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Abstract
In the last few decades, monoclonal antibodies targeting various receptors and ligands have shown significant advance in 
cancer therapy. However, still a great percentage of patients experiences tumor relapse despite persistent antigen expres-
sion. Immune cell therapy with adoptively transferred modified T cells that express chimeric antigen receptors (CAR) is an 
engaging option to improve disease outcome. Designer T cells have been applied with remarkable success in the treatment 
for acute B cell leukemias, yielding unprecedented antitumor activity and significantly improved overall survival. Relying 
on the success of CAR T cells in leukemias, solid tumors are now emerging potential targets; however, their complexity 
represents a significant challenge. In preclinical models, CAR T cells recognized and efficiently killed the wide spectrum of 
tumor xenografts; however, in human clinical trials, limited antitumor efficacy and serious side effects, including cytokine 
release syndrome, have emerged as potential limitations. The next decade will be an exciting time to further optimize this 
novel cellular therapeutics to improve effector functions and, at the same time, keep adverse events in check. Moreover, we 
need to establish whether gene-modified T cells which are yet exclusively used for cancer patients could also be successful 
in the treatment for other diseases. Here, we provide a concise overview about the transition from monoclonal antibodies to 
the generation of chimeric antigen receptor T cells. We summarize lessons learned from preclinical models, including our 
own HER2-positive tumor models, as well as from clinical trials worldwide. We also discuss the challenges we are facing 
today and outline future prospects.
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Abbreviations
ADC	� Antibody–drug conjugate
ADCC	� Antibody-dependent cell-mediated 

cytotoxicity
AML	� Acute myelomonocytic leukemia
B-ALL	� Acute B cell lymphocytic leukemia
B-CLL	� Chronic B cell lymphocytic leukemia
BCM	� Baylor College of Medicine
BiTE	� Bispecific T cell engager

CAR​	� Chimeric antigen receptor
CAAR​	� Chimeric autoantibody receptor
CR	� Complete remission
CRS	� Cytokine release syndrome
CTLA4	� Cytotoxic T lymphocyte associated protein 4
DLBCL	� Diffuse large B cell lymphoma
ECM	� Extracellular matrix
EGFR	� Epidermal growth factor receptor
EGFRvIII	� Epidermal growth factor receptor variant 3
EMA	� European Medicines Agency
EPIC	� Evaluation of 7E3 for the prevention of 

ischemic complications
FcεRIγ	� High-affinity immunoglobulin-E receptor 

gamma chain
FDA	� US Food and Drug Administration
HER2	� Human epidermal growth factor receptor 2
IgG	� Human immunoglobulin G
mAb/s	� Monoclonal antibody/ies
MHC	� Major histocompatibility complex
MSKCC	� Memorial Sloan Kettering Cancer Center
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NCI	� National Cancer Institute
NK	� Natural killer
PD1	� Programmed cell death protein 1
PDL-1	� Ligand of programmed cell death protein 1
PR	� Partial response
scFv	� Single-chain variable fragment
SD	� Stable disease
TAA​	� Tumor associated antigen
TCR​	� T cell receptor complex
TIL	� Tumor-infiltrating lymphocyte
TME	� Tumor microenvironment
TRUCK	� T cells redirected for universal cytokine-

mediated killing

Monoclonal antibodies in cancer therapy: 
potentials and limitations

Since the first use of monoclonal antibodies (mAbs) in a lym-
phoma patient in 1980 (Nadler et al. 1980), these molecules 
have made a striking transformation from scientific tools to 
potent drugs in clinical care. In the last three decades, more 
than 90 monoclonal antibodies have been approved by the 
European Medicines Agency (EMA) and the US Food and 
Drug Administration (FDA) as biotherapeutics (Moorkens 
et al. 2020) (https​://www.antib​odyso​ciety​.org/resou​rces/
appro​ved-antib​odies​/) and translated from research to bed-
side. The increasing importance of therapeutic mAbs is 
apparent, as they have become first-line treatment modalities 

in immunologic diseases (Steinman 1990) and, in particular, 
in cancer therapy (Friedlander et al. 2008; Tsumoto et al. 
2019). Since the approval of the first clinically used anti-
body (muromonab, targeting CD3 for preventing allograft 
rejection (Cosimi 1987)), their number is constantly growing 
(Fig. 1). Table 1 summarizes the historical landmarks of the 
ever expanding realm of therapeutic mAbs, from conception 
through various approaches of adapting them to the human 
immune system to groundbreaking new concepts in both 
structural design and clinically important targets.  

The most frequently occurring antibody molecules, 
including IgG-s, are Y-shaped molecules made up of dimers 
of three roughly equal-sized domains, connected by flexible 
linkers. Fab fragments representing the bifurcating arm of 
the Y are involved in antigen binding. They are comprised of 
a constant and a variable region. The segment actually bind-
ing the target epitope of the antigen, called the paratope, is 
located within the latter. Fc fragment representing the stem 
of the Y interacts with effector cells. Since most parts of 
the antibody have a subtype- and species-specific amino 
acid sequence, the molecule itself can become and antigen 
in another species. Therefore, exploitation of antibodies in 
human therapy has evolved from using the original mouse 
monoclonals through transferring the variable region to a 
corresponding human antibody (chimeric Ab) to replacing 
only the paratope in the human antibody (humanized Ab), 
and, eventually, to creating fully human antibodies.

The molecular structure of mAbs determines their effec-
tor function exerted on the target antigen. They can directly 

Fig. 1   Milestones in mono-
clonal antibody development. 
Timeline from 1986 showing 
the development of therapeutic 
antibodies. The circles with the 
numbers represent the number 
of FDA approved antibodies in 
each indicated year. Molecules 
highlighted with gray represent 
the antibody drugs that have 
proved to be a milestone in 
clinical practice
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first mAb (muromonab)

1994
first Fab (abciximab)

2011
first drug-mAb
conjugate
(brentuximab vedotin)
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(blinatumomab)
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>90 therapeutics
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induce apoptosis by tuning mitogen-dependent signaling 
pathways upon interacting with transmembrane receptors 
resulting in their downregulation, or by interrupting their 
interactions with adjacent signaling partners (Cuello et al. 
2001). When receptor blocking is the sole desired effect, 
often the Fab fragment proves to be the optimal solution, 
such as in the case of abciximab, which targets gpIIb/IIIa 
thereby decreasing platelet aggregation (EPIC 1994). Nota-
bly, this is not only the first Fab approved for clinical use, 
but efforts have been made to decrease its immunogenicity; 
it is a chimeric antibody, with human IgG1 forming the con-
stant region, and only the variable region preserved from the 
original mouse IgG (Nesic et al. 2020).

IgG1 and IgG3 subtypes can induce cytotoxic immune 
cells (monocytes, macrophages, NK cells and granulocytes) 
expressing Fc receptors to evoke antibody-dependent cellu-
lar cytotoxicity (Barok et al. 2008, 2007; Nagy et al. 2005; 
Perlmann et al. 1975). The same subsets of mAbs are also 
able to activate the complement cascade to induce indirect 
cytotoxicity (Meyer et al. 2014). These effector mechanisms 
make monoclonal antibodies ideal for the targeted therapy of 
various malignancies. Rituximab, targeting CD20 on lym-
phoma cells, was the first to be approved for such purpose, 
and even though a decade has passed since the approval of 
the first therapeutic antibody, it was still the third on the 
list of approved ones. Similarly to abciximab (the second 
antibody on the list), rituximab is also a chimeric, mouse/
human antibody.

From here, progress was boosted, and soon the first anti-
body (trastuzumab) targeting HER2 on solid tumors was 
approved (Baselga et al. 1998). This antibody was human-
ized and contains only the antigen-binding loops from the 

original mouse Ab4D5, complemented with human variable 
region framework residues plus the IgG1 constant domains 
(Carter et al. 1992). As an extension of the concept, a couple 
of years later the tumor stroma has also become the target 
of humanized antibody therapy, first using bevacizumab to 
neutralize VEGF and thereby inhibit tumor angiogenesis 
(Bergsland and Dickler 2004).

The next development, in terms of both structure and 
concept, was to use antibodies to deliver toxins or classic 
chemotherapeutic agents to tumor cells. The first such ADC 
(antibody–drug conjugate) approved for clinical use was 
brentuximab vedotin binding to CD30 on Reed–Sternberg 
cells in Hodgkin lymphoma (Younes et al. 2010). Not sur-
prisingly, the pioneering mAb in the therapy of solid tumors, 
trastuzumab, has followed suit, in the form of a maytansi-
noid conjugate (Barok et al. 2018; Le Joncour et al. 2019; 
Mathew and Perez 2011).

The ability to easily generate chimeric and humanized 
antibodies has opened further perspectives in that chimeric 
multiparatopic antibodies have been created and tested pre-
clinically. The first of these to make it to clinical approval 
was blinatumomab, a bispecific T cell engager (BiTE) 
(Loffler et al. 2000). This new class of synthetic antibody-
derived immunotherapeutic molecules has been designed 
to redirect T cells to tumor cells by simultaneously target-
ing two antigens, one on tumor cells (in this case CD19 on 
B-ALL cells) and the other one—conveniently CD3—on T 
cells (Huehls et al. 2015).

In terms of expanding the scope of molecular targets, 
the development of T cell-targeted immunomodulators 
blocking the immune checkpoints has revolutionized can-
cer therapy in the last decade (Hui 2019). In 2011, FDA 

Table 1   Historical landmarks in developing therapeutic mAbs

International non-proprietary 
name, US product identifier

Brand name Target; Format Indication first approved or 
reviewed

First EU 
approval 
year

First US 
approval 
year

Muromonab-CD3 Orthoclone Okt3 CD3; Murine IgG2a Reversal of kidney transplant 
rejection

1986 1986

Abciximab Reopro GPHb/IIIa; Chimeric IgGl Fab Prevention of blood clots in 
angioplasty

1995 1994

Rituximab MabThera, Rituxan CD20; Chimeric IgGl Non-Hodgkin lymphoma 1998 1997
Trastuzumab Herceptin HER2; Humanized IgGl Breast cancer 2000 1998
Bevacizumab Avastin VEGF; Humanized IgGl Colorectal cancer 2005 2004
Ipilimumab Yervoy CTLA-4; Human IgGl Metastatic melanoma 2011 2011
Brentuximab vedotin Adcetris CD30; Chimeric IgGl; ADC Hodgkin lymphoma, systemic 

anaplastic large cell lymphoma
2012 2011

Blinatumomab Blincyto CD 19, CD3; Murine bispe-
cific tandem scFv

Acute lymphoblastic leukemia 2015 2014

Nivolumab Opdivo PD1; Human IgG4 Melanoma, non-small cell lung 
cancer

2015 2014

Pembrolizumab Keytruda PD1; Humanized IgG4 Melanoma 2015 2014
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approved ipilimumab as the first mAb-based immune check-
point inhibitor targeting CTLA4 (Cameron et al. 2011; Hodi 
et al. 2010). This was followed by the development of other 
monoclonal antibodies targeting PD1 (pembrolizumab and 
nivolumab) and PD-L1 (atezolizumab and durvalumab) 
(Robert et al. 2014). Recently, anti-PD1/PD-L1 monoclo-
nal antibodies have become the most generally administered 
anticancer therapies in the USA. These molecules are used 
as monotherapy or in combination with chemo- or radio-
therapy against more than 70 cancer types (Tang et al. 2018).

Despite the success of mAbs, we still have a great per-
centage of cancer patients with limited responses due to pre-
existing or acquired therapy resistance. Many mechanisms 
have already been identified including obstacles for mAbs 
binding to their target antigen (tumor microenvironment 
(TME)/extracellular matrix(ECM) or downregulation of the 
target) (Carraway et al. 2001; Friedlander et al. 2005; Nagy 
et al. 2005), induction of resistance by activating alternative 
signaling pathways in the tumor (Chan et al. 2005; Fried-
lander et al. 2008; Wang et al. 2013) and immunomodulatory 
effects of the tumor cells themselves (Scaltriti et al. 2009) or 
the tumor microenvironment (TME) via checkpoint activa-
tors, exosomes and microvesicles (Derakhshani et al. 2020).

In the last decade, our group has systemically explored 
key resistance mechanisms limiting the action of the often 
administered HER2-specific monoclonal antibody, trastu-
zumab. We have shown that overexpression of extracellular 
matrix (ECM) components such as MUC4 or CD44/hya-
luronan plays a crucial role in the suppression of effector 
function by forming a steric barrier that masks the HER2 
antigen and inhibits its recognition by therapeutic mAbs. 
We confirmed using in vitro (Nagy et al. 2005), in vivo 
(Barok et al. 2008, 2007; Palyi-Krekk et al. 2007, 2008; 
Szoor et al. 2020) and clinical (Varadi et al. 2012) models 
that epitope masking of HER2 is emphatic in later stage 
or advanced tumors with massive extracellular matrix and 
restricts access to antigens. However, trastuzumab can still 
bind to early-stage tumors as well as to circulating and dis-
seminated tumor cells and induce antibody-dependent cel-
lular cytotoxicity (ADCC) (Barok et al. 2008, 2007). In addi-
tion, targeting multiple epitopes by combined treatment with 
pertuzumab and trastuzumab further improves ADCC and 
recruits higher number of effector cells, thereby delaying 
tumor outgrowth (Toth et al. 2016). These results suggest 
that in spite of intrinsic biological resistance of tumor cells, 
ADCC by cytotoxic cells can potentially overcome primary 
resistance and hinder tumor outgrowth while the extracel-
lular matrix is underdeveloped.

These findings encouraged us to move on and design a 
cytotoxic T cell that expresses trastuzumab as an extracellu-
lar recognition tool. This genetically engineered molecule is 
known as chimeric antigen receptor (CAR). Our recent data 
indicate that CAR wielding T cells in contrast to antibodies 

can be efficacious against antibody-resistant tumors provid-
ing a significant survival advantage (Szoor et al. 2020; Toth 
et al. 2020).

Immune cell therapy: promising novel 
approach to treat cancer

Development of various biological and immunotherapies is 
regarded as a paramount achievement of the past decade 
in cancer therapy. The ultimate goal is to design effective, 
targeted treatments that put less strain on the patient, but, at 
the same time, can be administered against a broad range 
of tumors.

A major breakthrough in the development of such tar-
geted treatments was the emergence of adoptive immune 
cell therapy. As early as the early 1980s, Steven A. Rosen-
berg with his team began using autologous T lymphocytes 
to treat a large variety of tumors that occurred in various 
organs (so-called solid tumors). In their pioneering trial, T 
cells were isolated from peripheral blood mononuclear cells 
of cancer patients and then activated and expanded with a 
megadose of IL-2 cytokine stimulus (Dudley and Rosen-
berg 2003). Over the next decade, multiple clinical trials 
were initiated to treat advanced cancer patients with adop-
tively transferred T cells that were initially obtained from 
peripheral blood and then later from tumor tissue (tumor-
infiltrating lymphocyte—TIL) (Rosenberg et al. 2008). Out 
of the various tumors treated, consistent promising results 
only came when patients with melanoma (a malignant skin 
tumor) were treated; more than 40% of patients responded 
to the therapy and a significant proportion (about 15%) was 
even definitively cured. However, in other solid tumors, no 
real breakthrough occurred, and in many cases no therapeu-
tic response was observed at all (Rosenberg 2014).

The moderate success of adoptive T cell immunotherapy 
has prompted researchers to tweak the approach, resulting in 
the first genetically modified T cells in the early 1990s (Clay 
et al. 1999; Eshhar et al. 1993; Gross et al. 1989a, 1989b). 
These cells were able to specifically recognize and kill 
various tumor cell lines by binding to their specific tumor-
associated antigens (TAA). The successful preclinical trials 
using such genetically modified T cells brought the promise 
of ultra-selective and tumor-specific treatment protocols that 
can be tailored to the individual needs of patients. The novel 
technology successfully combined adoptive immunotherapy 
with new-generation gene editing based on retro- and lenti-
viral transduction systems that facilitate the specific redirec-
tion of T cell against the targeted tumor.

One of the main groups of the gene-modified immune 
cells expresses tumor-associated antigen-specific alpha and 
beta subunits of the T cell receptor complex (TCR α and 
β). Under physiological conditions, these molecules play a 
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crucial role in the specific recognition of peptide antigens 
presented by cells, be they derived from viruses, or altera-
tions of the cell’s own proteome. Today’s biotechnology has 
the potential to design and encode in DNA tumor-neoantigen 
specific TCR α and β molecules in an infinite variety and 
incorporate these recognition tools into the T cell membrane 
(Govers et al. 2014; Johnson et al. 2009; Roszik et al. 2011). 
Since TCR function is restricted to MHC-presented pep-
tides, the applicability of designer T cells transduced with 
specific TCRs is rather restricted, and, similarly to adop-
tive transfer of tumor-infiltrating lymphocytes, they show 
significant efficacy in the case of tumors stably presenting 
TAA peptides, particularly melanomas (Debets et al. 2016). 
To date, TCR-redirected T cells have progressed to early-
phase clinical trials (Tawara et al. 2017; Tendeiro Rego et al. 
2019), but have yet to mature to clinical approval. We would 
like to hereby recommend an excellent review published 
very recently on the clinical trials using transgenic TCRs 
(Oppermans et al. 2020).

Chimeric antigen receptors (CARs) represent the other 
main group in the field of designer T cells. CARs are chi-
meric molecules that express an extracellular single-chain 
variable fragment (scFv) as recognition domain that pro-
vides specific and efficient binding to molecular targets 
(primarily TAAs) and an intracellular TCR zeta (TCRζ) 
chain that works as an effector domain that is capable of 
efficient activation of T lymphocytes (Gross et al. 1989a, b) 
(Fig. 1.). CAR-modified T cells have revolutionized cancer 
therapy in the past decade. This achievement was recognized 
by Science magazine in 2013 as “Scientific Breakthrough 
of the Year” (Couzin-Frankel 2013). Currently, more than 
two thousand patients receive genetically modified immune 
cell therapies for a large variety of tumors in more than 500 
clinical trials (http://clini​caltr​ials.gov).

Structure of chimeric antigen receptors

First-generation chimeric antigen receptors are synthetic 
molecules that recognize extracellular tumor-associated anti-
gens and simultaneously induce cytotoxic cellular response 
in T cells (Gross et al. 1989a, b). These CARs (Fig. 2.) only 
provide the first antigen-dependent signal (signal I) that is 
essential for T cell activation and target killing.

The extracellular antigen recognition domain is usually 
a scFv (single-chain variable fragment) containing the vari-
able light (VL) and heavy (VH) chains of the parent mono-
clonal antibody. This mAb-like behavior of target recogni-
tion results in efficient binding of unprocessed extracellular 
proteins in an MHC-independent manner. Thus, CAR T cells 
remain effective against target cells that downregulate HLA 
molecules to avoid immune surveillance (Zhou and Levit-
sky 2012). Moreover, antibody-like target recognition allows 

chimeric antigen receptors to bind nonprotein-dominant 
(carbohydrate or highly glycosylated proteoglycan) tumor-
specific antigens (Li et al. 2016).

The antigen recognition moiety is connected to the intra-
cellular effector domain by a hinge (also known as linker or 
spacer) region and its associated transmembrane segment. 
These two constitute a short, but functionally significant 
block in the CAR structure. The hinge domain is mostly 
obtained from IgG (IgG1 or IgG4) or CD8 (Hombach et al. 
2010), while the transmembrane domain usually has a CD4, 
CD8 or CD28 origin (Bridgeman et al. 2010). The composi-
tion and length of the hinge region determine the mobility 
of the antigen recognition domain as well as the physical 
distance between the T cell and the target cell (James et al. 
2008).

The transmembrane segment plays a key role in the mem-
brane localization, spontaneous or target-induced dimeriza-
tion and cluster formation of the CARs (Bridgeman et al. 
2010). These factors directly affect the dynamics of intercel-
lular CAR synapse formation and thus influence the cytol-
ytic T cell response (Chmielewski et al. 2004). Furthermore, 
the transmembrane segment is responsible for forwarding 
to the cytosolic part of the CAR the conformational change 
caused by target binding, which explains why sequences 
from CD4, CD8 or CD28 are used, anticipating similarly 
effective signal transduction as in the originating proteins.

The intracellular effector (or signaling) domain has cru-
cial role in T cell activation; however, this is the least diverse 
unit in the CAR backbone. Most commonly, this domain is 
derived from the zeta subunit of the TCR complex (CD3ζ) 
or from the gamma chain of the high-affinity immunoglob-
ulin-E receptor (FcεRIγ). Activation of the effector domains 
initiates phosphatidylinositol and tyrosine kinase-dependent 
signaling pathways resulting in T cell activation, prolifera-
tion and cytotoxic response (Bridgeman et al. 2014).

MAb

Chimeric antigen receptor
(CAR) 

α βδ εγε

ζζ

T cell receptor complex

scFv

Fig. 2   Schematic structure of a first generation chimeric antigen 
receptor. The chimeric antigen receptor (CAR) consists of a single-
chain variable domain derived from a monoclonal antibody and a sig-
nal transduction domain of T cell receptor complex (CD3ζ)

http://clinicaltrials.gov
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In second- and third-generation CARs (Fig. 3), one or 
more costimulatory endodomains are incorporated intracel-
lularly, upstream of the signaling domain. These segments, 
typically derived from CD27, CD28, 4-1BB or OX40 mol-
ecules, function as signal enhancers providing costimula-
tory signals required for complete T cell activation (signal 
II) (Zhong et al. 2010). In preclinical trials, costimulatory 
endodomain-armored CARs induced a more pronounced 
cytotoxic effect in comparison with first-generation recep-
tors. However, it also appears that distinct costimulatory 
domains modulate the outcome of effector response in spe-
cific ways. For example, signaling from the CD28 cassette 
initiated by antigen binding suppresses mitochondrial bio-
genesis. Kawalekar et al. confirmed that in CD28 costim-
ulatory CAR T cells the majority of the energy source is 
produced by glycolysis, whereas in 4-1BB CAR Ts oxida-
tive phosphorylation in mitochondria dominates (Kawalekar 
et al. 2016). As a functional consequence, CD28-derived 
costimulation results in a robust, highly efficient cytotoxic 
response in which CAR T cells rapidly become exhausted 
and differentiate into terminal effector memory cells per-
sisting for a shorter time. In contrast, cytotoxic response 
regulated by the 4-1BB costimulatory endodomain is less 
intense; however, CAR T cells persist for longer as central 
memory subsets (Long et al. 2015).

In vitro and in vivo preclinical models suggest that third-
generation chimeric antigen receptors containing both types 
of costimulatory endodomains could further improve the 
effector functions and the killing potential; however, their 
translation to clinical use resulted in high therapeutic risk 
(Morgan et al. 2010).

At present, fourth-generation CAR T cells (TRUCKs, “T 
cells redirected for universal cytokine-mediated killing”) 
have appeared on the front lines of research. These CAR 
T cells are further modified to secrete in the targeted tumor 
tissue a transgenic cytokine (most commonly IL-7; IL-12 

or IL-15), usually under the control of NFκB, upon CAR 
signaling (Chmielewski and Abken 2015; Chmielewski et al. 
2011). Such TRUCKs combine the direct antitumor attack 
of the CAR T cells with the immune-modulating capacities 
of the delivered cytokine. Other TRUCKs are engineered to 
secrete monoclonal antibodies (e.g. PD-1 inhibitor, (Naka-
jima et al. 2019)), or a bispecific T cell activator molecules 
(e.g., (Bonifant et al. 2016b; Choi et al. 2019)). These mol-
ecules provide an extra signal that leads to “complete T cell 
activation” by releasing T cells from possible checkpoint 
control by the tumor environment, or recruiting bystander 
tumor-infiltrating immune cells (Batra et al. 2020).

Genetic modification of T cells with chimeric 
antigen receptors

Historically, the first chimeric antigen receptor-modified T 
cells were generated nonvirally by DNA transfection. The 
method was advantageous owing to its low immunogenic-
ity and lower probability of mutations; however, the short 
lifespan of the transfected cells and the rapid drop of CAR 
expression have manifested as potential limitation (Jensen 
et al. 2000).

Today, the vast majority of clinical trials and preclinical 
models use lentiviral (Porter et al. 2011)- or gamma retrovi-
ral (Li et al. 2016; Szoor et al. 2020; Toth et al. 2020)-based 
transduction systems to generate CAR T cells. These meth-
ods offer the concept of permanent, efficient and safe modifi-
cation of primary human T cells with a plasmid encoding the 
chimeric receptor. Although lentiviruses could genetically 
modify quiescent cells as opposed to retroviruses that infect 
dividing cells, therapeutic effectiveness of different systems 
is similar (Tang et al. 2016).

The industrial application of viral systems is subject 
to particularly strict regulations all over the world, so the 

Fig. 3   Illustration of the basic 
structure of four generations 
of CARs. To improve effector 
function, second-generation 
CARs encompass a costimula-
tory endodomain (e.g., CD28 or 
4-1BB) fused to CD3ζ. Third-
generation CARs consist of two 
costimulatory domains linked 
to CD3ζ. In fourth generation 
CARs, an inducible expression 
component such as a cytokine 
(like IL-12), checkpoint inhibi-
tor (anti-PD1) or bispecific T 
cell engager (anti-CD3-CD19) 
is engineered into the CAR T 
cell

ScFv

IgG4
CD28 TM

CD3z

CD28
41BB 41BB
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GENERATION I GENERATION II GENERATION III

GENERATION IV - TRUCK

IN COMBINATION WITH:
-cytokine
-checkpoint inhibitor
-BiTE



Biologia Futura	

1 3

spreading of these methods is slow and CAR T cell manufac-
turing is expensive. For these reasons, nonviral-based tech-
nologies offering cost-effective and long-term stable CAR 
T cells are constantly being researched. Sleeping Beauty 
(SB) (Monjezi et al. 2017) and piggyBac transposonase (Xu 
et al. 2017) systems were able to produce well-functioning 
CAR T cells in preclinical models by permanent integra-
tion of transgenes; however, clinical efficacy was disap-
pointing (Kebriaei et al. 2016). Alternatively, researchers 
at the University of Pennsylvania (UPenn) used mRNA 
electroporation to generate CAR T cells, which does not 
integrate the transgene into the genome. Their method 
was stable in midterm range and in clinical trial resulted 
in transient CAR expression with satisfactory CAR T cell 
viability. The method was proven as safe; however, insuffi-
cient information was published on the therapeutic efficacy 
(Beatty et al. 2014), and long-term persistence as well as 
formation of specific memory cells is not achievable with 
this approach. Researchers at the Fred Hutchinson Cancer 
Research Center in Seattle published results of a preclini-
cal study in which DNA-carrying nanoparticles successfully 
modified the genome of circulating peripheral T cells with 
chimeric antigen receptors and achieved sustained remis-
sion in a leukemia cell line-xenotransplanted mouse model 
(Smith et al. 2017).

CAR T cells in clinical trials

Preparation of CAR T cell products

CAR T cell therapeutics are usually prepared from the 
patient’s own blood (autologous therapy) in GMP-certified 
bioreactors. In the first step, mononuclear cells are separated 
from the blood, and after rapid flow cytometric sorting, T 
cells are activated with anti-CD3 (signal I) and anti-CD28 
(signal II) human monoclonal antibodies. Cytokines (IL-2 or 
IL-7 + IL-15) are added to the cell culture at the appropriate 
concentration to enhance activation (Hollyman et al. 2009). 
Activated T cells are then genetically modified with the 
CAR construct using one of the above-described methods. 
The quality and the efficacy of CAR transduction are then 
monitored. If the product meets all strictly regulated release 
criteria, it will be frozen until use. Prior to administration, 
patients receive lymphoablative chemotherapy that has been 
shown to increase the efficacy of CAR T cell therapy in 
several clinical trials (Maude et al. 2014).

CAR T cells against hematopoietic tumors

The development of CD19-specific CAR T cells has rep-
resented a paradigm shift in the treatment for chemother-
apy-refractory acute lymphoblastic leukemias that do not 

respond to bone marrow transplantation (Porter et al. 2011). 
A summary focusing on clinical trials completed over the 
past three years shows that nearly 70% of this particularly 
poor-prognosis group achieved complete remission (CR) 
with therapeutic use of CD19-specific CAR T cells. In 
addition, the proportion of patients who did not respond to 
therapy was less than 10% (Tang et al. 2016). In a clinical 
trial at UPenn, 27 out of 30 patients (adults and children) 
responded to anti-CD19 CART treatment with CR (Maude 
et al. 2014), but a similarly high CR was published by the 
Memorial Sloan Kettering Cancer Center (MSKCC) (CR: 
88%) (Davila et al. 2014) and by the National Cancer Insti-
tute (NCI) (CR: 75%) (Lee et al. 2015). A deeper analysis of 
the dataset shows that patients who had received allogeneic 
bone marrow transplantation several times prior to CAR T 
cell therapy or whose disease showed extramedullary or neu-
rological involvement had a lower rate of complete remis-
sion (CR: 40–50%). Relapse was more common in these 
patients with the appearance of CD19-negative (e.g., CD22 
or myeloid marker positive) “escape” variants (Haso et al. 
2013; Schubert et al. 2020).

Anti-CD19 CAR T cells have also been successfully used 
in chronic B cell (CD19-positive) lymphocytic leukemia 
(B-CLL) in US cell therapy centers. In clinical trials at NCI 
(Kochenderfer et al. 2013), MSKCC (Brentjens et al. 2011), 
UPenn (Porter et al. 2011), and Baylor College of Medicine 
(BCM) (Cruz et al. 2013), more than 40 patients were treated 
with a CD19-specific T cell therapy. Ten patients had CR, 
ten had PR and five had nonprogressive (stable disease: SD) 
leukemia after treatment.

In lymphoma, clinical trials with first-generation CAR T 
cells have failed, but recent results with second- and third-
generation formulations are encouraging (Lee et al. 2015 
118). In the NCI study, 22 patients with refractory diffuse 
large B cell lymphoma (DLBCL) were treated with anti-
CD19 CAR T cells following a low-dose conditioning chem-
otherapy. CR was observed in 14 patients, partial response 
(PR) in four cases, and SD in one case (Kochenderfer et al. 
2017).

In a case report published by UPenn, a patient with mul-
tiple myeloma who had previously undergone myeloabla-
tive chemotherapy was treated with CD19-specific CAR 
T cells. The treatment resulted in a complete therapeutic 
response with an undetectable tumor at the molecular level. 
A particularly interest aspect of the case is that CAR T cell 
therapy was successful despite the fact that only 0.05% of 
the patient’s plasma cells expressed the CD19 antigen; how-
ever, presumably this population represented the least dif-
ferentiated tumor reservoir that was resistant to conventional 
therapies (Garfall et al. 2015).

In the last decade, more than ten research groups initiated 
clinical trials in patients with acute myeloid leukemia. In 
the first trial designed by Richie et al. (2013), the Lewis Y 
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antigen was targeted in a small group of patients. The study 
has shown a transient decrease in the number of malignant 
blasts; however, patients relapsed in the medium to long 
term. Two other promising targets for AML-specific CAR 
T cells are CD33 and CD123. Both antigens are expressed 
on the surface of AML blasts; however, they are also present 
on normal hematopoietic stem and progenitor cells (HSPC). 
Wang et al. published a case report in 2015 describing a 
41-year-old patient who had a transient response to CD33-
specific CART cells (Wang et al. 2015). CD123 is another 
promising marker in AML. In 2015, the City of Hope 
National Medical Centre in California opened a pioneering 
CART-123 trial, using a lentivirally transduced second-gen-
eration CAR. In their interim dataset, one of the two patients 
treated with low-dose CAR T cells achieved a morphological 
leukemia-free state lasting 70 days and two out of the five 
patients treated with higher dose of CAR T cells achieved 
a complete remission. In this group, three patients had sta-
ble disease. No dose-limiting toxicities were reported, and 
all treatment-related cytopenias resolved by 12 weeks post 
treatment (Cummins and Gill 2019).

Thirty-one years after generating the first functional CAR 
T cells and 15 years after their first clinical trial, the past 
3 years represent a major breakthrough in the history of 
immune-cell based oncotherapy. In 2017, the FDA approved 
tisagenlecleucel for the treatment for refractory B-ALL in 
children (O’Leary et al. 2019) and axicabtagene ciloleucel, 
for adults with refractory diffuse large B cell lymphoma 
(Neelapu et al. 2017). In 2018, the EMA has also approved 
tisagenlecleucel for treating refractory B-ALL up to 25 years 
of age, as well as adult DLBCL (Ali et al. 2020). Most 
recently, in July 2020, the FDA gave regulatory approval to 
the third CAR T cell product, brexucabtagene autoleucel for 
mantle cell lymphoma (Jain et al. 2020). All three products 
target the CD19 antigen in membrane of tumor cells.

CAR T cells against solid tumors

Nowadays, less than 100 clinical trials test CAR T cells 
against solid tumors (clinicaltrials.gov), which is less than 
a fifth of leukemia-related trials. Research over the past dec-
ade has highlighted many obstacles in using designer T cells 
in solid tumors. First, for most malignancies, there is no 
tumor-associated antigen available that would be a highly 
specific target for CAR T cells. This leads to a so-called 
on target, off tumor side effect, which can result in severe, 
irreversible damage to healthy organs. Second, on the tumor 
side, the effector function of T cells may be inhibited by 
various checkpoint molecules, such as CTLA-4 or PD-1 
(Hendry et al. 2016). Third, many times, the persistence of 
genetically modified T cells is not sufficiently long in solid 
tumors (Beatty and O’Hara 2016). Despite these obstacles, 
a number of CAR T cell clinical trials have been initiated 

worldwide to target solid tumors originating from a wide 
variety of organs (lung, esophagus, pancreas, stomach, 
breast, colon, brain and ovary).

The earliest and most frequently studied therapeutic tar-
get to date is the human epidermal growth factor receptor 
type 2 (ErbB2; EGFR2; HER2). HER2 is highly expressed 
on the surface of breast, lung, stomach, glia and pancreatic 
tumor cells (Friedlander et al. 2008). Several preclinical ani-
mal models have demonstrated that HER2-specific CAR T 
cells efficiently eradicate tumors expressing the target anti-
gen (Mata et al. 2014; Szoor et al. 2020; Toth et al. 2020). 
Despite encouraging results, a clinical breakthrough is yet to 
come. Although several clinical trials have been completed 
in which patients with HER2-positive osteosarcoma (Ahmed 
et al. 2015), glioblastoma (Ahmed et al. 2017), rhabdomyo-
sarcoma (Hegde et al. 2020) or breast cancer (Brudno and 
Kochenderfer 2016) have been treated with CAR T cell ther-
apy, the majority of patients did not respond to treatment. 
At this point, it is important to highlight that in a clinical 
trial targeting a HER2-positive metastatic colon carcinoma, 
an untreatable “cytokine storm” developed in a 39-year-old 
patient that shortly immediately led to the patient’s death. 
This unfortunate event delayed the authorization of therapy 
in solid tumors for several years (Morgan et al. 2010).

The second most targeted antigen is mesothelin, a mem-
ber of the glycoprotein family, which is expressed on the 
surface of many tumor cells (mesothelioma, lung, stomach, 
pancreas, esophageal cancer). Its function is unknown in 
normal tissues; however, it induces the proliferation and 
invasion of tumor cells, and its expression is an indicator 
of poor prognosis (Servais et al. 2012). In several preclini-
cal models, mesothelin-specific CAR T cells (meso-CAR T 
cells) have been shown to be able to eradicate mesothelin-
positive tumors (Carpenito et al. 2009). In a clinical study at 
UPenn, two patients were treated with mRNA-electroporated 
meso-CAR T cells with limited success (Beatty et al. 2014).

Furthermore, the disialoganglioside (GD2) glycolipid, 
which is highly expressed on the surface of neuroblastoma, 
melanoma and osteosarcoma cells could also be an impor-
tant target. In a BCM clinical trial, 19 patients received 
GD2-specific CAR T cells and in three patients complete 
remission was achieved (Louis et al. 2011).

Although clinical results have not yet been published, it is 
important to mention the EGFRvIII variant oncogene which 
belongs to the EGFR receptor family. This molecule is not 
expressed on normal somatic cells, while highly expressed 
on the surface of certain glioblastoma and head and neck 
carcinoma cells. In preclinical models, EGFRvIII-specific 
CAR T cells have been shown to be highly effective (John-
son et al. 2015). This target molecule is currently being 
tested for therapeutic efficacy in several clinical trials.

The high response rates observed in leukemia patients 
treated with CD19-specific CAR T cells have emerged 
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CAR T cells as the major breakthroughs of cancer immu-
notherapies in the last years. However, in solid tumors little 
clinical effect has been reported owing to the strong immu-
nosuppressive environment and the lack of specific tumor 
antigens. Fortunately, new strategies are arising with the 
potential to overcome these limitations. The development 
of safety mechanisms (Duong et al. 2019), T cell activation-
dependent constructions (Frigault et al. 2015), combinatorial 
antigen recognition strategies and multiple-targeting CARs 
(Porter et al. 2020) as well as CARs that target unhealthy 
(stressed) tissues in general (Breman et al. 2018) will hope-
fully result in well-tuned CAR T cells that avoid undesired 
toxicities, yet efficiently eliminate tumors. It is also good 
to keep in mind that using TCRs replacing, or built into 
(Walseng et al. 2017), CARs can target intracellular proteins, 
as these proteins are processed and presented to the TCR 
recognition motif by MHC molecules, whereas CARs can 
only target extracellular proteins, which represent only about 
1% of the potential tumor neoantigens.

Toxicity management in CAR T cell therapy

CAR T cell therapy does not use the same tool case as the 
classical adjuvant protocols, chemotherapy and radiation 
therapy since it does not target and attack rapidly dividing 
cells. Thus, the profile of expressed side effects during treat-
ments is also very different from those experienced in con-
ventional protocols. To the best of our knowledge, the side 
effects associated with CAR T cell therapies can be divided 
into two major groups.

“On target, off tumor” toxicity is when a CAR T cell 
recognizes a tumor-specific antigen on a normal tissue and 
destroys the cells expressing it. This is an expected side 
effect of CD19-specific CAR T cells, since the target antigen 
is not exclusively expressed in the membrane of malignant 
cells but it is also found on the surface of normal B lympho-
cytes. In these cases, B cell aplasia is also a marker of thera-
peutic efficacy. Fortunately, hypo- or agammaglobulinaemia 
due to B cell deficiency can be treated well by administration 
of human intravenous immunoglobulin (Kochenderfer et al. 
2013; Porter et al. 2011).

The earlier mentioned “cytokine release syndrome” 
(CRS) is the second unwanted side effect of CAR T cell 
therapies. It is caused by the sudden increase in activating 
cytokines (interferon-γ, GM-CSF, TNF-α, IL-6 and IL-10) 
produced by large numbers of activated immune cells, lead-
ing to prolonged high fever, low blood pressure, systemic 
hypoxia and, in rare cases, multiple organ failure. In recent 
years, several clinical trials have explored the pathogenic 
role of IL-6 in the development of CRS. The unwanted 
effect, which was previously fatal, is now well treated with 
appropriate doses of the IL-6 receptor blocker mAb toci-
lizumab (Brudno and Kochenderfer 2019). However, it is 

important to emphasize that CRS is also a marker of the 
efficacy of CAR T cell therapy, so completely suppressing 
it should not be a goal (Bonifant et al. 2016a).

Neurotoxicity, or CAR T cell-derived encephalopathy 
syndrome, is related to the CRS and is the second most 
frequent life-threatening side effect associated with CAR T 
cell therapies (Bonifant et al. 2016a). The most frequently 
reported symptoms are delirium, aphasia, confusion, som-
nolence, ataxia, tremors, and in advanced case patients, cer-
ebral edema might be developed (Brudno and Kochenderfer 
2019). Despite the observed correlation between high-grade 
CRS and neurotoxicity, the biological background of this 
potentially lethal effect is still poorly understood, and emerg-
ing clinical management schemes need time to be verified 
(Neelapu et al. 2018; Rivera et al. 2020).

Applicability of designer T cells in other diseases

The clinical applicability of genetically modified immune 
cells relies on the specific and efficient elimination of dis-
ease-causing cells. This potential, considering the success 
of CAR T cell-based cancer therapies, has encouraged many 
researchers to use CAR-modified immune cells in other dis-
ease groups, such as autoimmune diseases and infectious 
diseases.

Misrecognition of normal tissue components by the auto-
reactive B cells and plasma cells maintains tissue destruc-
tion in autoimmune disorders. These B cells can be elimi-
nated with the widespread use of rituximab (a monoclonal 
antibody) that recognizes the target cell through the mem-
brane-expressed CD20 molecule and activates an antibody-
mediated cytotoxic response (ADCC) (Schmidt et al. 2006). 
However, because the CD20 molecule is not only expressed 
on autoreactive B cell clones, but also designates for elimi-
nation the useful population as a side effect of therapy, com-
plete and persistent B cell aplasia develops. This condition 
can lead to the development of a severe septic condition (van 
Vollenhoven et al. 2013).

In recent years, two different concepts have been inves-
tigated for developing genetically modified immune cells 
against autoimmune diseases. In one, chimeric autoantibody 
receptor T cells (CAAR T cells) have the potential to elimi-
nate autoantibody-expressing B cell clones, as demonstrated 
for the case of the antibody-mediated autoimmune disease 
pemphigus vulgaris (PV). It was shown that autoantigen-
based chimeric immunoreceptors can direct T cells to kill 
autoreactive B lymphocytes through the specificity of their 
B cell receptor (Ellebrecht et al. 2016) (Fig. 4. concept I). In 
a conceptually different approach, chimeric antigen receptor-
modified regulatory T cells (CAR Tregs) have been used to 
suppress autoimmune response in murine colitis by carci-
noembryonic antigen-specific regulatory T cells (Blat et al. 
2014) (Fig. 4. Concept II).
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Infectious diseases are the focus of common interest 
as some of them may present insurmountable problems. 
In these cases, genetically modified immune cells might 
have the potential to constitute a breakthrough in the 
treatment of this rather diverse disease group. Herein-
below are a few highlights where CAR T cells have been 
effective against infectious diseases in preclinical studies.

Between 1995 and 2005, several clinical trials were 
initiated using CD4ζCAR T cells to treat patients with 
AIDS (Mitsuyasu et al. 2000). These CARs expressed 
the gp120 binding domains of the CD4 molecule that 
recognizes the glycoprotein in the membrane of HIV-
infected cells. CD4ζCAR T cells were able to detect and 
eliminate HIV-infected target cells with high efficiency in 
preclinical models; however, in clinical trials, they failed 
to exert a sustained antiviral effect. Nowadays, bi- or mul-
tispecific CAR T cells are used against HIV. In bispecific 
CARs, the extracellular CD4 domain is combined with an 
scFv that recognizes human C-type lectin that provides 
access to the viral capsid glycans. This second recog-
nition domain significantly enhanced the specificity of 
CAR T cells (Ghanem et al. 2018). In a recently published 
study, CD4/anti C-type kectin CARs were further modi-
fied with a gp41-specific scFv to enhance the efficiency 
(Anthony-Gonda et al. 2019).

There are some non-HIV viral infections where CAR 
T cells have been tested in preclinical trials. Full et al. 
generated CAR T cells targeting cytomegalovirus (CMV)-
specific glycoprotein B in the membrane of infected cells 
resulting in robust cytokine release (Full et al. 2010). In 
a recent preclinical study, HBsAg-specific CAR T cells 
were designed to treat hepatitis B infection. These CAR 
T cells were able to specifically recognize HBV-infected 
hepatocytes and efficiently lysed virus-replicating cells 
resulting in reduced plasma HBV-DNA levels (Kruse 
et al. 2018).

Summary

During the past four decades, the conceptual evolution of 
therapeutic antibodies has paved the road from immuno-
suppressive treatment to various modalities of oncoim-
munologic interventions, covering both direct targeting of 
tumors and immune checkpoint modulation. The next leap 
forward has been the inclusion of antigen-binding moie-
ties into chimeric antigen receptors (CARs) engineered 
into designer T cells, which is currently the most prom-
ising, growing branch of clinical oncology. Hundreds of 
CAR T cell protocols have already reached the clinical 
trial stage, most of them targeting multiresistant lymphoid 
tumors. In the past decade, CAR T cells have brought a 
paradigm shift in the treatment for CD19-positive lym-
phomas and leukemias. However, for solid tumors clini-
cal results remained limited. In addition, a clinical trial 
targeting HER2 tumor-specific antigen ended with a fatal 
cytokine release syndrome (Morgan et  al. 2010). This 
regrettable event draws attention to the need to systemati-
cally compare the function and characteristics of the CAR 
components in terms of activity, efficacy, endurance and 
long-term survival. In addition, the ability for expansion 
and the specificity of tumor recognition would also need 
to be improved.

New fields of application for CAR T cells have also 
come into view and have reached preclinical stage, includ-
ing the treatment for autoimmune-diseased and viral 
infections. With all of this in mind, the next decade has to 
answer two exciting scientific questions: would genetically 
modified T cells become effective alternatives in the treat-
ment for solid tumors, either alone or in combination with 
checkpoint inhibitors or integrated into cytokine-secret-
ing T cells (TRUCKs)? On the other hand, do they have 
enough potential to cover a broader therapeutic palette 

Fig. 4   Chimeric antigen recep-
tors as solutions beyond cancer. 
Examples in autoimmune 
diseases. Concept I represents 
chimeric autoantibody receptor 
T cells (CAAR) that have the 
potential to recognize and kill 
autoreactive B cells. Concept 
II demonstrates CAR Treg-s 
inducing suppression of effector 
cell function upon recognition 
of the autoantigen
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similar to that of monoclonal antibodies, and to be applied 
in other groups of diseases?
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