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EXPONENTIAL DIOPHANTINE EQUATIONS AND
REPRESENTATION PROBLEMS

Értekezés a doktori (Ph.D.) fokozat megszerzése érdekében a

Matematika– és Számítástudományok tudományágban

Írta: Bertók Csanád okleveles matematikus

Készült a Debreceni Egyetem Matematika– és Számítástudományok

Doktori Iskolája Diofantikus és Konstruktív Számelmélet

programjának keretében
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1 Introduction 1

1. Introduction

In this dissertation, we consider representation problems of integers as expres-
sions involving exponential terms. We also give algorithms which can be used
to solve exponential Diophantine equations over Z and rings of integers of
number fields. As applications, by using our method we solve some Diophan-
tine problems, too.

First, we consider representation problems. Let a1, . . . , al be distinct posi-
tive integers and put A = {a1, . . . , al}. Consider the set

A′ := {ax11 · . . . · a
xl
l |x1, . . . , xl are non-negative integers}.

A natural question to ask is that at least how many elements do we need from
A′ to represent a given positive integer as their sum? If A consists of only one
number b then the question basically asks about the representation of positive
integers in the base b number system. IfA consists of two primes, then we have
a so-called "double base" representation problem (as a related paper, see e.g.
the work of Dimitrov and Howe [25]). If we define the function F (k) (k ∈ N)

to be the smallest natural number which cannot be represented as the sum of
less than k terms from A′, and F±(k) to be the function defined similarly,
except that A′ is replaced by A′± = A′∪ (−A′) and ask about the properties of
F (k) and F±(k), then we get a similar problem proposed by Nathanson [56].
If for example A = {2}, then F (4) = 15, since 15 = 23 + 22 + 21 + 20, thus
we need at least 4 elements from A′ to represent 15. The problem however is
not trivial if A consists of more than one number. In the case when A consists
of primes, Hajdu and Tijdeman [38, 39] gave upper bounds for the function
F (k) and F±(k).

In this dissertation, we give a lower and upper bound for F (k) and F±(k)
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in the case, where A consists of arbitrary integers. These results answer a
question of Nathanson [56] in the above setting, and extend the mentioned
results of Hajdu and Tijdeman. These bounds are relatively sharp, as well. The
corresponding results are given in Section 2.1.

Another related topic is the analysis of integers which have only "few"
non-zero digits in a special number system (see e.g. papers by Erdős, Mauduit,
Pomerance, Sárközy [26, 27, 52, 53, 54] and the references there). On the other
hand, if a number n has to hold certain other arithmetical property, it may hap-
pen that it must have "many" digits. This is the case when n belongs to some
recurrence sequence; see e.g. Bugeaud, Cipu and Mignotte [21], Luca [48] and
Stewart [78] for effective results in this direction. In Section 2.2 we consider
multi-base representations. Senge and Straus [71] proved that the number of
those integers, whose number of non-zero digits in two different bases b1 and
b2 with log b1/ log b2 /∈ Q remains under some fixed bound, is finite. Later,
Stewart [78] gave a more precise, effective version of this result (for an exten-
sion to the case of several number systems, see Schlikewei [69], and for num-
ber systems based on recurrence sequences see the papers of Pethő and Tichy
[61, 62]). In this subsection we go one step further and study representations
of integers which have only a "few" non-zero digits in different multi-base rep-
resentations simultaneously. For this, let S be a finite set of primes, and write
ZS (resp. Z+

S ) for the set of integers (resp. positive integers) having no prime
divisors outside S. We consider the representations of integers n of the form

n = u1 + · · ·+ ut

with u1, . . . ut ∈ ZS . We write wS(n) for the minimal t for which the above
equation holds. If n is positive and the numbers on the right hand side are el-
ements of Z+

S , we write w+
S (n) instead. In Section 2.2 we prove effective and
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ineffective results regarding wS(n) and w+
S (n). To prove those theorems, we

need deep tools, including Baker’s method and the quantitative subspace the-
orem.

In Section 2.3 we consider the problem of representation of terms of binary
recurrence sequences as linear combinations of powers. Marques and Togbé
[50] determined all Fibonacci and Lucas numbers which can be written as
the sum of powers of 2, 3, 5 under certain assumptions. Pethő and de Weger
[59] gave an algorithm which can be used to solve the Diophantine equation
Un = wpx11 · . . . · pxmm , where Un is a binary recurrence sequence with positive
discriminant. Pethő [58] and Shorey and Stewart [72] independently proved
that under certain natural assumptions, a linear recurrence sequence may con-
tain only finitely many perfect powers. In the case of some special, famous
sequences all perfect powers have been determined. In the case of the Pell
sequence Pn, Pethő [60] proved that it does not contain non-trivial powers.
Bugeaud, Mignotte and Siksek [22] proved that the Fibonacci-sequence Fn
contains only the powers 0, 1, 8, 144, and the only powers in the sequence of
Lucas numbers Ln are 1, 4. Results of Pethő and Tichy [62] imply that there
are only finitely many Fibonacci numbers of the form px + py + pz, where p is
a fixed prime. Kovács [42] found all combinatorial numbers of certain shapes
among the terms of Fn, Ln, Pn andQn (the associated Pell-sequence). We give
a general finiteness result for the solutions of the equation

Un = b1p
x1
1 + · · ·+ bsp

xs
s

in non-negative integers x1, . . . , xs. In our proofs we use Baker’s method
(more precisely we use a theorem due to Matveev [51]).
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In Chapter 3 we consider exponential Diophantine equations of the form

a1b
x11
11 . . . bx1`1` + · · ·+ akb

xk1
k1 . . . bxk`k` = c (A)

in non-negative integers x11, . . . , x1`, . . . , xk1, . . . , xk`, where the coefficients,
bases and the right hand side are given non-negative integers. This equation
has a very rich literature. If k = 2 then using Baker’s method one can give
explicit upper bounds for the exponents. (This follows from results of Győry
[35, 36]. This result has lots of extensions, see e.g. the books [73] and [32],
and the references given there.) If k = 3, 4 then under some restrictive as-
sumptions, the solutions can still be determined (see results of Vojta [86] and
Bennett [8]). However, in general, for k ≥ 3, the problem becomes signifi-
cantly more difficult. In this case the method of Baker fails and we need to use
the subspace theorem, which is ineffective, and is capable only to provide a
bound for the number of non-degenerate solutions. Here we refer to Evertse
[29], and again to the book of Evertse and Győry [32] and the references given
there. It is important to note that there is no known algorithm in the litera-
ture, which would be capable to produce all the solutions of such an equation.
In Chapter 3 we give a heuristic algorithm, based upon exponential congru-
ences for the solutions of such equations. As a starting point, we consider the
congruences

a1b
x11
11 . . . bx1`1` + · · ·+ akb

xk1
k1 . . . bxk`k` ≡ c (mod m) (B)

with some m ∈ Z. It is easy to see that if for some m we have no solutions,
then we can immediately say that (A) also has no solutions. However, the
reverse statement is not at all obvious. Namely, what happens if we know
that congruence (B) has a solution for every possible moduli? If we consider
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a polynomial Diophantine equation, then it is possible to have no solutions
despite of the fact that the corresponding congruence has solutions for every
modulus m. The most famous example is due to Selmer [70]. Consider the
equation

3X3 + 4Y 3 + 5Z3 = 0

in X, Y, Z ∈ Z. Selmer proved that although this equation has non-trivial
solutions modulo m for all m ≥ 2, it has no non-trivial solutions in Z.

This problem is related to the so-called Hasse-principle, which states that
if a Diophantine equation has no solutions at all then there exists a modulus
m such that the corresponding congruence has no solutions modulo m. As
one can see from the example above, this principle is false if we consider
polynomial Diophantine equations. However, for equations of the type (A) it
is believed that the Hasse-principle is true; it is sufficient to think of a famous
conjecture of Skolem [75]. There are several results in the literature regarding
this conjecture. One of the most important is due to Schinzel [66], who proved
that if k = 1 then this conjecture is true.

In Section 3.1 we prove a slightly modified version of this conjecture, and
provide some support that it should hold. We prove that if we fix the bases and
coefficients in (A) and

H = {c ∈ Z : (A) is not solvable, but (B) is solvable for all m},

then H has density zero inside the set

H0 = {c ∈ Z : (A) is not solvable}.

Moreover, based upon this conjecture, we present an algorithm which can be



6 1 Introduction

used to find every solution of a given exponential Diophantine equation, pro-
vided it has only finitely many solutions. We give several concrete examples,
as well.

In Section 3.2 we consider a similar problem as in Section 3.1 with the
difference that instead of working in Z, now we work in the ring of integers
of an arbitrary algebraic number field. We present several theorems consider-
ing the exponential Hasse-principle in this number field case and provide an
extended algorithm which can be used to find the solutions of these types of
equations. Finally, we also give some numerical examples which demonstrate
the usability of our algorithm.

In Chapter 4 we present some applications of the theorems and methods
from the previous chapters. In Section 4.1 we prove a classical conjecture of
Terai regarding the solutions of the equation

(4t2 + 1)x + (5t2 − 1)y = (3t)z,

where t is an arbitrary but fixed positive integer and x, y, z are unknown posi-
tive integers. In Section 4.2 we concentrate on the equations

Un = 2x + 3y and Un = 2x + 3y + 5z,

where Un is the n-th term of one of the Fibonacci-, Lucas-, Pell- or associated
Pell-sequence and x, y, z are unknown non-negative integers. In particular, we
extend a result of Marques and Togbé [50], and solve a problem of Sanches
amd Luca [65]. In Section 4.3 we turn to a related problem, namely we solve
the equation

Bu +Bv +Bw = bz

in non-negative integers u, v, w, z where Bi is the i-th balancing number and
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b ∈ {2, 3, 5, 7}.
Finally in Section 4.4 we discuss applications regarding multi-base repre-

sentations. Namely, let S1 and S2 be disjoint non-empty sets of primes with
S1 ∪S2 = {2, 3, 5} and let w+

S (n) be defined as before. In this section we give
all solutions to the inequality

w+
S1

(n) + w+
S2

(n) ≤ 4.

The results of this dissertation are published in the papers [9, 10, 12, 13, 14,
16]. As one can see, the main theme of our theorems is exponential equations
and representation problems related to exponential expressions. We note that
we have several other results: in [17] we obtain van der Waerden type theorems
for linear recurrence sequences; in [18] we consider the problem of simulta-
neous approximation of linear forms in number fields by using the LLL algo-
rithm; in [15] we provide results concerning the distribution of polynomials
with bounded height; in [11] we prove theorems regarding exceptional units
in number fields. However, to keep the presentation coherent, these results are
not included in this dissertation.
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2 Representation problems

In this chapter of the dissertation we prove some theoretical results regarding
various representation problems, including problems concerning the represen-
tation of integers as power products, multi-base representations and represen-
tation of terms of recurrence sequences as linear combinations of pure powers.

2.1 Representing integers as sums of general power prod-
ucts

Let a1, . . . , al be distinct positive integers and put A = {a1, . . . , al}. Let A′ be
the set of products of powers of elements from A, that is

A′ := {am1
1 · . . . · a

ml
l | m1, . . . ,ml are non-negative integers}

and let A′± = A′ ∪ (−A′). Let F (k) (k ∈ N) be defined as the smallest natural
number which cannot be represented as the sum of less than k terms from A′.
We define F±(k) similarly as F (k) except that we replace the set A′ with A′±.

Nathanson in Problem 2 of [56] asked for the growth properties of F±(k),
in the particular case when the elements ai (i = 1, . . . , l) of A are primes.
Hajdu and Tijdeman [38, 39] proved several related theorems, both for F (k)

and F±(k). More precisely , they proved that for all k > 1

kC
∗
0k < F (k) < C∗1(kl)(1+ε

∗)kl and kC
∗
0k < F±(k) < exp((kl)C

∗
2 ) (2.1)

hold, where C∗0 and C∗2 are positive absolute constants, ε∗ > 0 is arbitrary, and
C∗1 is a positive constant depending only on ε∗.

In this section we consider the general case, where the elements ai (i =

1, . . . , l) ofA are arbitrary positive integers. It is important to note that it seems
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to be more natural to consider the problem under this condition. On the one
hand, this is the case e.g. in [1] and [37]. On the other hand, since a part of the
argument goes modulo m (with some appropriate m), the extra assumption
that the numbers ai (i = 1, . . . , l) should be primes is irrelevant at many
points. To prove our results, among other things we need to extend classical
results of Tijdeman [84, 85] concerning the gaps inA′ where the ai are primes,
to the case of arbitrary positive integers ai (i = 1, . . . , l).

Now we state the main results of this section. Since we use a handful of
lemmas, we give them in a separate subsection (with the exception of Lemma
2.1 since this result is connected to Theorem 2.3). Then we present the proofs
of these theorems.

2.1.1 New results

As usual, we call the positive integers n1, n2, . . . , nt multiplicatively indepen-
dent, if

nα1
1 · nα2

2 · . . . · nαt
t = 1 (α1, . . . , αt ∈ Z)

occurs only when α1 = α2 = . . . = αt = 0.

The first result concerns the non-degenerate case, where A contains a pair
of multiplicatively independent elements. This is Theorem 2.1 in Bertók [9].

Theorem 2.1. LetA,A′, A′±, F (k) and F±(k) be as above and suppose thatA

has two multiplicatively independent elements. Then for every k > 1 we have:

i) F (k) > kC1k, where C1 is a constant depending only on A,

ii) F (k) < C2(kl)
(1+ε)kl for every ε > 0, where C2 is a constant depending

only on ε,
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iii) F±(k) < exp((kl)C3), where C3 is an absolute constant.

Noting that F±(k) ≥ F (k) holds for all k ≥ 1, one can observe that part
i) of the above theorem yields a lower estimate for F±(k) as well. Comparing
Theorem 2.1 with (2.1), we see that our result provides similar bounds for
F (k) and F±(k) as [39] but under more general circumstances.

The next result (Proposition 2.1 from our paper [9]) describes the degen-
erate situation, where the elements of A are pairwise multiplicatively depen-
dent. Comparing this result with Theorem 2.1, one can see that the behaviour
of F (k) and F±(k) are completely different in these cases.

Theorem 2.2. If all pairs of elements ofA are multiplicatively dependent, then

there exist constants 1 < C4 < C5 depending only on A such that

Ck
4 < F (k) ≤ F±(k) < Ck

5 for all k > 1.

The next theorem plays a key role in the proof of Theorem 2.1. This result
extends classical theorems of Tijdeman [84, 85] concerning the gaps in A′ in
the case where the elements of A are primes, to the case where the elements
of A are arbitrary positive integers. This is Theorem 2.2 in Bertók [9].

Theorem 2.3. Suppose that A has at least two multiplicatively independent

elements and write 1 = a′0 < a′1 < . . . for the sequence of the elements of A′.

Then there exist a positive integer N and positive constants C6, C7 depending

only on A such that:

i) a′n+1 − a′n >
a′n

(log a′n)
C6

for a′n ≥ 3,

ii) a′n+1 − a′n <
a′n

(log a′n)
C7

for a′n ≥ N .

The following lemma (Lemma 3.5 in Bertók [9]) considers the case where
all pairs of elements in A are pairwise multiplicatively dependent.
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Lemma 2.1. If the elements ofA are pairwise multiplicatively dependent, then

there exists a positive integer b such thatA′ contains only non-negative powers

of b. Furthermore, there exist non-negative integers C8, C9 depending only on

A, such that for any non-negative integer β with β ≥ C9 we have bβ ∈ A′. In

particular, if a′n > bC9 then

a′n+1 − a′n = (b− 1)bn+C8 .

Proof. If the elements of A are pairwise multiplicatively dependent, then we
can find non-negative integers γi, γj such that aγii = a

γj
j holds for any i, j ≤ l.

One can easily see that this means that there exists a positive integer b for
which ai = bβi holds for every i = 1, . . . , l. If this number is not uniquely
determined then let b be the largest number for which the previous equality
holds.

To prove the second part of the lemma, observe that gcd(β1, β2, . . . , βl)
= 1 holds. Consider the Diophantine equation

β1x1 + β2x2 + . . .+ βlxl = β

in positive integers x1, . . . , xl, where β is a fixed positive integer. It is well-
known (see e.g. [64]) that there exists a constant c1 ∈ N depending only on
β1, . . . , βl, such that for every β ≥ c1 the above equation is solvable. Thus
every number of the form bβ with β ≥ c1 belongs to A′. By choosing C9 = c1

the statement immediately follows.

2.1.2 Lemmas

To prove the theorems we need several lemmas. The first one (Lemma 3.1 in
Bertók [9]) is a simple equivalent condition for multiplicative dependence of
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two integers. Since its proof is obvious, we omit it completely.

Lemma 2.2. Let u and v 6= 1 be positive integers. Then log u
log v

is rational if and

only if u and v are multiplicatively dependent.

The next lemma (Lemma 3.2 in Bertók [9]) concerns the convergents of
numbers log u

log v
. Note that a similar statement is proved in [84], in the special

case where u and v are primes. In fact the proof of this lemma is rather similar
to that from [84]. However, for the convenience of the reader, and to keep the
presentation self-contained, we give the proof here, too.

Lemma 2.3. Let u, v 6= 1 be multiplicatively independent positive integers.

Write p0
q0
, p1
q1
. . . for the sequence of convergents of log u

log v
. There exists a constant

C10, depending only on u and v such that for any i ≥ 2 we have

qi+1 < qC8
i log v.

Proof. If i ≥ 2 then qi ≥ 2. It is well-known that∣∣∣∣piqi − log u

log v

∣∣∣∣ < 1

qiqi+1

.

Thus we have

|pi log v − qi log u| < log v

qi+1

. (2.2)

Note that by Lemma 2.2 we have |pi log v − qi log u| 6= 0. Thus by a classical
result of Baker [5] we get

|pi log v − qi log u| > exp{−c2(logH)},
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where H = max(pi, qi) and c2 is a constant depending only on u and v. Since
pi
qi
< 1 + log u

log v
, we get logH ≤ c3 log qi (i ≥ 2), where c3 is a constant

depending only on u and v. Thus we obtain

|pi log v − qi log u| > q−c4i (i ≥ 2), (2.3)

where c4 is a constant depending only on u and v. With C10 = c4, the lemma
now follows from (2.2) and (2.3).

For the next lemma, let λ(m) denote the Carmichael function of an integer
m > 1. This is the smallest positive integer b such that for any integer a
for which (a,m) = 1 we have ab ≡ 1 (mod m). The following lemma is
a generalization of Theorem 1 from [38] (and also an explicit version of a
theorem of Erdős, Pomerance and Schmutz [28]). This lemma is Theorem 2.2
in Bertók and Hajdu [12].

Lemma 2.4. There exist positive constants C11 > 1 and C12 such that for any

positive integer r and for every large integer i there is an integerm with r | m,

such that

logm ∈ [log i+ log r, (log i)C11 + log r]

and

λ(m) < r(logm/r)C12 log log logm/r.

Proof. Let r be an arbitrary positive integer, and let i be sufficiently large. By
Theorem 1 of [38] there exists an n such that

log n ∈ [log i, (log i)C11 ] and λ(n) < (log n)C12 log log logn,

where C11, C12 are positive constants with C11 > 1. Put m := rn. Then
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obviously, r | m. Furthermore, we immediately obtain

logm ∈ [log i+ log r, (log i)C11 + log r].

Finally, as it is well-known, for any positive integers a, b we have λ(ab) ≤
aλ(b). Hence

λ(m) ≤ rλ(n) < r(log n)C12 log log logn = r(logm/r)C12 log log logm/r,

and the lemma follows.

Remark 1. In fact, in the proofs of the theorems in this section we will use
Lemma 2.4 only with r = 1. However, later in Section 3, we will need this
result in its full generality.

Let now k be a positive integer and let HA,k be the set of those integers n
which can be represented as the sum of at most k elements from A′. That is,
put

HA,k = {n ∈ Z | n =
I∑
i=1

a′i with I ≤ k and a′i ∈ A′ (i = 1, . . . , I)}.

Moreover, for any H ⊆ Z and m ∈ Z,m ≥ 2 let H (mod m) be the set of
the residues of the elements of H modulo m, i.e.

H (mod m) = {i | 0 ≤ i < m, h ≡ i (mod m) for some h ∈ H}.

The following lemma is Theorem 1 from [39]. This result tells us that there
exists a modulus m such that the elements of HA,k cover only a "few" residues
modulo m.
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Lemma 2.5. Let C11, A and k be as above. There is a constant C13 such that

for every sufficiently large integer i there exists an integer m with

logm ∈ [log i, (log i)C11 ] and

|HA,k (mod m)| < (logm)C13kl log log logm.

2.1.3 Proofs

Because in the proof of Theorem 2.1 we use Theorem 2.3, we prove the latter
result first.

Proof of Theorem 2.3. First we prove part i) of the statement. In case where
the elements of A are primes, it is a result of Tijdeman [84]. If the elements of
A are not primes, then let P = {p1, . . . , pm} be the set of the prime factors of
the elements of A and put

P ′ = {pα1
1 . . . pαm

m | α1, . . . , αm are non-negative integers}.

It can be easily seen that A′ ⊆ P ′. Thus part i) follows from the result of
Tijdeman [84].

To prove part ii) of the theorem, we follow the method of Tijdeman [85].
Let u and v be multiplicatively independent elements of A, and write 1 =

x0 < x1 < . . . for the elements of the set {urvs|r, s ≥ 0}. For the rest of
the proof we note that from now on all constants depend only on u and v. Let
x = xn = urvs ≥ N , where N is chosen later. We may assume that ur ≥

√
x.

Thus we have

r ≥ log x

2 log u
. (2.4)
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Let p0
q0
, p1
q1
, . . . be the convergents of log u

log v
. As it is well-known, q0, q1, . . . is a

monotone increasing sequence. Choose i such that qi ≤ r < qi+1 and suppose
that N is so large that both n ≥ 3 and i ≥ 2. We distinguish two cases.

a) Assume first that

pi
qi
>

log u

log v
.

Putting x′ = ur−qivs+pi , we have x′ > x. Hence using well-known properties
of the convergents, we get

pi
qi
− log u

log v
<
pi
qi
− pi+1

qi+1

=
1

qiqi+1

.

Thus

log
x′

x
= log

vpi

uqi
= pi log v − qi log u <

log v

qi+1

.

Using r < qi+1 and (2.4) we obtain

log
x′

x
<

log v

qi+1

<
log v

r
≤ 2 log u log v

log x
.

Hence we see that x′

x
has an upper bound depending only on u and v. Using

that x′ > x, and by the elementary properties of the function f(y) = log y
y−1

(where y = x′

x
) one can easily prove that

log
x′

x
> c5

(
x′

x
− 1

)
.
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It follows from the inequalities above, that

x′

x
− 1 <

c6
log x

.

Thus

xn+1 ≤ x′ < x+ c6
x

log x
= xn + c6

xn
log xn

. (2.5)

b) Now suppose that

pi
qi
<

log u

log v
.

Then as it is well-known, pi−1

qi−1
> log u

log v
. Letting x′ = ur−qi−1vs+pi−1 , we have

x′ > x. Hence

pi−1
qi−1
− log u

log v
<
pi−1
qi−1
− pi
qi

=
1

qi−1qi
.

It follows that

log
x′

x
= log

vpi−1

uqi−1
= pi−1 log v − qi−1 log u <

log v

qi
.

By Lemma 2.3 we obtain

qi >

(
qi+1

log v

)c7
.

Using the above inequalities, (2.4) and r < qi+1, we get

log
x′

x
<

log v

qi
<

(log v)1+c7

qc7i+1

<
(2 log u)c7(log v)1+c7

(log x)c7
.
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Thus similarly as in case a) there exists a constant c8 such that

log
x′

x
> c8

(
x′

x
− 1

)
.

This yields

xn+1 ≤ x′ < x+ c9
x

(log x)c7
= xn + c9

xn
(log xn)c7

. (2.6)

Thus by (2.5) and (2.6), we have in both cases a) and b) that

xn+1 ≤ xn + c10
xn

(log xn)c11
, for xn ≥ N.

For N sufficiently large this implies

xn+1 < xn +
xn

(log xn)c12
, for xn ≥ N,

which proves the statement with C7 = c12.

Proof of Theorem 2.2. First note that F (k) ≤ F±(k) obviously holds for all
k ≥ 1. To prove the lower estimate Ck

4 < F (k), observe that by Lemma 2.1
in this case A′ contains only powers of b, further, A′ contains all powers of
b from some point on. Hence this part of the statement follows by a simple
calculation.

To prove the upper estimate F±(k) < Ck
5 , without loss of generality we

may clearly assume that by the above notation A′ = {bi|i = 0, 1, 2, . . .}. Let
k > 1 and if b ≥ 3 then let n = bk−1 + bk−2 + . . . + b + 1. We show that
for any representation of n of the form n = a′1 + . . . + a′t (a′i ∈ A′±, i =

1, 2, . . . , t) we have t ≥ k. Let t be minimal with this property and assume
that |a′1| ≥ |a′2| ≥ . . . ≥ |a′t|. Because of the minimality of t one can easily
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check that a′1 = bk−1 must hold. Now let n′ = n − bk−1 and apply the same
argument for n′ to determine a′2. By induction we get that a′1 = bk−1, a′2 =

bk−2, . . . , a′t−1 = b, a′t = 1. Thus we get that F±(k) ≤ n < bk so C5 = b

is an appropriate choice. If b = 2 then we can use a similar argument with
n = 22k−2 + 22k−4 + . . . + 1. In this case we have n < 4k and the statement
follows.

Proof of Theorem 2.1. We follow the argument of Theorem 3 of Hajdu and
Tijdeman [39]. The important difference is that by using Theorem 2.3, we can
prove a more general statement.

To prove part i) of Theorem 2.1 we use the greedy algorithm. Suppose that
we want to express the positive integer n as a sum of elements of A′. Let a′1, a

′
2

be successive elements of A′ such that a′1 ≤ n < a′2, and let n1 := n − a′1.
Then by Theorem 2.3 we have n1 ≤ a′2−a′1 <

a′1
(log a′1)

c13
< n

(logn)c13
with some

number c13 > 0 depending only on A. Then we repeat this step for n1, to get
n2 with n2 <

n1

(logn1)c14
. We can iterate this method and reduce the "rest" each

time by a factor at least (log n)c15 until ni exceeds exp(
√

log n). If ni is smaller
than exp(

√
log n) we can reduce ni, ni+1, and so on, in each step by a factor

larger than some constant c16 > 1 with c16 depending only on the smallest
element of A. We can repeat it as long as (log ni+j)

c16 > c17 where c17 is a
constant depending only on A. After the procedure, we find that

k ≤ i+ j + c17 <
log n

c15 log log n
+

√
log n

log c16
+ c17

elements of A′ suffices to represent n, which implies F (k) > kC1k.

To prove part ii) of Theorem 2.1 and give an upper bound for F (k) we
study the number of representations of postive integers up to n as

∑k
j=1 a

′
j with



20 2 Representation problems

a′j ∈ A′ ∪ {0}. Since the number of elements of A′ ∪ {0} not exceeding n is
at most (c18 log n)l, the number of represented integers is at most (c18 log n)kl.
If this number is less than n, then we are sure that some positive integer ≤ n

is not represented. This is the case if

kl <
log n

log log n+ log c18
.

Suppose n > (kl)(1+ε)kl. Then it follows from the monotonicity of the function
log x

log log x+c18
for large x that

log n

log log n+ c18
>

(1 + ε)kl log(kl)

log(kl) + log((1 + ε) log(kl)) + c18
> kl

for kl sufficiently large. By choosing C2 suitably for the smaller values of kl,
it suffices for all values of kl that n ≥ C2(kl)

(1+ε)kl. Thus

F (k) ≤ C2(kl)
(1+ε)kl

which proves part ii) of Theorem 2.1.

To prove part iii) of Theorem 2.1 we consider representations by sums
of elements from A′±. Let H∗A,k be the same set as HA,k, with the only dif-
ference that instead of working with elements of A′ we are now using the
elements of A′±. Choose the smallest positive integer i > 10 such that j >
(log j)C13kl log log log j for j ≥ i. Then i < 2(log i)C13kl log log log i, where C13 is
the same as in Lemma 2.5. It follows that

log i < c19kl(log log i)(log log log i),

whence log i < c20kl(log(kl))(log log(kl)) for some constants c19 and c20. By
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Lemma 2.4 there exists an integer m with log i ≤ logm ≤ (log i)C11 such
that all representations in H∗A,k are covered by at most (logm)C11kl log log logm

residues modulom. By the definition of i and the inequality i ≤ m, we see that
this number of residues is less than m, therefore at least one positive integer
n ≤ m has no representation of the form

∑k
j=1 a

′
j , with a′j ∈ A′±. Hence

log n ≤ logm ≤ (log i)C11 < (c20kl(log(kl))(log log(kl)))C11 < (kl)c21

for some constant c21. Thus F±(k) < exp((kl)c21) and part iii) of Theorem 2.1
is proved with C3 = c21.

2.2 Multi-base representations

It is an old problem to study integers having only a "few" non-zero digits
in some classical base b representation. A generalization of this problem is
the analysis of the so-called multi-base representations, when instead of lin-
ear combinations of powers of a fixed number b, one can combine products
of powers of fixed primes. For some related results see the papers of Ádám,
Hajdu and Luca [1], Dimitrov and Howe [25], Hajdu and Luca [37], Hajdu
and Tijdeman [38, 39] and Nathanson [56], and the references given there.

It is also an interesting question to study integers having only "few" non-
zero digits in different bases simultaneously. Senge and Straus [71] proved that
the number of those integers, whose number of non-zero digits in two different
bases b1 and b2 with log b1/ log b2 /∈ Q remains under some fixed bound, is
finite. Later, Stewart [78] gave a more precise, effective version of this result
(for an extension to the case of several number systems, see Schlikewei [69],
and for number systems based on recurrence sequences see the papers of Pethő
and Tichy [61, 62]).
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In this section we consider the following problem. Let S be a finite set of
primes, and write ZS (resp. Z+

S ) for the set of integers (resp. positive integers)
having no prime divisors outside S. We consider the representations of integers
n of the form

n = u1 + · · ·+ ut (2.7)

with u1, . . . , ut ∈ ZS . Such a representation of n is often called a multi-base
representation. We write wS(n) for the minimal t for which (2.7) holds with
some u1, . . . , ut ∈ ZS . If n > 0 and we also require that u1, . . . , ut ∈ Z+

S , we
then write w+

S (n) instead.

In this section we prove finiteness theorems for integers n with "small"
values of w+

S (n) with respect to different sets S simultaneously. For the the-
oretical results we use Baker’s method concerning linear forms in logarithm
and a deep theorem of Evertse [30] bounding the number of non-degenerate
solutions of S-unit equations.

Similarly to Section 2.1 we first state the theorems, then in a later subsec-
tion we prove these results.

2.2.1 New results

The first part of the following theorem (which is Theorem 2.1 in Bertók, Ha-
jdu, Luca, Sharma [14]) shows that for fixed disjoint sets of primes S1, . . . , Sk,
and a fixed T , there can only be finitely many integers n such that the sum of
the w+

Si
(n) (i = 1, . . . , k) is lower than T . In the second part of the theorem

we give an effective upper bound for the number of such numbers. We note
that this result is an extension of the above mentioned result of Stewart [78] to
the multi-base situation.

Theorem 2.4. Let k be a positive integer, S1, . . . , Sk be finite sets of primes
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such that S1 ∩ · · · ∩ Sk = ∅. Then for any T the inequality

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T

is valid only for finitely many integers n. Furthermore, the number of such in-

tegers n is at most C14 = C14(T, k, s), where C14 is an effectively computable

constant depending only on T, k and s := |S1 ∪ · · · ∪ Sk|.

Remark 2. It is important to note that the condition S1 ∩ · · · ∩ Sk = ∅ in the
above theorem is necessary. Indeed, if p ∈ S1∩· · ·∩Sk would hold with some
prime p, then for T := k ≥ 1 we would have

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T

for all n = pα (α ≥ 0), since in this case w+
Si

(n) = 1 for all 1 ≤ i ≤ k.

The second result (Theorem 2.2 in our paper [14]) gives an effective lower
bound for w+

S (n) in a special case.

Theorem 2.5. Let ` be a positive integer, S1 = {p1, . . . , p`} and

S2 = {q}, where p1, . . . , p`, q are distinct primes. If n is a positive integer

with n > ee
e

such that w+
S1

(n) = 1, then we have

w+
S2

(n) >
C15 log log n

log log log n
,

where C15 = C15(`, p1, . . . , p`, q) is an effectively computable positive con-

stant depending only on `, p1, . . . , p`, q.

Remark 3. The condition q /∈ S1 is necessary. This can be easily checked
by a similar example as in Remark 2. Furthermore, we note that if the sets Si
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consists of multiplicatively independent elements instead of primes, then after
the necessary modifications Theorems 2.4 and 2.5 still hold.

2.2.2 Lemmas

For the proofs of the theorems we need several lemmas and some notations.
Let a1, . . . , a` ∈ Q∗. Consider the equation

a1x1 + · · ·+ a`x` = 0 (2.8)

in x1, . . . , x` ∈ ZS . A solution (x1, . . . , x`) of the above equation is said to be
non-degenerate if∑

i∈I

aixi 6= 0 for each non-empty I ⊂ {1, . . . , `}

and degenerate otherwise. Furthermore, two solutions (x1, . . . , x`) and (y1, . . . , y`)

of (2.8) are called proportional if for some z ∈ Q∗, we have

xi = zyi for i = 1, . . . , `.

Now we are ready to state the required lemmas and propositions. The first
lemma gives an upper bound for the number of non-degenerate solutions of
(2.8). This lemma is Theorem 3 of Evertse [30].

Lemma 2.6. Let s = |S|. Then equation (2.8) has at most

(235(`− 1)2)(`−1)
3s

non-degenerate solutions (x1, . . . , x`) ∈ Z`S , no two of them are proportional.
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2.2.3 Proofs

Now we give the proof of Theorem 2.4. In fact, we prove a more general result,
which implies Theorem 2.4. Namely, we prove the following statement (which
is Proposition 3.1 in our paper [14]).

Proposition 2.1. Let k ≥ 2 and let t1, . . . , tk ∈ N. For i = 1, . . . , k, let

Ai = {ai,1, . . . , ai,ti}

be a set of ti positive integers. Then the number of positive integers n such that

for each i, there exist ui,1, . . . , ui,ti ∈ Z+
Si

such that

n = ai,1ui,1 + · · ·+ ai,tiui,ti ,

is at most

(235(t− 1)2)(k−1)(t−1)
4s,

where t = t1 + · · ·+ tk and s = |S1 ∪ S2 ∪ · · · ∪ Sk|.

Proof. Let S = S1 ∪S2 ∪ · · · ∪Sk. We prove the statement by induction on k.
Suppose that k = 2. We will prove that the result holds in this case using

induction on t = t1 + t2. Suppose that t = 2. Then t1 = t2 = 1. We now show
that the equation

a1,1u1,1 = a2,1u2,1 (2.9)

in (u1,1, u2,1) ∈ Z+
S1
× Z+

S2
has at most one solution. Indeed, equation (2.9)

implies that
u1,1
u2,1

=
a2,1
a1,1

.

Hence the claim follows by the coprimality of u1,1 and u2,1. Therefore, the
result holds when k = t = 2. Let t ≥ 3 and assume that the result holds
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whenever t1 + t2 ≤ t − 1. We now consider the case t1 + t2 = t. We have to
count the number of solutions of the S-unit equation

a1,1u1,1 + · · ·+ a1,t1u1,t1 = a2,1u2,1 + · · ·+ a2,t2u2,t2 , (2.10)

where u1,j ∈ Z+
S1

and u2,j ∈ Z+
S2

. By Lemma 2.6, this equation has at most

(235(t− 1)2)(t−1)
3s

non-degenerate solutions. Next, we count the number of classes of degenerate
solutions. (Observe that if t = 3, then (t1, t2) = (1, 2) or (2, 1) and hence all
the solutions are non-degenerate. Therefore, while counting degenerate solu-
tions, it is understood that t ≥ 4.) For a degenerate solution, there exists a
non-empty subset I of {1, . . . , t1} and a non-empty subset J of {1, . . . , t2}
such that ∑

i∈I

a1,iu1,i −
∑
j∈J

a2,ju2,j = 0, (2.11)

but no proper subsum in this equation vanishes. Fix I , J . We count the number
of solutions of (2.10) satisfying (2.11). Since |I|+ |J | ≤ t− 2, it follows from
Lemma 2.6 that the S-unit equation (2.11) has at most

(235(t− 3)2)(t−3)
3s

classes of non-degenerate solutions. Furthermore, by the induction hypothesis,
the equation ∑

i/∈I

a1,iu1,i −
∑
j /∈J

a2,ju2,j = 0
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has at most
(235(t− 3)2)(t−3)

4s

solutions. Hence, given I , J , we obtain that there are at most

(235(t− 3)2)s(t−3)
3(t−2)

solutions. Varying I and J , we obtain that the total number of degenerate so-
lutions is at most

2t(235(t− 3)2)s(t−3)
3(t−2) ≤ 1

2
(235(t− 1)2)(t−1)

4s.

Thus, (2.10) has at most

(235(t− 1)2)(t−1)
3s +

1

2
(235(t− 1)2)(t−1)

4s ≤ (235(t− 1)2)(t−1)
4s

solutions. This completes the induction on t. Hence, the result holds for k = 2.

Now let k ≥ 3. Suppose that the result holds for every k′ with 2 ≤ k′ < k.
That is, given k′ in the above range, we assume that the result is valid for all t
and for all choices of the sets Ai and Si. Note that t = t1 + · · ·+ tk ≥ k ≥ 3.
We have to bound the number of solutions of the following system of S-unit
equations:

a1,1u1,1 + · · ·+ a1,t1u1,t1 = a2,1u2,1 + · · ·+ a2,t2u2,t2 (2.12)
...

= ak,1uk,1 + · · ·+ ak,tkuk,tk ,

where ui,j ∈ Z+
Si

. We mention that similar systems of S-unit equations have
been studied by Evertse and Győry [31]. However, their theorems cannot be
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used directly here, so we apply some other results. Namely, by Lemma 2.6,
the first equation in (2.12) has at most

(235(t− 2)2)(t−2)
3s (2.13)

non-degenerate solutions. For a degenerate solution, there exists a positive
integer l ≤ t − 2 and distinct non-empty subsets I1, . . . , Il ⊆ {1, . . . , t1},
J1, . . . , Jl ⊆ {1, . . . , t2} such that for m = 1, . . . , l,∑

i∈Im

a1,iu1,i =
∑
i∈Jm

a2,iu2,i, (2.14)

but no proper subsum vanishes. Fix I1, . . . , Il, J1, . . . , Jl. We count the number
of solutions of the system (2.12) satisfying the additional equations (2.14). By
Lemma 2.6, for each m = 1, . . . , l, equation (2.14) has, up to proportionality,
at most

(235(t− 3)2)(t−3)
3s

non-degenerate solutions. Let ((u1,i)i∈Im , (u2,i)i∈Jm) be a solution of (2.14)
with gcd((u1,i)i∈Im , (u2,i)i∈Jm) = 1. Set

a′m =
∑
i∈Im

a1,iu1,i
(

=
∑
i∈Jm

a2,iu2,i
)
.

Then
{((Umu1,i)i∈Im , (Umu2,i)i∈Jm) : Um ∈ Z+

S1∩S2
}

is precisely the set of solutions of (2.14) which are proportional to
((u1,i)i∈Im , (u2,i)i∈Jm). The problem is thus reduced to considering the fol-
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lowing system of equations in the variables U1, . . . , Ul, u3,1 . . . , uk,tk :

a′1U1 + · · ·+ a′lUl = a3,1u3,1 + · · ·+ a3,t3u3,t3
...

= ak,1uk,1 + · · ·+ ak,tkuk,tk .

Since (S1 ∩ S2) ∩ S3 ∩ · · · ∩ Sk = ∅, we apply the induction hypothesis for
k′ = k − 1 to conclude that the above system of equations has at most

(235(t− 2)2)(k−2)(t−2)
4s

solutions. Hence, given I1, . . . , Il, J1, . . . , Jl, we get at most

(235(t− 3)2)(t−3)
3s(t−2) · (235(t− 2)2)(k−2)(t−2)

4s

solutions. Therefore the number of classes of degenerate solutions is bounded
by

tt(235(t− 2)2)(k−1)(t−2)
4s ≤ 1

2
(235(t− 1)2)(k−1)(t−1)

4s. (2.15)

Combining the above bound (2.15) with (2.13), we obtain that the total number
of solutions is at most

(235(t− 1)2)(k−1)(t−1)
4s.

This completes the induction and the proof of the proposition.

As we mentioned before, Theorem 2.4 is an easy consequence of Proposi-
ton 2.1.
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Proof of Theorem 2.4. Taking ti = w+
Si

(n) and Ai = {1} for all i = 1, . . . , k

in Proposition 2.1, the statement immediately follows.

Now we prove Theorem 2.5. For the proof we use a Baker type estimate of
Matveev [51]. For its formulation we need to introduce some notations.

For an algebraic number α of degree D over Q, the absolute logarithmic
height of α is defined by

h(α) =
1

D

(
log a0 +

D∑
i=1

log max(1, |α(i)|)

)
,

where a0 > 0 is the leading coefficient of the minimal polynomial of α over
Z and α(i) (i = 1, . . . , D) are the conjugates of α. Note that in the special
case when α = p/q is a non-zero rational number with gcd(p, q) = 1, then
h(α) = h(1/α) = log max{|p|, |q|}.

The following result is due to Matveev [51].

Lemma 2.7. Assume that α1, . . . , αr are positive real algebraic numbers in a

real algebraic number field of degree D, d1, . . . , dr are rational integers, and

Λ := αd11 . . . αdrr − 1

is not zero. Set

B ≥ max{|d1|, . . . , |dr|},

and

Ai ≥ max{Dh(αi), | logαi|, 0.16}, for all i = 1, . . . , r.

Then we have

|Λ| > exp(−1.4 · 30r+3r4.5D2(1 + logD)(1 + logB)A1 · · ·Ar). (2.16)
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Now we are ready to give the proof of Theorem 2.5.

Proof of Theorem 2.5. We combine arguments of Luca [48] and
Stewart [78] with some other considerations.

Let n be a positive integer with w+
S1

(n) = 1 and w+
S2

(n) = t, and write

u1 = n = v1 + · · ·+ vt (2.17)

with u1 ∈ Z+
S1

and v1, . . . , vt ∈ Z+
S2

. Without loss of generality we may assume
that v1 ≥ · · · ≥ vt.

We write

u1 = pα1
1 . . . pα`

` , vi = qβi (i = 1, . . . , t). (2.18)

Let B be the maximum of the exponents appearing in (2.18).

Equation (2.17) can be rewritten as

u1 − v1 = v2 + · · ·+ vt. (2.19)

Since u1 6= v1 and v1 6= 1 (otherwise n = 1 or t = n and the statement is
trivial), Lemma 2.7 yields

v1 exp(−c22(1 + logB)) < v1(u1v
−1
1 − 1), (2.20)

with c22 := c23h(p1) · · ·h(p`)h(q)2, where

c23 := 1.4 · 30`+5(`+ 2)4.5

is the constant appearing in the conclusion of Matveev’s theorem (2.16) when
Λ involves r = `+ 2 rational numbers. (Note that D = 1.)
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Now we show that

v1
vj
< exp(2j log t(c22(1 + logB))j−1) (j = 2, . . . , t). (2.21)

We prove it by induction. Combining inequality (2.20) with

v1(u1v
−1
1 − 1) = u1 − v1 < tv2

implied by (2.19), we get

v1
v2
< exp (log t+ c22(1 + logB)) ≤ exp (2(log t)c22(1 + logB)) .

Let now i be arbitrary with 2 ≤ i < t, and assume by induction that

v1
vj
< exp

(
2j log t(c22(1 + logB)j−1)

)
for all j = 2, . . . , i. (2.22)

Rewrite (2.17) as

u1 − v1 − · · · − vi = vi+1 + · · ·+ vt. (2.23)

Observe that by (2.18) and (2.22) (used with j = i), we have

h

(
1 +

v2
v1

+ · · ·+ vi
v1

)
= h

(
qβ1−βi + · · ·+ qβi−1−βi + 1

qβ1−βi

)
=

= log(qβ1−βi + · · ·+ qβi−1−βi + 1) ≤ log(tqβ1−βi) =

= log t+ log

(
v1
vi

)
< (2i+ 1)(log t)(c22(1 + logB))i−1.
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Hence, Lemma 2.7 yields

v1 exp(−(2i+ 1)(c22(1 + logB))i) <

< v1

(
u1v

−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
<

< v1

(
1 +

v2
v1

+ · · ·+ vi
v1

)(
u1v

−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
.

The above inequality together with

v1

(
1 +

v2
v1

+ · · ·+ vi
v1

)(
u1v

−1
1

(
1 +

v2
v1

+ · · ·+ vi
v1

)−1
− 1

)
=

= u1 − v1 − · · · − vi < tvi+1

obtained from (2.23), implies the inequality

v1
vi+1

< exp
(
log t+ (2i+ 1)(log t)(c22(1 + logB))i

)
< exp

(
(2i+ 2)(log t)(c22(1 + logB))i

)
,

which completes the induction step. Hence, our claim (2.21) follows. Now
note that either B = β1 or B ∈ {α1, . . . , α`}. In the latter case we have
2B ≤ n ≤ tqβ1 , so β1 ≥ c24B − c25 log t, where c24 := log 2/ log q and
c25 := 1/ log q. Since q ≥ 2, it follows that the inequality

β1 ≥ c24B − c25 log t

holds both when B = β1 and when B ∈ {α1, . . . , α`}.
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Furthermore, log n/ log(p1 · · · p`) ≤ B ≤ log n/ log 2 showing that

log log n− c26 ≤ logB ≤ log log n+ c27, (2.24)

where c26 := log log max{3, p1 . . . p`} and c27 := − log log 2. Note that since
q /∈ {p1, . . . , p`}, it follows that vt = 1. Setting j = t in (2.21) and taking
logarithms we get

c24B − c25 log t ≤ β1 ≤ c28t log t(c22(1 + logB))t−1, (2.25)

where we can take c28 := max{1, 2(log q)−1}. If the left-hand side of (2.25) is
smaller than c24B/2, we get that

log t > c29B,

where c29 := c24/(2c25), therefore

t > ec29B > nc30 ,

where c30 := c29/ log(p1 · · · p`), which for large n is better than the inequality
we are after. If the left-hand side of (2.25) is at least c24B/2, then by taking
logarithms we get

logB − c31 < (t− 1) log(c22(1 + logB)) + log t+ log log t,

where c31 := − log(c24/2) + log c28. From here, we immediately get

t > (1 + o(1))
logB

log logB
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as B → ∞. Combining this with (2.24), we get that for every ε > 0, taking
c32 := 1− ε, the inequality

t > c32
log log n

log log log n

holds for all n > n0(ε), where n0(ε) is effectively computable in terms of ε
and p1, . . . , p`, q. Hence, the statement follows.

2.3 Representation of terms of binary recurrence sequences
as linear combinations of prime powers

In this section we consider the problem of representation of terms of binary re-
currence sequences as linear combinations of prime powers. We present some
theoretical results and in a different section we will give numerical exam-
ples as well. To start off we need to introduce some notations. The sequence
Un = Un(A,B, U0, U1) is called a binary linear recurrence sequence if the
relation

Un = AUn−1 +BUn−2 (n ≥ 2) (2.26)

holds, where A,B, U0, U1 are fixed integers with AB 6= 0 and |U0|+ |U1| > 0.
The polynomial f(x) = x2 − Ax − B is called the companion polynomial
of the sequence Un. Let D = A2 + 4B be the discriminant of f . We call D
the discriminant of the sequence Un. The roots of the companion polynomial
are denoted by α and β. From now on we shall always assume that |α| ≥ |β|.
Using this notation, if D 6= 0 then as it is well known, we can write

Un =
aαn − bβn

α− β
(2.27)
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for n ≥ 0, where a = U1 − U0β and b = U1 − U0α. Note that α − β =
√
D.

The sequence Un is called non-degenerate, if abαβ 6= 0 and α/β is not a root
of unity.

Let b1, . . . , bs be fixed integers, and p1, . . . , ps be given primes. In this
section, under certain assumptions, we give a general finiteness result for the
solutions of the equation

Un = b1p
x1
1 + · · ·+ bsp

xs
s (2.28)

in non-negative integers n, x1, . . . , xs. It is important to note that in our results
we do not require the primes to be distinct; in particular it is possible that
pi = pj for all 1 ≤ i, j ≤ s.

Marques and Togbé [50] gave all solutions of equation (2.28) with Un be-
ing the Fibonacci or Lucas sequence, s = 3 and b1 = b2 = b3 = 1 and
p1 = 2, p2 = 3, p3 = 5. In their proof they used Baker’s method and a further
restriction, namely max(x1, x2, x3) = x3. In their approach, this restriction is
unavoidable. Pethő and de Weger [59] gave an algorithm on how to solve ex-
plicitly the Diophantine equation Un = wpx11 · . . . · pxmm , where Un is a binary
recurrence sequence with positive discriminant.

2.3.1 New results

The first theorem gives an effective upper bound for the number of solutions
of (2.28) under certain assumptions. This result (which is Theorem 2.1 in [16])
extends the result of Marques and Togbé [50] in a sense that in our theorem Un

can be an arbitrary non-degenerate binary recurrence sequence and the number
of primes on the right hand side of (2.28) can be arbitrary as well. However,
this result cannot be used to find all solutions of given equations directly.
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Theorem 2.6. Let Un be a non-degenerate binary recurrence sequence with

a positive discriminant, p1 ≤ p2 ≤ · · · ≤ ps be given, not necessarily dis-

tinct prime numbers and b1, . . . , bs be nonzero integers. Put T = max
1≤i≤s

|bi|.

Using the notations from before, assume further that log(|a/bs
√
D|), log |α|

and log ps are linearly independent over the rationals.

Consider the equation

Un = b1p
x1
1 + b2p

x2
2 · · ·+ bsp

xs
s (2.29)

in non-negative integers n, x1, . . . , xs. Let 0 < ε < 1, and write Hε for the set

of those solutions (n, x1, . . . , xs), for which xs = max
1≤i≤s

xi, and xi < (1− ε)xs
for those i = 1, . . . , s − 1 for which pi = ps. Then Hε is finite, and for all

(n, x1, . . . , xs) in Hε we have

max{n, x1, . . . , xs} < C16,

where C16 is an effectively computable constant depending only on ε, A, B,

U0, U1, T , s, ps.

Remark 4. Obviously, if ps is greater than all the other primes p1, . . . , ps−1,
then Hε is independent of ε. Indeed, in this case for any 1 ≤ i ≤ s − 1 we
have pi 6= ps, thus the inequality xi < (1− ε)xs is not required.

Remark 5. The condition that log(|a/bs
√
D|), log |α| and log ps are linearly

independent over the rationals is necessary. (Though it possibly could be weak-
ened.) This is shown by the following example. Put A = 5, B = −6, U0 = 0

and U1 = 1. Then α = 3, β = 2, a = b =
√
D = 1 and we have

Un = 3n − 2n (n ≥ 0).
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Take s = 2, p1 = 2, p2 = 3, b1 = −1 and b2 = 1. Then the equation

Un = b1p
x1
1 + b2p

x2
2

has infinitely many solutions given by (n, x1, x2) = (n, n, n) (n ≥ 0), which
belong to Hε for any ε. Observe that now log(|a/bs

√
D|), log |α| and log ps

are linearly dependent over Q, however, all the other conditions of Theorem
2.6 are satisfied.

Furthermore, we would like to point out that the condition that Un is non-
degenerate is also necessary. This is related to the Skolem–Mahler–Lech the-
orem. Skolem [74] proved that the indices of the zero terms of Un is the union
of a finite set and finitely many arithmetic progressions. (Later, this result has
been extended to algebraic number fields by Mahler [49] and to fields of zero
characteristic by Lech [46].) In particular, if Un is non-degenerate, then it con-
tains only finitely many zero terms. So this condition is rather important for
our present purposes. Indeed, consider the equation

Un = 5x3 − 3x2 − 2x1 , (2.30)

in non-negative integers n, x1, x2, x3 where U0 = 0, U1 = 1 and

Un = Un−1 − Un−2 (n ≥ 2).

In this case A = 1, B = −1. The characteristic roots of Un are α = 1−
√
−3

2

and β = 1+
√
−3

2
, which are roots of unity, hence the sequence is degenerate. In

fact, Un is given by:

0, 1, 1, 0, −1, −1, 0, 1, . . .
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In particular, Un = 0 if 4 | n, so equation (2.30) has infinitely many solutions
of the form (n, x1, x2, x3) = (4t, 1, 1, 1). This shows that the criterion that Un
is non-degenerate is necessary, indeed.

2.3.2 Proofs

The main tool to prove Theorem 2.6, is Baker’s method. In particular, we shall
use Lemma 2.7, due to Matveev [51].

Proof of Theorem 2.6. First, for later use observe that the assumptions imply
that

|b1px11 + · · ·+ bs−1p
xs−1

s−1 | = pxss

∣∣∣∣b1px11pxss + · · ·+ bs−1
p
xs−1

s−1

pxss

∣∣∣∣ ≤ (s− 1)Tp(1−δ1)xss ,

(2.31)

where T = max
1≤i≤s

|bi| and

δ1 = min(ε, 1−max
pi<ps

(log(pi)/ log(ps))).

If p1 = · · · = ps then we take δ1 = ε. Since D > 0 and Un is assumed to be
non-degenerate, we have

|α| > |β|. (2.32)

Note that by our assumptions we also have |α| > 1. A simple calculation
shows that if ∣∣∣∣1− bβn

aαn

∣∣∣∣ ≤ 1

2

then n is bounded by a constant depending only on A,B, U0, U1. Then since
by (2.31) we get that the right hand side of (2.29) tends to infinity as xs tends
to infinity, we obtain that xs is bounded by a constant depending only on
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A,B, U0, U1, s, ps. Hence the statement follows in this case. So we may as-
sume that ∣∣∣∣1− bβn

aαn

∣∣∣∣ > 1

2
.

Then (2.29) implies that∣∣∣∣ aαn2
√
D

∣∣∣∣ < ∣∣∣∣aαn√D
∣∣∣∣ ∣∣∣∣1− bβn

aαn

∣∣∣∣ = |Un| ≤ sTpxss . (2.33)

This gives

n ≤
log 2

√
DsT
|a| + xs log ps

log |α|
. (2.34)

If

log
2
√
DsT

|a|
> xs log ps,

then the theorem trivially follows. So we may assume the contrary. Then by
(2.34) we obtain

n ≤ 2xs log ps
log |α|

. (2.35)

If |β| > 1 we need more. In this case, if

log
2
√
DsT

|a|
>
xs log ps(log |α| − log |β|)

2 log |β|

then the theorem easily follows. So we may assume the opposite. Then by
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(2.34) we get

n ≤ xs log ps(log |α|+ log |β|)
2 log |α| log |β|

. (2.36)

Now we rewrite (2.29) as

a

bs
√
D
αnp−xss − 1 =

b1p
x1
1 + · · ·+ bs−1p

xs−1

s−1 + bβn
√
D

bspxss
. (2.37)

In the case of |β| ≤ 1 we obviously have

|β|n

pxss
≤ p−xss .

If |β| > 1, then (2.36) implies

|β|n

pxss
≤ p−δ2xss ,

where
δ2 = 1− log |α|+ log |β|

2 log |α|
.

Note that 1 > δ2 > 0. Using the above inequalities together with (2.31), from
(2.37) we get

|Λ| ≤ c33p
−δxs
s ,

where Λ = a
bs
√
D
αnp−xss − 1, δ = min{δ1, δ2} and c33 = (s− 1)T + |b|/

√
D.

On the other hand, since by the assumption

log
|a|
|bs|
√
D
, log |α|, log ps
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are linearly independent over the rationals, we have Λ 6= 0. Hence, in view of
(2.35) Lemma 2.7 gives that

|Λ| > exp(−c34 log xs)

holds with some constant c34 depending only on A, B, U0, U1 and ps.
Combining the upper and lower estimates for |Λ|, we get an upper bound

for xs in terms of ε, A, B, U0, U1, T , s and ps. Thus by using (2.35) the
statement clearly follows.
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3 Exponential Diophantine equations

3.1 Exponential Diophantine equations over Z

Let a1, . . . , ak, b11, . . . , b1`, . . . , bk1, . . . , bk` be fixed non-zero integers and c

be a fixed integer. In this section we consider the exponential Diophantine
equation

a1b
x11
11 . . . bx1`1` + · · ·+ akb

xk1
k1 . . . bxk`k` = c (3.1)

in non-negative integer unknowns x11, . . . , x1`, . . . , xk1, . . . , xk`. This equa-
tion has a very rich literature. If k = 2, then by using Baker’s method we
can give an explicit upper bound for the exponents. (This follows from re-
sults of Győry [35, 36]; for extensions see e.g. the books [73] and [32], and
the references given there.) Thus, in principle, we have an algorithm to find
all solutions in this case. This algorithm however usually yields very large
bounds for the exponents, thus to be able to actually determine all solutions
one needs to use other results (e.g. the Baker–Davenport lemma in [6]) to re-
duce the size of these bounds. However, if k is at least 3, then this method fails
and we have only results which if effective, then require additional restric-
tions. See for example Vojta [86] who gave an effective method to determine
all non-degenerate solutions of S-unit equations in 3 unknown variables if the
cardinality of the set S is at most 3. Later Bennett [8] extended this result to
the case k = 4, but still requiring the necessary condition that |S| ≤ 3. By
using the p-adic subspace theorem of Schmidt and Schlikewei it is possible to
determine an upper bound for the number of solutions of S-unit equations in
k ≥ 3 unknowns, but this result does not yield any information regarding the
size of these solutions. Our goal in this section is to prove theoretical and nu-
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merical results concerning equation (3.1). First we propose a conjecture which
is a variant of a classical conjecture of Skolem [75].

Conjecture 1. Suppose that equation (3.1) has no solutions. Then there exists
an integer m with m ≥ 2 such that the congruence

a1b
x11
11 . . . bx1`1` + · · ·+ akb

xk1
k1 . . . bxk`k` ≡ c (mod m) (3.2)

has no solutions in non-negative integers x11, . . . , x1`, . . . , xk1, . . . , xk`.

The classical conjecture of Skolem (see Schinzel [66]) concerns the equa-
tion

a1b
x1
11 . . . b

x`
1` + · · ·+ akb

x1
k1 . . . b

x`
k` = 0

thus our conjecture can be considered as a generalization of that one.

In this subsection we show that for any fixed a1, . . . , ak, b11, . . . , b1`,
. . . , bk1, . . . , bk`, the set of integers c for which the above conjecture fails, has
density zero inside the set of those values c for which equation (3.1) is not
solvable. Moreover, the appropriate moduli m can be chosen to have the extra
property that they are all divisible by r, for any preliminary chosen non-zero
integer r. The main tools in the proof are a variant of a classical result of
Erdős, Pomerance and Schmutz [28] concerning small values of Carmichael’s
λ-function, and a result of Ádám, Hajdu and Luca [1] about the number of
values c up to any x, for which equation (3.1) is solvable. Later on, we also
give some "numerical evidence" for the conjecture, by checking its validity for
a relatively large set of the parameters involved.

At the second part of the subsection we present a method which can be
used to solve these types of equations under some assumptions. Namely if
we assume that (3.1) has only finitely many solutions then first we find all
"small" solutions, then based on this list we transform the initial equation into
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a new one which (presumably) has no solutions. After this step if we take this
new equation and suppose that Conjecture 1 is true then our method makes it
possible to find a modulus m such that the congruence (3.2) has no solutions
modulo m. If we succeed, then we get an upper bound for at least one of the
variables in our original equation. It is important to note that this method works
if the left hand side of (3.1) has no vanishing subsums (since in this case we
may have infinitely many solutions). At the end of this section we give some
concrete examples as well to demonstrate our method. Later on, in Section 4
we give some applications, as well.

3.1.1 New results

First we show that Conjecture 1 is true for "almost all" cases. The next theorem
is Theorem 2.1 in Bertók and Hajdu [12].

Theorem 3.1. Let a1, . . . , ak, b11, . . . , b1`, . . . , bk1, . . . , bk` be fixed, and let H

be the set of right hand sides in (3.1) for which Conjecture 1 is violated, that

is

H = {c ∈ Z : (3.1) is not solvable, but (3.2) is solvable for all m}.

Then H has density zero inside the set

H0 = {c ∈ Z : (3.1) is not solvable}.

We also give some numerical evidence (which is Theorem 2.3 in Bertók
and Hajdu [12]) which strengthens Conjecture 1.

Theorem 3.2. Let c be an integer with 0 ≤ c ≤ 1000. Then Conjecture 1 is

valid for the following cases of equation (3.1):
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(1) px11 −px22 = c and px11 +px22 −px33 = c where p1, p2, p3 are distinct primes

less than 100,

(2) px11 + · · ·+ p
xt−1

t−1 − pxtt = c where p1 < · · · < pt are primes less than 30

with 4 ≤ t ≤ 8,

(3) px11 p
x2
2 +px33 p

x4
4 −px55 px66 = c where p1, p2, p3, p4, p5, p6 is a permutation

of the primes 2, 3, 5, 7, 11, 13,

(4) 2x1 + 3x2 + 5x3 + 7x4 + 11x5 + 13x6 + 17x7 + 19x8 − 23x9 = 55191.

Remark 6. The number 55191 in the last equation of Theorem 3.2 is special,
since for every number which is smaller than 55191 the equation has at least
one solution, so in fact 55191 is the first number for which the equation has no
solutions.

3.1.2 An algorithm for solving exponential Diophantine equations

In this section we present a heuristic algorithm which can be used to solve
equations of type (3.1). This algorithm allows us to find all solutions of ex-
ponential Diophantine equations regardless of the number of terms. As it was
mentioned before, we have an algorithm (based upon Baker’s method) to find
all solutions only when the number of the terms on the left hand side of equa-
tion (3.1) is 2 (or under some further restrictrictions 3 or 4, see Vojta [86] and
Bennett [8]). Thus our algorithm is much more general than these methods.

Suppose that in equation (3.1) both the coefficients ai (1 ≤ i ≤ k), the
bases bij (1 ≤ i ≤ k, 1 ≤ j ≤ `) and the constant c on the right hand side are
all fixed. We also suppose that the equation has only finitely many solutions.
This is the case when the equation has no solutions with vanishing subsums.
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Otherwise (since we work locally) it is not possible to find all solutions in
general by using this method.

The algorithm consists of four steps, namely:

(I) Find all solutions to equation (3.1) by an exhaustive search. [Note: Of
course, the search can provide only a suspected list of solutions. How-
ever, heuristically we can be "sure" that we have found all solutions.]

(II) Choose any of the unknowns, x11 say, and based upon the suspected list
of solutions find an integer x0 such that this number is larger than any of
the solutions for x11. [Note: by choosing more than one unknowns we
can speed up the calculations, but this modification has no theoretical
significance.]

(III) Instead of equation (3.1) consider the equation obtained from (3.1) by
replacing the coefficient a1 by a1b

x0
11 . [Note: by the choice of x0, we

expect that the new equation has no solutions.]

(IV) Find an m such that the new equation has no solution already modulo
m. [Note: If Conjecture 1 is true, such a modulus exists. One can try to
find an appropriate m by the help of Lemma 2.4. Observe that for the
unsolvability of the congruence modulo m the relation bx011 | m should
hold, hence the importance of the divisibility property comes from.]

Later in this section we will provide some numerical results which demon-
strates the efficiency of our algorithm. For now we only give a very simple
example which helps to understand how this method works.

Suppose that we want to solve the equation

5x − 2y − 3z = 23,
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in x, y, z ∈ N ∪ {0}. Based on a simple search, say we try every integer
between 0 and 100 for x, y and z, we find that the only solution in this range
is (x, y, z) = (2, 0, 0). Heuristically we are "sure" that no other solutions exist
and by using our method we try to prove this. Since in the solution we found
the exponent of 2 is 0, instead of the original equation, consider the modified
equation

5x − 2 · 2y0 − 3z = 23,

where x, y0, z are in N ∪ {0}. If the assumptions are correct then this new
equation has no solutions. By choosing m to be 2 we can immediately see
that the modified equation has no solutions modulo m, which means that the
exponent of 2 is 0 indeed. By using this new information we can get rid of one
of the unknowns and get the equation

5x − 3z = 24.

By a similar argument as before we can write

5x − 3 · 3z0 = 24,

where x and z0 are non-negative integers, suspecting that this equation has no
solutions. If we take m to be 3 we can immediately see that this equation has
no solutions modulo m (since the left hand side cannot be 0 modulo 3). This
means we were able to show that z = 0, thus we got rid of one more variable.
The remaining equation is 5x = 25 which gives x = 2.

As we mentioned before, this example is a very easy one, but it was perfect
to demonstrate the steps of our algorithm.

An interesting and important question may occur though: how did we find
the moduli m = 2 and m = 3? In this specific case it was quite easy, since the
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exercise was "made to be nice", but for harder equations guessing the moduli
will not work. One possible way to find the modulus is to use Lemma 2.4.
Later on we will discuss this problem in more details.

It is of utmost importance to emphasize that although at the start of the
procedure we could not be sure that the solution(s) what we found are the only
solution(s), but during the process we were able to fix the unknown variables
one by one. Thus if somehow we can find an appropriate modulus m then we
can be sure that we found every solution.

This strategy works, at least in principle, if there exists a constant A, such
that for all solutions of (3.1) we have min

1≤i≤k,1≤j≤`
xij < A. This is the case, for

example, if (3.1) has no solutions with vanishing subsum.
At this point we mention that one can find in the literature several sparse

results of this type; see e.g. the papers [20, 2, 3] and the references there. How-
ever, in these papers the appropriate moduli are found in a rather ad-hoc way
(just how we did in the example above), at least no clear strategy is explained
to choose them. In our results we could use the moduli provided by Lemma
2.4. We give an explanation in the proofs of the forthcoming theorems.

Now we give some theorems which show how the algorithm works. The
first result (which is Theorem 3.1 in our paper [12]) concerns the represen-
tation of zero as the sum and difference of powers of several distinct primes.
Note that this result is closely related to a question of Brenner and Foster [20].

Theorem 3.3.

1. Let 2 ≤ t ≤ 5 and let p1, . . . , pt+1 be distinct primes, with

pi ≤ 19 (i = 1, . . . , t+ 1). Consider the Diophantine equations

t∑
i=1

pxii = p
xt+1

t+1 .
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For all the solutions of these equations we have min1≤i≤t+1(xi) ≤ 15.

2. The Diophantine equation

3x1 + 5x2 + 11x3 + 13x4 + 17x5 = 19y

has only two solutions in (x1, x2, x3, x4, x5, y), given by

(x1, x2, x3, x4, x5, y) = (0, 1, 1, 0, 0, 1), (1, 0, 0, 1, 0, 1).

The next theorem (Theorem 3.2 in Bertók and Hajdu [12]) concerns the
case where the primes on the left hand side are the same.

Theorem 3.4.

1. Let 2 ≤ t ≤ 8 and let p, q be distinct primes with p, q ≤ 19 and consider

the Diophantine equations

t∑
i=1

pxi = qy − 1.

For all the solutions of these equations we have min1≤i≤t(xi, y) ≤ 6.

2. The Diophantine equation

5x1 + 5x2 + 5x3 + 5x4 + 5x5 + 5x6 + 5x7 + 5x8 + 5x9 = 17y

has only two solutions with xi ≤ xi+1 (i = 1, . . . , 8), namely

(x1, x2, x3, x4, x5, x6, x7, x8, x9, y) =(0, 0, 0, 0, 0, 0, 0, 1, 1, 1),

(0, 0, 0, 0, 1, 1, 2, 3, 3, 2).
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The final result in connection with (3.1) concerns the case where l = 2.
This is Theorem 3.3 in our paper [12].

Theorem 3.5.

1. Let p1, . . . , p6 be distinct primes with pi ≤ 19 (i = 1, . . . , 6) and con-

sider the Diophantine equations

px11 p
x2
2 + px33 p

x4
4 − px55 px66 = 1.

For all the solutions of these equations we have min1≤i≤6(xi) ≤ 5.

2. The Diophantine equation

2x13x2 + 5x37x4 − 11x513x6 = 1

has only two solutions in (x1, x2, x3, x4, x5, x6), namely

(x1, x2, x3, x4, x5, x6) = (0, 0, 0, 0, 0, 0), (0, 2, 1, 0, 0, 1).

3.1.3 Proofs

We start with the proof of Theorem 3.1. For this, beside Lemma 2.4 we need
the following two results of Ádám, Hajdu and Luca [1].

Lemma 3.1. Using the notation of Theorem 3.1, write H0(x) for the elements

h of H0 with |h| ≤ x where x is a positive real number. Then for all large x

we have

#H0(x) > 2x− C17(log x)C18

where C17 and C18 are constants depending only on the parameters k, ai and

bij occurring in (3.1).
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Proof. The statement is a simple consequence of Theorem 1 of [1].

Lemma 3.2. Let m = qx11 · · · qxzz where q1, . . . , qz are distinct primes, and let

b ∈ Z. Then we have

#{bu (mod m) : u ≥ 0} ≤ λ(m) + max
1≤i≤z

xi.

Proof. The statement is Lemma 1 in [1].

We are now ready to prove the theorems.

Proof of Theorem 3.1. For a positive real number x set

H(x) := {h ∈ H : |h| ≤ x} and H0(x) := {h ∈ H0 : |h| ≤ x}.

We apply Lemma 3.2 and Lemma 2.4 with r = 1 to prove our statement. Partly
we follow the argument of Theorem 1 of [39]; see also the proof of Theorem
3 in [1].

By Lemma 2.4 we can choose an integer m, satisfying

λ(m) < (logm)C10 log log logm.

We may assume that m is the largest integer below
√
x with this property.

Then by Lemma 2.4 we have that m > f(x), with some strictly monotone
increasing function f of x, tending to infinity as x goes to infinity.

Let m = qx11 · · · qxzz be the prime factorization of m, where q1, . . . , qz are
distinct primes and x1, . . . , xz are positive integers. WriteC(m) for the residue
classes of those integers c modulo m for which the congruence (3.2) is solv-
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able. Lemma 3.2 implies that we have

#C(m) ≤ (λ(m) + max
1≤i≤z

xi)
k`. (3.3)

On the other hand, we easily obtain that

λ(m) + max
1≤i≤z

xi ≤
logm

log 2
+ (logm)c35 log log logm. (3.4)

Now by inequalities (3.3) and (3.4) we get that

#C(m) < (logm)c36 log log logm, (3.5)

where c36 is a constant depending only on k and `.

Write now x = um+v where u is a positive integer and v is a positive real
number with v < m. Observe that by the choice of m, u and v here we have
that

log u ≥ (log(u+ 1))/2 ≥ (log x− logm)/2 ≥ (log x)/4.

Assuming that x is large enough, we further have

x > 1.5c37(log x)c38

where c37 and c38 are respectively C17 and C18 in Lemma 3.1. Let now ε be
an arbitrary positive real number. Then, assuming that x is large enough, the
above inequalities imply

εx/3 > c37(log x)c38/2,

and
εx/3 ≥ εum/3 > m > v.
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Finally, the lower bound m > f(x) also gives

εx/3 ≥ εum/3 > u(logm)c36 log log logm

provided that x is large enough. Thus, since by (3.5) we have that

#H(x) ≤ 2(u(logm)c36 log log logm + v),

the statement immediately follows by comparing #H0(x) and #H(x).

Proof of Theorem 3.2. Since the proofs of the parts (1) to (4) are similar, we
only give details in case of (3). Also, here we consider only the equations

2x13x2 + 5x37x4 − 11x513x6 = c (3.6)

with 0 ≤ c ≤ 1000. First, letting the exponents xi (i = 1, . . . , 6) vary between
0 and 100, we find a list L (with #L = 224) of c values for which we expect
equation (3.6) not to have solutions. (Note that in this case we could not find
solutions already with 0 ≤ xi ≤ 10 (i = 1, . . . , 6), however, some other
equations in (3) do have solutions with max

1≤i≤6
xi = 12.) At this stage, at least

we are certain that for integers c with 0 ≤ c ≤ 1000 not in the list L, equation
(3.6) is solvable. Now we investigate the values c ∈ L one by one. The smallest
such value is c = 11, we shall work only with this, the others can be handled
similarly. Take the modulus

m := 7031324575728 = 24 · 32 · 17 · 19 · 37 · 73 · 97 · 577.

Now we could simply say that as one can easily check, equation (3.6) has no
solutions modulo m. However, as this check is not that easy for some of the
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instances in (1) to (4), it is worth to do it in a sophisticated way. (In particular,
since the appropriate modulus m in some other cases can be much larger than
the one given above.)

First observe that all the factors of m have λ values composed exclusively
of 2-s and 3-s. (This is the choice indicated by the proof of Erdős, Pomerance
and Schmutz [28].) This makes it possible to combine the information ob-
tained for the exponents x1, . . . , x6 modulo the separate factors. (It is highly
not economic to work with m as a modulus directly.) For example, modulo 16

we immediately get that x1 = 0 must hold, and we also get some congruence
conditions for the other exponents, modulo a power of 2 (since the orders of all
the factors modulo 16 are certainly powers of 2). Finally, using all the factors
as modulus, the resulting system of congruences proves to be non-solvable,
which shows that equation (3.6) has no solutions indeed modulo m.

In all the other cases the proof goes along the same lines. As we mentioned,
in some cases one really needs to work with huge moduli. However, in all cases
we encountered the modulus

m = 24 · 32 ·
∏

p−1=2u3v5w

p

3<p<20000

proved to be appropriate. The calculations have been performed by the pro-
gram package Magma [19].

Now we turn to the proofs of Theorems 3.3, 3.4, 3.5. These statements
have similar structures: they contain a "general" statement, and a "particular"
one. As we shall see, the proofs will deal only with the second parts of these
statements. The reason is twofold. On the one hand, the proofs of the "general"
statements would be rather similar to the those of the "particular" ones. On
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the other hand, giving the proofs of the first parts as well, would considerably
increase the length of the dissertation. (Indeed, already the proofs of the second
parts are rather detailed and lengthy.)

Proof of Theorem 3.3. To prove the theorem we use a program written in Sage
[77]. We only prove the second statement, the first part can be proved similarly.
First we find all solutions of the equation

3x1 + 5x2 + 11x3 + 13x4 + 17x5 = 19y (3.7)

with x1, . . . , x5, y < 15. By doing this we get two solutions, namely
(0, 1, 1, 0, 0, 1) and (1, 0, 0, 1, 0, 1). Let us assume that there are no more solu-
tions and instead of (3.7) consider the equation

32 · 3x1,0 + 5 · 5x2,0 + 11x3 + 13 · 13x4,0 + 17 · 17x5,0 = 19 · 19y0 . (3.8)

Before we move on to the next step, we comment a few words about the above
equation. In our algorithm we mentioned that after we find "all" small solu-
tions we choose one of the exponents and try to give an upper bound for it.
However, in this equation we chose multiple exponents at the same time. This
step has no theoretical significance, however in most cases it can speed up
the computations. After concluding that the new equation has no solutions for
some modulusmwe get multiple restrictions for the exponents which yields us
many sets of equations which need to be considered in a similar way. Another
important note is that we found out that the exponent of 19 can be 1, however
we only used 19 ·19y0 instead of 192 ·19y0 in the above equation (and similarly
we used 5 · 5x2,0 instead of 52 · 5x2,0 , 11x3 instead of 112 · 11x3,0 and 13 · 13x4,0

instead of 132 · 13x4,0). We did this because the λ values of 5, 13 and 19 are
"small", thus they can rule out quite a few equations. However, we found that
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11 is not a good modulus, thus we tried to avoid using that number. So in the
first step we were not trying to bound the exponents of 5, 13 and 19, instead
we were focusing on 3 and 17 and we just simply used the other numbers as
part of our moduli. This may lead us to some extra equations without solutions
(see the last equation below), but since this step speeds up the computations,
it is worth to have a few extra equations which can be handled quite easily.

If we determined all solutions of (3.7) correctly, then (3.8) has no solutions.
To prove it we have to find a modulus m such that the congruence

32 · 3x1,0 + 5 · 5x2,0 + 11x3 + 13 · 13x4,0 + 17 · 17x5,0 ≡ 19 · 19y0 (mod m)

has no solutions. By using Lemma 2.4 we are able to find such modulus. Let

A = {2, 5, 7, 9, 13, 17, 19, 37, 73, 97, 109, 163, 193, 257, 769}.

By examining the congruence mod m∗ for all m∗ ∈ A and comparing the re-
sults we find that it has no solutions, thus m =

∏
m∗∈Am

∗ =

469692490871958086293470 is an appropriate modulus. This means that (3.7)
has no such solutions where x1 > 1 and x2 > 0 and x4 > 0 and x5 > 0 and
y > 0 simultaneously. This yields us six new equations, namely

5x2 + 11x3 + 13x4 + 17x5 = 19y − 1

5x2 + 11x3 + 13x4 + 17x5 = 19y − 3

3x1 + 11x3 + 13x4 + 17x5 = 19y − 1

3x1 + 5x2 + 11x3 + 17x5 = 19y − 1

3x1 + 5x2 + 11x3 + 13x4 = 19y − 1

3x1 + 5x2 + 11x3 + 13x4 + 17x5 = 1.



58 3 Exponential Diophantine equations

We only solve the first one, because the next four can be solved similarly and
the last one is trivial. The mentioned equation has only one "small" solution,
which is (1, 1, 0, 0, 1), thus we suspect that if the conjecture is true then there
exists a modulus m such that the congruence

5 · 5x2,0 + 11x3 + 13 · 13x4,0 + 17x5 ≡ 19y − 1 (mod m)

has no solutions modulo m. Similarly as before, the reason for using 5 · 5x2,0

instead of 52 ·5x2,0 is that we used 5 as part of our modulus because of its good
λ value and not because we tried to bound the exponent for x2. Let now

A = {2, 3, 5, 7, 13, 37, 73, 97, 109, 163, 193, 257, 769}

and examine this congruence for every modulus m∗, where m∗ ∈ A. By doing
that we find that the congruence has no solutions with m =

∏
m∗∈Am

∗ =

484718772829678107630. So we conclude that there are no solutions with
x2 > 0 and x4 > 0 simultaneously, which means that we were able to reduce
the number of unknowns by one. The remaining cases are

11x3 + 13x4 + 17x5 = 19y − 2

5x2 + 11x3 + 17x5 = 19y − 2.

The first equation has no solutions modulo

m = 2 · 3 · 7 · 37 · 73 · 97 · 109 · 163 · 193 · 257 · 433 = 4198924249980006414,

and because gcd(m, 11, 13, 17, 19) = 1 this branch will not give us new equa-
tions. The second one however has one "small" solution, which is (1, 1, 0, 1).
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If we consider the congruence

5x2 + 11x3 + 17 · 17x5,0 ≡ 19y − 2 (mod m)

withm = 2 ·3 ·7 ·17 ·37 ·73 ·97 ·109 ·163 then we find that it has no solutions,
so x5 = 0 and the remaining equation is

5x2 + 11x3 = 19y − 3

which still has one "small" solution, which is (1, 1, 1). If our assumptions are
correct, then the congruence

52 · 5x2,0 + 11x3 ≡ 19y − 3 (mod m)

has no solutions with some m. By choosing m = 25 · 33 · 52 · 7 · 31 this is true,
thus x2 < 2 which yields two new equations

11x3 = 19y − 4

11x3 = 19y − 8.

The first one does not have any solutions modulo 3, and by choosing m =

26 · 33 · 52 · 72 · 112 · 17 · 23 · 31 · 37 · 43 · 61, the congruence

112 · 11x3,0 = 19y − 8 (mod m)

has no solutions either. This means that x3 = 0 or x3 = 1. If x3 = 0 then the
resulting Diophantine equation is not solvable, but if x3 = 1 then we get one of
the solutions, which is (x1, x2, x3, x4, x5, y) = (0, 1, 1, 0, 0, 1). By following
the same argument we can solve the remaining four non-trivial equations and
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get all the solutions.

Proof of Theorem 3.4. We only prove the second part, since the first statement
of the theorem can be handled similarly. First observe that if all xi are greater
than 0, then the equation does not have any solutions modulo 5. So we have a
new equation:

5x1 + 5x2 + 5x3 + 5x4 + 5x5 + 5x6 + 5x7 + 5x8 = 17y − 1.

After finding the "small" solutions (which are the suspected solutions) choose
m = 2 · 3 · 5 · 7 · 13 · 19 · 37 · 109 · 163 and consider the congruence

5 · (5x′1 + 5x
′
2 + 5x

′
3 + 5x

′
4 + 5x

′
5 + 5x

′
6 + 5x

′
7 + 5x

′
8) ≡ 17y − 1 (mod m).

This congruence has no solutions, which means that at least x1 has to be 0, so
the new equation is

5x2 + 5x3 + 5x4 + 5x5 + 5x6 + 5x7 + 5x8 = 17y − 2.

If our assumption is correct, then in this equation x8 ≤ 3 and x2 = 0. If we
choose m = 2 · 3 · 53 · 7 · 13 · 19 · 37 · 109 then the congruence

53 · (5x′2 + 5x
′
3 + 5x

′
4 + 5x

′
5 + 5x

′
6 + 5x

′
7 + 5x

′
8) ≡ 17y − 2 (mod m).

has no solutions, so at least x2 has to be smaller than 3. Thus we have three
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new equations, namely

5x3 + 5x4 + 5x5 + 5x6 + 5x7 + 5x8 = 17y − 3,

5x3 + 5x4 + 5x5 + 5x6 + 5x7 + 5x8 = 17y − 7,

5x3 + 5x4 + 5x5 + 5x6 + 5x7 + 5x8 = 17y − 27.

We only solve the first one, the method for the other two is similar. This equa-
tion has one "small" solution, which is (0, 0, 0, 0, 1, 1, 1). Let m = 2 · 3 · 5 · 7 ·
13 · 19 · 37 · 109 and consider the congruence

5 · (5x′3 + 5x
′
4 + 5x

′
5 + 5x

′
6 + 5x

′
7 + 5x

′
8) ≡ 17y − 3 (mod m).

Since this does not have any solutions, we can take x3 = 0. By using the
same steps as above and the same m we get that x4 = 0 too, thus the equation
simplifies to

5x5 + 5x6 + 5x7 + 5x8 = 17y − 5.

Of course it can be seen modulo 5 that in this case x5 has to be 0 too, so the
remaining equation is

5x6 + 5x7 + 5x8 = 17y − 6

which has only one small solution, given by (0, 1, 1, 1). If m = 2 · 3 · 5 · 7 · 13 ·
19 · 37 · 109 then the congruence

5 · (5x′6 + 5x
′
7 + 5x

′
8) ≡ 17y − 6 (mod m)
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does not have any solutions. So x6 = 0 and the implied equation is

5x7 + 5x8 = 17y − 7.

Similarly, if we let m to be 2 · 3 · 52 · 7 · 11 · 13 · 19 · 41 then

52 · (5x′7 + 5x
′
8) ≡ 17y − 7 (mod m)

is not solvable, so we have two new equations:

5x8 = 17y − 8

5x8 = 17y − 12.

The first one does not have any solutions at all, which can be seen modulo
2 · 3 · 7 · 13. Let m = 2 · 3 · 52 · 7 · 11 · 13. Then the congruence

52 · 5x′8 ≡ 17y − 12 (mod m)

has no solutions, which means that either x8 = 0 or x8 = 1. If x8 = 0

then there are no solutions and if x8 = 1 then we get the only solution
(x1, x2, x3, x4, x5, x6, x7, x8, x9, y) = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1). By solving the
remaining equations similarly, the proof is complete.

Proof of Theorem 3.5. Again, we deal only with the second statement. Since
its proof is very similar to the previous ones, we only give the list of moduli
and the appropriate bounds obtained from the congruences. The base equation
is

2x13x2 + 5x37x4 − 11x513x6 = 1.
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1. modulo 2: x1 = 0.

2. modulo 5 · 7 · 13 · 17 · 19 · 37 · 41 · 73 · 97 · 109 · 193: x3 = 0 or x4 = 0

or x6 = 0. From now on we only consider the case x3 = 0, because the
other two can be handled similarly.

3. modulo 13 · 17 · 19 · 37 · 41 · 73 · 97 · 109 · 193: x6 = 0.

4. modulo 3: x2 = 0.

5. The remaining equation is 7x4 − 11x5 = 0 which is only solvable, if
x4 = x5 = 0.

The acquired solution in this case is (x1, x2, x3, x4, x5, x6) = (0, 0, 0, 0, 0, 0).
Using the same method we can give a bound for the exponents in the first part
of the theorem and solve the remaining equations in the second part, thus the
proof is complete.

Remark 7. In the above theorems we used Lemma 2.4 (based upon other
results from the literature) to find an appropriate modulusm. We now describe
some strategies about how to find an appropriate modulus.

1. If we choose a positive integer m such that for every prime factor pi of
m the number pi − 1 has only "small" prime divisors then λ(m) will be
"small". A very nice example for this is the numberm = 7031324575728 =

24 · 32 · 17 · 19 · 37 · 73 · 97 · 577. It can be seen that for all prime divisors
pi of m, pi − 1 is divisible by at most the primes 2 and 3. For this m
the value λ(m) is 576 which is quite low compared to the size of m.
(This idea is based upon Lemma 2.4 and its predecessors. Note that the
modulus m obtained in this way, can be efficient for general bases.)
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2. For equations where we have only a few different bases which are fixed
(e.g. the second equation from Theorem 3.4) we can use an elementary
method to find a good modulus. For the sake of better understanding
suppose that in the equation we have lots of v’s andw’s as bases, thus we
want to find a modulusm such that the order of v and w is small modulo
m. In this case we can proceed as follows. Take a positive integer A and
calculate m = gcd(vA − 1, wA − 1). This number m is a modulus for
which the order of v and w are at most A. Of course, in general we need
to do this with more than two numbers to get an upper bound for the
orders, but the more numbers we involve, the harder it becomes to find a
non-trivial m in this way. (Note that in contrast with the above point 1,
the modulus m obtained this way is "good" only for specifically v and
w.)

We close this subsection with two remarks.
Remark 8. For the actual computations we start with a set consisting of num-
bers with "small" λ-values. In our applications this set has more than 100 num-
bers. Then after finding the "small" solutions of the equation in question, we
expand this set based on this computation. For example if we find that in ev-
ery solution of an equation the largest power of say 2 is 17, then we put 218

into this set (sometimes we even use smaller powers of 2 as well, but this
only speeds up the computations, it has no theoretical value). Then we find the
"best" number m1 from this set, by which we mean the modulus for which the
product of the orders of the bases is the smallest. We then find all solutions of
the equation modulo m1. Based on the solutions we modify the equation and
find the next "best" modulus from the list. We continue this method until we
either prove that we have no solutions or we have used up all the numbers from
the set. In the latter case we were not able to give a bound for any exponent.
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This means that either the set of moduli was too small or that we were not
able to find all "small" solutions at the beginning (possibly because there is a
solution with vanishing subsums).
Remark 9. Another important thing to mention is that based on our theorems
and algorithm we are able to find all solutions of a wide variety of exponen-
tial Diophantine equations if the equations have only finitely many solutions.
Based on results of e.g. Győry and Evertse [32] we know that this is the case
if the equation has no solutions with vanishing subsums. If this is not the case
then the equation has infinitely many solutions. Thus our method does not
work for such equations. However, in some special cases the algorithm can be
used to bound the other variables. An easy example for this is the equation

2x − 3y + 7z − 7w = 0

in non-negative integers x, y, z, w. It can be seen that we have infinitely many
solutions of the shape (x, y, z, w) = (0, 0, a, a), where a is an arbitrary non-
negative integer. However, it can also be seen that if x ≥ 1 then the left side is
odd, thus modulo 2 we can conclude that x must be 0. Now if we try to solve
the congruence

1 ≡ 3y − 7z + 7w (mod 3),

we notice that it has no solutions if y ≥ 1, which means that y = 0, too. So we
are left with 7z = 7w from which we get that z = w.

3.2 Exponential Diophantine equations over number fields

In this subsection, we handle a similar problem as in Section 3.1, but instead of
working over Z, we now consider exponential Diophantine equations over the
ring of integers of an algebraic number field K. From now on let OK denote
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the ring of integers of K and let α1, . . . , αk, β11, . . . , β1`, . . . , βk1, . . . , βk` be
non-zero elements of K and γ ∈ K. Consider the equation

α1β
x11
11 . . . βx1`1` + · · ·+ αkβ

xk1
k1 . . . βxk`k` = γ (3.9)

in unknown integers x11, . . . , x1`, . . . , xk1, . . . , xk`. This equation is the ana-
logue of equation (3.1) over number fields. The main difference (apart from
not working above Z) is that in (3.9) we do not restrict the exponents to be
non-negative integers. However, we can assume this, since we may split (3.9)
into several cases, replacing some of the βij by 1/βij to achieve this property.
Furthermore, if some βij is not in OK, then we can write βij = β′ij/β

′′
ij with

β′ij, β
′′
ij ∈ OK. Then clearing the denominators, we obtain an equation of the

form (3.9) again, where the βij are algebraic integers. Hence, from this point
on we shall always assume that all the βij are in OK, and that the unknown
exponents xij are all non-negative integers.

Regarding the solutions of equation (3.9) for k = 2, 3, 4 one may use sim-
ilar methods which were mentioned in Section 3.1 (see e.g. results of Győry
[35, 36] for k = 2 or Vojta [86] and Bennett [8] for k = 3, 4; or the book
of Evertse and Győry [32]). Also, it is long known that (3.9) has only finitely
many solutions for any k for which the left hand side has no vanishing subsum.
Furthermore, the number of such solutions can be explicitly bounded in terms
of k and ` (see e.g. [34], [4] and for several related results [33], [32], and the
references given there).

We propose the following conjecture which is the analogue of Conjecture
1 in Section 3.1.
Conjecture 2. Suppose that one of the following two properties hold:

(i) equation (3.9) has no solution in integers xij (1 ≤ i ≤ k, 1 ≤ j ≤ `),
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(ii) none of the βij (1 ≤ i ≤ k, 1 ≤ j ≤ `) is a proper unit (i.e. a unit
different from roots of unity) in OK, and equation (3.9) has no solution
in non-negative integers xij (1 ≤ i ≤ k, 1 ≤ j ≤ `).

Then there exists an ideal M in OK such that the congruence

α1β
x11
11 . . . βx1`1` + · · ·+ αkβ

xk1
k1 . . . βxk`k` ≡ γ (mod M) (3.10)

has no solutions in non-negative integers xij (1 ≤ i ≤ k, 1 ≤ j ≤ `).

This conjecture is a variant of a classical conjecture of Skolem [75], but
the original formulation of Skolem is not completely precise. For an exact
formulation we refer to [66], pp. 398–399. The conjecture predicts a Hasse-
type principle for exponential Diophantine equations. Skolem’s conjecture has
been considered in several papers. Here we only mention those of Schinzel
[66, 67, 68], and Bartolome, Bilu and Luca [7] (see also the references therein).
Importantly, Theorem 2 of Schinzel [66] also implies that in case of k = 1 the
conjecture is true.

This conjecture can be considered as an extension of Conjecture 1 from
Section 3.1 to the algebraic case. The main difference apart from working
over Z is that in Conjecture 1 it is enough to consider the case when the ex-
ponents are non-negative integers. Unfortunately, in the extended conjecture
this is not sufficient. To understand the necessity of the extra requirement, let
K = Q(

√
2), and consider the equation

(1 +
√

2)x + (1 +
√

2)y = 2
√

2.

As one can easily check, this equation has no solution in non-negative
integers x, y. However, the corresponding congruence does have a solution
modulo M, for any ideal M in OK. The reason is that the above equation has
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solutions in integers, e.g. (x, y) = (1,−1). Since 1 +
√

2 is a unit in OK, we
can find a positive integer t such that (1 +

√
2)t ≡ 1 (mod M) for any M.

Hence we get

(1 +
√

2) + (1 +
√

2)t−1 ≡ 2
√

2 (mod M).

However, this phenomenon clearly occurs only if one of the numbers βij is a
unit inOK - otherwise we may find some modulus M such that none of the βij
is invertible modulo M. Furthermore, if βij is a root of unity, and its exponent
xij is negative in some solution, then we may clearly replace xij by a positive
integer, to obtain another solution. Thus altogether it seems that the conditions
(i) and (ii) may be sufficient to guarantee Conjecture 2 to hold.

In this section we prove similar theorems as in Section 3.1, but for the more
general case. We prove among others that for any fixed αi and βij (1 ≤ i ≤
k, 1 ≤ j ≤ `), the set of γ ∈ OK for which Conjecture 2 might fail, is "very
small". We extend our previous algorithm for solving exponential Diophan-
tine equations over number fields and show how it works by some numerical
examples. An interesting property of this algorithm is that under some circum-
stances we are able to solve equations where neither of the conditions (i) and
(ii) in Conjecture 2 is satisfied.

3.2.1 New results

We start with a theorem (which is Theorem 1 from our paper [13]) which
yields a good support for Conjecture 2. For any subset L of OK and any
ideal M of OK, write L (mod M) for the natural embedding of the set L
into OK/MOK. Finally, write N(M) for the norm of the ideal M in OK.

Theorem 3.6. Let α1, . . . , αk, β11, . . . , β1`, . . . , βk1, . . . , βk` be non-zero ele-
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ments of OK, and put

H = {α1β
x11
11 . . . βx1`1` +· · ·+αkβxk1k1 . . . βxk`k` : xij ≥ 0 (1 ≤ i ≤ k, 1 ≤ j ≤ `)}.

Then for any ideal A of OK and any ε > 0 there exists an ideal M such

that A |M, and |H (mod M)| < N(M)ε.

Remark 10. Choosing ε "very small", the above theorem shows that it is "very
unlikely" that (3.9) is not solvable, but the corresponding congruence modulo
M is solvable. Since for any ε we can choose infinitely many M, this assertion
seems to give a strong support for Conjecture 2 indeed.

Remark 11. The presence of A is important to guarantee that some of the
βij will not be invertible modulo M (or even, we can make some βij be zero
modulo M). This will be important later on, in applying the conjecture to find
all solutions of (3.9) in the case where it does have solutions.

3.2.2 Lemmas

To give the proof of Theorem 3.6, we need some preparation. For an ideal I in
OK, denote by ϕ(I) the number of invertible elements in OK/I. Note that if
K = Q, then the ϕ function is Euler’s totient function. The following lemma
is a well-known property of the ϕ function; see e.g. Theorem 1.19 on p.23 of
Narkiewicz [55].

Lemma 3.3. Suppose that I is an ideal in OK with I = pn1
1 . . . pnk

k , where

p1, . . . , pk are distinct prime ideals in OK. Then we have

ϕ(I) = N(p1)
n1−1 · · ·N(pk)

nk−1(N(p1)− 1) · · · (N(pk)− 1),

where N(I) is the norm of I.
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For any ideal I in OK, write

λ(I) := lcm{ordI(α) | α ∈ OK , α is invertible in OK/I},

where ordI(α) is the smallest positive integer t with αt ≡ 1 (mod I). Note
that if K = Q, then the λ function coincides with Carmichael’s function. Obvi-
ously, for any ideal I, we have λ(I) | ϕ(I). Furthermore, as it is well-known,
see e.g. Laššák and Porubský [45], we have the following assertion.

Lemma 3.4. Suppose that I is an ideal in OK with I = pn1
1 . . . pnk

k , where

p1, . . . , pk are distinct prime ideals in OK. Then we have

λ(I) = lcm(λ(pn1
1 ), . . . , λ(pnk

k )).

We shall also need the following variant of a result of Erdős, Pomerance
and Schmutz [28] concerning small values of Carmichael’s function due to
Pollack [63]. (For other variants see e.g. [1], [38] and Lemma 2.4.)

Lemma 3.5. Let K = Q, and P be a set of primes of positive upper relative

density. For each κ > 0, there are infinitely many square-free natural numbers

n which are divisible only by primes in P and which satisfy λ(n) < nκ.

Combining the above lemmas with certain other assertions, we obtain the
following property of the λ function defined over K. Note that this result
(Lemma 4 from Bertók and Hajdu [13]) is a kind of extension of the above
mentioned results concerning Carmichael’s function over algebraic number
fields.

Lemma 3.6. For any δ > 0 and ideal A in OK there exists an ideal M in OK

such that A |M and λ(M) < N(M)δ.
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Proof. To prove the statement, we closely follow arguments of Pollack [63],
with small modifications. Let P be the set of those primes p which split com-
pletely in K, such that (p) and A are coprime ideals in OK. It follows from
Landau’s prime ideal theorem [44] that P has positive upper density. Thus ap-
plying Lemma 3.5 with this set and some κ > 0, such that κ < δd, where d
is the degree of K, we obtain that there exists a positive integer n of the form
n = p1 . . . pk where p1, . . . , pk are distinct primes from P , such that λ(n) < nκ

and N(A)1−δ < nδd−κ. (Here and later on, λ(n) is to be understood over Q.)
Write M = (n)A with this n, and let pi = pi1 . . . pid (i = 1, . . . , k), where the
pij are prime ideals in K. Then using Lemmas 3.3 and 3.4 we have

λ(M) ≤ λ(A)lcm(λ(p11), . . . , λ(p1d), . . . , λ(pk1), . . . , λ(pkd)) ≤

≤ λ(A)lcm(ϕ(p11), . . . , ϕ(p1d), . . . , ϕ(pk1), . . . , ϕ(pkd)) =

= λ(A)lcm(p1−1, . . . , pk−1) = λ(A)λ(n) < N(A)nκ < N(A)δnδd = N(M)δ.

This proves the statement.

In fact, we shall need a statement which shows that for all α ∈ OK, the
powers of α form a "small" set modulo some M, and Lemma 3.6 guarantees
this only for α with gcd((α),M) = 1. To get such a statement, observe that
for any ideal I in OK and α ∈ OK with gcd((α),M) = 1, we have

ordI(α) = #{αk (mod I) : k ∈ Z}.

We shall use the above notation for any α ∈ OK, and further write

L(I) = max{ordI(α) | α ∈ OK}.
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The next lemma (Lemma 5 from Bertók and Hajdu [13]) provides the neces-
sary extension. Note that similar statements can be found in [37] and in Section
3.1 (over Z).

Lemma 3.7. Let I = pn1
1 · · · p

n`
` be the prime ideal factorization of an ideal

I of OK, and write t = max{n1, . . . , n`}. Then for all α ∈ OK we have

ordI(α) ≤ λ(I) + t.

Proof. Write (α) = qu11 · · · qurr · p
v1
1 · · · p

v`
` , where the qi are prime ideals with

qi 6= pj , and the exponents ui, vj are non-negative integers. We show that for
any x > λ(I) there exists a y with 1 ≤ y ≤ λ(I) such that αx+t ≡ αy+t

(mod I). Given x, choose a y with 1 ≤ y ≤ λ(I) such that αx+t ≡ αy+t

(mod I′), where I′ =
∏
vi=0

pni
i . Since gcd(α, I′) = 1 and λ(I′) ≤ λ(I), such

a y exists. Thus it remains only to prove that αx+t ≡ αy+t (mod I′′), where
I′′ =

∏
vi 6=0

pni
i . Since x, y ≥ 0, this statement is trivial.

3.2.3 Proofs

In this section we present the proof of Theorem 3.6.

Proof of Theorem 3.6. Take a δ > 0, and using Lemma 3.6, choose an ideal M
such that A | M and λ(M) < N(M)δ. Here (by choosing some appropriate
ideal divisor B of M) we may further assume that N(M) is so large that
N(M)δ ≥ log(N(M). Then, using Lemma 3.7, we get that

ordM(α) ≤ N(M)δ + log(N(M))/ log 2

for any α ∈ OK. Thus

|H (mod M)| ≤ (N(M)δ + log(N(M))/ log 2)k`.
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Hence choosing δ appropriately, the theorem follows.

3.2.4 An algorithm for solving exponential Diophantine equations over
number fields

Our algorithm for solving exponential Diophantine equations over number
fields is very similar to what we have seen in Section 3.1.2. So without any
further explanation we simply give the steps needed to handle equation (3.9).

(I) We find the "small" solutions of equation (3.9). [Note: since the expo-
nents xij , 1 ≤ i ≤ k, 1 ≤ j ≤ ` can be negative numbers, we need to
check for the "small" solutions xij ∈ Z.]

(II) We choose one of the unknowns, xij say, belonging to some βij which
is not a unit. Using the list of solutions from step (I) we take an inte-
ger x0 with xij < x0 in all known solutions. [Note: as a variant of the
method, at this point we could choose more exponents to speed up the
calculations.]

(III) In place of equation (3.9), we consider the equation obtained by replac-
ing the coefficient αi with αiβx0ij . [Note: if the list of solutions is indeed
complete, then the new equation has no solutions in non-negative integer
exponents.]

(IV) We search for an M such that the new equation has no solution modulo
M. Having such an M, we can conclude that xij < x0 holds for all solu-
tions of (3.9). [Note: if Conjecture 2 is true, then such a modulus exists.
In the examples we shall show strategies how we try to find such an M.
One method is based upon the proof of Theorem 3.6. As an important
point, observe that for the unsolvability of the congruence modulo M
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the relation we need to have A := (βx0ij ) | M should hold, showing the
importance of the divisibility property.]

Remark 12. If we iterate this method, then after some steps we are left with
equations where all the remaining βij are units. Since our algorithm cannot
be used in this case we need to use another method to handle these equations
(e.g. if we only have two units remaining then we may apply Baker’s method
to find all solutions).

Remark 13. Note that the method might also work if there are solutions with
vanishing subsums: if there are terms which are not involved in such subsums,
then the corresponding exponents may be bounded as above, and the final
equation obtained can be solvable (e.g. by Baker’s method, if the number of
remaining terms is sufficiently reduced).

The rest of this section is devoted to numerical examples, and we also ana-
lyze our method from certain aspects. At the end of the section, we formulate
a theorem based upon these results and computations.

Let K = Q(
√
d), where d is one of 2, 3, 5 and consider the equations

βx11 + 2βx22 − 3βx33 = 1, (3.11)

where βi = ai + bi
√
d such that ai and bi are integers with max{|ai|, |bi|} ≤ 3

and xi is a non-zero integer for every i = 1, 2, 3. (We decided to exclude the
case when one or more exponents are zero, since in those cases we can use
e.g. Baker’s method to handle the equations.) Taking everything into account
we have 76 = 117649 equations for every d.

Our goal is that for any equations (3.11) which is not solvable, give an ideal
M such that the equation has no solutions modulo M. Thus first we need to
exclude all equations (3.11) which has a solution. For this, we do an exhaustive
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search for the exponent triple (x1, x2, x3) in some large domain. Namely, we
check the domain with maxi=1,2,3 |xi| ≤ 100. Note that if some βi is a unit in
OK, then we have to check the negative values of xi indeed. After this search
we are rather sure that we have found all equations (3.11) which are solvable.
(Note that obviously, at this point we cannot be sure that this is really the case
- however, as we shall see later, this expectation is proved to be valid.) After
this step, we use three ideals for d = 2, 3, 5 (M2,M2,3,M2,3,5). These ideals
are defined in the following way. Fixing d (and hence K), M2 is generated by
those ideals M inOK which are prime ideals with norm less than 50 and ϕ(M)

has only 2 as a prime divisor. We define the ideals M2,3 and M2,3,5 similarly
by simply expanding the list of possible prime divisors to 2, 3 and to 2, 3, 5,
respectively. The use of these ideals is motivated by the following approach:
by collecting the mentioned generators, we get an ideal with "small" λ-value.

We get that after using M2, M2,3 and M2,3,5 most of the equations for
which we did not find solutions at the first stage, are not solvable. To handle
the remaining equations we extended the ideals M2, M2,3 and M2,3,5 to be
generated by primes in OK with the same property as before, but norm at
most 150. By using these new ideals we were able to prove that none of the
remaining equations have solutions.

We summarize our results in the Tables 1,2 and 3. We only work with
the cases where we have not found solutions at the first stage. Since for all
βi = ai + bi

√
d we have max{|ai|, |bi|} ≤ 3 then we need to work with

76 = 117649 possible equations. First we rule out those equations which have
solutions with maxi=1,2,3 |xi| ≤ 100, and only keep the others. For example
for d = 2 after this step we get that 113361 equations have no solutions if the
exponents are "small". After this step we first consider these equations modulo
M2 where the primes generating M2 have norms N ≤ 50. The algorithm
proved that 92636 equations are unsolvable modulo M2. Still using N ≤ 50
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as a bound for the norms of the primes generating M2,M2,3 and M2,3,5, we
get that out of the remaining 20725 equations 20173 are not solvable modulo
M2,3. By using M2,3,5 we were not able to rule out all remaining equations,
the algorithm was unable to decide if 22 of them are solvable or not. Thus
we increased the bound for N to 150 and started over. For M2 we did not get
any new information, but using M2,3 was enough to prove that all remaining
equations are unsolvable, thus in this case we were not required to use M2,3,5.

Solved Remaining

M2
N ≤ 50 92636 20725
N ≤ 150 92636 20725

M2,3
N ≤ 50 20173 552
N ≤ 150 20725 0

M2,3,5
N ≤ 50 530 22
N ≤ 150 − −

Table 1. The results for d = 2.

Solved Remaining

M2
N ≤ 50 55223 58305
N ≤ 150 55223 58305

M2,3
N ≤ 50 57622 583
N ≤ 150 57801 504

M2,3,5
N ≤ 50 380 203
N ≤ 150 504 0

Table 2. The results for d = 3.
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Solved Remaining

M2

N ≤ 50 44184 72165

N ≤ 150 44184 72165

M2,3

N ≤ 50 56815 15350

N ≤ 150 71407 758

M2,3,5

N ≤ 50 15326 24

N ≤ 150 758 0

Table 3. The results for d = 5.

Summarizing our results, we obtain the following theorem.

Theorem 3.7. Let K = Q(
√
d), where d is one of 2, 3, 5 and consider the

equation

βx11 + 2βx22 − 3βx33 = 1, (3.10)

in integers x1, x2, x3, where βi = ai + bi
√
d such that ai and bi are integers

with max{|ai|, |bi|} ≤ 3 (i = 1, 2, 3). If equation (3.11) has no solutions then

there exists an ideal M such that the equation has no solutions modulo M.
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4 Applications

In this section we give some applications of the methods from Sections 3.1
and 3.2 to Diophantine problems which can be reduced to the solution of
exponential Diophantine equations. These problems are proposed by Terai
[83, 80, 81, 82], Marques, Togbé [50], Luca [48] and others.

4.1 A complete solution of a conjecture of Terai

The first problem is related to a famous conjecture of Terai. Namely, let a, b, c
be positive integers with gcd(a, b, c) = 1 and consider the Diophantine equa-
tion

ax + by = cz (4.1)

where x, y, z are unknown positive integers. This equation has been investi-
gated by several authors. In particular, Terai [80] conjectured that if a, b, c ≥ 2

then equation (4.1) has at most one solution in (x, y, z) with x, y, z ≥ 2

(see also [81, 82, 83]). This conjecture implies the classical conjecture of
Jes̀manowicz [41], saying that

(m2 − n2)x + (2mn)y = (m2 + n2)z

has no solutions other than (x, y, z) = (2, 2, 2), where m,n are positive inte-
gers with m > n, gcd(m,n) = 1 and m 6≡ n (mod 2). Note that in this case
a = m2 − n2, b = 2mn, c = m2 + n2 form a reduced Diophantine triple, thus
(x, y, z) = (2, 2, 2) is always a solution.

As a related problem, Terai [83] investigated the equation

(4t2 + 1)x + (5t2 − 1)y = (3t)z, (4.2)
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where t is an arbitrary but fixed positive integer, and x, y, z are unknown pos-
itive integers. He proved the following.

Theorem A (Terai [83]). If 0 < t ≤ 20 or t 6≡ 3 (mod 6) then equation (4.2)
has the only solution (x, y, z) = (1, 1, 2).

Recently, Su and Li [76] investigated the cases where 3 | t. They obtained
the following result.

Theorem B (Su and Li [76]). If t ≥ 90 and 3 | t then the only solution to the

Diophantine equation (4.2) is (x, y, z) = (1, 1, 2).

As one can see, combining Theorems A and B, we get the complete solu-
tion of equation (4.2) for t ≤ 20 and 90 ≤ t.

Here we complete the solution of (4.2). Solving the remaining cases and
putting it together with Theorem A and B we obtain the following theorem
(Theorem 1 from Bertók [10])

Theorem 4.1. For any positive integer t, the Diophantine equation (4.2) has

only one solution in x, y and z, namely (x, y, z) = (1, 1, 2).

The proof uses the method from Section 3.1. We note that in these specific
equations one could use Baker’s method to get bounds for the solutions, and
then by some reduction method all solutions could be obtained. However, our
approach is more elementary.

Proof of Theorem 4.1. In view of Theorem A and B, we only have to solve
(4.2) for 20 < t < 90 and t ≡ 3 (mod 6), namely for

t = 21, 27, 33, 39, 45, 51, 57, 63, 69, 75, 81, 87.
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Letting a = 4t2 + 1, b = 5t2 − 1, c = 3t for these t’s, the equation can be
written as

ax + by = cz. (4.3)

Altogether we have twelve equations of type (4.3) to solve. We solve these
equations by using the algorithm presented in Section 3.1.

To prove Theorem 4.1, we show that (4.3) has no solution with z > 2. For
this purpose, instead of (4.3), we consider the equation

ax + by = c2 · cz0 (4.4)

in positive integers x, y, z0. Our strategy is the following. We find an appropri-
ate modulus m such that (4.4) has no solutions modulo m. Then we conclude
that (4.3) has no solutions with z = z0 + 2 ≥ 3. Since a, b and c are all fixed
positive integers, the remaining cases where z < 3 can be checked easily.

To find appropriate moduli m, one can use primes p such that p − 1 are
composed only of "small" primes. As we described the construction of such
moduli at Section 3.1 we do not give details here.

Since every equation can be handled similarly, we only demonstrate the
solution for t = 21. However, in this case we provide extensive data. We use
the program package Sage [77] to perform the necessary calculations.

If t = 21 then the equation is

1765x + 2204y = 63z.
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Following the strategy we consider instead the equation

1765x + 2204y = 632 · 63z0 . (4.5)

First consider this equation modulo 37. For the orders of the bases 1765, 2204, 63

modulo 37 we get

ord37(1765) = 3, ord37(2204) = 18, ord37(63) = 3.

Hence the exponents x, y, z0 are determinded modulo 3, 18, 3, respectively. It
can be checked that we have six solutions, namely

i) x ≡ 1 (mod 3), y ≡ 16 (mod 18), z0 ≡ 1 (mod 3),

ii) x ≡ 2 (mod 3), y ≡ 13 (mod 18), z0 ≡ 1 (mod 3),

iii) x ≡ 0 (mod 3), y ≡ 7 (mod 18), z0 ≡ 2 (mod 3),

iv) x ≡ 2 (mod 3), y ≡ 10 (mod 18), z0 ≡ 2 (mod 3),

v) x ≡ 0 (mod 3), y ≡ 4 (mod 18), z0 ≡ 0 (mod 3),

vi) x ≡ 1 (mod 3), y ≡ 1 (mod 18), z0 ≡ 0 (mod 3).

After some calculations we get six new equations

i) 1765 · (17653)x1 + 220416 · (220418)y1 = 633 · (633)z1 ,

ii) 17652 · (17653)x1 + 220413 · (220418)y1 = 633 · (633)z1 ,

iii) (17653)x1 + 22047 · (220418)y1 = 634 · (633)z1 ,

iv) 17652 · (17653)x1 + 220410 · (220418)y1 = 634 · (633)z1 ,
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v) (17653)x1 + 22044 · (220418)y1 = 632 · (633)z1 ,

vi) 1765 · (17653)x1 + 2204 · (220418)y1 = 632 · (633)z1 ,

where x1, y1 and z1 are positive integers.
We consider these equations modulo 193. We have

ord193(17653) = 16, ord193(220418) = 2, ord193(633) = 4.

It can be seen that the first two equations have no solutions modulo 193, and
the other four has two solutions each, where the exponents x1, y1, z1 are con-
sidered modulo 16, 2, 4, respectively. We only take the fourth equation, the
other ones can be handled similarly. In this case we get that the two solutions
of the equation are

i’) x1 ≡ 15 (mod 16), y1 ≡ 0 (mod 2), z1 ≡ 1 (mod 4),

ii’) x1 ≡ 7 (mod 16), y1 ≡ 1 (mod 2), z1 ≡ 3 (mod 4).

This leads us to the following two new equations:

i’) 176547 · (176548)x2 + 220410 · (220436)y2 = 637 · (6312)z2 ,

ii’) 176523 · (176548)x2 + 220428 · (220436)y2 = 6313 · (6312)z2 ,

where x2, y2 and z2 are positive integers.
Now we work modulo 109. We have

ord109(176548) = 9, ord109(220436) = 3, ord109(6312) = 1.

We obtain that the second equation has no solutions while the solutions of the
first eqation satisfiy

x2 ≡ 7 (mod 9), y2 ≡ 0 (mod 3), z2 ≥ 0.
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The corresponding equation is

1765383 · (1765432)x3 + 220410 · (2204108)y3 = 637 · (6312)z3 .

Now modulo 36 we get that this equation has no solutions. We used the
number 36 because we want to prove that equation (4.2) has no solutions with
z > 2. Since the equation has a solution with z = 2 and 3t = 32 · 7 we need to
put 36 in m, otherwise we are not able to rule out the possible solutions with
z ≤ 2. We note that the modulus m = 36 · 37 · 109 · 193 works for the other
arising equations as well.

Hence we obtain that equation (4.5) has no solutions modulo m, which
means that in the original equation z < 3 holds. This easily implies (x, y, z) =

(1, 1, 2).
For the remaining cases we only list the used moduli in Table 4.

t m
27 312 · 5 · 7 · 13 · 17 · 19 · 37 · 41 · 73 · 97 · 109 · 163 · 193 · 257 · 577
33 36 · 5 · 7 · 13 · 17 · 19 · 37 · 41 · 73 · 97 · 163 · 433
39 36 · 7 · 13 · 17 · 19 · 37 · 41 · 73 · 97 · 109 · 43
45 53 · 7 · 13 · 17 · 19 · 41 · 97
51 36 · 7 · 13 · 17 · 19 · 37 · 41 · 73 · 97 · 109 · 163
57 36 · 5 · 7 · 13 · 17 · 19 · 37 · 73 · 97 · 109 · 163 · 193 · 433 · 577 · 769
63 39 · 5 · 7 · 13 · 17 · 19 · 37 · 73 · 109 · 433
69 36 · 7 · 17 · 19 · 37 · 73 · 97 · 109 · 163 · 193
75 36 · 7 · 17 · 19 · 37 · 73 · 97 · 109 · 163 · 257
81 315 · 7 · 17 · 19 · 37 · 41 · 73 · 97 · 109 · 163 · 193 · 257 · 433 · 577
87 36 · 7 · 19 · 37 · 41 · 73 · 109

Table 4. The used moduli for equation (4.2).
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4.2 Representing terms of binary recurrence sequences as
sums of powers

As our second application we give some results for binary recurrence se-
quences.

Searching for specific terms of linear recurrence sequences has a long his-
tory and a rich literature. A famous book addressing these kinds of problems
is [73] or the reader may consult the papers [42, 50, 65] and the references
given there. Pethő [58] and Shorey and Stewart [72] independently proved
that under certain natural assumptions, a linear recurrence sequence may con-
tain only finitely many perfect powers. In the case of some special, famous
sequences all perfect powers have been determined. In the case of the Pell
sequence Pn, Pethő [60] proved that it does not contain non-trivial powers.
Bugeaud, Mignotte and Siksek [22] proved that the Fibonacci-sequence Fn
contains only the powers 0, 1, 8, 144, and the only powers in the sequence of
Lucas numbers Ln are 1, 4. Results of Pethő and Tichy [62] imply that there
are only finitely many Fibonacci numbers of the form px + py + pz, where
p is a fixed prime. Kovács [42] found all combinatorial numbers of certain
shapes among the terms of Fn, Ln, Pn and Qn (the associated Pell-sequence).
Sanchez and Luca [65], among others showed that the only Fibonacci number
of the shape±m!± 2x3y5z7v is F24 = 8! + 25335071. Sanchez and Luca noted
that by their method they cannot solve the equation Fn = 2x + 3y.

Finally we mention a result of Irmak and Szalay [40] who determined all
Tribonacci numbers which are close to the sum of powers of 2, 3 and 5. For
other related results, see the references e.g. in our paper [16].

In this section first we concentrate on the equations Un = 2x + 3y and
Un = 2x + 3y + 5z in non-negative integers x, y, z where Un is one of the
Fibonacci-sequence Fn, the Lucas-sequence Ln, the Pell-sequence Pn or the
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associated Pell-sequence Qn.

The second part of the first theorem extends the above mentioned result of
Marques and Togbé [50]. Namely, we get rid of the condition z ≥ max(x, y)

in the equation
Un = 2x + 3y + 5z

with Un = Fn, Ln, and we consider the cases Un = Pn, Qn, as well. The
first part of the first theorem with Un = Fn solves the previously mentioned
problem of Sanchez and Luca [65]. This result is Theorem 2.2 in [16].

Theorem 4.2. Let Un be one of Fn, Ln, Pn, Qn. Then the solutions of the equa-

tion

Un = 2x + 3y (4.6)

in non-negative integers n, x, y are given by Table 5.

(n, x, y)

Fn (3, 0, 0), (4, 1, 0), (5, 1, 1), (5, 2, 0), (7, 2, 2), (11, 3, 4)

Ln (0, 0, 0), (3, 0, 1), (2, 1, 0), (5, 1, 2),
(7, 1, 3), (4, 2, 1), (13, 9, 2), (5, 3, 1)

Pn (2, 0, 0), (3, 1, 1), (5, 1, 3), (3, 2, 0), (9, 8, 6)

Qn (2, 1, 0), (3, 2, 1), (4, 3, 2), (4, 4, 0), (5, 5, 2)

Table 5. Solutions of equation (4.6).

Furthermore, still with Un being one of Fn, Ln, Pn, Qn, the solutions of the

equation

Un = 2x + 3y + 5z (4.7)
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in non-negative integers n, x, y, z are those occurring in Table 6.

(n, x, y, z)
Fn (4, 0, 0, 0), (5, 0, 1, 0), (6, 1, 0, 1), (9, 1, 3, 1),

(6, 2, 1, 0), (9, 3, 0, 2), (12, 4, 1, 3), (9, 5, 0, 0)
Ln (2, 0, 0, 0), (4, 0, 0, 1), (7, 0, 1, 2), (5, 0, 2, 0), (7, 0, 3, 0),

(3, 1, 0, 0), (6, 2, 2, 1), (6, 3, 2, 0), (6, 4, 0, 0)
Pn (3, 0, 1, 0), (5, 0, 3, 0), (4, 1, 2, 0), (5, 0, 1, 2), (4, 2, 1, 1),

(4, 3, 1, 0), (6, 6, 0, 1), (8, 8, 3, 3), (10, 10, 6, 4)
Qn (2, 0, 0, 0), (3, 0, 0, 1)

Table 6. Solutions of equation (4.7).

Remark 14. Note that the solutions of the equation Un = 2x are also known
for these sequences: for Un = Fn, Ln they can be obtained from the already
mentioned results of Bugeaud, Mignotte and Siksek [22] (the solutions are
(n, x) = (1, 0), (2, 0), (5, 3) and (n, x) = (0, 2), (1, 0), respectively), for Un =

Pn the only solution (n, x) = (1, 0) is given by the result of Pethő [60], while
for Un = Qn the only solutions are (n, x) = (0, 0) and (1, 0), since all the
terms of Qn with n > 0 are odd and greater than one.

Proof of Theorem 4.2. Since we apply the method from Section 3.2 for every
equation, we only demonstrate our approach for the case of Fn = 2x + 3y. For
the remaining equations we only list the moduli used.

We rewrite the equation Fn = 2x + 3y as

αn − βn −
√

5 · 2x −
√

5 · 3y = 0, (4.8)

where α = 1+
√
5

2
and β = 1−

√
5

2
. First we list all "small" solutions of this

equation, i.e. the solutions with n, a, b ≤ 100. (Note that it is not necessary to
check for negative values of n, since α−1 = −β. Thus we cannot have negative
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even solutions in n and if n is a negative odd number then we can simply take
its absolute value since equation (4.8) remains the same.) In fact, we just find
the solutions given in Table 5. We observe that in every "small" solution the
exponent of 2 is at most 3, and instead of (4.8) we consider the equation

αn − βn −
√

5 · 24 · 2x0 −
√

5 · 3y = 0. (4.9)

We suspect that equation (4.9) has no solutions in non-negative integers n, x0, y.
To show this, we work in the ring of integers OK of the number field K =

Q(
√

5). We exhibit a modulus M ∈ OK such that (4.9) has no solutions al-
ready modulo M. (Here, and elsewhere from this point on, all congruences are
to be taken in OK.) As we shall see,

M = 24 · 5 · 7 · 13 · 17 · 19 · 29 · 31 · 37 · 43 · 73

is an appropriate choice. For this, consider equation (4.9) modulo M1 = 24.
One can easily check that ord24(α) = ord24(β) = 24, ord24(3) = 4. Since√

5 · 24 · 2x0 ≡ 0 (mod 24), we only need to consider 24 · 4 = 96 possibilities.
By checking all these cases, we get that there are only eight solutions modulo
24. These solutions are given by

(n, y) ≡ (1, 0), (2, 0), (4, 1), (11, 2), (13, 2),

(14, 2), (16, 3), (23, 0) (mod (24, 4)),

where here and later on by

(u1, . . . , uk) ≡ (v1, . . . , vk) (mod (q1, . . . , qk))
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we mean that ui ≡ vi (mod qi) for every i = 1, . . . , k. We consider only the
case n ≡ 4 (mod 24) and y ≡ 1 (mod 4), the other cases can be handled
similarly. Now putting n = 24n0 + 4 and y = 4y0 + 1, from (4.9) we get

α4 · (α24)n0 − β4 · (β24)n0 −
√

5 · 24 · 2x0 −
√

5 · 3 · (34)y0 = 0. (4.10)

Take M2 = 5. As we have ord5(α
24) = ord5(β

24) = 5, ord5(2) = 4 and
ord5(3

4) = 1, we need to consider 5 · 4 = 20 cases. By a simple computation
we get that

(n0, x0) ≡ (1, 3), (2, 0), (3, 2), (4, 1) (mod (5, 4)).

We pick up the case n0 ≡ 3 (mod 5) and x0 ≡ 2 (mod 4), the other cases
can be treated similarly. Now letting n0 = 5n1 + 3 and x0 = 4x1 + 2, (4.10)
yields

α76 · (α120)n1 − β76 · (β120)n1 −
√

5 · 26 · (24)x1 −
√

5 · 3 · (34)y0 = 0.

(4.11)

We take M3 = 7. As one can easily check, we have ord7(α
120) = ord7(β

120) =

2 and ord7(2
4) = ord7(3

4) = 3. That is, we have to consider 2 · 3 · 3 = 18

cases. By doing this we get two solutions, namely

(n1, x1, y0) ≡ (0, 0, 0), (1, 2, 2) (mod (2, 3, 3)).

Taking the first triplet (the other one can be handled similarly), putting
n1 = 2n2, x1 = 3x2 and y0 = 3y1, we obtain

α76 · (α240)n2 − β76 · (β240)n2 −
√
5 · 26 · (212)x2 −

√
5 · 3 · (312)y1 = 0. (4.12)
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Now choose M4 = 13. Then ord13(α
240) = ord13(β

240) = 7, and ord13(2
12) =

ord13(3
12) = 1. If we check all seven possibilities modulo M4 = 13, we get

that there are no solutions.
By following the same argument as above for the occurring possibilities,

using the factors of M, we conclude that (4.9) has no solutions modulo m.
This implies that in (4.8) we must have x ≤ 3. From this point on one can use
the same method again to solve the four new equations (with x = 0, 1, 2, 3).

In Table 7 we give the moduli used for the equations. Furthermore, we also
indicate what is the conclusion we can draw by the help of that modulus. In
the table we use the notation

M1 = 7 · 13 · 17 · 19 · 29 · 31 · 37 · 73,

M2 = M · 37 · 5 · 11 · 41 · 12289 · 17497 · 18433 · 65537,

M3 = M · 211 · 37 · 12289 · 17497 · 18433,

M4 = M · 2 · 37 · 11 · 41 · 12289 · 17497,

M5 = M · 212 · 3 · 11 · 41 · 39367 · 65537,

where

M = 7 ·13 ·17 ·19 ·29 ·31 ·37 ·43 ·73 ·97 ·109 ·163 ·193 ·257 ·433 ·487 ·577·

·769 · 1153 · 1297 · 1459 · 2593 · 2917 · 3137 · 3457 · 3889 · 10369.
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seq. representation modulus conclusion modulus conclusion

Fn

2x + 3y M1 · 24 · 5 · 43 x ≤ 3 - -

2x + 3y + 5z
M1 · 26 · 97· x ≤ 5 M1 · 2 · 34· y ≤ 3
·109 · 193 · 769 ·97 · 109 · 769

Ln 2x + 3y

M1 · 34 · 5 · 43· y ≤ 3 - -
·97 · 109 · 163·
·193 · 257 · 433·

·487 · 577 · 769 · 3889

2x + 3y + 5z
M1 · 25· x ≤ 4 M1 · 25 · 34 · 112· y ≤ 3

·97 · 109 · 193 ·41 · 61 · 67·
·71 · 109 · 271

Pn

2x + 3y M2 y ≤ 6 - -

2x + 3y + 5z M3
x ≤ 10 or M4 resp. y ≤ 6 resp.
y ≤ 6 M5 x ≤ 11

Qn
2x + 3y

33 · 5 · 7 · 13· y ≤ 2 - -
·97 · 109 · 193

2x + 3y + 5z
22 x ≤ 1 3 · 7 · 11 · 13 · 17· y = 0

·19 · 31 · 37 · 73

Table 7. Used moduli and the conclusion drawn for the equations considered.

In the above table it can be seen that we only used our method to reduce
the number of unknown variables to two (n and either x or y for 2x + 3y or n
and z for 2x+3y+5z). As it was mentioned before, it would be possible to use
the algorithm again and solve the equations completely. However, instead of
doing so we used a different approach, since in these special cases it was much
faster than our method. Namely, we used elliptic curves. This approach, as we
shall see, always becomes available whenever we can restrict two variables
from x, y, z. Then by the help of the identities

L2
n − 5F 2

n = ±4 and 2P 2
n −Q2

n = ±1 (4.13)
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one can reduce the problem to finding integral points on elliptic curves. We
demonstrate this method by exhibiting a particular case. Recall that in the case
of the equation Fn = 2x + 3y the local arguments implied x = 0, 1, 2, 3. As an
example, we take x = 3, the other cases can be handled similarly. In this case
we need to solve the equation

Fn = 3y + 8. (4.14)

We can write y = 2k or y = 2k + 1 with some integer k. Put Y = Ln and
X = 3k. Then from the first identity in (4.13) in the case of y = 2k we get

Y 2 = 5X4 + 80X2 + 320± 4,

while for y = 2k + 1 we obtain

Y 2 = 45X4 + 240X2 + 320± 4.

Using the Magma [19] procedure IntegralQuarticPoints, we get the
integer solutions X, Y of these equations. Namely, if (X, Y ) is a solution to
any of the above equations in non-negative integers, then it is one of

(X, Y ) = (0, 18), (9, 199), (15, 521).

Among these solutions we select those where X is a non-negative power of
3. In this case the only such solution is (X, Y ) = (9, 199). We conclude that
equation (4.14) has the only solution y = 4 (with n = 11).

In the case of all the other equations (4.6) and (4.7), after reducing the
number of variables on the right hand sides to one, the above method worked
and provided the solutions in Tables 5 and 6.
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4.3 A problem concerning balancing numbers

Now we turn to a problem related to balancing numbers. Namely we discuss
equations consisting of balancing numbers. The sequence of balancing num-
bers Bn is defined by B0 = 0, B1 = 1 and Bn+2 = 6Bn+1 − Bn (n ≥ 0).
That is, the sequence is a special Lucas-sequence. Problems related to balanc-
ing numbers have a vast literature; see e.g. the papers [43, 47, 57, 79] and the
references given there. We can write

Bn =
βn1 − βn2
β1 − β2

(n ≥ 0),

where β1 = 3 + 2
√

2 and β2 = 3− 2
√

2. Consider the following equation

Bu +Bv +Bw = bz (4.15)

in non-negative integers u, v, w, z, where b ∈ {2, 3, 5, 7}. Such equations
(that is, representing powers as sums of terms of certain linear recurrence se-
quences) is of large recent interest, many papers deal with such questions. We
refer e.g. to the articles [16, 23, 24] and the references given there. In these
papers typically deep methods (such as Baker’s method) are combined with
certain reduction techniques. For finding all solutions of (4.15) we shall apply
the method from Section 3.2.

For this, let K = Q(
√

2), and rewrite (4.15) as

βu1 − βu2 + βv1 − βv2 + βw1 − βw2 = 4
√

2bz. (4.16)

To find all solutions, first we perform an exhaustive search on the domain
max(|u|, |v|, |w|, |z|) ≤ 100 to get all "small" solutions. (Since both β1 and β2
are units in OK, it is possible that (4.16) has solutions with negative values of



4 Applications 93

u, v, w, as well.) We obtained that in all solutions we got, we have

z ≤



6, if b = 2,

1, if b = 3,

1, if b = 5,

1, if b = 7.

(4.17)

We suspect that we have found all solutions - we only need to show this. For
this, we construct moduli (separately for the values b = 2, 3, 5, 7) which show
that (4.17) in fact holds for all solutions to (4.16) (and (4.15)). Since the pro-
cess is similar in all cases, we explain it in detail only for b = 2.

Since we can write 2 = (
√

2)2 in K, (4.16) can be reformulated as

βu1 − βu2 + βv1 − βv2 + βw1 − βw2 = (
√

2)2z+5.

Based upon (4.17) we suspect that here z ≤ 6. If this is true, then the equation

βu1 − βu2 + βv1 − βv2 + βw1 − βw2 = 29(
√

2)z
′

(4.18)

has no solution in integers u, v, w, z′. However, then by Conjecture 2 we should
be able to find a modulus M to show this. It turns out that the modulus appear-
ing in Table 8 is appropriate for this purpose. Hence we have that z ≤ 6 for all
solutions to (4.15). The solutions with z ≤ 6 can be easily listed. Following
the same argument, we got that (4.17) is valid in each case b = 2, 3, 5, 7, for
all solutions. The moduli used are given in Table 8.

We got the moduli in Table 8 in the following way. First we put bk in the
moduli, where k is the bound for z appearing in (4.17). This is an inevitable
step, since we want to prove that the modified equation (see equation (4.18))
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b Modulus
2 29 · 3 · 17 · 257 · 7681

3
32 · 5 · 11 · 13 · 19 · 29 ·

√
2 · (1 + 3

√
2)·

(7 + 2
√

2) · (1 + 2
√

2) · (1 + 4
√

2)
5 52 · 3 · 11 · 25 · (1 + 4

√
2) ·
√

2 · (7 + 2
√

2) · (1 + 2
√

2)

7
72 · (1 + 2

√
2) · 3 · 5 · 11 · 13 · 19 · 29 · 251 ·

√
2

·(1 + 8
√

2) · (1 + 3
√

2) · (7 + 2
√

2) · (1 + 7
√

2) ·
(1 + 4

√
2)

Table 8. The moduli used for b = 2, 3, 5, 7.

has no so solutions. After this step we tried to find a modulus with "small" λ
value. For this we searched for prime ideals Mi (either generated by a rational
prime, or by a prime in OK) such that ϕ(Mi) is divisible by "small" rational
primes only for all i. After building a list of such ideals we used our algorithm
described in 3.2 to prove that the equations have no solutions modulo M =∏

iMi. We summarize the results of the calculations in the following theorem,
which is Theorem 2 in Bertók and Hajdu [13].

Theorem 4.3. All solutions to equation (4.15) are given in the following table

b u v w z
2 0 1 1 1
2 1 1 2 3
3 1 1 1 1
7 0 1 2 1

Table 9. The solutions for equation (4.15).

Remark 15. Inequalities (4.17) provide different bounds for the results of
(4.16) than what can be seen in the theorem above. The reason for this is that
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since α and β are units in OK we may have solutions (and in most cases we
actually have) with negative exponents. But in Theorem 4.3 we only list the
solutions for (4.15), hence we only need those solutions of (4.16) where u, v
and w are non-negative integers.

4.4 Multi-base representations

Our last application is related to multi-base representations. It is a very old
problem to study integers which have only a "few" non-zero digits in some
kind of a number system. This problem becomes much more interesting and
harder if instead of using only one number as the base of the number system we
use a so-called multi-base representation, e.g. we want to express the number
c by using sums of powers of for example 2 and 3. For details and related
results, see Section 2.2.

Let S be a finite set of primes, and write ZS (resp. Z+
S ) for the set of

integers (resp. positive integers) having no prime divisors outside S. A multi-
base representation of an integer n is an expression of the form

n = u1 + · · ·+ ut (4.19)

with u1, . . . , ut ∈ ZS . If S = {p} and we require that u1, . . . , ut ∈ Z+
S , we

can express n as sums of powers of p in multiple ways, with the shortest one
(namely, the one with fewest terms) being the usual expansion of n in base
p. As in Section 2.2, for an integer n, we write wS(n) for the minimal t for
which (4.19) holds with some u1, . . . , ut ∈ ZS . If n > 0 and we also require
that u1, . . . , ut ∈ Z+

S , we then write w+
S (n) instead.

In Section 2.2 we gave some theoretical theorems regarding wS(n) and
w+
S (n). Here we concentrate on numerical results. Using the method from
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Section 3.1, we prove the following theorem (Theorem 2.3 from our paper
[14]).

Theorem 4.4. Let S1, S2 be disjoint non-empty sets with S1∪S2 = {2, 3, 5}.
Then

w+
S1

(n) + w+
S2

(n) ≤ 4

implies that

1. if S1 = {2} and S2 = {3, 5} then n ∈ {1, 2, 3, 4, 5, 6, 8, 9, 10, 12,

16, 18, 20, 24, 25, 32, 34, 36, 40, 48, 72, 80, 81, 96, 128, 130, 136,

144, 160, 258, 260, 288, 384, 640, 1152, 2050, 2052, 4104, 32832};

2. if S1 = {3} and S2 = {2, 5} then n ∈ {1, 2, 3, 4, 5, 6, 9, 10, 12, 18,

27, 28, 30, 36, 54, 81, 82, 84, 90, 108, 162, 252, 270, 324, 729, 756,

810, 6561, 6570};

3. if S1 = {5} and S2 = {2, 3} then n ∈ {1, 2, 3, 5, 6, 10, 25, 26, 27,

30, 50, 125, 126, 130, 150, 625, 630, 650, 3125, 3126, 15625, 78750}.

Proof of Theorem 4.4. If w+
S1

(n) + w+
S2

(n) = 2, then it is clear that the only
solution is n = 1, so we suppose that w+

S1
(n) + w+

S2
(n) ≥ 3. We describe the

method in detail only in the case when S1 = {3}, S2 = {2, 5}, the other cases
can be handled similarly. In this case we have five equations to solve, namely:

3x1 = 2y1 · 5z1 + 2y2 · 5z2 ,
3x1 = 2y1 · 5z1 + 2y2 · 5z2 + 2y3 · 5z3 ,

3x1 + 3x2 = 2y1 · 5z1 ,
3x1 + 3x2 = 2y1 · 5z1 + 2y2 · 5z2 ,

3x1 + 3x2 + 3x3 = 2y1 · 5z1 .

To find all solutions of the above equations we apply the algorithm from Sec-
tion 3. We only concentrate on how to use it for the present equations. First
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by an exhaustive search we find all "small" solutions of the equations in non-
negative integers xi, yi, zi, (i = 1, 2, 3). Then after modifying the equations
appropriately we try to find a modulus m such that the modified equation has
no solutions modulo m. Consider the equation

3x1 = 2y1 · 5z1 + 2y2 · 5z2

in non-negative integers x1, y1, z1, y2, z2. We may clearly assume that here
y1 ≤ y2, and z1 ≤ z2 if y1 = y2. By an exhaustive search we get that under this
assumption the equation has only five solutions with x1, y1, z1, y2, z2 ≤ 100,
namely

(x1, y1, z1, y2, z2) = (1, 0, 0, 1, 0), (2, 0, 0, 3, 0), (4, 0, 0, 4, 1),

(2, 0, 1, 2, 0), (3, 0, 2, 1, 0),

yielding n = 3, 9, 27, 81. Note that 9 = 32 appears in two different solutions,
since 9 = 1 + 8 = 5 + 4. We suspect that the equation has no other solutions.
First it can be seen that if both y1 and y2 are greater than zero then this equation
has no solutions modulo 2. The same argument applies for z1, z2 modulo 5,
thus we conclude that we have to solve the following two equations:

3x1 = 1 + 2y2 · 5z2 , (4.20)

3x1 = 5z1 + 2y2 . (4.21)

Since in every "small" solution the exponent of 3 is at most 4, then instead of
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the equations above, we consider

35 · 3x1,0 = 1 + 2y2 · 5z2 , (4.22)

35 · 3x1,0 = 5z1 + 2y2 , (4.23)

respectively, where every exponent is a non-negative integer. If our expecta-
tion is true, then these equations have no solutions. To prove this, we show
that these equations are already not solvable locally, modulo an appropriately
chosen modulus. About how to find such a modulus, we refer once again to
Section 3. Now we only state that if we choose m to be 35 · 7 · 13 · 17 · 19 · 37 ·
73 ·97 ·109 ·163 ·193 ·257 ·433 ·487 ·577 ·769 ·1153 ·1297 ·2593 ·3457 ·10369,
then as one can check, equation (4.22) has no solutions modulo m. Thus, in
(4.20), x1 has to be less than or equal to 4. By checking every possibility we
get that this equation has three solutions, namely

(x1, y2, z2) = (1, 1, 0), (2, 3, 0), (4, 4, 1).

Similarly, ifm = 35 ·7·13·17·19·37·73·97·109·163·193·433·577·769, then
equation (4.23) has no solutions modulo m, thus we only have to check (4.21)
with x1 ≤ 4. In this case we get the remaining two "small" solutions. The other
equations can be handled similarly. Finally, we mention that an appropriately
chosen divisor of M = 216 · 310 · 58 · 7 · 13 · 17 · 19 · 163 · 37 · 433 · 193 · 97 ·
73 · 257 · 109 · 577 · 769 · 487 · 1153 · 1297 · 1459 · 2593 · 2917 · 3457 · 3889 ·
10369 · 1373 · 3137 · 12289 · 17497 · 18433 · 39367 · 52489 · 65537 · 50177 ·
139969 ·147457 ·209953 ·331777 ·472393 ·114689 ·268913 ·470597 ·629857 ·
746497 · 786433 · 839809 · 995329 · 614657 is sufficient for every equation
under investigation.
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[27] P. Erdős, C. Mauduit, A. Sárközy, On arithmetic properties of integers

with missing digits. II. Prime factors, Discrete Math. 200 (1999), 149–
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5 Összefoglaló

A disszertáció fő témaköre az egész számok exponenciális kifejezésekkel tör-
ténő reprezentációs problémáinak vizsgálata. Az elméleti eredmények mellett
bemutatunk egy algoritmust melynek segítségével meghatározhatjuk exponen-
ciális Diofantikus egyenletek összes megoldását mind Z, mind pedig számtes-
tek egészeinek gyűrűje felett. Ezen eljárást alkalmazva pedig megoldunk több
Diofantikus problémát is.

Elsőként tekintsük a reprezentációs problémákat. Legyenek a1, . . . , al kü-
lönböző pozitív egészek és legyen A = {a1, . . . , al}. Tekintsük az alábbi hal-
mazt

A′ := {ax11 · . . . · a
xl
l |x1, . . . , xl nemnegatív egészek}.

Természetes problémaként merül fel a kérdés, miszerint legkevesebb hány
elemre van szükségünk A′-ből ahhoz, hogy egy adott pozitív egészet kifejez-
hessünk ezen elemek összegeként? Amennyiben A csupán egyetlen b szám-
ból áll, úgy a kérdés lényegében a pozitív egészek felírására korlátozódik a b
alapú számrendszerben. Amennyiben A mindössze két prímet tartalmaz, úgy
úgynevezett "két alapú" reprezentációs problémáról beszélhetünk (kapcsoló-
dó irodalomként ld. például Dimitrov és Howe [25] eredményeit). Definiáljuk
az F (k) (k ∈ N) függvényt úgy, hogy jelentse a legkisebb olyan természetes
számot, melyet nem tudunk előállítani k-nál kevesebb A′-beli elem összege-
ként. Legyen továbbá F±(k) hasonlóan definiálva, azzal az eltéréssel, hogy
A′ helyett az A′± = A′ ∪ (−A′) halmazt használjuk. Amennyiben F (k) és
F±(k) tulajdonságaira vagyunk kíváncsiak, úgy eljutunk egy Nathanson [56]
által vizsgált problémakörhöz.

A 2.1-es fejezetben alsó korlátot adunk mind F (k)-ra, mind pedig F±(k)-
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ra abban az általános esetben amikor A tetszőleges egészekből áll. Az alábbi
tételeket látjuk be.

2.1. Tétel (2.1-es Tétel [9]-ben). Legyenek A,A′, A′±, F (k) és F±(k) a fentiek

szerint definiálva és tegyük fel, hogy A tartalmaz két multiplikatíve független

elemet. Ekkor minden k > 1 esetén:

i) F (k) > kC1k, ahol C1 egy csak A-tól függő konstans.

ii) F (k) < C2(kl)
(1+ε)kl minden ε > 0 esetén, ahol C2 egy csak ε-tól függő

konstans,

iii) F±(k) < exp((kl)C3), ahol C3 egy abszolút konstans.

2.2. Tétel (2.1-es Állítás [9]-ben). Amennyiben A elemei páronként multipli-

katíve függőek, úgy léteznek olyan, csakA-tól függő 1 < C4 < C5 konstansok,

hogy

Ck
4 < F (k) ≤ F±(k) < Ck

5 minden k > 1 esetén.

Ezen eredmények megválaszolják Nathanson [56] egy kérdését és kiter-
jesztik Hajdu és Tijdeman [38, 39] eredményeit. Az így nyert korlátok továbbá
igen élesek.

A fentiekhez kapcsolódó problémakör azon egészek vizsgálata, melyek va-
lamely speciális számrendszerbeli előállításában csupán "néhány" nem-nulla
számjegy szerepel (kapcsolódó eredményekért ld. többek között Erdős, Ma-
uduit, Pomerance, Sárközy [26, 27, 52, 53, 54] munkáit, illetve az ott szerep-
lő hivatkozásokat). A 2.2-es fejezetben ún. "többalapú" reprezentációs prob-
lémákkal foglalkozunk. Ezen alfejezetben egész számok olyan "többalapú"
számrendszerbeli előállításait vizsgáljuk, mely előállításoknak csupán "né-
hány" nem-nulla számjegyük van egyszerre több ilyen számrendszerben. Eh-
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hez legyen S prímeknek egy véges halmaza és jelölje ZS (hasonlóan Z+
S ) egé-

szek (hasonlóan pozitív egészek) azon halmazát, melyeknek nincs S-en kívüli
prímosztójuk. A fejezetben az egész n-ek

n = u1 + · · ·+ ut

alakú reprezentációival foglalkozunk, ahol u1, . . . ut ∈ ZS . Jelölje továbbá
wS(n) azt a legkisebb t számot, melyre a fenti egyenletnek van megoldása.
Amennyiben n pozitív és az egyenlet jobb oldalán szereplő számok a Z+

S hal-
maz elemei, úgy a fenti jelölés helyettw+

S (n)-t írunk. Az alfejezetben az alábbi
tételeket bizonyítjuk.

2.4. Tétel (2.1-es Tétel [14]-ben). Legyen k egy pozitív egész, S1, . . . , Sk pedig

prímeket tartalmazó olyan véges halmazok, melyekre S1∩ · · ·∩Sk = ∅. Ekkor

bármely T -re a

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T

egyenlőtlenség csupán véges sok egész n esetén áll fent. Továbbá ezen egész

n-ek száma legfeljebb C14 = C14(T, k, s), ahol C14 egy effektíven meghatá-

rozható konstans, mely csupán T -től, k-tól és s := |S1 ∪ · · · ∪ Sk|-tól függ.

2.5. Tétel (2.2-es Tétel [14]-ben). Legyen ` egy pozitív egész és legyenek

p1, . . . , p`, q különböző prímek. Legyen továbbá S1 = {p1, . . . , p`} és S2 =

{q}. Ha n egy olyan pozitív egész, melyre n > ee
e

és w+
S1

(n) = 1, úgy

w+
S2

(n) >
C15 log log n

log log log n
,

ahol C15 = C15(`, p1, . . . , p`, q) egy effektíven meghatározható, csak

`, p1, . . . , p`, q értékétől függő pozitív konstans.

A 2.3-as fejezetben binér rekurzív sorozatok előállításával foglalkozunk
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hatványok lineáris kombinációjaként. Marques és Togbé [50] bizonyos meg-
kötések mellett meghatározták az összes olyan Fibonacci és Lucas számot,
melyek előállnak, a 2, 3, 5 számok hatványainak összegeként. Pethő és de We-
ger [59] kifejlesztettek egy algoritmust az Un = wpx11 · . . . · pxmm Diofantikus
egyenlet megoldására, ahol Un egy pozitív diszkriminánsú binér rekurzív so-
rozat. Pethő [58], illetve Shorey és Stewart [72] egymástól függetlenül belát-
ták, hogy bizonyos feltételek teljesülése mellett egy lineáris rekurzív sorozat
csupán véges sok teljes hatványt tartalmazhat. Néhány speciális rekurzív so-
rozat esetén lehetőség van meghatározni a sorozatban előforduló összes tel-
jes hatványt is. A Pell sorozat esetén Pethő [60] belátta, hogy a sorozat nem
tartalmaz nem-triviális hatványokat. Bugeaud, Mignotte és Siksek [22] bizo-
nyította, hogy a Fibonacci sorozatban csupán a 0, 1, 8, illetve a 144 fordulnak
elő mint teljes hatványok, míg a Lucas sorozatban csupán az 1 és a 4 jelen-
nek meg. Pethő és Tichy [62] eredményei alapján ismert, hogy csupán véges
sok olyan Fibonacci szám létezik, mely előáll px + py + pz alakban, ahol p
egy rögzített prím. Kovács [42] megtalálta a Fibonacci, Lucas, Pell és asszoci-
ált Pell sorozatokban szereplő összes, bizonyos tulajdonságokkal rendelkező
kombinatorikus számot. Ezen fejezetben az alábbi tételt látjuk be.

2.6. Tétel (2.1-es Tétel [16]-ban). LegyenUn egy nem-degenerált, pozitív diszk-

riminánsú binér rekurzió, p1 ≤ p2 ≤ · · · ≤ ps pedig adott, nem szükségszerű-

en különböző prímek. Legyenek továbbá b1, . . . , bs nem-nulla egészek. Legyen

végül T = max
1≤i≤s

|bi|. A fejezetben felhasznált jelölések mellett tegyük fel továb-

bá, hogy log(|a/bs
√
D|), log |α| és log ps lineárisan függetlenek a racionális

számok felett.

Tekintsük az

Un = b1p
x1
1 + b2p

x2
2 · · ·+ bsp

xs
s (2.29)
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egyenletet, ahol n, x1, . . . , xs nemnegatív egész ismeretlenek. Legyen 0 < ε <

1, és jelölje Hε azon (n, x1, . . . , xs) megoldások halmazát, melyekre egyrészt

xs = max
1≤i≤s

xi teljesül, másrészt pedig azon i = 1, . . . , s − 1 indexek esetén,

melyekre pi = ps, az xi < (1−ε)xs egyenlőtlenség is fennáll. EkkorHε véges,

és minden (n, x1, . . . , xs) ∈ Hε esetén

max{n, x1, . . . , xs} < C16

teljesül, ahol C16 egy effektíven meghatározható konstans, mely csupán az

ε, A,B, U0, U1, T, s, ps paraméterektől függ.

A harmadik fejezetben olyan

a1b
x11
11 . . . bx1`1` + · · ·+ akb

xk1
k1 . . . bxk`k` = c (A)

alakú exponenciális Diofantikus egyenletekkel foglalkozunk, ahol az
x11, . . . , x1`, . . . , xk1, . . . , xk` kitevők ismeretlen nemnegatív egészek, míg az
együtthatók, alapok, illetve az egyenlet jobb oldala előre megadott egészek.
A disszertációban fontos szerepet játszik a fenti egyenletből kapható kongru-
encia (valamilyen m ≥ 2 modulus szerint), így ezt a későbbiekben (A’)-vel
jelöljük. Ha k = 2 (vagy bizonyos megszorítások mellett ha k = 3, 4), akkor a
Baker módszer segítségével lehetőségünk van meghatározni egy felső korlátot
a fenti egyenlet megoldásainak nagyságára. Ehhez kapcsolódó eredményekért
ld. többek között Győry [35] munkáját, vagy Evertse és Győry [32] könyvét.
Azonban teljes általánosságban amennyiben k ≥ 3, úgy ez a probléma lénye-
gesen nehezebbé válik. Ebben az esetben a Baker módszer nem használható,
a rendelkezésünkre álló altér tétel pedig egyrészt ineffektív, másrészt csupán a
nem-degenerált megoldások számára ad felső korlátot, azok nagyságára nem.
Ehhez kapcsolódó irodalomért ld. Evertse [29] munkáját, Evertse és Győry
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[32] könyvét, illetve az ott található hivatkozásokat. Igen fontos megjegyezni,
hogy a szakirodalomban nincs olyan ismert algoritmus, melynek segítségé-
vel lehetséges lenne a fenti típusú egyenletek összes megoldásának megha-
tározása. Ebben a fejezetben bemutatunk egy heurisztikus algoritmust ezen
egyenletcsalád megoldásainak megkeresésére. Algoritmusunk Skolem expo-
nenciális kongruenciákra kimondott sejtésén alapul. A 3.1-es fejezetben több
numerikus eredmény mellett az alábbi tételt bizonyítjuk.

3.1. Tétel (2.1-es Tétel [12]-ben). Legyenek az a1, . . . , ak együtthatók és

b11, . . . , b1`, . . . , bk1, . . . , bk` alapok rögzítettek és definiáljuk H-t a követke-

zőképp:

H = {c ∈ Z : (A) nem megoldható, de (A’) megoldható minden m esetén}.

Ekkor H sűrűsége 0 a

H0 = {c ∈ Z : (A) nem megoldható}

halmazban.

A 3.2-es fejezetben egy, a 3.1-es fejezetben bemutatott problémához ha-
sonlóval foglalkozunk, azzal a különbséggel, hogy ahelyett, hogy az egyen-
letünket és a hozzá kapcsolódó kongruenciát Z felett vizsgálnánk, most az
együtthatók, alapok és a jobb oldal is egy tetszőleges algebrai számtest egésze-
inek gyűrűjéből kerülnek ki. Több tételt bizonyítunk, mely Skolem sejtésének
számtestekre való kiterjesztéséhez kapcsolódik, illetve bemutatjuk az algorit-
musunk kiterjesztett változatát, mellyel lehetővé válik az (A) alakú egyenle-
tek megoldásainak meghatározása algebrai számtestek egészeiben. Végezetül
több numerikus eredménnyel demonstráljuk ezen algoritmus hatékonyságát.
A fejezetben szereplő eredmények a [13] cikkben kerültek közlésre.
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A negyedik fejezetben bemutatunk néhány – az előző fejezetekben fel-
merült problémákhoz kapcsolódó – alkalmazást. Ezen tételek és alkalmazá-
sok a [10, 13, 14, 16] cikkeinkben szerepelnek. A 4.1-es fejezetben Terai egy
klasszikus sejtését bizonyítjuk. Legyen t egy tetszőleges, de rögzített pozitív
egész, x, y, illetve z pedig ismeretlen pozitív egészek. A fejezetben meghatá-
rozzuk a

(4t2 + 1)x + (5t2 − 1)y = (3t)z

egyenlet megoldásait. A 4.2-es fejezetben rekurzív sorozatok hatványösszeg-
ekként történő előállításával foglalkozunk. Ehhez legyen Un a Fibonacci, Lu-
cas, Pell, vagy asszociált Pell sorozat n-edik tagja, x, y, z pedig ismeretlen
nemnegatív egészek. Ezen fejezetben megadjuk az

Un = 2x + 3y és Un = 2x + 3y + 5z

egyenletek összes megoldását. A 4.3-as fejezetben egy ehhez kapcsolódó prob-
lémát vizsgálunk. Jelentse Bi az i-edik balansz számot. A fejezetben meghat-
ározzuk a

Bu +Bv +Bw = bz

egyenlet összes u, v, w, z nemnegatív egész megoldását a b ∈ {2, 3, 5, 7} fel-
tétel mellett. Végül a 4.4-es fejezetben a többalapú reprezentációkhoz kap-
csolódó alkalmazásokkal foglalkozunk. Ehhez legyenek S1 és S2 diszjunkt,
nemüres halmazok, melyekre S1 ∪ S2 = {2, 3, 5} teljesül. Legyen továbbá
w+
S (n) a jelen bevezető elején megadott módon definiálva. Ebben a fejezetben

meghatározzuk a
w+
S1

(n) + w+
S2

(n) ≤ 4

egyenlőtlenség összes megoldását.
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6. Summary

In this dissertation, we consider representation problems of integers as expres-
sions involving exponential terms. We also give algorithms which can be used
to solve exponential Diophantine equations over Z and rings of integers of
number fields. As applications, by using our method we solve some Diophan-
tine problems, too.

First, we consider representation problems. Let a1, . . . , al be distinct posi-
tive integers and put A = {a1, . . . , al}. Consider the set

A′ := {ax11 · . . . · a
xl
l |x1, . . . , xl are non-negative integers}.

A natural question to ask is that at least how many elements do we need from
A′ to represent a given positive integer as their sum? If A consists of only one
number b then the question basically asks about the representation of positive
integers in the base b number system. IfA consists of two primes, then we have
a so-called "double base" representation problem (as a related paper, see e.g.
the work of Dimitrov and Howe [25]). If we define the function F (k) (k ∈ N)

to be the smallest natural number which cannot be represented as the sum of
less than k terms from A′, and F±(k) to be the function defined similarly,
except that A′ is replaced by A′± = A′∪ (−A′) and ask about the properties of
F (k) and F±(k), then we get a similar problem proposed by Nathanson [56].

In Section 2.1, we give a lower and upper bound for F (k) and F±(k) in the
case, where A consists of arbitrary integers. We prove the following theorems.

Theorem 2.1 (Theorem 2.1 in [9]). Let A,A′, A′±, F (k) and F±(k) be as

above and suppose thatA has two multiplicatively independent elements. Then

for every k > 1 we have:

i) F (k) > kC1k, where C1 is a constant depending only on A,
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ii) F (k) < C2(kl)
(1+ε)kl for every ε > 0, where C2 is a constant depending

only on ε,

iii) F±(k) < exp((kl)C3), where C3 is an absolute constant.

Theorem 2.2 (Proposition 2.1 in [9]). If all pairs of elements of A are multi-

plicatively dependent, then there exist constants 1 < C4 < C5 depending only

on A such that

Ck
4 < F (k) ≤ F±(k) < Ck

5 for all k > 1.

These results answer a question of Nathanson [56] in the above setting,
and extend results of Hajdu and Tijdeman [38, 39]. These bounds are relatively
sharp, as well.

Another related topic is the analysis of integers which have only "few"
non-zero digits in a special number system (see e.g. papers by Erdős, Mauduit,
Pomerance, Sárközy [26, 27, 52, 53, 54] and the references there). In Sec-
tion 2.2 we consider multi-base representations. In this subsection we study
representations of integers which have only a "few" non-zero digits in differ-
ent multi-base representations simultaneously. For this, let S be a finite set
of primes, and write ZS (resp. Z+

S ) for the set of integers (resp. positive inte-
gers) having no prime divisors outside S. We consider the representations of
integers n of the form

n = u1 + · · ·+ ut

with u1, . . . ut ∈ ZS . We write wS(n) for the minimal t for which the above
equation holds. If n is positive and the numbers on the right hand side are
elements of Z+

S , we write w+
S (n) instead. In this subsection we prove the fol-

lowing theorems
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Theorem 2.4 (Theorem 2.1 in [14]). Let k be a positive integer, S1, . . . , Sk be

finite sets of primes such that S1 ∩ · · · ∩Sk = ∅. Then for any T the inequality

w+
S1

(n) + · · ·+ w+
Sk

(n) ≤ T

is valid only for finitely many integers n. Furthermore, the number of such in-

tegers n is at most C14 = C14(T, k, s), where C14 is an effectively computable

constant depending only on T, k and s := |S1 ∪ · · · ∪ Sk|.

Theorem 2.5 (Theorem 2.2 in [14]). Let ` be a positive integer, S1 = {p1, . . . , p`}
and

S2 = {q}, where p1, . . . , p`, q are distinct primes. If n is a positive integer

with n > ee
e

such that w+
S1

(n) = 1, then we have

w+
S2

(n) >
C15 log log n

log log log n
,

where C15 = C15(`, p1, . . . , p`, q) is an effectively computable positive con-

stant depending only on `, p1, . . . , p`, q.

In Section 2.3 we consider the problem of representation of terms of binary
recurrence sequences as linear combinations of powers. Marques and Togbé
[50] determined all Fibonacci and Lucas numbers which can be written as
the sum of powers of 2, 3, 5 under certain assumptions. Pethő and de Weger
[59] gave an algorithm which can be used to solve the Diophantine equation
Un = wpx11 · . . . · pxmm , where Un is a binary recurrence sequence with positive
discriminant. Pethő [58] and Shorey and Stewart [72] independently proved
that under certain natural assumptions, a linear recurrence sequence may con-
tain only finitely many perfect powers. In the case of some special, famous
sequences all perfect powers have been determined. In the case of the Pell
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sequence Pn, Pethő [60] proved that it does not contain non-trivial powers.
Bugeaud, Mignotte and Siksek [22] proved that the Fibonacci-sequence Fn
contains only the powers 0, 1, 8, 144, and the only powers in the sequence of
Lucas numbers Ln are 1, 4. Results of Pethő and Tichy [62] imply that there
are only finitely many Fibonacci numbers of the form px + py + pz, where p is
a fixed prime. Kovács [42] found all combinatorial numbers of certain shapes
among the terms of Fn, Ln, Pn and Qn (the associated Pell-sequence). We
prove the following theorem.

Theorem 2.6 (Theorem 2.1 in [16]). Let Un be a non-degenerate binary re-

currence sequence with a positive discriminant, p1 ≤ p2 ≤ · · · ≤ ps be given,

not necessarily distinct prime numbers and b1, . . . , bs be nonzero integers. Put

T = max
1≤i≤s

|bi|. Using the notations from the corresponding section, assume

further that log(|a/bs
√
D|), log |α| and log ps are linearly independent over

the rationals.

Consider the equation

Un = b1p
x1
1 + b2p

x2
2 · · ·+ bsp

xs
s (2.29)

in non-negative integers n, x1, . . . , xs. Let 0 < ε < 1, and write Hε for the set

of those solutions (n, x1, . . . , xs), for which xs = max
1≤i≤s

xi, and xi < (1− ε)xs
for those i = 1, . . . , s − 1 for which pi = ps. Then Hε is finite, and for all

(n, x1, . . . , xs) in Hε we have

max{n, x1, . . . , xs} < C16,

where C16 is an effectively computable constant depending only on ε, A, B,

U0, U1, T , s, ps.
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In Chapter 3 we consider exponential Diophantine equations of the form

a1b
x11
11 . . . bx1`1` + · · ·+ akb

xk1
k1 . . . bxk`k` = c (A)

in non-negative integers x11, . . . , x1`, . . . , xk1, . . . , xk`, where the coefficients,
bases and the right hand side are given integers. Denote by (A’) the "con-
gruence version" of (A) modulo m ≥ 2. If k = 2 (under some restrictive
assumptions if k = 3, 4), then by Baker’s method it is possible to give an
upper bound for the size of the solutions. For related results see e.g. Győry
[35] or the book of Evertse and Győry [32]. However in general if k ≥ 3 then
this problem becomes significantly more difficult. In this case we cannot use
Baker’s method and we need to use the subspace theorem, which is ineffec-
tive, and is capable only to provide a bound for the number of non-degenerate
solutions. Here we refer to Evertse [29], and again to the book of Evertse and
Győry [32] and the references given there. It is important to note that there is
no known algorithm in the literature, which would be capable to produce all
the solutions of such an equation. In this chapter we give a heuristic algorithm
for the solutions of exponential Diophantine equations based upon an exten-
sion of Skolem’s conjecture involving exponential congruences. In Section 3.1
among some numerical results we prove the following theorem.

Theorem 3.1 (Theorem 2.1 in [12]). Let a1, . . . , ak, b11, . . . , b1`, . . . , bk1, . . . , bk`
be fixed, and let H be defined by

H = {c ∈ Z : (A) is not solvable, but (A’) is solvable for all m}.

Then H has density zero inside the set

H0 = {c ∈ Z : (A) is not solvable}.
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In Section 3.2 we consider a similar problem as in Section 3.1 with the
difference that instead of working in Z, now we work in the ring of integers
of an arbitrary algebraic number field. We present several theorems related
to an extension of Skolem’s conjecture over number fields, and provide an
extended algorithm which can be used to find the solutions of equations of
type (A). Finally, we also give some numerical examples which demonstrate
the usability of our algorithm. The results from this section are published in
[13].

In Chapter 4 we present some applications of the theorems and methods
from the previous chapters. These applications and theorems appear in our
papers [10, 13, 14, 16]. In Section 4.1 we prove a classical conjecture of Terai
regarding the solutions of the equation

(4t2 + 1)x + (5t2 − 1)y = (3t)z,

where t is an arbitrary but fixed positive integer and x, y, z are unknown posi-
tive integers. In Section 4.2 we give all solutions of the equations

Un = 2x + 3y and Un = 2x + 3y + 5z,

where Un is the n-th term of one of the Fibonacci-, Lucas-, Pell- or associated
Pell-sequence and x, y, z are unknown non-negative integers. In Section 4.3
we turn to a related problem, namely we solve the equation

Bu +Bv +Bw = bz

in non-negative integers u, v, w, z where Bi is the i-th balancing number and
b ∈ {2, 3, 5, 7}. Finally, in Section 4.4 we discuss applications regarding
multi-base representations. Namely, let S1 and S2 be disjoint non-empty sets
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with S1∪S2 = {2, 3, 5} and let w+
S (n) be defined as before. In this section we

give all solutions of the inequality

w+
S1

(n) + w+
S2

(n) ≤ 4.
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