screen for and diagnose diabetes. It is measured on a fast basis, i.e.
collected after an 8 and 10 hours fast. The test measures the amount of
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glucose in the blood right at the time of sample collection. On the clinical
practice recommendations of the American Diabetes Association, the fasting
glucose level is normal if the test result is between 3.9 mmol/L and 5.5
mmol /L, and indicates diabetes over 11.1 mmol /L on more than one testing
occasion.

Now, e.g., the fasting glucose level 4.5 mmol/L is normal. Plausibly,
increasing the normal fasting glucose level by 0.001 mmol/L (or 0.00001
mmol/L, if necessary) cannot make a difference. So, if the fasting glucose
level 4.0 mmol/L is normal then 4.0 mmol/L plus 0.001 mmol/L is also
normal. Now, since the fasting glucose level 4.001 mmol/L is normal, 4.001
mmol/L plus 0.001 mmol/L is also normal; and so on. Consequently, any
fasting glucose level is normal, even if it is greater than, say, 25.0 mmol/L.

The sorites paradox was not an attractive problem until the late 19th
century. Next, numerous logicians and philosophers have dealt with it. The
anthology [40] collects for the first time the most important classical papers
in the field.

The vagueness associated with the boundary region approach was first
formulated in 1893 by G. Frege [27], next Peirce in 1902 [59].

Pawlak’s fundamental view of vagueness can be characterized as “unable
to classify” [56, 57, 58]. As Pawlak and Skowron have written in [58]:

In contrast to odd numbers, the notion of a beautiful painting is vague,
because we are unable to classify uniquely all paintings into two classes:
beautiful and not beautiful. Some paintings cannot be decided whether
they are beautiful or not and thus they remain in the doubtful area.
Thus, beauty is not a precise but a vague concept. ([58], p. 5. The
italics are mine.)

However, in spite of the fact that vagueness is very interesting phe-
nomenon in philosophy, it is not allowed within standard mathematics.
Pawlak’s information-based solution concerning vagueness is the following:!

[...] in the proposed approach, we assume that any vague concept is
replaced by a pair of precise concepts—called the lower and the upper

!There is another contemporary information-based solution proposal concerning vague-
ness, namely, Zadeh’s fuzzy set theory [82]. “Zadeh’s introduction of fuzzy sets was not
meant to be a contribution to the philosophy of vagueness. It was motivated by the need
for a computational representation for linguistic terms appearing in statements, which
are often intended to provide synthetic information about complex situations.” ([24], p.
893). Fuzzy set theory is complementary to rough set theory. In this thesis, this aspect
is only mentioned here.
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approximation of the vague concept. The lower approximation con-
sists of all objects which surely belong to the concept and the upper
approximation contains all objects which possibly belong to the con-
cept. The difference between the upper and the lower approximation
constitutes the boundary region of the vague concept. Approximations
are two basic operations in rough set theory.

Hence, rough set theory expresses vagueness not by means of mem-
bership, but by employing a boundary region of a set. If the boundary
region of a set is empty it means that the set is crisp, otherwise the set
is rough (inexact). A non-empty boundary region of a set means that
our knowledge about the set is not sufficient to define the set precisely.
([58], p. 6. The italics are mine.)

In sum, Pawlak’s approach can be viewed as a specific implementation
of Frege’s idea of vagueness |27], i.e. imprecision is expressed by a boundary
region of a set.

1.3 Owur Approach

There are many possibilities to generalize the rough set theory. To sum up,
our approach has three main foundation-stones:

(1) “unable to classify” as the base of vagueness,
(2) its presentation in a point-free manner, and
(3) partiality of our knowledge about the universe.

Ad 1. Rough set theory has been served as a “pattern” of granu-
lar computing (GrC). However, there are fundamental differences between
them. Granular computing and also rough set theory have three semantic
views, in particular, uncertainty theory, knowledge engineering and how-to-
solve/compute-it [42, 43]. The most important difference between the two
theories is best illustrated in connection with the uncertainty theory. Pawlak
uses “unable to classify” as the base of uncertainty, while the granular com-
puting regards a granule as a unit of uncertainty [43].

Ad 2. The philosophy of the rough set theory relies on the assumption
that some information (data, knowledge) are associated with every object
of the universe. Objects characterized by the same information are indis-
cernible or similar in view of the available information about them. A set of
all indiscernible or similar objects form a unit of the basic knowledge. Such
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a unit can be seen in a point-wise manner, i.e. the content of the unit is
visible, and in a point-free manner, i.e. the content of the unit is hidden.
We abstract each unit into a point. Such collection of points is called the
quotient structure. We will work on quotient structures, in other words we
manage units in the point-free manner.

For more details concerning points (1) and (2) see [42, 43, 44].

Ad 3. In real life, information being at our disposal is generally insuffi-
cient. Consequently, it is natural to assume that there may be objects which
we are unable to characterize at all. Moreover, there are features with which
we can form a set of objects effectively, but we cannot form its complement
effectively at the same time. For instance, the complements of a recursively
enumerable set is not necessarily a recursively enumerable set as well [50].

In the rough set theory, the sets used for to approximation are the equiv-
alence classes which are pairwise disjoint and cover the base set. If we give
up the requirement of the pairwise disjoint, we get a kind of generalization of
the theory (Fig. 1.6). Its detailed elaboration can be found in the literature.

The main question of the thesis is what would happen if we gave up not
only the pairwise disjoint but also the covering of the base set (Fig 1.7.) The
resulting system is called the approximation of sets based on partial covering.

—h | —

— —
=1 — |

[ | [

Figure 1.6. Giving up Figure 1.7 Giving up the covering:

the pairwise disjoint partial base system

In our thesis we examine the properties of the approximation of sets
under these unusual conditions. At this most general abstraction level, we
make the only essential condition that the lower approzimation of any set
must be included in its upper approximation.

In the theory of the approximation of sets based on partial covering,
let our starting point be an arbitrary nonempty family B of subsets of an
arbitrary nonempty universe of discourse U [14, 15, 60, 84]. Its elements are
called B-sets. On the analogy of the definition of the o-algebra o(U/¢), let
g denote the extension of B with the empty set and all the unions of some
$B-sets. In other words, Dy is closed under arbitrary unions and contains
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every set in ‘B plus the empty set. However, Do neither covers the universe
(i.e. it does not contain U) nor forms o-algebra in general. Similarly to the
rough set theory, any union of B-sets is referred to as B-definable set.

Our notion of lower and upper approximations are straightforward point-
free generalizations of Pawlak’s same approximation operators imitating the
e-elementary set based formulae and both of them belong to ®u. So, our
lower and upper approximation operators are of the form 2V — ®g. This
approach corresponds to the “a priori” attitude in the sense of [11|. Here,
Dy is the family of the fundamental sets of our framework which can be
seen as the tools which we use to approximate any subset of U. However,
we have to emphasize that Dy is just the set of definable sets, not the set
of exact sets (in the sense of Chapter 5).

Our discussion will be within an overall approximation framework the
scope of which ranges from the weak approximation pair of maps on U |25]
to the notion of Galois connection on 2V [21, 22, 32]. Along this framework,
the common features of both the rough set theory and our approach can be
treated uniformly. In addition, most notions of Pawlak’s rough set theory
constitute compound ones and they are split into two or more parts in our
approach. This framework helps us to understand the state of their com-
pound nature and to specify their constituents in a more general context.

Last but not least, it has been proved that the partial approximation of
sets can be applied to solving practical problems [15, 12, 18, 19].

1.4 Thesis Overview and our Results

The present thesis can be divided into three main parts. (1) Chapter 1-2 are

two introductory chapters; (2) Chapter 3-6 contain our theoretical results;

(3) Chapter 7 presents different real-life applications of our approach.
More precisely, this dissertation consists of the following parts.

Chapter 1 is an introduction. It contains a historical outline, a philo-
sophical background, the brief summary of our approach and, finally, the
thesis overview and our main results.

Chapter 2 summarizes the basic concepts and notations used throughout
the thesis.

Chapter 3 defines two general approximation frameworks, a large-scaled
initial one, called the Initial Approximation Framework, and a finer-scaled
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one, called the General Set Theoretic Approximation Framework. They
allow us to treat the common features of the classic rough set theory and its
generalizations uniformly.

The results of Chapter 3 are based on

Z. Csajbok: Partial Approzimative Set Theory: A Generalization
of the Rough Set Theory, Proceedings of SoCPaR 2010, IEEE
(see, [14])

7. Csajbok: On the General Set Theoretical Framework of Set
Approzimation, Proceedings of RST 2011 (see, [20])

Chapter 4 is devoted to the basic concepts and properties of the clas-
sic rough set theory relying on the General Set Theoretic Approximation
Framework. We partly restate some well-known facts in the language of
our approximation framework and provide new point-free proofs for a few
of them.

The results of Chapter 4 are based on

Z. Csajbok: Approzimation of sets based on partial covering,
Theoretical Computer Science: Theory of Natural Computing
Thematic Special Issue, 2011 (see, [12])

Z. Csajbok: On the Partial Approxzimation of Sets, Acta Medic-
inae et Sociologica (see, [16])

7. Csajbok: Partial Approximative Set Theory: A Generalization
of the Rough Set Theory, Proceedings of SoCPaR 2010, IEEE
(see, [14])

Z. Csajbok: Rudiments of Partial Approzimative Set Theory
(in Hungarian), Proceedings of the 3rd International Doctoral
(PHD/DLA) Conference, 2009 (see, [13])

Chapter 5 presents a special approximation framework based on the par-
tial covering of the universe. It is fully integrated into the General Set
Theoretic Approximation Framework.

After some introductory remarks in Section 5.1, Section 5.2 defines the
most fundamental concepts of our approach, the base system B and the
family of ®B-definable subsets.
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Section 5.3 introduce a constrained version of ‘B, called the single-layered
base system. This allows us to prove some properties of our approximation
framework which in a sense are similar to the properties of classic rough set
theory.

Section 5.4 defines the lower and upper approximations based on partial
covering of the universe. First, we prove that they fit into the General Set
Theoretic Approximation Framework. Lower B-approximation is always
contractive, but upper B-approximation is extensive if and only if the base
system ‘B covers the universe. We also show that the B-definable property is
generally not equivalent to the equality of lower and upper B-approximations
unlike Pawlak’s rough set theory. The universe, the family of B-definable
sets, the lower and upper B-approximations form together a so-called 8-
approximation space.

Section 5.5 discusses the B-representations of the B-definable sets. A
subset D is B-representable, if there exists exactly one family of B-sets
such that its union equals to D. We prove that all B-definable subset of
the universe are ‘B-representable if and only if the base system ‘B is single-
layered. We also give the explicit B-representations of ‘B-definable subsets,
among others, the lower and upper B-approximations, when the base system
B is single-layered.

Section 5.6 is about an especial important notion of approximation
spaces, namely, the exactness. In Pawlak’s approximation spaces the notions
of ‘crisp’ (i.e. the exactness) and ‘definable’ are synonymous to each other.
However, a B-definable subset is not necessarily B-crisp. Consequently, the
notions of ‘definable’ and ‘crisp’ (exactness) are not synonymous to each
other in B-approximation spaces.

In Section 5.7, we give a possible interpretation of our approach.

The results of Chapter 5 are based on

7. Csajbok: Approximation of sets based on partial covering,
Theoretical Computer Science: Theory of Natural Computing
Thematic Special Issue, 2011 (see, [12])

7. Csajbok: On the Partial Approximation of Sets, Acta Medic-
inae et Sociologica (see, [16])

In Chapter 6, we investigate what conditions have to be satisfied by the
upper and lower B-approximations so that they form a Galois connection
on (2V,C).
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In Section 6.1 we prove that the upper and lower B-approximations form
a Galois connection on (2Y, C) if and only if the base system B is a partition
of U.

In Section 6.2, we deal with partial lower and upper B-approximations.

The empty set may be the lower 2B-approximation of certain nonempty
subsets provided that all singletons are not B-definable. Excluding to allow
that the empty set to be the lower B-approximation of a nonempty subset,
we obtain the partial variant of the lower B-approximation. We show that
under well-defined conditions there exists a unique total extension of the
partial lower B-approximation which is exactly the lower 2B-approximation.

The empty set may be the upper B-approximation of certain nonempty
subsets provided that the base system does not cover the universe. Ex-
cluding these uncommon cases we obtain the partial variant of the upper
$B-approximation. We prove that the partial upper B-approximation and
the lower B-approximation form a partial Galois connection in the sense of
Miné if and only if the B-sets are pairwise disjoint.

The results of Chapter 6 are based on

Z. Csajbok: Approxzimation of sets based on partial covering,
Theoretical Computer Science: Theory of Natural Computing
Thematic Special Issue, 2011 (see, [12])

Z. Csajbok: Partial Approzimative Set Theory: A View from
Gualois Connections, Proceedings of ICAI 2010, Eger, Hungary,
UNIDEB Faculty of Informatics — Eszterhazy Karoly College,
2011 [17]

Z. Csajbok: Partial Approzimative Set Theory: A Generalization
of the Rough Set Theory, Proceedings of SoCPaR 2010, IEEE
(see, [14])

Chapter 7, to demonstrate the effectiveness of our approach, presents
three real-life applications.

Section 7.1. The first application shows the relationship of our approach
with natural computing via a biological application. In particular, we show
how our approach helps us to understand some behavioral features of the
natural vegetation heritage of Hungary.

The results of Section 7.1 are based on

7. Csajbok: Approximation of sets based on partial covering,
Theoretical Computer Science: Theory of Natural Computing
Thematic Special Issue, 2011 (see, [12])
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Section 7.2. The second application presents a general tool-based ap-
proximation framework. In practice, two relevant groups of observed objects
can be separated. A group whose elements really possess some features in
question and another group whose elements do not substantially possess the
same features. To model this situation, two separated approximation spaces
are defined over the universe. Then, any collections of the observed objects
can simultaneously be approximated in the two approximation spaces.

The results of Section 7.2 are based on

7. Csajbok, T. Mihalydedk: A General Tool-Based Approzima-
tion Framework Based on Partial Approzimation of Sets, Pro-
ceedings of RSFDGrC 2011, Moscow, Russia, Springer-Verlag,
LNAI 6743, 2011 (see, [19])

Section 7.3. The third example applies the tool-based approximation
framework to model Intrusion Detection Systems (IDS) in computer security.
In accordance with this framework, anomalies and misuses can be detected
at the same time due to its simultaneous nature.

The results of Section 7.3 are based on

7. Csajbok, T. Mihalydedk: A General Tool-Based Approxima-
tion Framework Based on Partial Approximation of Sets, Pro-
ceedings of RSFDGrC 2011, Moscow, Russia, Springer-Verlag,
LNAI 6743, 2011 (see, [19])

Z. Csajbok: Simultaneous Anomaly and Misuse Intrusion Detec-
tions Based on Partial Approzimative Set Theory, Proceedings
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Chapter 2

Basic Concepts

2.1 Basic Notations

Let U be any nonempty set. Let 2 C 2V be a family of sets whose elements
are subsets of U.

The union and intersection of 2 are [J2A = {z | 3A € A(x € A)} and
NA={z|VA € A(x € A)}, respectively.

If A is empty we define JO0 =0 and N0 =TU.

If ¢ C U x U is an arbitrary binary relation on U, let [z]. denote the
e-related elements to z, i.e., [z]c = {y € U | (z,y) € €}. They are called
e-elementary sets, and the family of [z]. is denoted by U/e.

Let | A | denote the cardinality of any set A.

Let X and Y be nonempty sets and f: X — Y be a map. If domf = X,
fis total, if domf & X, f is partial. If f is a partial map, then domf = 0 is
allowed. For the purpose of simplicity we will talk about partial maps with-
out direct references to their partiality. However, statements with respect
to partial maps always concern their restrictions to their domains.

A nonempty set P together with a partial order < on P is called a partial
ordered set or a poset, in symbol (P, <). Any subset of a poset is in itself
a poset which is partially ordered by the same (relative or induced) partial
ordering relation.

A selfmap f: P — Pon (P,<) is

e cxtensive if x < f(z);

o contractive if f(z) < z;

e idempotent if f(f(x)) = f(z);

13
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e normalized if f(m) = m, when the minimal element m € P exists;
e co-normalized if f(M) = M, when the maximal element M € P exists.

If (P,<p) and (Q, <) are two posets, a map f : P — Q is monotone
or order-preserving when x <p y = f(z) <g f(y), and antitone or order-
reversing when z <p y = f(y) <¢g f(x).

Amap f: P — Q is the order isomorphism between (P, <p) and (Q, <)
if f is a bijection and both f and f~! are monotone. In this case, it is said
that P and @ are isomorph.

2.2 Galois Connections

Let (P, <p) and (@, <g) be two posets. Let the quadruple (P, f, g, Q) denote
the pair of maps f: P — @Q and g: Q — P.

2.1 Definition. The pair of maps (P, f, g,Q) is a (reqular) Galois connec-
tion between P and @, in notation G(P, f, g, @), if

Vpe PYqeQ (f(p) <o a<p<pry(q).

The map f is called the lower adjoint and g is called the upper adjoint of
the Galois connection.
It P=@Q, G(P, f,g,P) is said a Galois connection on P.

The following theorem gives a useful characterization of Galois connec-
tions.

2.2 Proposition. ([32], Lemma 79) The pair of maps (P, f,g,Q) is a
Galois connection if and only if

(1) p<p g(f(p)) for all p € P and f(g(q)) <q q for all q € Q;

(2) the maps f and g are monotone.
2.3 Remark. Here we adopted the definition of Galois connection in which
the maps are monotone. It is also called monotone or covariant form. For

more details on Galois connections, see, e.g. [21, 22, 28].

Finally, we will need the following notion.
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2.4 Definition. (|46], Definition 2.2.2) A pair of maps (P, f, g, Q) is the
partial Galois connection between P and @, denoted by 0G(P, f, g, @), if

1) f: P — @ is a monotone partial map,

2) ¢g: @ — P is a monotone total map,

(1)
(2)
(3) f(g(q)) exists for all ¢ € @, and
(4)

4) Vp € P and Vg € @ such that f(p) is defined, f(p) <g ¢ = p <p 9(q).

2.5 Remark. In [46], A. Miné actually introduced the concept of F-partial
Galois connection 0G(P, f,g,Q) between the concrete domain P and the
abstract domain @, where F is a set of concrete operators. We will apply
this notion in the simplest form: P = Q = 2V and F = () which is allowed
by Miné’s definition.
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Chapter 3

(General Approximation
Frameworks

In order to be able to discuss the common features of both the rough set
theory and its possible generalizations uniformly, we define two general ap-
proximation frameworks, a large-scaled and a finer-scaled set theoretic one.

3.1 An Initial Approximation Framework

A large-scaled general framework of the set approximation first has been
proposed by the author in [14].
Let U be a nonempty set and ([, u) be an ordered pair of maps

Liu:2V =2V

on (2Y,C). Of course, the maps | and u are intended to be the lower and
upper approzimations of any subset X C U, respectively. Hence, the ordered
pair (I, u) is called the approzimation pair.

The most essential features of an approximation pair (I, u) can be sum-
marized as follows.

(0) (Definability) The subsets of a set are approximated by the beforehand
given family of subsets of the set itself. The members of the beforehand
given family of subsets are called well defined. In other words, the maps
[ and u are of the form

lLu:2V = ®(c2Y),

where ® is the family of well defined subsets of U.

17
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Hereupon, the nature of an approximation pair (I,u) depends on how
the lower and upper approximations are related to each other and the subset
itself to be approximated.

(1) (Monotonicity) The maps | and u are monotone with respect to the
inclusion relation C on 2V.

(2) (Weak approzimation property) An approximation pair (l,u) is the
weak approximation pair on U if

VX €2V (I(X) C u(X)).

(3) (Strong approximation property) An approximation pair (I, u) is the
strong approzimation pair on U, if each subset X € 2V is bounded by
[(X) and u(X):

VX €2V (I(X) C X Cu(X)).

(4) (Approzimation hypothesis) The pair of maps (2V,u,l,2Y) forms a
Galois connection on (2V, C), in notation G(2Y,u, ,2Y), if

VX e2Vvy €2V (u(X)CY & X CI(Y)).

3.1 Remark. Ad (0). It gives the most fundamental characterization of
the approximation pair (I, u).

Ad (1). This property is a common and reasonable assumption.

Ad (2). The constraint I(X) C u(X) seems to be the weakest condition
for a sensible concept of set approximation [11, 25].

Ad (8). This property is meaningful because the domain and codomain
of [, u are the same [11].

Ad (4). In |51], a new hypothesis about approximation has been drawn
up recently. According to this assumption, the notion of the “approximation”
may be mathematically modelled by the notion of the Galois connection.

A finer-scaled characterization of the nature of the set approximation
can be obtained with further specifications concerning the family of well
defined subsets. These additional specifications will be performed in the
next Section.
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3.2 A General Set Theoretic Approximation Frame-
work

Let U be an arbitrary nonempty set called the universe of discourse.
The first definition gives us the family of fundamental sets of the frame-
work which can be considered as primary tools.

3.2 Definition. Let B = {B; | i € I} C 2V be a nonempty family of
nonempty subsets of U, where I denotes an index set.
B is called the base system, its members are the B-sets.

Some extensions of the base system ‘B can be defined.
3.3 Definition. Let Dg C 2V be an extension of B such that
(1) B C D;
(2) 0 € Dys.

The members of Dy are called definable, while the members of 2V \ Dy
are undefinable.

Any extension D¢ of 2B can be seen as derived tools.

3.4 Example. The simplest extension of 9B is Dy = B U {(}.

3.5 Example. Let Dy C 2V be an extension of B such that
(1) 0e Dos;
(2) for any index set I' C I, if B’ ={B;|i€ '} C B, then B’ € Dy.

Notice that 28 C Dy, and D is closed under arbitrary unions.

If the universe U is finite, and B = U/e, where U/e is a partition of U
generated by an equivalence relation € on U, then ©9g = o(U/e). In this
case, this extension procedure is just the scheme which is in Pawlak’s rough
set theory.

3.6 Example. Let Dy C 2V be an extension of B such that

(1) 0e Do;
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(2) if By, By € B then

(a) B1U B € D;
(b) B1N By € Dgy.

Notice that 28 C Dy, D is closed under finite unions and intersections,
and B, B € Dy do not hold necessarily when the cardinality of I is
not finite.

3.7 Example. If 0(*B) is the o-algebra generated by B then o(B) is an
extension of B since ) € B and B C o(B).

We want to approximate of any subset S € 2V from “lower side” and
“upper side’—no matter what they mean at this time. We have the only
requirement at the highest level of abstraction that is to let the lower and
upper approximations of subsets S be definable. We look at definable sets
as tools to approximate subsets of the universe U.

If we look at the sets belonging to B as primary tools, it is a highly
reasonable requirement that they should ezactly be approximated by them-
selves from “lower side”. This property is called the (lower) granularity of
B. If we gave it up, the roles of the primary tools would be depreciated.

In Pawlak’s rough set theory, however, not merely the granularity of U/e
but also the granularity of o(U/e) fulfills. It can be proved (Proposition 4.7,
Corollary 4.9) that if D € o(U/e), then ¢(D) = D due to the particular
construction of D/, and definition of e.

A lower approximation is called standard if not only the primary tools
in B, but also the derived tools in D¢ are its fixpoints. In this thesis, we
solely deal with standard lower approximations.

The following definition, at the next level of abstraction, is about the
minimum requirements of standard lower and upper approximations.

3.8 Definition. Let (I,u) be an approximation pair l,u : 2V — 2V on
2V, Q).

It is said that an approximation pair (I, u) is the weak (generalized) ap-
proximation pair on U if

(C0) 1(2Y),u(2Y) C Dy (definability of I and u);

(C1) ! and u are monotone (monotonicity of I and u);
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(C2) u(@) =0 (normality of w);
(C3) if D € Dy, then (D) = D (granularity of ®gp, i.e. [ is standard);

(C4) if S €2V, then I[(S) C u(S) (approzimation property).

Informally, the intended meaning of the maps ! and wu, of course, is to
express the lower and upper approximations of any subset of the universe U
with the help of the beforehand given definable sets as tools.

Clearly, if (l,u) is a weak approximation pair on U, the maps [, u are
total and many-to-one in general.

3.9 Proposition. Let (I,u) be a weak approzimation pair on U.
(1) 1(0) =0 (normality of 1);
(2) VX € 2V (1(U(X)) = I(X)) (idempotency of 1).
(3) S €Dy if and only if 1(S) = S.
(4) u(2V) C1(2Y) = Dp.
Proof. (1) By definition, ) € Dy and so [(#) = 0 by condition (C3).
(2) I(X) € Dy and so I(I(X)) = I(X) by condition (C3).

(3) (=) It is just the same as the condition (C3).
(<) Since [(S) € Dy, and so [(S) = S € Dy by Condition (CO0).

(4) 1(2Y) C Dy by condition (C0) and Dy C 1(2Y) by condition (C3),
thus [(2V) = Dyp.

Let S € u(2Y) C Dgy. By the condition (C3), S =I(S5) € Dy = 1(2Y),
e u(2Y) Ci(2Y).

To show that the inclusion «(2Y) C 1(2V) may be proper, let
o U ={a,b},

o B ={{a}},
e Dy = {@7 {a}7 {a’7 b}}a
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e and l,u: 2V — Dy be as follows:

0, if X =0;

X = I(X)={ {a}, ifX=/{a};
{a,b}, otherwise.
1] if X =0;

X u(X) = { {a,b}, otherwise.

Conditions (C0)-(C4) can easily be checked, however, u(2V) =
{Q)v {CL, b}} ; {(Z)a {a}a {aa b}} = Z(QU) =Dy. O

The following example shows that for a weak approximation pair (I, u)
on U each condition (C0)—(C4) is independent of the other four.

3.10 Example. Let U be a nonempty set. Let us assume that there exist
B, Ba(# 0) € 2Y such that neither By C By nor By C Bj holds, and there
exists a proper superset S of By (i.e. 0 # B1 & S # U).

(0) Let B = {B1}, D = {0, B1} and [, u be the identity map, i.e. [,u :
2U 5 2V X X. These | and u trivially satisfy all the five conditions
except (CO).

(1) Let B = {B1,Ba}, D = {0, By, B2, By U By} and l,u : 2V — Dy be

as follows:
Bl, lf X = Bl;
_} Bao, if X = Bo;
X lX)=13 B/ UB,. if X = B, UB,.U:
0, otherwise.
0, if X =10,
_} B, if X = By;
XouX) =93 BUB,. if X = B UB,.U:;
Bs, otherwise.

Conditions (C0), (C2), (C3) trivially hold. Let us check the condition



3.2. A GENERAL SET THEORETIC APPROXIMATION FRAMEWORK 23

(C4):

0 =u(D)
Bl = U(Bl)
BQ U(BQ)
B1 U By =u(B1 U By)
By UBy =u(U)

By = u(S5)

E
-
™
=
I
w
-
™
[N}
NN 1N 1N 1N N

and if S'(# (), By, B2, B1 U By, S,U) € 2Y, then
1(SY=0 C By=u(9).

That is the condition (C4) also holds. However, in the case By & S

I(Bi)=B1 £ 0=1(5)
u(B1)=B1 ¢ By=u(S).

Therefore, these | and wu satisfy all the five conditions except (C1).

(2) Let B = {B1, Ba}, D = {0, B1, Bo, B U By} and [, u : 2V — Dy be

as follows:
0, if X =0;
o Bl, if X = Bl;
X=UX)=9 B, if X = By;

B1 U By, otherwise.
X — u(X) = B UBas.
Conditions (C0), (C1), (C3) and (C4) hold, but u() = B; U By # 0.
Therefore, these [ and wu satisfy all the five conditions except (C2).

(3) Let B = {Bs}, D = {0, Bo, B1 U By} and l,u : 2V — Dy be as

follows:
0, if X =0,
X = 1l(X)=1{ Bs, if X = Bu;
Bi U By, otherwise.
0, if X =10,

X o u(X) = { Bi U By, otherwise.
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Conditions (C0), (C1), (C2) trivially hold. Let us check the condition
(C4):

0= u(D)

-
C Bi1UBy= U(Bl)

and if §'(# (), By) € 2Y, then
Z(Sl) =BiUBy C BjUBy= U(Sl)

That is the condition (C4) also holds. However,
I(Bi) =B, # B.
Therefore, these | and wu satisfy all the five conditions except (C3).

(4) Let B = {B1, B2}, D = {0, By, Bo, By U Bo} and I, u : 2V — Dy be

as follows:
0, if X =0,
o Bl, if X = Bl;
X=UX) =9 p, if X = By;
B1 U By, otherwise.
X —=uX)=0.

These [ and w trivially satisfy all the five conditions except (C4).

The next definition classifies the approximation pairs as how the lower
and upper approximations of a subset are related to the subset itself to be
approximated.

3.11 Definition. Let (/,u) be an approximation pair [, u : 2V — .
It is said that an approximation pair (I, u) is

(C5) the I-semi-strong approzimation pair on U if it is weak and if S € 2V,
then [(S) C S (I is contractive);

(C6) the u-semi-strong approzimation pair on U if it is weak and if S € 2V,
then S C u(S) (u is extensive);

(CT) the strong approzimation pair on U if it is [-semi-strong and u-semi-
strong at the same time, i.e. each subset S € 2V is bounded by ()
and u(S): VS € 2V (I(S) € S C u(S9)).
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If U is a nonempty set, and Dy = 2Y, it is straightforward that the
approximation pair [, u : 2V — 2V X + X is a strong approximation pair.

The next example shows that there are weak approximation pairs which
are neither [-semi-strong nor wu-semi-strong, not l-semi-strong but u-semi-
strong, [-semi-strong but not u-semi-strong.

3.12 Example. Let U = {a,b} and B = {{a}} be the base system.

(1) Let Dy = {0, {a}}, and the maps [,u : 2V — Dy be as follows:

0, if X =0;

X = U(X),u(X) = { {a}, otherwise.

Conditions (C0)—(C4) can easily be checked:

(C0) 1(27),u(2”) = {0, {a}} = D.

(C1) [ is monotone:
0 c{a},{b},{a,b} = 1(0) = 0 C {a} = I({a}),1({0}),1({a, b}).
{a}, {b} C {a,b} = I({a}),1({b}) = {a} S {a} = I({a,b}).

The monotonicity of u can be proved in the same way.
(C2) u(0) =0.
(C3) 1(0) =0, I({a}) = {a}.

(C4) 1 and u are the same maps.

However, for X = {b}

[({b}) = {a} € {b}; {b} £ u({b}) = {a}. (3.2.1)

Therefore, the approximation pair (l,u) is neither [-semi-strong nor
u-semi-strong.
(2) Let Dy = {0, {a}, {a,b}}, and the maps [,u : 2V — Dy be as follows:

0, if X =0;
X = U(X),u(X) = { {a}, if X ={a};

{a,b}, otherwise.

Conditions (C0)—(C4) can easily be checked:

(CO) Z(QU)’ U(QU) = {@, {a’}v {a7 b}} =Dp.
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(C1) ! is monotone:
0 C{a} =10)=0c{a} =1{a}).
0 c{a},{a,b} = 1(0) =0 C {a,b} =1({b}),1({a,b}).
{a} C{a,b} = I({a}) = {a} C {a,b} = I({a,b}).
{0} c {a,b} = I({b}) = {a,b} € {a,b} = I({a,b}).
The monotonicity of u can be proved in the same way.
(C2) u(0) = 0.
(C3) 1(0) =0, I({a}) = {a}, I({a,b}) = {a,b}.

(C4) ! and u are the same maps.

Let us check that u is extensive:

o ) CO=u(0);

o {a} C {a} = u({a});

o {b} C {a,b} =u({b});

e {a,b} C{a,b} =u({a,b}).

However, in the case X = {b},
(b)) = {a,b} Z b} (322)

Therefore, the approximation pair (I, u) is not [-semi-strong, but u-
semi-strong.

(3) Let Dy = {0, {a},{a,b}}, and the maps I,u : 2V — Dy be as follows:
0, it X =0, {b}:
X o 1(X),u(X) =4 {a}, if X = {a}.
{a,b}, otherwise.
Conditions (C0)—(C4) can easily be checked:

(C0) 1(2Y),u(2”) = {0.{a}, {a,b}} = Ds.
(C1) ! is monotone:
Dci{a}=10)=0cC
D c{b}=10)=0<0=1{b}),
0 C{a,b} =10)=0cC {a,b} =1({a,b}),
{a} c{a,b} = I({a}) = {a} C{a,b} = I({a,b}),
{b} C {a,b} = 1({b}) =0 C {a,b} =1({a,b}).

The monotonicity of u can be proved in the same way.

{a} = 1({a}),
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(C2) u(0) = 0.
(C3) 1(0) =0, I({a}) = {a}, I({a, b}) = {a, b}.
(C4) 1 and u are the same maps.

Let us check that [ is contractive:
1(0) =0 C 0,

I({a}) = {a} € {a};

1({v}) =0 c {v};

I({a,b}) = {a,b} C {a,b}.

However, in the case X = {b},

(b} 0 = u({b}). (3.2.3)

Therefore, the approximation pair ([, u) is l-semi-strong, but not u-
semi-strong.

Using the preliminary notations, the notion of the generalized approxi-
mation space can be defined.

3.13 Definition. An ordered quadruple (U, ®wp,l,u) is the weak/I-semi-
strong/u-semi-strong/strong generalized approximation space, if the approx-
imation pair ([, u) is weak /l-semi-strong/u-semi-strong/strong, respectively.

3.14 Proposition. Let (U, Dy, l,u) be a generalized approzimation space.
(1) If (U, D, 1, u) is weak, then
(a) L(U) € UDsm;
(b)) (U) =UDs if and only if | Dy € Dsp.
(c) u(U) € UDs.
(2) If (U, D, 1, u) is u-semi-strong, then u(U) =Dy =U.
Proof.

(1) (a) By the definition of [, [(U) € Dg and so I(U) C | Dwx.
(b) (=) By the definition of [, [(U) = |JDx € Dps.
(<) Let us assume that | JDg € Dg. Since | JDg C U, then by
the condition (C3) and the monotonicity of I, [(|JDn) = JDs C
[(U). Comparing it with (1) (a), we obtain [(U) = | Dsx.
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(c) By the definitions of u, u(U) € ®g and so u(U) C |JDw.

(2) (U, Ds,l,u) is weak, thus by Proposition 3.14, point (1)/(c), u(U) C
U®Da. On the other hand, since u is extensive and monotone, | Dgp C
U implies Dy C u(JDxs) C u(U). Consequently, u(U) = | Ds.

Clearly, u(U) C U. Since u is extensive, thus U C u(U). Therefore,
u(U) =U. O

In generalized approximation spaces the notion of well approzimated sets
can be introduced. These sets are called crisp sets.

3.15 Definition. Let (U, Dy, l,u) be a generalized approximation space
and S € 2V,
The subset S is crisp, if 1(S) = u(S5).

3.16 Proposition. Let (U, Ds,l,u) be a strong generalized approzimation
space.
If S € 2V is crisp, then S is definable.

Proof. (U, Dw,l,u) is strong, thus [(S) € S C u(S). Since S is crisp,
therefore [(S) = S = u(S), and so S € Dy by Proposition 3.9 (3). o

In general, the crisp property of a set does not imply its definability in
not strong generalized approximation spaces. One can check that in all three
cases of Example 3.12, the set {b} is crisp (because of [ and u are the same
maps, and so [({b}) = u({b}) trivially holds), but {b} is not definable (i.e.
{b} & D). Of course, its lower and upper approximations are definable (i.e.

1({b}), u({b}) € Dp).



Chapter 4

Fundamentals of Rough Set
Theory

The basic concepts and properties of rough set theory can be found, e.g in
[33, 54, 55]. Here we will cite only notions and statements which are required
in our subsequent work. Moreover, we partly restate these well-known facts
in the language of the set theoretic approximation framework. On the other
hand, we provide new point-free proofs for a few of them (see, especially,
Section 4.2).

4.1 Basic Notions

Let U be a nonempty set and € be an equivalence relation on U. In Pawlak’s
rough set theory the base system is the partition U/e. Its extension Dy,
contains U/e, the empty set and closed under arbitrary unions. The mem-
bers of Dy, are called e-definable, while the members of 2U\ Dy, /e are called
e-undefinable.

4.1 Remark. By the special structure of U/e, Dy, is nonempty, closed
under arbitrary unions, intersections and complementations. In other words,
(U,Dy/e) is an Alexandrov topological space with the basis U/e.

Having given the definable sets, Pawlak’s approximation pair (g,2) can
be defined in three equivalent forms [76, 77, 80| as follows.

4.2 Definition. Let (¢,2) be an approximation pair g,z : 2 — 2V on
(2V, Q). (g,8) is a Pawlak’s approzimation pair on U, if

29
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the lower e-approzimation of a subset X € 2V is

e(X) = {zeU]x]. C X}, (4.1.1a)
= vy eu/ey cx}, (4.1.1b)
= J{D|DeDy.,DC X}, (4.1.1c)

and the upper e-approzimation of a subset X € 2V is

gX) = {zeU]lz]-NnX #0}, (4.1.2a)
- U{Y |Y €eU/e,Y N X # 0}, (4.1.2b)
= (\{D| D€ Dy.. X C D}, (4.1.2¢)

4.3 Remark. The above equations respectively emphasize the local (4.1.1a,
4.1.2a), global (4.1.1b, 4.1.2b) and topological (4.1.1c, 4.1.2c) nature of
Pawlak’s approximations. From another point of view, the local approach
is point-wise and the two latter ones are point-free in nature.

Our approach is relying on the generalization of formulae 4.1.1b and
4.1.2b when the definable sets are not pairwise disjoint and they do not
necessarily cover the universe.

4.4 Proposition. Let (g,2) be a Pawlak’s approximation pair on U. Then

(1) the formulae 4.1.1b and j.1.1c are equivalent, i.e.

UivIveu/ycx}=({D|DeDy.,DC X}

(2) the formulae 4.1.2b and 4.1.2¢c are equivalent, i.e.

UV 1Y eU/e,ynX #0} =({D|D €Dy, X C D}

Proof. (1) It follows from the fact that every D(C X) € Dy is of the
fom D=(J{Y |Y eU/e,Y C X}.
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(2) Since YN D =Y or () for any Y € U/e and D € Dy, then

UV 1Yy eU/e,ynX #0 | Y |Y €U/e, Y ND #0} =D

for any D € Dy where X C D.
In addition, by definition, X C{[{Y |Y € U/e,Y N X # 0} € Dyje. o

4.5 Remark. In the equation 4.1.2c, contrary to the expectations, the for-
mula ({D | D € Dy, X C D} cannot be replaced with the formula
U{D | D € Dy, X N D # 0} as the next example shows. Let

U = {:E1,$2},
Ule = {{z} {22}},
SU/a = {mv{xl}’{x2}7{$1’x2}}'
Then

e{x1}) = U{{x1}} = {=1} (according to 4.1.2b),

e({x1}) = N{{z1}, {z1,22}} = {z1} (according to 4.1.2¢),
however, according to the formula (J{D | D € Dy, X N D # 0} we do
not obtain the correct result:

e({z1}) # U{{ﬂfl}a {1, 22}} = {x1, 22}

4.6 Proposition. Let (g,2) be a Pawlak’s approzimation pair on U. Then

(0) £(2¥),2(2Y) C Dyy. (definability of € and ), and ¢,2 are total and
generally many-to-one;

(1) if X CY, then e(X) Ce(Y) and €(X) CE(Y) (g, € are monotone);
(2) €(0) =(0) =0 (g, € are normalized).

Proof. (0) It is straightforward by Definition 4.2.
(1) [55] Proposition 2.2 points 5), 6).
(2) [55] Proposition 2.2 point 2). 0

According to Proposition 4.6 points (0), (1), (2), the rough set theory
fulfills the conditions (CO0), (C1), (C2) of the set theoretic approximation
framework.
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In the following we will investigate the fulfillment of the conditions (C3)
and (C4) of the set theoretic approximation framework.

4.7 Proposition. ([55], Proposition 2.1, point a)) Let (¢,€) be a Pawlak’s
approximation pair on U.
Then X € Dy, if and only if £(X) = (X).

4.8 Corollary. If D € Dy, then ¢(D) = D.

Proof. Since g(D) € Dy, then (D) = D by Proposition 4.6 point 3) and
Proposition 4.7. O

According to Corollary 4.8, the rough set theory fulfills the conditions
(C3) of the set theoretic approximation framework.
The next statement is a characteristic feature of the rough set theory.

4.9 Corollary. ¢(X) = X if and only if X =2(X).

Proof. Since g(X) € Dy (E(X) € Dyye), then X = g(X) € Dy (X =
g(X) € Dy/.) by Proposition 4.6 point 3) and Proposition 4.7, and so X =
e(X) =8(X) (X =&(X) =¢g(X)) by Proposition 4.7. 0

4.10 Proposition. Let (g,€) be a Pawlak’s approzimation pair on U. Then
VX €2V (e(X) C X CE(X)) (e is contractive, E is extensive).
Proof. [55] Proposition 2.2 point 1). o

According to Proposition 4.10, the rough set theory fulfills the condition
(C4) of the set theoretic approximation framework. At the same time, this
proposition also prove that the rough set theory fulfills the condition (C7),
too.

Summing up the above results, in the language of set theoretic approxi-
mation framework, a Pawlak’s approximation pair (g, &) is a strong approx-
imation pair. Consequently, the quadruple (U,®yy/,,¢,€) forms a strong
approximation space. It is also called Pawlak’s approzimation space.

4.11 Remark. Note that the idea of approximation space is a bit older
than Pawlak’s initial works. For the evolutionary survey of approximation
spaces, see [68].

The next properties of £ and € partly follows from Proposition 3.9. Of
course, they can easily be proved by Definition 4.2 directly.
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4.12 Proposition. Let (U, Dyye,¢,2) be a Pawlak’s approzimation space.
(1) e(U)=2U) =U (g, € are co-normalized);
(2) ¥X €2V (g(e(X)) = e(X) NE(E(X)) =&(X)) (g, E are idempotent);

(3) e(2V) =2(2") = Dyye.

Proof. (1) [55] Proposition 2.2 point 2).
(2) [55] Proposition 2.2 points 11), 12).
(3) It follows from Proposition 4.7 0

4.13 Definition. Let (U, Dy/e,&s ) be a Pawlak’s approximation space and
X CU.
The e-boundary of X is

X is e-crisp, if Be(X) =0, otherwise X is e-rough.

4.14 Proposition. (Csajbok [16], Proposition 4.14) Let (U, Dy, ¢, &)
be a Pawlak’s approrimation space and X C U.

(1) X is e-crisp if and only if X is e-definable.

(2) X is e-rough if and only if X is e-undefinable.

Proof. (1) (=) X is e-crisp & B:(X) =2(X)\e(X) =0 < g(X) C g(X).
However, g(X) C £(X), and so g(X) = &(X). According to Proposition 4.7,
e(X) =8(X) & X € Dyye.

(«) Since X € Dy, & g(X) = &(X), then B.(X) = &(X) \ g(X) =0
trivially satisfies.

(2) It is the contrapositive version of (1). 0

As a consequence of Proposition 4.14, in Pawlak’s approximation spaces
the notions ‘e-crisp’ and ‘e-definable’ are synonymous to each other, and
so are ‘e-rough’ and ‘c-undefinable’. However, the notions ‘c-crisp’ and ‘e-
definable’ are two different notions, they are inherently one and the same
only in Pawlak’s approximation spaces. As we will see, in partial approxi-
mation of sets this compound notion splits into two parts.
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4.2 Granularity Aspects of Rough Set Theory

The following statement is elementary, however, in the context of Pawlak’s
rough set theory it is an important fact. For the sake of simple reference,
it is formulated in a lemma. It follows from just the fact that the partition
U/e consists of nonempty pairwise disjoint subsets of U.

4.15 Lemma. VX €2V VX cU/e (X CUX & X € X).

4.16 Proposition. (Csajbok [14], Theorem 8) Let (U,Dyy.,¢,8) be a
Pawlak’s approrimation space.

Then the posets (2U/¢,C) and (Du/e, C) are order isomorphic via the
map ie : 2V/¢ — Duse, X = UJX.

Proof. We will show that the map i. is a bijection and both i. and i-! are
monotone.

Let D1, D9 € 2Y/¢ be such that JD1 = D> € Dy/e- By Lemma 4.15,
VX € 2U(X €D & X C U@l = U@Q s X e @2), i.e., ®; = Do, thus
ic is injective. By definition of Dy, ic is surjective. Consequently, i. is a
bijection.

Clearly, the map i. is monotone, since X1, Xy € 2V/¢, X; C X5 immedi-
ately implies |JX; C [ Xa.

Now, let D1, Dy € BDU/6 be so that D1 C Ds. Since i, is a bijection, there
exist unique i-}(D1) = X1,iz1(Dg) = X3 € 2V so that Dy = |JX1,Dq =
UZXs. By Lemma 4.15, VX c2V(X e X1 & X CUX1 CUX & X € Xy),
i.e., X3 € X3, and so i;l is also monotone. O

4.17 Corollary. (Csajbok [16], Corollary 3.5) Any e-definable subset
D of U can be written uniquely in the following form:

D =|Jx, where X ={X | X € U/e,X C D} € 2",
that is, there is no other X' € 2U/¢ satisfying D = |J X'.
Proof. Since D € Dy, thus D = [ J{X | X € U/e, X C D} immediately
holds. However, i. is a bijection, and so i }(D) always exists and iZ!(D) =

{X| X €U/e, X C D} =% € 2V/% is unique. O

4.18 Proposition. (Csajbok [16], Proposition 3.7) Let (U, Dyy.,¢,)
be a Pawlak’s approzimation space and X be a subset of U.
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Then the sets (X)), (X)) can be written uniquely in the following forms:
e(X) = (J& where X={Y |Y €U/e,Y C X} € 2V/",
8X) = [JX, whereX={Y |Y €U/e,Y N X #0} € 2V/%,
that is, there are no other X', X' € 2U/¢ satisfying e(X) = JX' and 8(X) =
ux’.
Proof. According to Definition 4.2 equations (4.1.1b), (4.1.2b), we only
have to prove the uniqueness.
e(X), 8(X) € Dy, and so, by Proposition 4.16, i~ (g(X)) and
i-1(2(X)) are unique and, by Lemma 4.15, we get
CUe(X) = {Y|Y eU/eY Ce(X)}
= {Y|YeU/e,Y T Y|V eU/e, Y C X}}
= {Y|YeUl,Y e{Y'|Y €eU/e, Y C X}}
= {Y|YeU/le, Y CX} =X
iZ1E(X)) = {Y|YeU/Y CEX)}
= {Y|YeU/Y T JY'|Y €U/e, Y NX #0}}
= {Y|YeU/lYe | V'Y €U/l Y NX #0}}
= {Y|YeU/le,YNX#AD =X O

4.3 Galois Connection of Upper and Lower Ap-
proximations

It is well known fact that & and € form a G(2Y,7,¢,2Y) Galois connection.
Now, let us investigate this connection in a wider context.

Lower and upper e-approximations can be generalized via their element
based definitions (4.1.1a) and (4.1.2a) relying on arbitrary binary relations
e on U [32].

4.19 Definition. Let ¢ be an arbitrary binary relation on U and X € 2V.
The lower e-approzimation of X is
(X) = {zeU|[ X}

and the upper e-approximation of X is
€X) = {zeU|[z]enX #£0}.
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If €' denotes the inverse relation of €, in the same manner one can also
define the lower and upper e-!-approximations of X.

4.20 Proposition. ([33], Proposition 134) Let € be an arbitrary binary re-
lation on U.

Then G(2V,€e-1,2Y) and G(2Y,¢T,¢,2Y) are Galois connections on
2V, Q).

Next corollary immediately comes from Proposition 4.20.

4.21 Corollary. Let € be an arbitrary binary relation on U.

The pair (,€) is a Galois connection on (2Y,C) if and only if € is sym-
metric.

In particular, if € is an equivalence relation on U, then G(2Y,%,¢,2Y) is
a Galois connection on 2V.

The next examples show that even if the relation € is symmetric, it is not
sufficient that the upper and lower e-approximations relying on point-free
definitions form Galois connection.

4.22 Example. (Csajbok [12], Example 3.10) Let U = {x1, 22,23}
and
€ = {(x1,21), (21, 22), (w2, 21), (€2, 23), (w3, 22)} C U x U

be a symmetric binary relation on U.
We define the straightforward generalizations of U/e, D/, as follows.

1], = {uelU]|(z1,u) € e} ={z1,22},
[z2]. = {ueU|(z2,u) € e} = {1, 23},
[z3]. = {ucU|(x3u) € e} = {2},
Ule = Alzle [z2]e, [ws]e} = {{z1, w2}, {z1, w3}, {221},
:DU/e = {0, [z1]e, [w2le, [T3]e, [1]e U [m2]e, [T1]e U [23]e, [22]e

Ulza]e, [#1]e U [z2]e U [23]c}
= {@, {x17 $2}7 {xh x3}7 {'r?}v {$17 xQ} U {561, .’Eg}, {1'1, xQ} U {x2}’

{z1,22,23} {z1,22}
{.%'1,253} U {$2}a {.%1,21?2} U {$1,$3} U {x2}}
{z1,72,23} {z1,72,73}

= {@, {1'1, 1'2}, {{L‘l, :Eg}, {IL‘Q}, {1'1, 2, l‘g}}

Note that Dy C 2V is a subsystem but not a c-algebra. For example,
{z1, 22} N {1, 23} = {71} & Dyye.
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Case 1. Elementary set based definitions relying on U/e.
Let us define the lower and upper e-approximations taking the pattern
by the equations 4.1.1b and 4.1.2b, respectively:

€2 5Dy, X | Y |V eU/eY C X},
@2 59y, X | JVIYeU/eYnX #0}

Clearly, the maps €, and €. are monotone.
For instance, for the set {2} € 2U:

e({2}) = JIY 1Y eU/eY C {an}} = [ Jl{a2}} = {a2),
e({z2)) = (Y IY eU/eY n{zz} # 0}
= Ullz, 22}, {a2}} = {21, 22}
Do the following relations {x2} C €.(€.({z2})) and/or € (e, ({z2})) <
{z2} hold?
ce(@({z2}) = eanz2}) = J{Y |Y €U/eY C {a1,22}}
= [Jl{a1, 22}, {z2}} = {1, 20} 2 {a2},
fele({r2}) = e({w2}) = {z1, 22} € {a2}.

That is, by Proposition 2.2, (2U,Ee,§e, 2U) does not form Galois connec-
tion.

Case 2. Subsystem based definitions relying on Dy /e.

Let us define the lower and upper e-approximations after the pattern of
the equations 4.1.1c and 4.1.2c, respectively (note that, D/ is closed under
unions, but not closed under intersections):

62" 5Dy, X | VY €Dy Y € XY,
&2V =2V, X[V |Y eDy, XY}

Clearly, the map ¢, is monotone.
The map € is also monotone. Namely, let X; C Xs be subsets of U.

o If {Y ‘ Y € QU/eyXl - Y} = @, then {Y | Y e @U/E,XQ - Y} =0
also holds, and so €5(X7) =€(Xo) = N0 =TU.

e I {Y | Y €Dy, X1 CV} £ 0and {Y |V €Dy, X C Y} = 0,
then €5(X1) C&(X2) =N0="U.
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o I {Y|Y €Dy, X1 CY}L{Y | Y €Dy, X2 C Y} # 0, then
Y Y €Dy, Xo CYC{Y |Y € Dy, X1 C Y},
and so
&X1) = (Y IY €Dy, X1 CY)
C (WYY €Dy, Xo CY} =(Xa).

For instance, for the set {x;}:

e({m}) = Y Y €Dy Y C{an}} = [ J{0} =0,
&) = (WYY €Dyje{m} C Y}
= (o1, 2o} {1, w3}, {1, w2, 23} = {21}

Do the following relations {x1} C €e,(és({z1})) and/or €(e;({z1})) <
{z1} hold?

e(&({a1}) = e({z}) =02 {21},
ES(ES({xl})) = Es(®> = ﬂ{y | Y e QU/m@ C Y} = mQU/e =0 g {1‘1}

That is, by Proposition 2.2, (2V,&,,¢,,2Y) does not form a Galois con-
nection.

Case 3. Point-wise definitions. Now let us check and see that the sets
{z1} and {x2} fulfill the conditions of Proposition 2.2 in the case of point-
wise definitions of the approximations.

Let us define the lower and upper e-approximations of {z1} and {z2} in
the point-wise manner due to equations 4.1.1a and 4.1.2a:

p({z1}) ={z e U [z]c C{m}} =0,
p({z1}) ={z € Ul [z]e n{z1} # 0} = {z1, 22},
({z2}) [z]e
[z]e

[N

Q)

I}

y({ze}) = {z € U | [z]e C {x2}} = {3},
p({z2}) ={z € U | [z]e N {z2} # 0} = {21, 23}

Of course, by Corollary 4.21, the maps €, and €, are monotone. More-
over, the formulae

{21} C e, (€({71})) and &,(¢,({z1})) € {21},
{2} C €, (€p({72})) and &,(e,({73})) C {z3}

™
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must hold. Indeed,

{1} € ¢ (@({z1}) = ¢,({z1, 22}) = {z € U [ [z]e € {1, 22}} = {z1, 23},
Ele,({11}) =6 0) ={z €U | [z]len0 # 0} =0 C {a1},

and

{z2} € (@({22})) = ¢,({z1, 23}) = {z € U [ [z]e € {1, x3}} = {2},
&lep({22})) = &({w3}) = {z € U | [ale N {zs} # 0} = {2} C {22}
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Chapter 5

Approximation of Sets Based
on Partial Covering

5.1 Introduction

In practice, there are objects which cannot be characterized by certain fea-
tures directly.
Some illustrative examples:

e Bald men cannot be characterized with the property ‘color of hair’.

e An infinite set is investigated via a finite family of its finite subsets. For
instance, a number theorist studies the regularities of natural numbers
using computers.

e Security policies are partial-natured in corporate information security.
Typically some policies may only apply to specific hardware appli-
ances, software applications or type of information.

Moreover, there are features with which a set and its complement can-
not be treated simultaneously. For instance, complements of recursively
enumerable sets are not necessarily recursively enumerable. The member-
ship of recursively enumerable sets can effectively be determined by a finite
amount of information, while the determination of their non-membership
requires an infinite amount of information [50]. That is, the complement
of a recursively enumerable set cannot necessarily be determined effectively.
In other words, the recursively enumerable sets can be managed by comput-
ers (e.g., via a special rewriting system, the Markov algorithm [65]), while

41
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its complement not necessarily. Thus, this is an important practical par-
tial approximation problem: how can we approximate an arbitrary set with
recursively enumerable sets?

Another question is the point-freeness. Let us suppose that we study a
collection of groups of individuals. In some cases it is important to distin-
guish individuals in these groups, whereas in other cases it is irrelevant. For
instance, in genotype-phenotype investigations for understanding evolution
it is reasonable to distinguish individuals (for a generalized point-set topo-
logical theory, see, e.g. [71]). On the other hand, during the investigation of
spreading of different types of floral zones in a given geographical area, the
distinction of the individuals has no relevance.

Moreover, these floral zones overlap each other. In addition they gen-
erally do not cover the entire area, e.g. on lands of desert, or when we
investigate the spreading of woodlands excluding the underwood. As an-
other example, in the game of go there are two groups of stones, black and
white. Black stones are inherently undistinguishable, so are the white ones.
In addition, the black and white zones overlap each other, and even together
they never cover the entire game table.

Throughout this section let U be a nonempty set called the universe of
discourse.

5.2 Base Systems

According to the general set theoretic approximation framework, let B8 C 2V
be a base system, i.e. a nonempty family of nonempty subsets of U. Its
members, the B-sets, are considered as our primary tools because we want
the subsets of U to be approximated with their help.

Now, let us define our derived tools, i.e. an extension of ‘B as follows.

5.1 Definition. (Csajbok [12]|, Definition 4.1) A nonempty subset X €
2V is B-definable if there exists a family of sets ® C 9B such that X = (D,
otherwise X is B-undefinable.

The empty set is considered to be a B-definable set.

Let ®g denote the family of B-definable sets of U.

5.3 Single-Layered Base Systems

Some properties of the rough set theory can partly be preserved with the
help of the next constrained version of the base system.
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5.2 Definition. (Csajbék [12], Definition 4.2) The base system B C
2V is single-layered, if

VB e B V¥ CB\{B}(Bn| DB #B),
and one-layered, if
VB e B V8 CB\{B}(Bn| B =0).

Informally, a base system ‘B is single-layered if every nonempty 8-
definable subset has at least one element which can be characterized by
exactly one primary tool, whereas ‘B is one-layered if every element of the
universe can be characterized by at most one primary tool.

An important question is how can we form a single-layered base system
from an arbitrary one. In general, this problem is reduced by the practice
to finite base systems (|B| < c0).

The simplest way to construct a single/one-layered base system from an
arbitrary one is to form its intersection structure. Formally, a nonempty
family & of subsets of the universe U is an intersection structure if V&'(#
0) C S (NG € ), ie. it is closed under intersection [21].

Let us take an arbitrary base system B and create its intersection struc-
ture C'(*B) as the smallest set which satisfies the following two properties:

(1) B C C(B);
(2) if B',B"” C C(B), then B' NB” € C(B).

Note that any intersections of primary tools are also considered primary
tools, i.e. new ‘combined’ primary tools appear in C(8). In other words,
the intersection structure C'(28) is a collection of all original and all possible
‘combined’ primary tools.

Having given the intersection structure C(®8), first, we can create a
single-layered base system SC(B) as the smallest set which satisfies the
following two properties:

(1) SC(B) = 0 is a single-layered base system;
(2) if B, B’ € C(*B) such that B C B’, then let B, B\ B € SC(B).

Next, having given a single-layered base system SC(28), we can create
a one-layered base system OSC(B) as the smallest set which satisfies the
following two properties:
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(1) OSC(B) = 0 is a one-layered base system;

(2) if B,B" € SC(®8) such that BN B’ # (), then let the differences
B\ B, B'\ B € OSC(B).

5.3 Proposition. (Csajbok [12], Proposition 4.3) Let B C 2V be a
base system.

Then the map i : 2% — D, D — (D is a bijection if and only if B is
single-layered.

Proof. If #8B = 1, the base system B = {B} is single-layered and iy :
{0,{B}} = {0,{B}},0— J0 =0, B— J{B} = B is a bijection evidently.
Now, let us suppose that #8 > 1.

(=) Let us assume, by contradiction, that the base system B is not
single-layered. If so,

IB €% 3B’ C B\ {B}(BC|JD).

Hence, B/, B'U{B} € 2% and |J®B' = |J(B'U{B}) € Dy, but B’ # B'U
{B} because of B’ C B\ {B}. This, however, contradicts the assumption
that the map iy is injective.

(<) Clearly, by Definition 5.1., the map iy is onto.

By contradiction, let us suppose that the map iy is not injective. In this
case,

3By, By € B (B1 # B A B1 = B2).

Since B1 # Bo, there exists B € B such that B is an element of either
one or the other. Without any loss of generality we can assume that B € 8,
and B & By. Clearly, B C |81 = |J®B2. Hence, B € B, B, C B\ {B}
but B N|JWB2 = B, which, however, contradicts the assumption that the
base system ‘B is single-layered. O

The following two statements, provided that the base system is single-
layered, present certain properties that Pawlak’s rough set theory has.

5.4 Lemma. (Csajbok [12], Lemma 4.3) For a base system B C 2Y
VBeBY® CB (BC| )V © BeD)

if and only if the base system B is single-layered.
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Proof. (=) Let us suppose, by contradiction, that the base system B is
not single-layered, that is 3B € B A IV’ C B\ {BHB C JPB').

Hence B C |[J®B' but B ¢ 9B’. This contradicts the assumption that
VBe®BYB CB(BC|JB = Be ).

(«<) Of course, the statement B € B’ = B C |J®B' is trivial. Thus we
have to prove that VB € B VB’ C B (B C %' = B € ®B’). Contrary to
this statement, let us assume that 3B € B IB' CB(B C |JB' A B ¢ PB').

Hence B’ C B\ {B} and B C |’ which, however, contradicts the
assumption that the base system ‘B is single-layered. O

5.5 Proposition. (Csajbok [12], Proposition 4.5) Let B C 2V be a
base system.

Then the posets (2F,C) and (Da, C) are order isomorphic via the map
i : 27 — Dy, X = X if and only if the base system B is single-layered.

Proof. By Proposition 5.3, the map iy is a bijection if and only if the base

system ‘B is single-layered.

The monotonicity of igs is trivial. The monotonicity of iy’ can similarly

be proven to Proposition 4.16 changing the reference to Lemma 4.15 for the
reference to Lemma 5.4. O

5.4 Lower and Upper ‘B-Approximations

Let us define the lower and upper approximations based on partial covering.
Recall that B does not cover the universe necessarily.

5.6 Definition. (Csajbék [12], Definition 4.6) Let B C 2V be a base

system and X be any subset of U.
The lower B-approzimation of X (Fig. 5.1) is

G(X) =Y | Y e B,V C X},
the upper B-approzimation of X (Fig. 5.2) is

X)) =Y Y €8, Y NX #0}.
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Notice that (‘:b% and Q:ﬁ% are the straightforward point-free generalizations
of lower and upper e-approximations relying on e-elementary sets.

Clearly, Qb%(X),(’Zﬁ%(X) € Dy, and the maps ¢ ,(’lﬁ% 02V 5 Dy are
total and generally many-to-one.

5.7 Proposition. Let <€b%,€ﬁ%) be a B-approrimation pair of maps
¢, €k 2V = Dy on U. Then

(1) (€, Gﬁ%> is a €y-semi-strong approzimation pair on U;

(2) (€%, Cﬁ%> is a strong approzimation pair on U if and only if the base
system B covers the universe U.

In other words, the maps €2, Qﬁ% fulfill the following conditions:
(C0) €(2Y), €% (2Y) C Dy (definability of Cy and € ).
(C1) & and Qﬁﬁ% are monotone (monotonicity of €y and QEB)
(C2) Qﬁ%(@) =0 (normality of Qﬁ%).

€ Dy, then = 15 standard or Pawlak’s type).

C3) If D € Dgy, then €(D) = D (T dard or Pawlak’
(C4) If S € 2V, then QI’(B(S) - Qﬁﬁ%(S) (approxzimation property).
(C5) & is contractive.

(C6) Qﬁﬁ% 15 extensive if and only if B covers the universe U.

Proof. The conditions (C0), (C1), (C2) and (C4), (C5) are straightforward
by the definition of lower and upper B-approximations.
(C3) Clearly, if § € Do, then € (0) = 0.
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If ) # D € D, there exists at least one nonempty family of sets B’ C B
such that

D=8 =\ J{B|Be® ,BCD}C|J{B|BeB BCD}=CqD).

On the other hand, we have € (D) C D. Thus €%(D) = D.
(C6) (=) If Qu% is extensive, then

UceyU)=\J{B|BeB,BCU}=]%.

Of course, B C U, andso |JB =U.
(<) If B covers the universe, then V.S € 2Y(S C U = |JB). Thus we
get

@)
N

UJ@B\{B|BeB,BnS =0}
= | J{BIB€B,BNS#0}=4(S). 0

In the language of the set theoretic approximation framework, by Propo-
sition 5.7, (2V, Dg, € ,(’I@ is a QI"%—semi—strong approximation framework,
and it is a strong one if and only if the base system ‘B covers the universe.

The next properties of Q:b% and (’ZﬁB immediately follows from Proposition
3.9. Of course, they can easily be proven by Definition 5.6 directly.

5.8 Proposition. Let <€b ,(’:@ be a ‘B-approrimation pair of maps
@ ,Cﬁ%:QU—WB@ on U. Then

(1) €4(0) =0 (normality of €y ).

(2) VS € 2V (€5(€%(9)) = €%4(S)) (idempotency of ).
(3) €(2Y) = Do (€% is surjective).

(4) €5 (2V) C &(2V) = D

Proof. (4) We have to show that the inclusion Qfﬁ%(2U) C €% (2Y) may
be proper because of the particular constructions of lower and upper ap-
proximation maps. To do this, let U = {a,b}, B = {{a},{a,b}} and
Dy = {0,{a},{a,b}}. Then
0, it X =0,{b};
€y 2V 5Dy, X (X)) =< {a}, if X ={a};
{a,b}, if X ={a,b},
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and

¢k 2V — D, XH@EB(X)—{(])’ X =0

{av b}7 it X = {a}7 {b}, {a, b}
Conditions (C1)—(C5) can easily be checked, however, Qﬁﬁ% in not surjec-
tive: €%(27) = {0, {a,b}} G {0, {a},{a,b}} = €4 (2V) = D. 0

Unlike Pawlak’s approximation spaces (cf. Proposition 4.7), the 8-
definable property is generally not equivalent to the condition be%(X ) =

¢h(X).

5.9 Proposition. (Csajbék [12], Proposition 4.7) Let B C 2V be a
base system. Then

(1) X € 2Y is B-definable if and only if €(X) = X.
(2) X €2V is B-undefinable if and only if Q?B(X) #X.

Proof. (1) It is straightforward, when X = (). Let X # 0.
(=) If X € Dy, there exists at least one nonempty family of sets B’ C B
such that

x=Jw=Jlv|vew vy X} JIY|Y eBY CX}=h(X).

On the other hand, € (X) C X, thus X = €(X).
(<) 0 #X = (X) € Dy.
(2) It is the contrapositive version of 1. |

5.5 Representation of Sets

Clearly, for a B-definable subset D € ®g there may exist two or more
families of B-sets such that their unions are equal to D. For instance, let
B = {B1,By} (B1,Bs € 2Y) be a base system such that B ; By, If
51 = {Bl,BQ}, So = {BQ}, then §1 # §o but USl = US’Q = By. Of course,
the same is true for lower and upper B-approximations in general.

If D € Dy is a B-definable set, then let Fu(D) C B denote a pos-
sible family of %B-sets so that |JFu(D) = D. Fx(D) is called a (possi-
ble) B-composition of D. Unlike Pawlak’s approximation spaces, the B-
compositions of B-definable sets are generally not unique.
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5.10 Definition. Let B C 2V be a base system.

The B-definable set D € Dy is B-representable, if there exists exactly
one B-composition Fu(D)(C B) of D such that D = |JFxs(D).

In this case, it is said that g (D) is the B-representation of D.

5.11 Proposition. Let B C 2V be a base system.
All B-definable subsets D € Dz of U are B-representable if and only if

the base system B is single-layered.

Proof. All B-definable subsets of U are ‘B-representable if and only if the
map Fp : Dp — 2T, [JD — D is the inverse of ip : 27 — Dy, D — JD.
A map has an inverse map if and only if it is a bijection. Consequently,
all ‘B-definable subsets of U are B-representable if and only if the map
i : 2% — Dy, D — (JD is a bijection. And so, this proposition is just a
restatement of Proposition 5.3. 0

5.12 Corollary. Let B C 2V be a base system.
AllB-definable subsets D € Dq of U are B-representable in the following
form
D =|J§»(D), where §5(D)={Y |Y € B,Y C D},

if and only if the base system B is single-layered.

Proof. According to Proposition 5.11, B is single-layered if and only if all
B-definable subsets are B-representable. And so, we only have to show that
the B-representations of all *B-definable subsets are of the form

Su(D)={Y |Y €®B,Y C D}.

Since D = ({Y | Y € B,Y C D} satisfies for all B-definable subsets
D € Dy by definition, the claim immediately follows from the uniqueness
of B-representation. O

5.13 Proposition. Let B C 2V be a base system, (2%@%,6&,@%) be a
be%—semi—stmng approzimation space and X be a subset of U.
Then the sets €y (X) and (’:ﬁ%(X) are B-representable in the forms

(X)) = [ JTu(X), where §5(X) ={Y | Y € B,Y C X},
Ch(X) = [JBh(X), where §5(X) ={Y | Y € B,Y N X # 0},

if and only if the base system *B is single-layered.
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5.14 Remark. Of course, the equations

s (X) = T (X) and ¢4 (X) = | JF5(X)

trivially satisfy, they are just the definition of lower and upper B-
approximations. Proposition 5.13, therefore, claims nothing else that there
are no other set families X1, X9 C B satisfying the equations be%(X) =UXx:
and Qﬁ%(X ) = |J X2 if and only if the base system B is single-layered.

Proof. Since (’:b%(X), Q:ﬁ%(X) € Dy, by Corollary 5.12, they are B-
representable if and only if the base system 25 is single layered. And so,
we only have to show that (€% (X)) and S%(Qﬁ% (X)) are of the forms

Fu(Cx(X)) = {Y|Y eB,YCX}
Fu(€h(X) = {Y|YeB,YNX#0).
By Corollary 5.12 and Lemma 5.4, we have
T (€ (X)) {Y|Y €B,Y CCy(X)}
= {Y|YeB Y| JfY'|Y eB,Y CX}}
= {Y|YeBYec{Y|Y B Y CX}}
= {Y|YeB,YCX}
Fu(@h(X) = {V|YeB,Y Cq(X))
= {Y|YeB Y| JY' Y eBY NX +0}}
= {Y|YeBYe{Y|YVeB Y NX#0}}
= {Y|YeB,YNX#D} 0

5.6 Exactness in B-approximation spaces

In Pawlak’s approximation spaces the notions of ‘c-crisp’ and ‘e-definable’
are inherently one and the same, they are are synonymous to each other.

The R-definable sets are those subsets of the universe which can be
exactly defined in the knowledge base K, whereas the R-undefinable
sets cannot be defined in this knowledge base.

The R-definable sets will be also called R-ezxact sets, and R-undefinable
sets will be also said to be R-inezact or R-rough. ([55], p. 9. The italics
are the author’s. Here, R is an equivalence relation on a finite universe
U, pp. 3-4.)
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The equivalence of ‘e-crisp’ and ‘e-definable’ formally is drawn up by
Proposition 4.14, point (1). Moreover, a subset X C U is e-definable, and
consequently e-crisp as well, if and only if its lower e-approximation is equal
to its upper e-approximation according to Proposition 4.14.

In our approach, however, the compound notion of ‘crisp’ and ‘definable’
splits into two parts.

5.15 Definition. Let <2U,©%,(’:b%,¢ﬁ%> be a ‘B-approximation space and
X C U. The subset X is B-crisp, if €5(X) = Qﬁﬁ(B(X), otherwise X is
B-rough.

5.16 Definition. Let (2%@%,@%,@%) be a B-approximation space and
X CU. The set Nyp(X) = Qfﬁ%(X) \ €% (X) is called the B-boundary of X.

The B-boundary Mg (X) is not necessarily B-definable.
The next elementary facts are formulated in propositions for the sake of
simple reference.

5.17 Proposition. Let (2V, Dy, Qb%,@j%) be a B-approzimation space and
X CU.
The subset X is B-crisp if and only if the B-boundary N (X) = 0.

Proof. Mp(X) = €4 (X)\ €4(X) = 0 & €4(X) C €4(X). However,
QZ"% (X) C Qfﬁ%(X ) always fulfills by the approximation property (C4), and so
G (X) \ €y (X) = 0 & S (X) = e (X). 0

5.18 Proposition. Let (2V, Dy, @b%, Cﬁ%> be a strong ‘B-approrimation
space and X C U.
The subset X is B-crisp if and only if €y (X) = @}B(X) =X.

Proof. In strong ‘B-approximation spaces every subset X C U is bounded
by its lower and upper B-approximations: (’Zb%(X) CXC Qﬁﬁ% (X). And so,
in strong B-approximation spaces a subset X is crisp < € (X) = Q:%(X)
& Ty (X) = (X)) = X. 0

5.19 Proposition. Let <2U,©%,Cb%,€ﬁ%> be a strong ‘B-approrimation
space and X C U. If X is B-crisp, then X is B-definable.

Proof. By Proposition 5.18 X is B-crisp if and only if € (X) = Gu%(X) =
X, and X is B-definable if and only if X = C"% (X) by Proposition 5.9 point
(1). O
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A subset X € 2V is B-definable if and only if X = Qﬁ"% (X) by Proposition
5.9 point (1). However, as the next simple example shows, X = Q%(X )
generally does not imply X = (’:ﬂ% (X) even though the B-approximation
space is a strong one. Let B = {B1, B2} be a base system, where Bj g B
(Bi, By € 2V). Then € (B1) = B1 G Ba = €4 (B1).

In other words, a B-definable subset is not necessarily B-crisp not even
in strong ‘B-approximation spaces. The converse statement only holds in
strong B-approximation spaces by Proposition 5.19. Consequently, in our
approach, the notions of ‘definable’ and ‘crisp’ are not synonymous to each
other in Pawlak’s sense.

5.7 A Possible Interpretation of Our Approach

Let us suppose that we observe a collection of objects which is modelled as
an abstract set, called the universe of discourse.

In real life, when we observe objects we cannot decide directly whether
an object possesses a certain feature or not. Therefore we need a tool to be
at our disposal with which we are able to judge easily and unambiguously
whether an object possesses a property ascertained by the tool or not. It is
expected that all tools can be used simply and quickly. The objects which
are classified by a tool are modelled as a crisp subset of the universe. With
a slight abuse of terminology, these subsets are simply called tools as well.

In sum, we model an object of interest as the element of an abstract set,
called the universe, and the fact that ‘it possesses a property’ as ‘it is the
element of a suitable crisp subset of the universe’.

Different tools usually form different subsets, but they are not necessarily
disjoint. Notice that the complement of a tool is not necessarily a tool at the
same time because the complement may not be used simply and quickly. For
instance, let us take the tools being recursively enumerable. However, the
complement of a recursively enumerable set is not necessarily recursively
enumerable [50]. This significant fact confirms the partial nature of our
approach [45].

Properties in B are our primary tools which serve as fundamental build-
ing blocks of knowledge about the universe. Properties in ®g are our derived
tools which are formed from primary tools. To characterize any subset of
the universe we want to use ®g. It is said that a property D € Dy char-
acterizes a subset X of the universe, if D C X, and X is characterized in
terms of Dy, if X is B-definable.
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However, apart from the derived tools themselves, any other subsets
cannot be characterized in terms of ®g. Therefore, their description is
replaced by a pair of derived tools, in particular, their lower and upper
approximations.

The universe can be divided into the following parts by means of lower
and upper approximations concerning a subset X C U [55, 58|:

o B-positive region of X: €(X) =U{Y | Y € B,Y C X}, i.e. the
lower B-approximation of X.
{Y |Y € B,Y C X} is the family of all properties which certainty
characterize X with respect to the current derived tools .

o Upper B-approzimation of X: Qfﬁ%(X) ={Y |Y € B, Y NX #0}.

{Y|Y €B,YNX # 0} is the family of all properties which possibly
characterize X with respect to the current derived tools Dss.
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e B-negative region of X: U@ \{Y | Y € B, Y NX #£0}).

D \{Y | Y € B,Y NX # 0} is the family of all properties which
certainty do not characterize X with respect to the current derived
tools Dy

e ‘B-horderline region of X:

UAY 1Y €8, Y N X £0}\{Y|Y €B,Y C X)}).

Y| Y eBYNX #0}\{Y |Y € B,Y C X} is the family
of all properties which cannot be classified with certainty either as
characterizing X or as not characterizing X with respect to the current
derived tools Ds.



Chapter 6

(zalois Connections

Recall that for any arbitrary binary relation e on U, the pairs of maps
2V, -1, 2Y) and (2V, €1, ¢, 2Y) are Galois connections (Proposition 4.20).
Especially, when ¢ is an equivalence relation on U, the upper and lower &-
approximations form a G(2Y,z,¢,2Y) Galois connection. Note that the left
adjoint is the upper e-approximation € and the right adjoint is the lower
g-approximation €. Some further observations about upper and lower ap-
proximations as Galois connections see, e.g. |31, 32, 34, 51].

Let (2U, Dy, €, Qfﬁ%> be a @-semi-strong B-approximation space. In
this Section we will investigate what conditions have to be satisfied by a C"%—
semi-strong B-approximation space so that the pair of maps (2Y, ¢! , €5, 2Y)
forms a Galois connection on (2Y, C). To do this, we take up the assertions
of Proposition 2.2 and examine the conditions under which they hold point
by point.

6.1 Regular Galois Connection

Let (2V, D, @) ,@%) be a Q:b%—semi—strong B-approximation space.

The maps @ﬁ% and Cb% are trivially monotone, i.e. the point (2) in Propo-
sition 2.2 immediately holds. Thus we have to examine only the point (1)
in Proposition 2.2 in detail.

Next proposition answers the first half of the point (1) in Proposition
2.2.

6.1 Proposition. (Csajbok [14], Theorem 20) Let (2U,©%,€b%,€?3) be
a (’lb%—semi—strong B-approrimation space.

95
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Then VX € 2V (X C € (€4(X))) if and only if JB = U.

6.2 Remark. The proposition does not require that the base system ‘B
should be single-layered.

Proof. (=) By contradiction, let us assume that (JB # U. Accordingly,
AX'(# 0) € U\ UB. Hence, €(€%(X")) = 0, which gives § # X' C
(’I?B((’lﬁ%(X’)) = (), a contradiction.

(<) Cﬁ% (X) € D, and so, by Proposition 5.8 point (3), Qf?B(QfEB (X)) =
Qfﬁ%(X). Since | J%B = U, by Proposition 5.7 condition (C6), Qiﬁ% is extensive,
thus X C €k (X) = € (€4 (X)). 5

Let us take up the question of the second half of the point (1) in Propo-
sition 2.2. In general, it also does not hold.

6.3 Proposition. (Csajbok [14], Theorem 21) Let (2V, Dsg, €, €4) be
a Qﬁb%—semi—strong B-approzimation space, and let us assume that the base
system B is single-layered.
Then
VX € 2V (€ (Cs(X)) C X)

if and only if the B-sets are pairwise disjoint.

Proof. (=) Let us suppose, by contradiction, that the B-sets are not pair-
wise disjoint. If so,

dB1, By € %(Bl #BQ/\BlﬂBQ 75@),

where neither B; C Bs nor Bs C Bj holds because of the base system B is
single-layered. Hence, e.g. for B;, we get

Qﬁ%((‘ﬂfB(Bl)) = Q%(Bl) D By U By 2 By, a contradiction.

(<) If X = 0, then €% (€% (0)) = €4(0) = @ C 0 trivially holds (inde-
pendently of the B-sets are pairwise disjoint or not).

Let ) # X €2V,

If €% (X) = 0, then €4 (0) =0 C X.

Let 0 # €3(X) = U’ C X for a family of B-sets B’ C B (such a
B’ exists because € (X) is B-definable and €% is contractive). Since the
B-sets are pairwise disjoint,

(VY eB,YNGX)#£0={Y |V eBY CJgX)}
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Hence, we get

eh(€a(X)) = JIV Y €8,V NE,(X) 0}
= JIv v esy cgy(X)}
= Cy(Cy(X)) = u(X) C X, 0

6.4 Proposition. (Csajbok [14], Theorem 22) Let (2U,©%,€b%,¢ﬁ%) be
a Qb%—semi—stmng B-approrimation space, and let us assume that the base
system B is single-layered.

The pair of maps (2Y, (’:ﬁ%, ¢, 2Y) forms a Galois connection on (2V, C)
if and only if the base system B is a partition of U.

Proof. The maps Qﬁ% and @b% are monotone, and so by Proposition 6.1 and
Proposition 6.3, the conditions in Proposition 2.2 satisfy. O

According to Proposition 6.4, the Galois connection between the pair of
maps (2V, (‘lﬁ%, be%, 2U) was proved under the condition that the base system
B is single-layered. However, as we have seen in Proposition 6.1, the ful-
filment of the first half of the point (1) in Proposition 2.2 does not require
that the base system B to be single-layered. Now we examine whether the
condition that the base system ‘B is single-layered can be removed from
Proposition 6.3.

First we need the following lemma.

6.5 Lemma. (Csajbok [12], Lemma 4.11) Let (2V, Dy, ¢ ,(’:ﬁ%> be a
€I’%-semi—stmng B-approzimation space. If

VX € 2V (e (ey(X)) € X),
the base system B is singled-layered.

6.6 Remark. The converse statement does not hold. Let 8 = {Bj, B} be
a base system such that By N By # () but By € By A By € By. Clearly, B is
single-layered, and, e.g. (’%((’%(Bl)) = (’:ﬁ%(Bl) = B1UBy € By.

Proof. Let us suppose, by contradiction, that 5 is not singled-layered. If
so, AB € BAIB C B\ {B}B C (JDB'). Hence, B C |UB' but B ¢ B/,
and so there exists at least one B # B’ € B’ such that B’ N B # (.

We have to distinguish three cases:
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Case (1) BS B": Qﬁﬁ%(@’%( )) = ¢4 (B %(B) 2 B’ 2 B, a contradiction.

Case (2) B' G B: Cﬁ%(@’%( n) = Qﬁ (B') 2 B 2 B, a contradiction.

Case(3) BN B # 0, but ne1ther B G B nor B & B holds
Cﬁ%(Cb%(B’)) = @?B(B )2 BUB' 2 B, a contradiction. 0

6.7 Proposition. (Csajbok [12], Proposition 4.13) Let (2, Dy, € ,@%)
be a C"%—semi—strong B-approrimation space.
Then
VX € 2V (€4 (eh(X)) C X)

if and only if the B-sets are pairwise disjoint.

Proof. (=) The base system ‘B is single-layered by Lemma 6.5. Hereafter
the proof is the same as in Proposition 6.3.

(«<=) The B-sets are pairwise disjoint which immediately implies that the
the base system B is single-layered. Hereafter the proof is the same as in
Proposition 6.3. O

6.8 Theorem. (Csajbok [12], Theorem 4.14) Let (2V, Dy, @, %) be
a Q:?B—semi—stmng B-approzimation space.

The pair of maps (2Y, Qlﬁ%, be%, 2Y) forms a Galois connection on (2Y,C)
if and only if the base system *B is a partition of U.

Proof. The maps Qng and be% are monotone, and so by Proposition 6.1 and
Proposition 6.7, the conditions in Proposition 2.2 satisfy. O

6.2 Partial Galois Connection

6.2.1 On Partial Lower B-approximations

If a nonempty X € 2V does not contain nonempty B-definable subsets,
then €% (X) = J® = 0 C X holds—which, however, does not provide new
information about the relationship between X and 8. This phenomenon
appears in Pawlak’s classic rough set theory, too.

6.9 Definition. Let (2V, Dy, be%, Qﬁ%) be a Qﬁk’%—semi—strong B-approxima-
tion space, and X be any subset of U.
The partial lower B-approzimation of X is

0 (X) = {ctg(X), ifX:(B\/(Xaé(Z)/\Qi'?B(X)#@);(6'2'1)

undefined, otherwise.
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6.10 Remark. Note that the formula X = 0V (X # 0 A €(X) # 0) is
equal to the formula X = 0V € (X) # 0. The latter is used in the following
because it is a simpler formula than the former.

There exists at least one nonempty B € B ‘B-set by Definition 5.1. Then
¢%(B) = B # 0 according to Definition 5.6. Hence, 8@% is defined on at
least one nonempty subset of U.

If X € 2Y is nonempty and its lower B-approximation @% (X) is empty at
the same time, then its partial lower B-approximation 5@% (X) is undefined
by Definition 6.9. This implies that the map 8@’% is total only if the base
system B contains all singleton sets {z} (x € U), in other words, if all
singletons are ‘B-definable. This is a rather special situation as well. That
is to exclude that we allow the empty set to be the lower B-approximation
of a nonempty subset of U is problematic as well.

A natural total extension of 8(’1?3 is the lower B-approximation (’lb%. That
is the map 8@% can be made total if it is allowed that the empty set may
be the lower B-approximation of a nonempty subset of U. Of course, any
extension €3 of 8@3 also has to be B-definable and contractive, i.e. formally,
the condition VX € 2V (€4 (X) € Dy A €4 (X) C X) has to be fulfilled by
€% Under the previous assumptions, we will show that any extension of
this type is unique.

6.11 Proposition. Let <2U,’}353,€b ,(’:@ be a (’lb%—semi—stmng B-approrima-
tion space, and X be any subset of U.
The total extension (‘:b% of 8@"% 1s unique under the conditions that

(1) the empty set may be the lower B-approrimation of nonempty subsets
of U, and
(2) VX € 2V(€(X) € Dy A Ty (X) C X) has to be fulfilled by any total
extension € of be%.
Proof. It is straightforward that Q:b% is a total extension of (9(’:?3 from
dom 9% to 2V, and the points (1) and (2) automatically satisfy.

In order to prove the uniqueness, let us suppose, by contradiction, that
¢ is an extension of 8@3 from dom 8@’% to 2V which differs from @b% and

VX € 2V(Ch(X) € D A Ci(X) C X)

holds.
Since € is an extension of 8@’%, thus €5 = 8@% = Qb% on dom 6@%, ie.
when X = V&%, (X) # 0 satisfies (see Remark 6.10). On the other hand, €
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differs from Q?B, thus there exists at least one nonempty X’ € 2V \ dom 8@3
such that € (X') # €y (X').
From the formula

X e2V\dom 08 = (X =0V E,(X) #£0) & X £DACKX) =0,

we get that Qb%(X ) = ) for every nonempty subset X € 2V \ dom 8@%. In
particular, €y (X') # € (X') = 0.
Since ) # €4 (X') € Dy, there exists a nonempty family of sets B’ C B
such that €4 (X’) = JB’' € X’. Hence,
D#£exx)=J® = JvIvyed vycXx}
Uiviyesycx)
Q:b% (X/) - Q)v

N

which is a contradiction. O

6.2.2 Partial Upper B-approximations

According to Proposition 5.7, Qﬁ% is extensive if and only if the base system
B covers the universe. Hence, if (/B # U, then

VX CU\|JBVBeB(XNB=10).

Consequently, Qﬁ%(X ) = J 0 = 0 for all subsets of this type. In other words,
the empty set may be the upper B-approximation of certain nonempty sub-
sets of U. Indeed, if Qﬁﬁ% (X)#£0, then X € Qﬁ% (X) is also possible.

6.12 Definition. X is B-approzimatable if X C Qﬁ% (X), otherwise it is said
that X has a B-approximation gap.

The B-approximation gap may be interpreted so that our knowledge
about the universe encoded in the base system is incomplete and not enough
to approximate X. This phenomenon may be natural/necessary or not. In
the latter case, in order to fulfill the inclusion X C @ﬁ% (X) as far as possible,
the base system B has to be augmented via taking into account additional
features concerning the observed system. In both former and latter cases,
another possible solution is that the upper B-approximation map is defined
as a partial one excluding the B-approximation gaps.
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6.13 Definition. Let (2V,Dg, @, @;) be a €%-semi-strong B-approxima-
tion space, and X be any subset of U.
The partial upper B-approzimation of X is

eL(X), if X is B imatable;
Oéﬁ%(X) _ { »(X) if X is B-approximatable

undefined, otherwise.
There exists at least one nonempty B € B ‘B-set by Definition 5.1. Then
B C Cﬁ% (B) according to Definition 5.6. Hence, 8@1% is defined on at least
one nonempty subset of U.
Notice that C"% (X)X C 8@23()() holds provided X is B-approxima-
table, i.e. on dom 8@%.

As Theorem 6.8 shows, the pair of maps (2Y, @ﬁ%, @3, 2Y) forms a Galois
connection on (2V,C) if and only if the base system B is a partition of
U. The question naturally arises whether the Galois connection generalize
so that the pair of maps (2U,6€ﬁ%,€" ,2Y) may form a Galois connection
in some sense. Moreover, if the answer is yes, what conditions have to
be fulfilled by a @b%—semi—strong B-approximation space <2U,”D%,Qib%, Qfﬁ%>

(6.2.2)

so that (2U,8€§B,€"%,2U) forms a Galois connection of this special type.
Recall that ¢|’% is a total and 8@3 is a partial map on 2V, and so the notion
of the partial Galois connection which is drawn up in Definition 2.4 may be
suitable for our purpose. In the following, we take up the points (1)—(4) in
Definition 2.4 and examine the conditions under which they hold point by
point.

Clearly, the map 8@% is a monotone partial map and Qb% is a monotone
total map. Thus the points (1) and (2) in Definition 2.4 immediately holds.
Thus we only have to examine the point (3) and (4) in Definition 2.4 in
detail.

Next proposition answers the condition (3) in Definition 2.4.

6.14 Proposition. (Csajbok [14], Theorem 25) Let <2U,©%,¢b%,€f13>
be a Q:b%—semi—strong B -approzimation space.

Then (9@33(@93()()) is defined for all X € 2U.

Proof. Let X € 2V be an arbitrary subset of U. By the idempotency
property of €% (X) (Proposition 5.8 point (2)), €% (€ (X)) = €%(X). Thus,

C(X) = (X)) = (JIY Y eB Y Cey(X)}
C (JY Y eB,Y NEy(X) £ 0}
= Ch(C(X)),
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that is, by Definition 6.13, 9€% (€% (X)) is defined. 0
Next two propositions deal with the condition (4) in Definition 2.4.

6.15 Proposition. (Csajbok [14], Theorem 26) Let (2U, Dy, €, &)
be a Cb%—semi—stmng B -approzimation space.
Then for all B-approzimatable subsets X € 2V and all subsets Y € 2V :

ACL(X) CY = X C @y(Y).

Proof. Let X,Y € 2V be two subsets of U such that X is B-approximat-
able. Then X C ¢4 (X) = 8€%(X) C Y. Hence, by the Pawlak’s type and
monotonicity properties of (’:b%, we get

X C €h(X) = Ty (X)) C (V). o

6.16 Lemma. (Csajbok [12], Lemma 4.19) Let (2U, D, €%, %) be a
be%—semi—strong B-approrimation space. If

X C (V)= 0ek(X)CY

holds for all B-approzimatable subsets X € 2V and all subsets Y € 2V, the
base system B is singled-layered.

6.17 Remark. The converse statement does not hold. Let B = {Bj, By}
be a base system such that By N By # () but By € Ba A By € By. Clearly,
B is single-layered. Let X € 2V such that X ; Bi, X N By # 0 but
X G By. Then X C B1U By = €4(X), i.e. X is B-approximatable. Hence,
X C €(B1) = By, but 9¢%(X) = ¢4 (X) = BiUBy € By.

Proof. First, we note that, if for all B-approximatable subsets X € 2V and
all subsets Y € 2U, the relationship X C € (Y) = 8@%()() CY is satisfied,
then, of course, for all B-approximatable subsets X € 2V,

X C¢y(X) = 0eh(X) C X

also has to be satisfied.

Since €5 is contractive, then €, (X) C X holds for all subsets X € 2V.
Thus, if X C €4(X), then €%(X) = X. Consequently, by Proposition 5.9
point (1), X is B-definable, i.e. X € Dy.
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On the other hand, for all B-approximatable subsets X € 2V, X C
Q:ﬁ%(X). Thus if for all B-approximatable subsets X € 2V, 8(’:’1%(X) =
¢%(X) C X also holds, then X = €& (X).

For all these reasons, we can restate the previous statement as follows.
For all B-approximatable subsets X € 2V,

X €Dy = X = ¢h(X).

has to be satisfied.

Now, let us suppose, by contradiction, that B is not singled-layered,
that is, 3B € BAIB' C B\ {B} (B C UB'). Hence, B C D', but
B & %', and so there exists at least one B # B’ € %8’ such that B'N B # ().
Of course, B,B' € D, and B C €%(B), B' C ¢4(B), i.e. B,B' are
$B-approximatable.

We have to distinguish three cases:

Case (1) If BG B’, then Qﬁ%(B) D B’ 2 B, a contradiction.
Case (2) If B' G B, then Q:ﬁ%(B’) D B 2 B', a contradiction.

Case (3) If B'N B # (), but neither B & B’ nor B & B holds, then
@ﬁ%(B’) 2 BUB' 2 B, a contradiction. O

6.18 Proposition. (Csajbok [12], Proposition 4.21) Let (2V, Dy, @ ,(’iﬁ%>
be a Q?B—semi—strong B-approzimation space.
Then for all B-approzimatable subsets X € 2V and all subsets Y € 2V,

X C @y(Y) = 0e%(X) C Y,
if and only if the B-sets are pairwise disjoint.

Proof. (=) Let us suppose, by contradiction, that the B-sets are not pair-
wise disjoint, If so,

dB1,Bs € B (Bl #Bg/\BlﬂBQ 75@)

By Lemma 6.16, the base system ‘B is single-layered, and so neither
By C By nor By C Bj holds. Clearly, e.g. By C Qﬁ%(Bl), i.e. By is 8-
approximatable. Hence, we get

By C €(B1), but €% (B1) = ¢4(B1) 2 B UBy € By,



64 GALOIS CONNECTIONS

a contradiction.
(<) Let X,Y € 2V such that X is B-approximatable and X C € (Y).

Then, by the monotonicity of (’:ﬁ% and Proposition 6.3,
9% (X) = € (X) C (e (Y)) C V.
|

6.19 Theorem. (Csajbok [12], Theorem 4.22) Let (2V, Dy, € ,(’:ﬁ%> be
a Cb%—semi—strong B-approzimation space.

The pair of maps (2Y, 8@3, Qﬁb%, 2U) forms a partial Galois connection on
2V, ©) if and only if the B-sets are pairwise disjoint.

Proof. Clearly, 8@1% is a monotone partial map, and @B is a monotone total
map. Thus the conditions (1) and (2) in Definition 2.4 are trivially satisfied.
Proposition 6.14 implies condition (3) in Definition 2.4, Propositions 6.15
and 6.18 implies condition (4) in Definition 2.4. O



Chapter 7

Applications

To demonstrate the effectiveness of our approach let us see its three real life
applications.

The first application will demonstrate the relationship of our approach
with natural computing [37] via a biological example.

Natural computing is the field of research that investigates models and
computational techniques inspired by nature and, dually, attempts to
understand the world around us in terms of information processing.
([37], p- 72, The italics are mine.)

In particular, we will show how our approach helps us to understand
some behavioral features of the natural vegetation heritage of Hungary. This
presentation is based on the so-called META program which is a recognition
and evaluation system of the state of the natural and semi-natural vegetation
heritage of Hungary [1, 47|.

The second application presents a general tool-based approximation
framework. We observe a class of objects and, as usual, we suppose that
there are some well-defined features which an object possesses or not. In
practice, two relevant groups of objects can be separated. A group whose
elements really possess some features in question and another group whose
elements do not substantially possess the same features.

In general, the features of objects cannot directly be observed. We need
tools to be at our disposal with which we are able to judge easily and unam-
biguously whether an object possesses a feature in question or not. However,
as a rule, a property ascertained by a tool never coincides with the feature
observed by the tool completely.

65
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In the framework, the class of objects is modelled as an abstract set called
the universe of discourse. The two separate groups of objects correspond two
crisp subsets of the universe. They are disjoint and, in general, their union
does not add up to the whole universe. For obvious reasons, the former can
be marked with the adjective positive, whereas the latter with negative.

The objects classified by a tool can also be modelled as one or more crisp
subsets of the universe. These subsets are simply called tools. Notice that
the complement of a tool is not necessarily a tool at the same time. We
also distinguish two types of tools: the positive and negative ones. Positive
(resp., negative) tools provide the opportunity to locate the positive (resp,.
negative) subset. It is a natural assumption that the union of positive tools
and the union of negative tools are disjoint and their union does not add up
to the whole universe.

In the proposed tool-based approximation framework, two approxima-
tion spaces are defined, a positive and a negative one. Any proportion of
the observed objects can simultaneously be approximated in the two approx-
imation spaces.

The third example applies the tool-based approximation framework to
model the Intrusion Detection Systems (IDS) in computer security. In this
framework anomalies and misuses can be detected simultaneously.

7.1 Natural Computing—A Biological Example

7.1.1 A Brief Outline of the META program

The biological example is relying on the META program which is a grid-
based, landscape-ecology-oriented, satellite-image supported, field vegeta-
tion mapping method of Hungarian habitats (META stands for Magyaror-
szagi Elhelyek Térképi Adatbézisa: GIS Database of the Hungarian Habi-
tats) [1, 9, 30, 47, 72]. Its main goals include a nationwide survey of the
actual state of (semi-)natural vegetation heritage of Hungary and the eval-
uation of the present state of Hungarian landscapes from a vegetation point
of view.

The survey in META program was carried out on three spatial levels
which are nested units of the survey: 1. quadrant, 2. hexagon, 3. habitat
type inside the hexagon.

The basic units of the survey are the hexagons. A hexagon grid consists
of cells of 35 hectares covering the territory of Hungary comprehensively.
267,813 hexagons cover the whole country.
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For organizational reasons around 100 hexagons form a quadrant. Quad-
rants are also used for collecting certain vegetation data. The quadrants are
the quarters of the base units of the European Flora Survey. Their territory
is approximately 35 km? and there are 2834 quadrants in Hungary.

In 1996 a new habitat classification system was developed in Hungary,
called A-NER (the Hungarian abbreviation stands for General National
Habitat Classification System). This system has 112 habitat types, all with
detailed and standardized descriptions [26]. For the META method the A-
NER system was partly extended and thoroughly revised [8, 48]. These
A-NER habitat types are recorded as a list for each hexagon.

The data is mainly collected by a single field survey of the hexagons. The
mapper estimates the actual status on the spot. Hexagons with more than
25% natural or semi-natural vegetation are compulsory to survey and to be
thoroughly documented. In most cases satellite images and maps help to
decide whether a hexagon is compulsory or not. During the field mapping
each compulsory hexagon has to be examined by thematically travelling
through the area that it covers. Its most dominant habitat type is recorded,
as well as those types covering at least 25% of the hexagon. Moreover, the
vegetation patches found “on the way” should also be recorded. Vegetation
data of noncompulsory hexagons should be documented if these hexagons are
crossed by the mapping route or the data can be derived from the satellite
image. Collected data are stored in an MS-SQL 2000 database and are
mainly recorded as codes.

The data for each habitat type collected by the META method at the
hexagon level are as follows [47]:

e The areal cover of each recorded habitat type has to be given as a
proportion of the hexagon using the categories < 1,1, 10,50, 100%.
Satellite images help the observers make the estimation.

e Spatial pattern of each type should be documented so that it forms only
1-2, 3 or several distinct patches, or it has a diffuse spatial pattern in
the hexagon.

e In order to establish the naturalness-based habitat quality of each veg-
etation type in the hexagon, the following standardized naturalness-
based habitat evaluation was used: (1) totally degraded state; (2)
heavily degraded state; (3) moderately degraded state; (4) semi-
natural state; (5) natural state.
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e In each hexagon for each occurring habitat the most characteristic

ones from the 28 threat types (T'h1-Thag) had to be selected that ac-
tually threaten the survival and maintenance of the habitat type in
the META hexagon in the next 10-15 years [49]. The strength of the
threats is not recorded. The presence of the discernible threats in each
case has been documented. Maximum four threats could be given,
others were to be written in notes column.

The threatening factors are as follows [47|: improper water man-
agement, improper pasturing or mowing, drainage, encroachment of
shrubs and trees, burning, afforestation with improper species, wood-
land patches managed homogeneously, improper selection of trees for
timber extraction, logging trees at low age, inappropriate plantation,
keeping high densities of game, colonization by invasive plant species,
tillage, building and construction, gardening, mining, establishment of
a pond, trampling, pollution, rubbish, commercial collection of plants.

Prediction of future changes of vegetation patches can be supported
by the evaluation of the direct effect of the neighborhood (< 200 m)
on the mapped stands. This evaluation defines whether the neighbor-
ing patches will aid or hinder the survival of the particular patch in
the next few (10-15) years [49]. The categories are: (1) definitely posi-
tive (sustaining neighborhood), (2) slightly positive, (3) indifferent, (4)
slightly negative, (5) definitely negative (destructive neighborhood).

The neighborhood is negative, e.g., if there is an intensively used
arable field (chemicals, infiltration of fertilizer), expanding settlement,
or spreading populations of invasive species surrounding the patch.
Neighborhood is positive, if it serves as a source of species, provides
proper micro-climate, buffers against degrading factors.

The connectedness is the potential of dispersal of the species of one
vegetation stand compared to the surrounding areas. It is documented
at two spatial scales: within the distance of several hundred meters
(hexagon), and several kilometers (quadrant). It is recorded whether
the patches are (1) isolated (typical species of the habitat are not
present in the surroundings), (2) connected (species are abundant) or
(3) the connectedness is intermediate.

Connectedness is also documented at the quadrant level. Categories
indicate whether stands are properly connected, moderately connected
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or isolated. The first two categories denote any possibilities for disper-
sal through quadrant whereas the third category shows whether the
dispersal is hindered.

Additional data for each habitat type at quadrant level (invasive species,
connectedness, regeneration potential), and data for the landscape at
hexagon level (potential natural vegetation, area of invasive species and old
fields, land-use type, landscape health status) are collected, as well (see [47]
for details).

7.1.2 Model of Behavioral Features of Natural Vegetation

In this section we present a model for the behavioral features of natural
vegetation of Hungary. The model is relying on the results of META program
and the set approximations including both Pawlak’s rough set theory and
partial approximation of sets.

Let $ denote the set of all hexagons of Hungarian landscapes. The
hexagons are disjoint and cover the whole country, i.e. they form a partition.
Let 7 denote the equivalence relation corresponding to this partition. If A
denotes an arbitrary area of the country, one can approximate A in Pawlak’s
framework. So, Pawlak’s lower 7(A) and upper 7(A) m-approximations can
be determined in the universe $).

Now, we want to investigate the area A in relation to the threat types.
First of all, we need the following classification of threat types which is ap-
plied by the META program [49]: Th; — water shortage, Thy — access water,
Ths = improper water dynamics, Thy = overgrazing, T hs = undergrazing,
The = improper grazing regime, T’hy = abandonment from grazing, Thg =
improper mowing, T"hg = abandonment from mowing, T'h1y = melioration,
Th11 = encroachment of shrubs and trees, Th12 = non-natural burning, Th13
= afforestation with improper species, Th14 = woodland patches managed
homogeneously, This = improper selection of trees for timber extraction,
Thig = logging trees at low age, Thiy = new plantations on grasslands,
Thi1g = overpopulated game, Thi1g = colonization by invasive plant species,
Thoo = tillage, T'ho1 = building and construction, Thao = spread of gardens
threatens vegetation, T'hos = mines destroying vegetation, T'hos = establish-
ment of a pond destroying vegetation, Thos = trampling, Thog = pollution,
Thoy = rubbish, Thog = commercial collection of plants.

According to the META method, any threat type determine a well-
defined subset of hexagons in $). Let brn,, b7hys -+, BThy € 29 denote
the sets of all hexagons in which threat types Thy, The,...,Theg are found,
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respectively. For instance, hrp, contains all hexagons which are threatened
with the threat type Th1. Of course, hrn,, B7hy, - - -, BThys do not necessarily
disjoint and their union do not necessarily cover the whole country.

Let B = {H711, 9782, - -, D128} C 29 be the base system in the uni-
verse 29, The base system B can directly be applied only in the case when
A is exactly built up by hexagons, which is rather an extreme case. It is
self-explanatory that for the first time we apply Pawlak’s m-approximations
to A in the universe ). All the lower and upper m-approximations and -
boundary of A are already made up of hexagons. Thus we can next apply
the partial approximation of sets to the three sets in the universe 2.

Now, let us consider all possible cases one by one.

Case (1) The lower B-approximation of the lower m-approximation of A is:

Cu(x(A) = J{h1heB,hCa(A)}

If Qﬁb%(ﬂ(A)) # (), then {h | h € B,h C w(A)} contains the threat types
(to be more exact, the hexagons threatened with these threat types) which
certainly and exclusively appear in A.

Case (2) The upper B-approximation of the lower m-approximation of A is:

Ch(x(A) = (b | b e B,hnx(A) #0}.

If Qﬁﬁ%(g(A)) # (), then {h | h € B,hNx(A) # (0} contains the threat
types which certainly but not exclusively appear in A.

Case (3) The lower B-approximation of the upper m-approximation of A is:

C(m(A) = J{b [ heB,h S 7(A)}

If €% (7(A)) # 0, then {h | h € B,h C T(A)} contains the threat types
which perhaps exclusively but not certainly appear in A.

Case (4) The upper B-approximation of the upper m-approximation of A is:

i (m(A) = (b | b € B,hn7(A) #0}.

If €% (T(A)) # 0, then {h | h € B,h N7(A) # 0} contains all the threat
types which may appear in A at all.

The 9B-approximations of the m-boundary of A provide information
about the spread of the thread types around A.
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Case (5) The lower B-approximation of the m-boundary of A is:

Cu(m(A) \ x(4)) = (b | b € B,b C7(A) \ z(A)}.

If €3 (F(A) \ m(A)) # 0, then {h | h € B,h C7(A) \ m(A)} contains the
threat types which partly belong to A and partly not. These are the threat
types which spread from inside of A to outwards.

Case (6) The upper B-approximation of the m-boundary of A is:
@A)\ x(4)) = (b | b € B,50 (7(4) \ n(4)) # 0}.

If €%, (7(A) \m(4)) # 0, then {h | b € B, 5N (T(A) \x(A)) # 0} contains
the threat types which may partly belong to A. These are the threat types
which spread from outside of A to inwards (“Hannibal ante portas”).

7.2 A General Tool-Based Approximation Frame-
work

Let U be a nonempty set.

Let AT, A~ € 2V be nonempty subsets of U such that AT N A~ = (.
AT and A~ are called the positive reference set and negative reference set,
respectively. In general, A* N A~ = () is the only requirement for A" and
A~. Of course, additional relations between them may be supposed.

Furthermore, let T+, T~ C 2V be two nonempty families of subsets of U
such that T NYUT™ = 0. T is called positive or T+ -tools, T~ is called
negative or T~ -tools. For each subset TT € TT (resp., T~ € T7) it is easy
to decide whether an element of U belongs to T (resp., ™) or not.

The sets in T are not necessarily pairwise disjoint, so they are not in
T~. Neither |JT nor YT~ covers U.

Note that, the adjectives positive and negative claim nothing else but
that the sets AT (resp., T1) and A~ (resp., T~) are well separated.

According to the general set theoretic approximation framework, T+
and T are primary tools and let D¢+ and D+- denote their derived tools
as usual. Then the quadruples (U, D+, €%, ¢4, ) and (U, D5, €% ¢k )
form a Cbgysemi—strong Tt_approximation space and a ¢%_-semi-strong T -
approximation space, respectively.

Borrowing the terminology from the inductive logic programming [41],
the mutual relationships between A* and A~ can be characterized by avail-
able T1-tools and T~ -tools as follows.
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It is said that
o AT is TT-complete if AT C Cﬁ%(A"’), otherwise AT is T-incomplete;

e AT and T~ are consistent, or AT is T -consistent for short, if
Qﬁé, (A") = 0, otherwise A™ and T~ are inconsistent, or AT is T~
inconsistent for short.

It is said that
o A” is T -complete if A~ C Qﬁg, (A7), otherwise A~ is T~ -incomplete;

e A= and T are consistent, or A~ is TT-consistent for short, if
(’:ﬁTr(A_) = (), otherwise A~ and T are inconsistent, or A~ is TT-
inconsistent for short.

From a pure combinatorial point of view, according to the previous ter-
minology, a positive reference set A™ may be

o Tt_complete and T~ -consistent,

o TT-complete and T -inconsistent,

o T_incomplete and T -consistent,

o T_incomplete and T -inconsistent;

a negative reference set A~ may be

o T -complete and TT-consistent,

o T -complete and T -inconsistent,

o T -incomplete and T -consistent,

o T -incomplete and T -inconsistent.

There may be in sum 4-4 = 16 different compound situations. However,
some of them are impossible by the constraint [JTT N{JT~ = 0. Now, let
us consider all the possible and impossible cases one by one.
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Case (1) AT is TT-complete, T -consistent;
A~ is T -complete, T -consistent.
It is a possible case (see, e.g., Figure 7.1).

AT is TT-complete:

At cel (AN =T uTy U Ty,
AT is T -consistent:

¢ (AF) = ;

A~ is ¥ -complete:

A-cel (A =TT uTy UTy,
A~ is TT-consistent:

¢t (A7) =0.

Figure 7.1: Case (1) It is a possible case because [JTTNJT™ = 0.

Case (2) AT is TT-complete, T -consistent;
A~ is T -complete, T -inconsistent.
It is an impossible case (see, e.g., Figure 7.2).

AT is Tt-complete:

At ce (Ah) =T uT uTy,
AT is T -consistent:

¢ (AT) = 0;

A~ is T~ -complete:

A-cel (A =17 uTy UTy,
A~ is TT-inconsistent:

¢t (A7) =Ty #0.

Figure 7.2: Case (2) It is an impossible case because [JTT NJT~ # 0.
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Case (3) AT is TT-complete, T -consistent;
A~ is T -incomplete, TT-consistent.
It is a possible case (see, e.g., Figure 7.3).

AT is TT-complete:

At Ceh (AY) =Ty UT3 U Ty,
AT is T -consistent:

¢ (Ah) = ;

A~ is T -incomplete:

A= g et (AT) =TT UTy,

A~ is TT-consistent:

¢t (a) =0

Figure 7.3: Case (3) It is a possible case because JTT NJT~ = 0.

Case (4) AT is TT-complete, T -consistent;
A~ is T -incomplete, Tt-inconsistent.
It is a possible case (see, e.g., Figure 7.4).

AT is Tt-complete:

At Cel (AN =T uTy u Ty,
AT is T~ -consistent:

(A7) =0;

A~ is T -incomplete:

A= g et (A) =17 UTy,

A~ is Tt-inconsistent:

C (A7) =T #0.

Il
=

Figure 7.4: Case (4) It is a possible case because JTT N{JT™
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Case (5) AT is TT-complete, T -inconsistent;
A~ is T -complete, T -consistent.
It is an impossible case (see, e.g., Figure 7.5).

AT is TT-complete:

At cel (AN =T uTy U Ty,
AT is T -inconsistent:

T (A7) =T £,

A~ is ¥ -complete:

A-ce (A =17 uTy UTy,
A~ is Tt-consistent:

¢t (A7) =0.

Figure 7.5: Case (5) It is an impossible case because [JTT N{JT~ # 0.

Case (6) AT is TT-complete, T -inconsistent;
A~ is T -complete, T -inconsistent.
It is an impossible case (see, e.g., Figure 7.6).

AT is Tt-complete:

At ce (Ah) =T uT uTy,
AT is T -inconsistent:

C(AT) =T #0;

A~ is T~ -complete:

A-cel (A =17 uTy UTy,
A~ is TT-inconsistent:

¢t (A7) =Ty #0.

Figure 7.6: Case (6) It is an impossible case because [JTT NJT~ # 0.
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Case (7) AT is TT-complete, T -inconsistent;
A~ is T -incomplete, TT-consistent.
It is an impossible case (see, e.g., Figure 7.7).

AT is TT-complete:

At Ceh (AY) =Ty UT3 U Ty,
AT is T -inconsistent:

¢ (AY) =Ty #0;

A~ is T -incomplete:

A= g et (A) =TT UTy,

A~ is TT-consistent:

¢t (4 =0.

Figure 7.7: Case (7) It is an impossible case because | JT™ NJT~ # 0.

Case (8) AT is TT-complete, T -inconsistent;
A~ is T -incomplete, Tt-inconsistent.
It is an impossible case (see, e.g., Figure 7.8).

AT is Tt-complete:

At Cel (AN =T uTy u Ty,
AT is T~ -inconsistent:

(AT =T £0;

A~ is T -incomplete:

A= g et (A) =17 UTy,

A~ is Tt-inconsistent:

C (A7) =T #0.

Figure 7.8: Case (8) It is an impossible case because [JT™ NJT™ # 0.
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Case (9) AT is TT-incomplete, T -consistent;
A~ is T -complete, T -consistent.
It is a possible case (see, e.g., Figure 7.9).

AT is TT-incomplete:

At g & (AY) =T UTy,

AT is T -consistent:

@ﬁT_ (AT) = 0;

A~ is ¥ -complete:

A= gl (A =TT UTy UTy,
A~ is TT-consistent:

¢t (A7) =0

Figure 7.9: Case (9) It is a possible case because [JT™NJT™ = 0.

Case (10) AT is TT-incomplete, T -consistent;
A~ is T -complete, TT-inconsistent.
It is an impossible case (see, e.g., Figure 7.10).

,-/\ U AT is Tt-incomplete:
N | ArEdan =TruTy,
g N L AT is T -consistent:

. R N | ) =0,

’5};: :‘//X 27 y
** T3_ A~ is T~ -complete:

L A" g (AT) =Ty UTy UTy,
s B A~ is Tt-inconsistent:

¢t (A7) =Ty #0.

Figure 7.10: Case (10) It is an impossible case because | JTT N{JT~ # 0.
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Case (11) AT is TT-incomplete, T -consistent;
A~ is T -incomplete, Tt-consistent.
It is a possible case (see, e.g., Figure 7.11).

AT is Tt-incomplete:

AT g € (AY) =T U Ty,
AT is T -consistent:

¢k (Ah) = ;

A~ is T -incomplete:

A= g et (A) =17 UTy,
A~ is TT-consistent:

¢t (4 =0.

Figure 7.11: Case (11) It is a possible case because [JTT NJT~ = 0.

Case (12) AT is TT-incomplete, T -consistent;
A~ is T -incomplete, Tt-inconsistent.
It is a possible case (see, e.g., Figure 7.12).

AN U AT is TT-incomplete:
Tl‘\://:;\*\: | Atz an =T uTy,
s AT is T~ -consistent:

\ \Iw2
NN f +\ (.
e \é<‘ A =0
** A~ is T -incomplete:
A= g € (AT) =T UTy,
RN A~ is TT-inconsistent:
¢t (A7) =17 #0.

Figure 7.12: Case (12) It is a possible case because JTT NJT~ = 0.
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Case (13) AT is TT-incomplete, T -inconsistent;
A~ is T -complete, TT-consistent.
It is a possible case (see, e.g., Figure 7.13).

AT is TT-incomplete:

At g & (AY) =T UTy,

AT is T -inconsistent:

T (A7) =T £,

A~ is ¥ -complete:

A-ce (A =TT uTy UTy,
A~ is Tt-consistent:

¢t (A7) =0.

Figure 7.13: Case (13) It is a possible case because | JTt N T~ = 0.

Case (14) AT is TT-incomplete, T -inconsistent;
A~ is T -complete, TT-inconsistent.
It is an impossible case (see, e.g., Figure 7.14).

AT is Tt-incomplete:

At g el (At =1 uTy,

AT is T -inconsistent:

C(AT) =T #0;

A~ is T~ -complete:

A-cel (A =17 uTy UTy,
A~ is TT-inconsistent:

¢t (A7) =Ty #0.

Figure 7.14: Case (14) It is an impossible case because | JTT N{JT~ # 0.
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Case (15) AT is TT-incomplete, T -inconsistent;
A~ is T -incomplete, Tt-consistent.
It is a possible case (see, e.g., Figure 7.15).

AT is TT-incomplete:

AT g € (AY) =T U Ty,
AT is T -inconsistent:

¢ (AN) =Ty #0;

A~ is T -incomplete:

A= g et (A) =TT UTy,
A~ is TT-consistent:

¢t (Aam) =0

Figure 7.15: Case (15) It is a possible case because [JTT N{JT~ # 0.

Case (16) AT is TT-incomplete, T -inconsistent;
A~ is T -incomplete, Tt-inconsistent.
It is a possible case (see, e.g., Figure 7.16).

AT is Tt-incomplete:

At g ek (AY) =T uTy,
AT is T~ -inconsistent:

e (AT) =Ty £ 0;

A~ is T -incomplete:

A= g et (A) =17 UTy,
A~ is Tt-inconsistent:

C (A7) =T #0.

Figure 7.16: Case (16) It is a possible case because [JTT N{JT~ # 0.
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In order to build up the general tool-based approximation framework, at
the beginning, let us assume that a positive reference set A* and a negative
reference set A~ are at our disposal together with the suitable positive tools
Tt and negative tools T~ . Initially, we only presuppose that AT N A~ = ()
and JTt NUT™ = 0. The framework can be built up and used in the
following three consecutive steps.

(1)

Mutual justifying the reference sets and tools

Step (1) is intended to reveal consistencies/inconsistencies between
positive (resp., negative) reference sets and negative (resp., positive)
tools and the completeness/incompleteness of reference sets in terms
of € and T -approximation spaces.

Rebuilding positive and negative tools

Step (2) is intended to resolve inconsistencies completely and eliminate
incompleteness as far as possible.

The case of consistency. There is nothing to be done.

The case of inconsistency. We have to decide within the context
of the observed field

e if AT or the concerned negative tools is reasonable or not,
and /or

e whether A~ or the concerned positive tools is reasonable or
not.

The case of completeness. We remove the covered positive and/or
negative reference sets from the framework, because they do not
cause any problem form the security point of view.

The case of incompleteness. We may decide within the context of
the observed field either to remove the uncovered subset from A™
(resp., A7) on the whole or in part or to augment the positive
(resp., negative) tools with new subsets whose elements are pat-
terned upon one or more elements of the uncovered subset of AT
(resp., A7).

These new subsets may contain any elements of the universe,
provided that they can easily be determined.

For the new tools T and/or T, [JTT NUT™ = 0 should also
be fulfilled.
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In this step, all decisions should be made by domain experts on pro-
fessional criteria within the context of the observed field.

We obtain new rebuilt tools, denoted by T,% and T, , by the end of the
steps (1) and (2).

(3) Applying rebuilt tools

Step (3) is intended to justify any subset of the universe in terms of
partial approximation of sets based on rebuilt positive and negative
tools as usual.

7.3 Simultaneous Anomaly and Misuse Intrusion
Detections

7.3.1 Introduction

Nowadays, people run their applications in a complex open computing en-
vironment including all sorts of interconnected devices. While this environ-
ment permanently changes, people watch their applications, work with one of
them, and, in general, also follow details of other applications with attention.
Many applications, at the same time, work unnoticeably in the background,
and some of them, even by stealth. In order to meet the computer security
challenge in human environments, Intrusion Detection Systems (IDS) have
to be designed.

To a large extent, acceptable and/or unacceptable patterns in the behav-
iors of the observed system cannot be designed and/or forecast in advance.
This strange situation is smartly described by B. Schneier:

You have to imagine an intelligent and malicious adversary inside your
system (the ‘Satan’ of Satan’s computer), constantly trying new ways
to subvert it. You have to consider all the ways your system can fail,
most of them having nothing to do with the design itself. You have to
look at everything backwards, upside down, and sideways. You have
to think like an alien. ([4], from the Foreword by B. Schneier)

Computer security has definitely different challenges in corporate in-
formation systems and non-professional human computing environments.
In the former one there are many approaches for security policy specifi-
cation. Traditionally, security policies are formulated along the so-called
CIA taxonomy which sees security as the combination of three attributes—
confidentiality, integrity, and availability [66].
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People in non-professional human computing environments are flooded
by recommendations how they operate their system and use their applica-
tions. In headwords ounly: strong passwords creation tips and maintenance,
virus protection, software downloading and installation, removable media
risks, encryption and cryptographic means, system backups, incident han-
dling, e-mail and internet use best practises, etc.

Noun-professionals, of course, cannot convert these good pieces of advice
into security policies, especially into formal ones. Meanwhile, arising from
the human thinking, all non-professional users have anticipated hypotheses
how an application or the whole system should or should not work [51].
These presupposes may range from informal expected behaviors, their con-
stituents might call expected ‘milestones’, to more formal ones described in
user manuals and other development artifacts.

To built up a formal security model for computer systems, first, ones have
to understand what has to be protected and why. The answers determine
the security strategy which is, in turn, expressed by security policies [10,
29]. Security policies as a general rule prescribe and proscribe behaviors of
software systems in advance, only with more or less knowledge about future
applications.

We model a computer system as a semantic system model, a so-called
traced-based model. A traced-based model describes the behaviors of a com-
puter system as sets of execution traces. We focus solely on externally
observable execution traces sent out by the observed computing system.

An important note. An information system, among others, consists of
different software components of finite number. Each component has an
individual behavior, and the global behavior of the whole system is the
collection of the individual ones. The components can operate with each
other. Their interconnections may be deliberate or ad hoc. Notice, however,
that in both cases, the mechanism of these interconnections mostly remains
concealed from the external observers. In particular, based on only external
observations we cannot model these synchronization mechanisms.

According to the trace-based model, it is assumed that security policies
specify the prescribed and proscribed behaviors of a computer system via
the patterns of acceptable and unacceptable execution traces, respectively
[4, 7]. We also take into account the partial nature of security policies. Typ-
ically some policies may only apply to specific hardware appliances, software
applications or type of information. For instance, possibly it is enough to
enforce the information flow policy on such software processes which handle
confidential information.
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In order to meet the computer security challenge outlined above, a sort of
sophisticated Intrusion Detection System (IDS) has to be developed. Intru-
sion detection techniques can be categorized in different ways. For a survey
of intrusion detection methods, see, e.g. [6, 74].

Intrusion detection techniques are categorized into anomaly and misuse
detections. Both techniques use patterns based on different types of data
[74, 75]. Anomaly detection, originally proposed by Denning [23], profiles
expected behaviors to identify abnormal behaviors as anomalies which de-
viate from the defined profile. Misuse detection profiles patterns of known
attacks, i.e., unezpected behaviors, to identify abnormal behavior directly.

In our IDS model, the patterns of expected and unexpected execution
traces provide positive and negative reference sets, while the patterns of
acceptable and unacceptable execution traces determined by the security
policies serve as positive and negative tools.

7.3.2 The Intrusion Detection Model

Let us assume that A denotes a nonempty finite set of symbols. A string
is a finite or infinite sequence of symbols chosen from A. String containing
no symbols is called the empty string and is denoted by A. Let A* and A%
denote the set of all finite and infinite strings made up of symbols chosen
from A, respectively. We also use the following notations: AT = A* \ {\},
A® = AU AY.

An exzecution sequence or trace consists of linearly ordered observable
atomic actions concerning the observed computer system [5]. Types of
atomic actions are the following:

o Let A, be a finite nonempty set of externally observable required
atomic actions. It is called the required action set.

e Let Ay,s be a finite nonempty set of insecure atomic actions which
may happen during the running time of the observed system. It is
called the unsafe action set.

e Let Ayey be a finite nonempty set of additional atomic actions which
by themselves may not influence the safety of the observed system. It
is called the neutral action set.

Let us assume that A,cq, Auns and Ay, are pairwise disjoint. Let A =
Apeqg U Ayns U Apey, which is called the system action set.
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An execution trace o € A% is a finite or infinite sequence of not neces-
sarily different system atomic actions.

7.1 Definition. By a computer system we mean an (A, X)) pair, where 3(#
0) C A“.

If the computer system terminates, we as usual model it as an infinite
execution trace by infinitely stuttering the empty action A.

A* is the set of all possible finite observable execution traces generated
by the computer system.

7.2 Definition. By a system observation we mean an (A, ¥°%) pair, where
Y008 (£ ()) C A*. A subset S C X is called the snapshot.

Let A* be the universe of discourse in our IDS model.

Let Pt C (Apeg U Apeu)™ & A* denote the set of expected execution
traces which describes the expected behavior of the running system (see
Figure 7.17).

A" | A* is the universe of the IDS model:
the set of all possible finite
observable execution traces.

P+ g (Areq U Aneu)* ; -A*
profiles the expected behavior
of the computer system.

Figure 7.17: Initialization of the IDS model

A* \ Pt can be seen as the abnormal behavior of the system which
deviates from the previously defined expected profile. Its elements are called
anomalies |23] (see Figure 7.18).

According to our current available knowledge, however, only a subset
P~ C A*\ P* can really be modelled as the unexpected behavior of the
system. Its elements are usually called misuses. Of course, the unexpected
behavior P~ has its own right to be profiled (see Figure 7.19).

Expected and unexpected behaviors serve as positive and negative ref-
erence sets in our IDS model.
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A*
A*\ P* can be seen as

the abnormal behavior of the system
which deviates from the previously

> defined expected profile PT.

Its elements are called anomalies.

anomalies

Figure 7.18: Anomalies

misuses \(:‘/\/ A
\/::/, \ P C A* \P+ is the unexpected
Yg;/:,\ behavior of the system.
\/’:/\ Its elements are called misuses.
P ~
Pt and P~ are considered as
positive and negative reference sets
. in our IDS model.
anomalies

Figure 7.19: Misuses

Security strategy is modelled as a family of sets & C 24"

Security strategy is expressed by security policies of finite number. Pre-
scriptions and proscriptions of security policies can also be represented by
families of sets of execution traces denoted by &1 and &~ respectively. Let

6t = {Sf|SFcALi=1,...,.n"} C2?,
G~ = {S7|S CAi=1,....n"}C2?,

where & = GTUG ™. It is assumed that [ J&TNJGE™ = 0, i.e. an execution
trace cannot model a prescribed and proscribed behavior at the same time.
Note that |J&T (resp., &) may contains execution traces with unsafe
(resp., required and neutral) atomic actions.

Members of &T are called acceptable behaviors, whereas members of
G~ are called unacceptable behaviors. They serve as positive and nega-
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tive tools in our IDS model. Acceptabble/unacceptable behaviors and ex-
pected /unextecpted behaviors mutually justify each other.

The sets in & (resp., in &™) are not necessarily pairwise disjoint and,
in general, |J&T (resp., |J&7) does not cover A*. That is, &+ and &~
are base systems over the universe A*. In other words, (A*, Dg+, Q%M Qﬁﬁ6+>
and (A%, Dg-, (’%_ , (’:ﬁG_> form a G*-semi-strong and a &~ -semi-strong ap-
proximation space respectively (see Figures 7.20 and 7.21).

A*

&t ={S],85, S, 55,55}
is the prescriptions of
the security policies.

&1 is considered as
positive tools in our IDS model.

Figure 7.20: Approximation space <A*,”D6+,€E§+,€ﬁ6+) with the positive
reference set P,

~— /\ ,f“; A*
P //“/\Sl
\oe N e =(87.85,85,57)
;,///)\> . . . .
Y e is the pI‘O.SCI‘lptl.OI.ls of
=77 ~~ | the security policies.
/)
/ - 7 — . .
C Ss T G~ is considered as
P negative tools in our IDS model.
Sy

Figure 7.21: Approximation space <A*,@67,@’G_, QfﬁG,) with the negative
reference set P~.

The complete IDS model is depicted in Figure 7.22.
Using the running example, we show how this model can be applied.

Step 1. Mutual justifying the reference sets and tools
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Approximation spaces:

(A", Dt T, €5,

(A* Dg-, C"G_, CﬂG,), and positive,
negative reference sets: P, P~.

Acceptable, unacceptable traces:
6+:{Sf,...,SgL},

S~ ={5],...,5, }, and expected,
unexpected traces: PT, P~

Figure 7.22: The complete IDS model.

(1) P* is & -consistent and G -complete (see Figure 7.23).

Pt is &~ -consistent: QﬁG_ (Pt)=0.

PT is &T-complete:
Prccel (Pt =S5 uSfuUsy.

Figure 7.23: P* is & -consistent and & -complete.
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(2) P~ is GT-inconsistent (see Figure 7.24) and P~ is & -incomplete
(see Figure 7.25).

P~ is &T-inconsistent:

cL, (A7) =Sf #0.

P~ is G -incomplete:
P-g el (P7)=STUS; US;.

Figure 7.25: P~ is &~ -incomplete.
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Step 2. Rebuilding positive and negative tools
(1) Since P* was &~ -consistent, there was nothing to be done.

(2) Since P* was & -complete, PT was removed from the framework
(see Figure 7.26).

Figure 7.26: PT is removed from the framework.

(3) P~ was GT-inconsistent, we decided that the positive tool Sgr was
reasonable (see Figure 7.27).

Figure 7.27: We decide that the positive tool S3 is reasonable.
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(4) P~ was &~ -incomplete, we decided that we augmented negative tools
with S5, S; patterned upon one or more elements of the uncovered subset
of P~. Then P~ was removed from the framework (see Figure 7.28).

Figure 7.28: New negative tools S5, Sg .

By the end of Steps (1) and (2), we obtained the rebuilt positive tools
S;F = 67, and the rebuilt negative tools &, = &~ U{S;, Sg } (see Figure
7.29).

The rebuilt positive tools:
SF=6"

The rebuilt negative tools:
&y =6 U{S;, 5 ).

Figure 7.29: The rebuilt tools.
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Step 3. We apply the rebuilt tools to justify snapshots of the system as
follows.

Sample snapshots:
S, 85,85 C 00,

Figure 7.30: Sample snapshots.

A possible analysis based on the sample snapshots 57,9, S3 C £ is
the following (Figure 7.30):

° Qb@* (S2) contains all prescriptions of the security policies being actu-
ally in force which in full pertain to the snapshot Ss.

Since €1’6+(Sg) = S, thus S; is the only prescription which in full
belongs to the snapshot So.

. €ﬁ6 4 (S2) contains all prescriptions of the security policies being actu-
ally in force which possibly pertain to the snapshot Ss.

Since Q:ﬁs:f (S2) = Sf U ST, thus only Sf, ST are the prescriptions
which on the whole or in part belong to the snapshot Ss.

e Acceptable execution traces in €ﬁ6+ (S2) \ @bGJF(SQ) = S\ S are ab-
stained because they cannot be uniquely classified either as belonging
to Sy or as not belonging to Sy with respect to the prescriptions of the
security policies.

o 5o ¢4 €ﬁ6+(52) and so the execution traces in the subset So \ €ﬁ6+(52)
of S9 are anomalous. Moreover, since CuG_ (S2\ ¢ﬂ6+(5’2)) = S5, the
execution traces in Sg M (S2 '\ €ﬂ6+(5’2)) are actually unacceptable.

A similar analysis can be made in the case of the snapshot 5;.
notice that the snapshot S3 cannot be justified at all with the prescrip-
tions and proscriptions of the security policies being actually in force



Summary

The present thesis can be divided into three main parts. After the first two
introductory chapters, Chapter 3-6 contains our theoretical results, whereas
Chapter 7 contains their different applications. More precisely, this disser-
tation consists of the following parts.

The introduction (Chapter 1) contains the historical and philosophi-
cal background, the brief summary of our approach and, finally, the thesis
overview and our main results.

Chapter 2 summarizes the basic concepts and notations used throughout
the thesis.

Chapter 3 defines two general approximations frameworks, a large-scaled
initial one, called the Initial Approximation Framework, and a finer-scaled
one, called the General Set Theoretic Approximation Framework. These
frameworks allow us to treat the common features of the classic rough set
theory and its possible generalizations uniformly. This chapter also intro-
duces the notion of the generalized approximation framework.

The first version of the notion of the generalized approximation space ap-
peared in my paper [14]. I published in its present form in [20] (joint work
with Tamas Mihélydeak).

Chapter 4 contains the basic concepts and properties of the classic rough
set theory relying on the General Set Theoretic Approximation Framework
developed in the previous chapter. We cite only notions and statements
which are required in our subsequent work. We partly restate these well-
known facts in the language of our approximation framework and provide
new point-free proofs for a few of them.

Point-free proofs of a few properties of the rough set theory reconstructed
in the generalized approximation space can be found in my papers [13], [14]
and [16].

93



94 SUMMARY

Chapter 5 presents a special approximation framework which is based
on the partial covering of the universe and fully integrated into the Gen-
eral Set Theoretic Approximation Framework. Our lower and upper 8-
approximations are the straightforward point-free generalizations of lower
and upper c-approximations relaying on e-elementary sets. This chapter
presents the basic results concerning the base system and the lower and
upper B-approximations.

After some introductory remarks (Section 5.1), Section 5.2 defines the
most fundamental concepts of our approach, the base system B and the
family of B-definable subsets.

Section 5.3 introduces a constrained version of the base system, called the
single-layered base system, with help of which we prove some properties of
our approximation framework which in a sense are similar to the properties
of classic rough set theory.

Section 5.4 defines the lower and upper approximations based on partial
covering of the universe. First, we prove that these approximations fit into
the General Set Theoretic Approximation Framework. We also show that—
unlike Pawlak’s rough set theory—the B-definable property is generally not
equivalent to the equality of lower and upper ‘B-approximations.

Section 5.5 discusses the B-representations of the B-definable sets. If
a subset D is B-definable, there may exist two or more families of B-sets
such that their unions are equal to D. It is said that D is B-representable, if
there exists exactly one such family of 28-sets. We prove that all B-definable
subset of the universe are B-representable if and only if the base system ‘B
is single-layered. In this case, we also give the explicit B-representations of
B-definable subsets, especially, the lower and upper B-approximations.

Section 5.6 is about an especial important notion of the approximation of
sets, namely, the exactness. In Pawlak’s approximation spaces the notions
of ‘e-crisp’ (i.e. the exactness) and ‘c-definable’ are synonymous to each
other. A set is 9B-crisp, i.e. exact, if its lower and upper B-approximations
are equal. However, a B-definable subset is not necessarily B-crisp. Conse-
quently, the notions of ‘definable’ and ‘crisp’ (exactness) are not synonymous
to each other in our special approximation framework.

In Section 5.7, we give a possible interpretation of our approach.

I first defined the notion of the base system and its special variants in [14].
The first definition of the lower and upper approximations based on partial
covering appeared here too. A more detailed description of those notions
and further results can be found in my paper [12].
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In Pawlak’s rough set theory, it is a well known fact that the upper and
lower approximations! form a Galois connection on the power set of the
base set. The partial ordering on the power set is given by the set theoretic
inclusion relation. With regard to the informatics significance of the Galois
connection, it is important to clarify what conditions have to be satisfied by
the upper and lower B-approximations so that they form a Galois connection
on (2Y,C). In Chapter 6, we investigate this problem.

In Section 6.1 we prove one of the main results of the thesis: the upper
and lower B-approximations form a Galois connection on (2Y, C) if and only
if the base system ‘B is a partition of U.

In Section 6.2, we deal with partial lower and upper 2B-approximations.

The empty set may be the lower B-approximation of certain nonempty
subsets provided that all singletons are not 8-definable. Excluding to allow
that the empty set to be the lower ‘B-approximation of a nonempty subset,
we obtain the partial variant of the lower B-approximation. A natural total
extension of the partial lower B-approximation, of course, is the original
lower B-approximation itself. We show that this extension is unique under
some evident conditions.

The empty set may be the upper B-approximation of certain nonempty
subsets provided the base system does not cover the universe. Excluding
these cases we obtain the partial variant of the upper B-approximation. Of
course, the lower approximation remains a total map in the future too. The
question naturally arises whether the Galois connection generalize so that
the partial upper B-approximation and lower B-approximation may form a
Galois connection in a sense. Moreover, if the answer is yes, what conditions
have to be fulfilled by them so that they form a Galois connection of this spe-
cial type. The notion of the partial Galois connection borrowing from Miné is
suitable for our purpose. We prove that the partial upper B-approximation
and the lower B-approximation form a partial Galois connection if and only
if the B-set are pairwise disjoint.

The results concerning regular Galois connections were first published in my
paper [17]. I proved the statements for partial Galois connections provided
that the base system is single-layered in [14]. I generalized the statements
concerning both regular and partial Galois connections for arbitrary approx-
imation spaces based on partial covering in [12].

!Since Galois connections are not necessarily symmetric, the order of the maps is
important.
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In Chapter 7, to demonstrate the effectiveness of our approach we present
three real life examples.

The first application show the relationship of our approach with natural
computing via a biological application. In particular, we show how our
approach helps us to understand some behavioral features of the natural
vegetation heritage of Hungary. This presentation is based on the so-called
META program which is a recognition and evaluation system of the state of
the natural and semi-natural vegetation heritage of Hungary.

The second application presents a general tool-based approximation
framework. We observe a class of objects and, as usual, we suppose that
there are some well-defined features which an object possesses or not. In
practice, two relevant groups of objects can be separated. A group whose
elements really possess some features in question and another group whose
elements do not substantially possess the same features. In the proposed
tool-based approximation framework, two approximation spaces are defined.
Any proportion of the observed objects can simultaneously be approximated
in the two approximation spaces.

The third example applies the tool-based approximation framework to
model the Intrusion Detection Systems (IDS) in computer security. In ac-
cordance with this framework, safe and unsafe traces can be detected simul-
taneously.

The model related to the META program appeared in my paper [12]. I
published models for Intrusion Detection Systems in [18] and [15]. The
former refers to mainly professional, whereas the latter to non-professional
computer environment. Both generalized models are described in [19] (joint
work with Tamés Mihalydedk).



Osszefoglald

A disszertaci6 harom atfogobb részre bonthaté. Az els6 bevezets fejeze-
tek utdn a 3-6. fejezetek az elméleti eredményeket, mig a 7. a kiilonb6zd
alkalmazésokra mutat példat. Részletesebben a kovetkezd részekbdl all.

Az 1. fejezet disszertaciom téméjanak torténeti és filozofiai héatterét
mutatja be, majd roviden Osszefoglalom megkozelitésem lényegét. Végiil
egy atfogd attekintést adok a dolgozatrol és ismertetem f6bb eredményeim.

A 2. fejezet technikai jellegii rész. Tartalmazza mindazon fogalmakat és
jeloléseket, amelyeket a disszertacioban hasznélok.

A 3. fejezetben két altalanos kozelits keretrendszert definidlok. Az elsé
(kezdeti kozelits keretrendszer) csak néhany fontos feltételt rogzit. A ma-
sodik (altalanos halmazelmeéleti kozelits keretrendszer) az elézére épiil és
joval finomabb felbontést. A két keretrendszer segitségével egységes szem-
pontok alapjan tanulményozhatok mind a klasszikus kozelité halmazelmeélet
(rough set theory), mind annak kiilonb6z6 lehetséges altalanositésai. Erre
szdmos példa van a szakirodalomban, az 4ltalam javasolt megoldas 1j.

Bevezetem az alaprendszer és a jol definidlt halmaz fogalmét. A jol de-
finidlt halmazokrol legéaltaldnosabban csak annyit tételeziink fel, hogy az
iires halmaz, tovibba az alaprendszer elemei jol definidltak. Meghatéaro-
zom az alsd-fels§ kozelitésekre vonatkozdé minimum kdvetelményrendszert.
Ezek segitségével definidlom az altalanositott kozelits tér fogalmét. Be-
mutatom, hogy az &altalanositott kozelit6 térben lényeges megallapitasok
tehetsk fliggetleniil a jol definialt halmazok, illetve az also-fels§ kozelitések
konkrét képzési modjatol.

Az altalanositott kiozelitd tér fogalménak elsé véltozata a [14] cikkemben je-
lent meg. Jelenlegi forméjaban [20]-ban publikaltam (kézos munka Mihaly-
dedk Taméssal).
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A 4. fejezet lényegében a klasszikus kozelité halmazelmélet (rough set
theory) rekonstruédlésa az éltalanos halmazelméleti kozelité keretrendszer-
ben. Els6sorban azokat az eredményeket mutatom be, amelyekre a késGb-
biekben sziikség lesz. Ezeket részben atfogalmazom a keretrendszer termi-
nologidjanak megfelelGen. A szakirodalom a Pawlak-féle kozelités tulajdon-
sagait kizarolag pontszertien (halmazok elemeivel) bizonyitja. Tébb allitasra
nem-pontszertd bizonyitast adok.

Az dltalanositott kozelitd térben rekonstrudlt kézelitd halmazelmélet néhany
tulajdonsaganak nem pontszerti bizonyitasat a [13], [14] és [16] cikkeim tar-
talmazzak.

Az 5. fejezet egy konkrét kozelits teret ismeretet, amely teljes egészé-
ben integralhato az altalanos halmazelméleti kozelit§ keretrendszerbe. A B
alaprendszer az univerzum egy parcialis lefedése. A jol definialt halmazok,
az un. ‘B-definidlhatd halmazok az alaprendszer tetszGleges uni6i. Az alséd
és felsd B-kozelitések a Pawlak-féle also és felsg e-kozelitések kozvetlen &l-
talanositdsai. A fejezet az alaprendszerre és az also-felsg B-kozelitésekre
vonatkozo6 legalapvetSbb eredményeket tartalmazza.

Néhany bevezets megjegyzés utéan (5.1 alfejezet), az 5.2 alfejezet a ki-
indul6 alapfogalmakat, a 25 alaprendszert és a 2B-definidlhaté halmazokat
targyalja.

Az 5.3 alfejezet az alaprendszer egy bizonyos szempontbdl korlatozott
fogalmat vezeti be. Ez az egyszeres rétegl alaprendszer, amelynek segit-
ségével a parcidlis lefedésen alapuld kozelité térben a klasszikus kozelitd
halmazelmélet (rough set theory) tulajdonsigaira emlékeztetd allitdsok bi-
zonyithatok.

Az 5.4 alfejezet definidlja a parcialis lefedésen alapuld also-felss ‘B-
kozelitések fogalmat. ElGszor bebizonyitom, hogy a fogalom illeszkedik az
altaldnos halmazelméleti kozelit6 keretrendszerbe. Megmutatom tovabba,
hogy — ellentétben a Pawlak-féle térrel — a B-definidlhato tulajdonsig al-
talaban nem ekvivalens az also-fels6 B-kozelitések egyenléségével.

Az 5.5 alfejezet a B-definialhaté halmazok B-reprezentalhatosiagat vizs-
galja. Ha D egy *B-definidlhaté halmaz, akkor az alaprendszer elemeibdl
all6 tobb olyan halmazrendszer is lehet, amelyek uni6ja D. Ha csak egy
ilyen van, akkor azt mondjuk, hogy D B-reprezentilhatd. Bebizonyitom,
hogy egy B-definidlhat6 halmaz pontosan akkor ‘B-reprezentidlhatd, ha a
B alaprendszer egyszeres rétegii. Ez utobbi esetben explicite megadom a
B-definialhatd, ezen beliil az als6-felsé B-kozelitések B-reprezentacidjat.
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Az 5.6 alfejezet a halmazkozelités kiemelten fontos fogalmarol, az egzakt-
sagrol szol. Egy halmaz pontos (egzakt), ha alsé és fels kozelitése megegye-
zik. A Pawlak-féle kozelits térben az ,e-pontos” (egzakt) és ,,e-definialhato”
fogalma egybeesik. A parcidlis lefedésen alapul6 kozelits térben azonban egy
B-definidlhato halmaz nem sziikségképpen B-pontos is. Kévetkezésképpen a
wpontossag” (egzaktsag) és ,definidlhatosag” fogalma nem egymés szinoniméi
a parcialis lefedésen alapuld kozelits terekben.

Az 5.7 alfejezet a parcialis lefedésen alapul6 kozelit tér egy lehetséges

interpretacidjat fejti ki.
Az alaprendszer, illetve az egyszeres rétegii alaprendszer fenti fogalmat
eldszor [14]-ben definialtam. Szintén itt jelent meg elséként az also-felsé
kozelitések definiciéja parcidlis lefedésen alapulé kozelitd terekben. A fo-
galmak lényegesen bévebb kifejtését és tovabbi eredményeket a [12] cikkem
tartalmazza.

A kozelité halmazelméletben (rough set theory) jol ismert tény, hogy a
Pawlak-féle felsg és also kozelitések? Galois kapcsolatot alkotnak az alaphal-
maz hatvanyhalmazén. A hatvanyhalmaz részbenrendezése a halmazelmeéleti
tartalmazas. A Galois kapcsolatok informatikai jelent&ségére tekintettel fon-
tos annak tisztazasa, hogy a fels6-also B-kozelitések milyen feltételek mellett
alkotnak Galois kapcsolatot (2V,C)-n. A 6. fejezetben ezt a kérdést vizs-
galom.

A 6.1 alfejezetben bizonyitom disszertaciéom egyik {6 eredményét: a fels
és also B-kozelitések pontosan akkor alkotnak Galois kapcsolatot, ha a ‘B
alaprendszer az univerzum egy particidja.

A 6.2 alfejezetben az also-fels6 B-kozelits leképezések bizonyos lesziikité-
seit vizsgdlom. Ha nem minden egyelemt halmaz ‘B-definialhatd, akkor
az ires halmaz lehet nemiires halmaz alsé kozelitése. Ha kizarjuk ezt a
lehetGséget, akkor az also B-kozelités lesziikitését, egy parcialis leképezést
kapunk. Ennek a parcidlis leképezésnek viszont természetes teljes kiter-
jesztése az eredeti alsod B-kozelités. Bebizonyitom, hogy ez kiterjesztés egy-
értelmd bizonyos kézenfekvd feltételek fennalldsa mellett

Ha az alaprendszer nem fedi le az univerzumot, akkor az iires halmaz
lehet nemiires halmazok fels§ B-kozelitése. Kizarva ezt az lehetGséget az
eredeti fels6 B-kozelités lesziikitéséhez, egy parcialis leképezéshez jutunk.
Mindez nem érinti az als6 kozelités definicidjat, az tovabbra is teljes. Kérdés,
hogy a parcidlis felsg és a teljes also leképezés alkothat-e Galois kapcsolatot

2Mivel a Galois kapcsolat nem szimmetrikus a leképezésekre nézve, ezért fontos a
kozelitések sorrendje.
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valamilyen értelemben? A valaszhoz mindenekel6tt a Galois kapcsolat meg-
felel6en modositott fogalma sziikséges. Az irodalomban megtaladlhato ez a
fogalom, az in parcialis Galois kapcsolat. Az eredeti kérdeés tisztazasa dolgo-
zatom masik f6 eredménye: a parcialis lefedésben definialt parcialis fels6 és
teljes also kozelitések pontosan akkor alkotnak parcilis Galois kapcsolatot,
ha az alaprendszer tagjai paronként diszjunktak.

A regularis Galois kapcsolatokra vonatkozo elsé eredményeim [17]-ben je-
lentek meg. Az alaprendszer egyszeres rétegii tulajdonsaganak feltételezése
mellett [14]-ben bizonyitottam a parcialis Galois kapcsolatokkal kapcsolatos
allitasokat. [12]-ben mind a reguléris, mind a parcialis Galois kapcsolatokra
vonatkozo tételeket dltaldnositottam, és azokat tetszdleges parcidlis lefedésen
alapul6 kézelitd terekre bizonyitottam.

A 7. fejezetben példakat mutatok a parcialis lefedésen alapuld hal-
mazkozelités lehetséges alkalmazasaira.

A 7.1 alfejezetben a META programhoz kapcsolodé modell egy biologiai
példan keresztiil mutatja be a parcidlis lefedésen alapulé halmazkdzelités
egy lehetséges alkalmazasat a természetes elvii szamitéstechnikdban (natural
computing). A META program (Magyarorszag Elshelyeinek Térképi Adat-
bazisa) egy 2003 és 2006 kozott lezajlott, Magyarorszag teljes teriiletére
kiterjed6 felmérés volt az orszag nagyléptéki aktualis él6hely-térképének
elkészitésére. Modellemben a Pawlak-féle elmélet és a parcidlis lefedésen
alapulé kozelités egyiittes alkalmazasaval elemezhet§ az orszig élGhelyeit
veszélyeztets tényezdk elGfordulasa, terjedése.

A 7.1 alfejezet egy altaldnos eszkdz-alapu keretrendszert mutat be. Ob-
jektumok halmazat vizsgéljuk, és feltessziik, hogy adott az objektumok két
konnyen meghatéarozhato, de elkiiloniilt csoportja (tin. referencia halmazok).
Az egyik rendelkezik bizonyos tulajdonsagokkal, a mésik pedig jellemz§ mo-
don nem. Mindkét halmaz két kiilonb6z6 — szintén elkiiloniilt — halmaz-
rendszerrel kozelithets (eszkozok). A referencia halmazok és az eszkozok
kdlesonos viszonyanak elemzése révén két kiillonbozs parcialis lefedésen ala-
puld tér alakithato ki. Ezt kovetSen barmely objektumhalmaz egyidejiileg
elemezhet6 mindkét parcialis kozelits térben.

A 7.2 alfejezetben az altalanos eszkoz-alapi modellt alkalmazom sza-
mitogépes rendszerekbe torténs behatolast detektald modell felallitasara.
Végeredményben a szamitéogépes rendszer kiviilr6l megfigyelhetd véges
nyomsorozatainak halmazan két parcialis kozelité tér alakithatoé ki, a biz-
tonséagos, illetve a nem biztonsagos nyomsorozatok halmazanak kozelitésére.
A nyomsorozatok halmazai egyidejtleg értékelhetd ki mindkét térben.
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A META programhoz kapcsolédé modell a [12] cikkemben jelent meg. A
behatolas detektaléo modelleket [18]-ben és [15]-ben publikaltam. Az el6bbi
els6sorban professziondlis, az utobbi pedig nem professziondlis kornyezet-
ben miikédd szamitogépes rendszerekre vonatkozik. Mindkettd altaldnosi-
tott modelljét a [19] cikk irja le (k6z6s munka Mihalydedk Tamassal).
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