Increasing the efficiency of fuzzy logic and
neural network algorithms

Thesis for the Degree of Doctor of Philosophy (PhD)

by Tibor Gébor Tajti

Supervisor: Dr. Istvan Fazekas

UNIVERSITY OF DEBRECEN
Doctoral Council of Natural Sciences and Information Technology
Doctoral School of Informatics

Debrecen, 2020

Hereby I declare that I prepared this thesis within the Doctoral Council of
Natural Sciences and Information Technology, Doctoral School of Informat-
1cs, University of Debrecen in order to obtain a PhD Degree in Informatics
at Debrecen University.

The results published in the thesis are not reported in any other PhD theses.

Debrecen, 202.. teiesscccceeiaieiiio
signature of the candidate

Hereby I confirm that Tibor Gdbor Tajti candidate conducted his studies with
my supervision within the Theoretical foundation and applications of infor-
mation technology and stochastic systems Doctoral Program of the Doctoral
School of Informatics between 2019 and 2020. The independent studies and
research work of the candidate significantly contributed to the results published
in the thesis.

I also declare that the results published in the thesis are not reported in any
other theses.

I support the acceptance of the thesis.

Debrecen, 202.. teeesscccseeiieiiioee
signature of the supervisor

Increasing the efficiency of fuzzy logic and neural
network algorithms

Dissertation submitted in partial fulfilment of the requirements for the
doctoral (PhD) degree in Informatics

Written by Tibor Gabor Tajti certified software engineer mathematician and

computer science teacher

Prepared in the framework of the doctoral school of informatics of the
University of Debrecen
(Theoretical foundation and applications of information technology and
stochastic systems programime)

Dissertation advisor: Dr. Istvan Fazekas

The official opponents of the dissertation:

D .

The evaluation committee:

chairperson: Dr. o
members: Dr. o
Dr.
Dr. o
Dr. o

Contents

1 Introduction and motivation 1
2 Objectives and theses 2
2.1 Objectives 2
2.2 Theses 4

3 Preliminaries 6
3.1 Artificial intelligence and machine learning 6
3.2 Expression trees. 6
3.3 DBoolean logic, Short Circuit Evaluation in Boolean logic 7
3.4 Fuzzy logic, short-cut in fuzzy logic 8

3.5 Godel fuzzy logic 9
3.6 Productlogic 10
3.7 Rukasiewicz logico 12
3.8 Neuralnetworks.o 13
3.9 Multilayer perceptron (MLP) 13
3.10 Convolutional neural networks (CNN) 14
3.11 Committee machine, voting functions 15
3.12 Ensemble methods in machine learning 17
3.13 Handling noise and avoid overfitting 19
3.14 MNIST (Modified National Institute of Standards and Technol-
ogy database) 19
4 Fuzzy logic expression tree generation 21

5 New fast evaluation algorithms for fuzzy logic formula trees 25

5.1 Short circuit evaluations in Gddel type fuzzy logic 25
5.2 Algorithm with short-cuts on Product fuzzy logic 30
5.3 Fast evaluation algorithms for Lukasiewicz fuzzy logic 35

6 Simulation results for fast evaluation of fuzzy logic formula

trees 41

7 Improvements for neural network classifiers 58
7.1 Fuzzification of neural network training data class membership

crispvalues 58

7.2 New committee machine voting functions 62

8 Performance evaluation of fuzzification and voter functions 65

8.1 Performance evaluation framework 65
8.2 Performance evaluation of training data class membership value

fuzzification L 69

8.3 Performance of voting functions L. 83

9 Conclusions and future work 92

10 Summary 93

11.0sszefoglalas 95

12 Publications 97

13 References 99

14 Appendix 104

1 Introduction and motivation

In the first two decades of the 21st century, information has become a basic
need, with a multitude of computers and the Internet able to store and make
vast amounts of information easily accessible. The increasing performance of
computers enabled the widespread use of artificial intelligence and machine
learning technologies, these are coming into our daily lives, with image recog-
nition, automatic translation, Al assistants, chatbots, autonomous cars, etc.

Fuzzy logic and artificial neural networks are two fields of the area of modern
artificial intelligence, providing various algorithms with the ability of learning
and providing decision support for us.

Fuzzy logic has been used in many applications such as machine control,
knowledge-based systems, optimization problems, weather forecasting, risk as-
sessment, medical diagnosis and treatment plans, etc. Some of its applications
can need the processing of very large formulas.

Neural network algorithms are supervised machine learning algorithms,
widely used in machine learning. Its major applications include classifica-
tion, regression, pattern recognition, function approximation, intelligent con-
trol, learning from data.

Although the performance of the hardware is continuously increasing, it
can also be possible to improve the efficiency of our algorithms and software
applications using those algorithms. For a complex situation, the performance
of our machine learning system can be dependent on the quality and perfor-
mance of the sensors, the performance of the network, the performance of the
hardware, the performance of the machine learning algorithms we are using,
and the performance of our application as well.

Enhancements made in the machine learning algorithms can expand the
range of problems for which we can run our algorithms efficiently on the
presently available computers. Better efficiency also can help to make them us-
able on lower performance hardware and can make the application of machine
learning more affordable, or can enable better accuracy if higher performance
is available.

2 Objectives and theses

This section summarizes the author’s major works and achievements in the
development of fuzzy logic and neural network algorithms.

According to the tradition of the Ph.D. dissertation, we will use the already
published results where appropriate using the editorial "we" for the description
of the presented research.

In this part objectives and theses will be presented. Objectives are short
descriptions of the research with mentions of the author’s contribution. The
theses list the new results which are the outcome of the performed research.

2.1 Objectives

0.1 We conducted research and development on multiple problems. First,
we worked on Boolean satisfiability problems, developing a problem generator.
Then we started our research to develop fast evaluation algorithms for fuzzy
logic expression trees. Our goal was to find techniques to make short-cuts in the
recursive evaluation algorithm, in addition to the trivial short-cut possibilities,
which are used by the interpreters or compilers of programming languages to
evaluate Boolean logic expressions. These algorithms cut the nodes or sub-trees
from the evaluation which do not affect the final result of the formula. We can
call them also short-circuit, short-cut or lazy evaluation as well. A problem
generator was used in this research as well.

e We conducted research on the development of problem generator of
Boolean satisfiability problems, where our goal was to generate weakly
not solvable Boolean SAT problems [1]. The author took a minor role
in this work, however, this development inspired the following research
using problem generators.

e We have examined methods to optimize the evaluation algorithm of the
Godel fuzzy logic large formula trees, with cut-off the nodes from the eval-
uation which are not needed to calculate the final result. For this purpose
several pruning techniques have been developed, which can be used dur-
ing the evaluation of a formula tree, having many nodes intact, the value
of which is not needed to determine the final value of the formula tree |2].
The author’s contribution to this research was adding several corrections
to the pseudo-code, developing the efficient program code for it, develop-
ing a tree generator to generate a large number of Gédel type formulae
in a formula tree format for measurement of pruning algorithm efficiency,

developing a framework to produce figures from the results of the mea-
surements, writing the Simulation results section, and contributions to
other sections. This research has been a starting point of the following
researches performed on fast evaluation algorithms of fuzzy logic expres-
sion trees, but this dissertation does not include the results published
there [2].

e We have done research and development to achieve fast evaluations for
large formula trees of Product logic formulas by cutting from the evalu-
ation the nodes and their children, if the values of them do not have an
effect on the final result of the formula [3]. The author’s main contribu-
tion to this work was the development of the compact algorithm which
was used for the research, the simple framework to run the simulations on
multiple machines, running the experiments, and presenting the results
with generated figures.

e We developed lazy evaluation algorithm variants (i.e. evaluation which
cuts the nodes or sub-trees from the evaluation which do not have an effect
on the final result of the formula) for efficient calculation of the results of
large Lukasiewicz fuzzy logic formulae [4]. The author’s contribution to
the publication was the development of the new algorithms with several
variants, two of them were included in the article, the enhanced framework
to generate formula trees with different shapes, producing the figures with
an enhanced figure generation framework based on Python Pandas and
contribution to the proof of correction of the algorithms.

e We have done new research on creating more efficient algorithm variants
on Godel fuzzy logic formulas. In this research, we have developed a com-
pact recursive algorithm for the Godel fuzzy logic which is a specialized
variant of the algorithm presented in [3, 4]. Despite the compact size,
the new algorithm has better efficiency than the first algorithm [2]. The
author’s contribution to this work included the development of the new
expression tree generation framework and the fast evaluation algorithms,
and performing and presenting the measurements.

O.II We conducted research on Neural network and Convolutional Neu-
ral Network classification algorithm advanced techniques using three different
neural network models for performance evaluation. These techniques might be
used for other classification algorithms as well. These methods can be used
separately or together as well.

e We have examined possible techniques that can be used to improve the
performance of machine learning algorithms with respect to the possible
quality issues occurring in the training data labels, the issue of having
only crisp (binary) membership values even when the class membership
is unclear. The objective was the correction of the training data where
the given crisp class membership values can be inaccurate or misleading
for some samples. We examined the usability of fuzzification of the crisp
class membership values during training [5, 6]. The author’s individual
research.

e We have researched the possible use of new variants of committee machine
simple voting functions, and also new meta voting function(s) which can
use the single voting functions as their input |[7]. The intuition behind
using meta voting functions was that if the accuracy is usually better
if we combine the results of multiple learners, it might be also useful to
combine multiple techniques to combine the results of them. The author’s
individual work.

2.2 Theses

T. T We defined new algorithms for evaluation of fuzzy logic expression
trees of Godel type fuzzy logic, Product fuzzy logic [3] and Lukasiewicz fuzzy
logic formulas [4](see subchapters 5.1, 5.2, 5.3). The algorithms work by lim-
iting the evaluation of the actual node, by lower and upper limits, to set the
interval in which we are interested in the exact value of the node. By this tech-
nique, a high ratio of the nodes in a large formula tree can be pruned from the
evaluation, without affecting the result of the evaluation. This will lead to an
optimized algorithm needing less performance to evaluate the formula tree. For
the performance evaluation, a formula tree generator framework was developed.
The formula tree generator framework is described in chapter 4. The proposed
algorithms are presented and described in chapter 5. The effectiveness and
efficiency of the new fast evaluation algorithms are shown in chapter 6.

T. II We defined new algorithms for ensemble learners to achieve improved
performance. The used techniques include a meta voting function and voting
function variants to use with meta voting functions, as well as the fuzzification
of training data class membership values by individual or ensemble knowledge of
single or multiple learners. The proposed fuzzification of the training data crisp
class membership values and the proposed new voting functions can be used
separately and together as well. For the evaluation of the proposed algorithms,
a performance evaluation framework was developed (see subchapter 8.1).

4

T. II/a We defined a simple algorithm that can be used to fuzzify the
training data binary class membership values. This method can possibly be
used to correct the imprecise or incorrect training data output values during
the training. The proposed modification can be used for individual learners and
also as an ensemble method for multiple learners for better performance, for this
purpose we defined the single and the ensemble variants of the algorithm as well
(see subchapter 7.1) [6]. The performance evaluation of using corrected training
data output values including the ensemble variant is shown in subchapter 8.2.

T. II/b We defined new voting function variants to be competitors of the
well-known ones. We also defined meta voting functions which use the out-
put of the well-known committee machine voting functions and also our new
variants as their input. Our proposed new voting functions and meta voting
functions can be chosen to replace the well-known voting functions (see sub-
chapter 7.2) [7]. The performance evaluation of our new committee-machine
voting functions is shown in subchapter 8.3.

3 Preliminaries

3.1 Artificial intelligence and machine learning

Artificial intelligence has developed into a very important field of infor-
matics. The classical Al included search algorithms, game theory solutions,
mathematical optimizations, evolutionary computation [8, 9]. In the begin-
ning, the exploitation of machine power was done by developing algorithms
created by human experts, when special software solutions were created to look
for the solution to the defined problem. This is a deductive approach when one
finds the solution, i.e. create the algorithm to find the specific solution, from
the problem formulation. However, in many fields (meteorology, physics, engi-
neering, biology, chemistry, biophysics, sociology, or medical sciences) there is
a vast amount of data that is difficult for people to understand and interpret.

To eliminate the limitation of needing specific algorithms for specific prob-
lems, the generalization of the algorithms was the next step, which led to emerg-
ing new theories that are capable to do more or less general machine learning.
This is an inductive approach, by the means that the goal is to develop algo-
rithms that are able to work without knowing the rules of the problem set given
to them. They process the data, and they learn to produce the answer and will
find out the rules or build a model that will be able to work on unseen data,
providing appropriate answers on them.

This new area of artificial intelligence includes supervised, unsupervised,
and hybrid learning with several algorithms like Support Vector Machine, K-
Nearest Neighbors, Decision Support Tree, Fuzzy Decision Tree, Decision For-
est, Long short-term memory, Artificial Neural Networks, Convolutional Neural
Networks, Deep Neural Networks, etc. [8, 10, 11, 12]. Some of these algorithms
usually provide their useful knowledge in such a way that it is difficult to logi-
cally justify each decision (i.e. what can be the thoughts behind the decisions),
while other algorithms may have their model in a human-readable structure, like
a decision tree. Among the most widely used machine learning algorithms are
the Artificial Neural Network or its Deep and Convolutional algorithm variants.
They build their knowledge by developing the weights between the neurons.

3.2 Expression trees

In several fields of mathematics and other sciences various formulae are used
to describe some rules of the world. The used operators are mostly binary, and
usually, unary operators are also allowed. Mathematical, logical, etc. expres-
sions are often displayed by tree graphs. The structure of the expression is
easy to understand: The main operator is put to the root of the tree (it is the

6

topmost node of the tree graph). Nodes with unary operators have exactly one
child, while binary operators have two children. In some cases since associativ-
ity allows us to do so, some operators may have more than two children, e.g.,
one node with operator “4” could have four children, let us say a, b, ¢, and d,
representing the formula a + b + ¢ + d. To evaluate an expression, one should
start from the leaves of the tree. The values given there are used to evaluate
every sub-formula and finally, the whole, original formula [13].

3.3 Boolean logic, short circuit evaluation in Boolean logic

The classical binary (two-valued) logic was mathematically formalized by
Boole at the end of the XIX century, hence it is also called Boolean logic. There
are two truth-values used in binary logic which can be thought of as yes and
no, true and false, written as 1 and 0, T and F, T and L. This mathematical
logic is applied in various disciplines. Here we mention only some parts very
briefly [14].

The syntax of Boolean logic is usually defined inductively. The induction
description starts with the atomic formula: an infinite number of logical vari-
ables exist. Each counts as an atomic formula. The symbols T and L are also
atomic formulas.

The inductive step is based on logical operations. Usually, in binary logic,
conjunction, disjunction, and negation are defined. The conjunction and dis-
junction operators have two operands, while the negation operator has one
operand. The implication is also used very often. If A and B are two logical
formulae, then their conjunction (A A B), disjunction (A V B) and implication
(A — B) are also logical formulae. We call the formulae A and B the main
subformulae of the original formula. The negation A by logic formula —A4 is
also a logic formula. In this work, we use the above four operators.

All logical formulae can be made from atomic formulae with a finite number
of inductive steps. Logical formulae can be represented by their expression trees.

If we have a logical formula and the truth-values assigned to the proposi-
tional variables that appear, the formula can be evaluated based on the semantic
rules of binary logic:

A conjunctive formula (A A B) is true iff both A and B are true.

A disjunctive formula (A V B) is true iff at least one of the formulae A
and B is true.

An implication formula (A — B) is true iff A is false or B is true.

A negation formula —A is true iff the formula A is false.

7

In all other cases, the result value of the formula is false. In binary logic
only these two values exist, true and false. Although in some programming
languages the binary truth-values have been extended with nwll. This value
behaves in the operations so, that every operation where there is a null operand
will result in null, except in case of short-circuit evaluation (see below).

According to the rules of binary logic defined above, it can be possible that
the value of one of the two main sub-formulae is sufficient to know the result
of the original formula. This leads to the so-called short-cut (or short-circuit)
evaluation technique, where some vertices of the formula tree may not need
to be visited; as their value has no effect on the final value of the formula.
These short-cut techniques are used widely in programming languages, helping
to compute faster, omitting the evaluation of the not needed subformulae [13,
15].

For AN D operation, it is not necessary to check all the operands or sub-
formulae if any of them are already known to be false.

Similar to the AN D operation described above, the OR operation can be
terminated early if we know that one condition is true, the value of the other
conditions does not need to be checked.

Similar to these two short-cut possibilities which are used by the compil-
ers or interpreters of programming languages, the implication operation also
enables short-circuit evaluation. If there is a given A — B implication, and
we already know that the value of operand A is false, then we do not need to
evaluate operand B, the result of the operation will be true regardless of it.
Similarly, if we already know that the value of operand B is true, then we do
not need to evaluate operand A, the result of the operation will be true.

3.4 Fuzzy logic, short-cut in fuzzy logic

In fuzzy set theory, each element may belong to a set to a degree which
can take values ranging from the [0,1] closed interval [16]. The idea behind
fuzzy logic is that we allow partial belongings of the elements to the subsets
of a universal set [17]. Fuzzy sets have ambiguous boundaries and gradual
transitions between defined sets and this makes it to be appropriate to deal with
the nature of uncertainty [18]. Each fuzzy set is represented by a membership
function. Intuition, rank-ordering, and inductive reasoning can be, among many
ways, to assign membership functions to fuzzy variables [19, 20].

The standard set of the degree of truth of fuzzy logic is the real unit interval
[0, 1], the natural order of which is <, from total falsehood (represented by 0)
to complete truth (represented by 1) through the continuity of intermediate
degrees of truth. The most basic assumption of (mainstream) mathematical

fuzzy logic is that operators must be interpreted truth-functionally through a
set of degrees of truth. We assume that these truth functions behave classically
at the extremal values of 0 and 1. The very natural behavior of conjunction and
disjunction can be achieved by using x Ay = min{x,y} and xVy = maz{z,y}
for each z,y € [0, 1].

Short-cut evaluation is possible in fuzzy logic, too. Since for extremal
values the fuzzy logic operations will have the same results as in the case of
binary logic, the short-cut possibilities described for binary logic are available
also for the fuzzy logic. For intermittent values the different types of fuzzy logic
will behave differently, so the short-cut possibilities must be found specifically.

The most well-known propositional fuzzy logics are:

e Monoidal t-norm-based fuzzy logic (MTL)

Basic propositional fuzzy logic (BL)

Fukasiewicz fuzzy logic

Godel fuzzy logic

Product fuzzy logic

Fuzzy logic with evaluated syntax (sometimes also called Pavelka’s logic)

In the following, we introduce three of the main fuzzy logic types in more
detail, which are based on the basic t-norm.

3.5 Godel fuzzy logic

This system was introduced by Kurt Godel in 1932 [21]. Possible truth
values are real numbers from the closed unit interval [0, 1], i.e. 0 <z <1 real
numbers. There are four main connectives defined for Godel’s system, negation,
disjunction, conjunction, and implication, denoted by the symbols =, A, V, and
—. Their syntax is the same as in Boolean logic and their semantics are defined
as follows |22, 23, 24]:

1, if JA] =0 (1.1a)
|ﬂA|={

0, otherwise (1.1b)

A B = {1, if |A| <|B] (1.2a)
|B|, otherwise (1.2b)

AN B = min(|A], | B) (1.3)

AV B| = maa(|Al,|B)) (1.4)

The system is infinitely many valued and satisfies the axioms of intuitive
logic with an additional law, namely the law of the chain: The formula

((A— B)V(B — A))

has a value of 1, regardless of the subformulae A and B.

We note that the above conjunction and disjunction operators can be re-
ferred as AND and OR and also as MIN and M AX. Expressions and thus
expression trees in Gddel logic are very similar to that of Boolean logic. The
difference is that the values in Gédel logic given on the leaves (i.e. the "real"
values of the variables) are not limited to the logical values {0,1}, but real
numbers between 0 and 1 (in the real sense) can be used. In subchapter 5.1 we
present our fast evaluation strategy for Godel fuzzy logic formulas.

3.6 Product logic

One of the well-known fuzzy logic systems is Product logic. This has been
described specifically in a mathematical formulation in [25]. This logic inter-
prets the conjunction by multiplication for the [0, 1] closed interval |26, 27, 28].
If the values are limited to the traditional {0,1} binary set, the product is ac-
tually the same as the usual Boolean conjunction [3]. This logic is considered
a fuzzy logic based on one basic t-norm since all continuous t-norms are locally
isomorphic to the Product t-norm.

In product logic, the truth-values are the real numbers of the closed interval
[0, 1].

The syntax of Product logic is the same as the one of Boolean logic: nega-
tion is unary, implication, conjunction, and disjunction are binary operators.
Formula trees can also be defined and used in a similar way.

10

The semantics of product logic is defined as follows. In general, variables
and constants can have any value from the real interval [0,1], including the
two classical values. The truth values of formulas with operators can be cal-
culated from the value of their main subformulae [24, 25, 3]. We note that
max(A, B) is defined as a disjunction operator in [25]. Since it is the same as
the disjunction operator used in Gédel type logic, we are interested in using the
probabilistic sum as a disjunction operator, as presented as the dual t-conorm
of the fundamental product t-norm (A + B — AB) in [29].

<Al =1 |4 2.1)
A B = { 1, if |A[< |B| (2.2a)
IB|/|A], otherwise (2.2b)

[AAB| = [A]|B] (2.3)

[AV B[= |A] +B| - |A]|B] (2.4)

[3]

Both conjunction and disjunction are associative in this logic, therefore, to
make our work more efficient, we can allow more than two children of con-
junction and disjunction nodes in the expression trees, similar to the case of
Boolean logic.

In the product logic system, the conjunction is the product of the values of
the arguments, and as defined above, we use the “probabilistic sum” as the dis-
junction. This type of conjunction and disjunction look more like operations of
a probabilistic system [30]. Assuming that the values A and B are independent
we get the result of their common occurrence.

P(A and B) = P(A)P(B)

P(Aor B)=1-P(=A and -B) =1— P(-A)P(—B)
=1—-(1-P(A)(1—-P(B))=P(A)+ P(B)—- P(A)P(B)

The value of A—B is the maximal probability of B if A is true.

In a given (fixed) evaluation, the formula and its leaves are fixed, the leaves
have labels from the closed interval [0,1]. Then, the task is to compute the
(truth) value of the whole formula. This can be done with a bottom-up strategy.
However, as in the case of Boolean logic, we may not need to compute the value

of each subformula to know the final result. In subchapter 5.2 we will show
pruning techniques that can be used to quickly evaluate Product logic formulas

[3]-

11

3.7 Lukasiewicz logic

Fukasiewicz also applied the idea that takes into account intermediate truth
values rather than a set of two elements for classical truth values {0,1}. He
invented three- and four-valued systems first, what he later extended to arbi-
trarily many (n > 2) truth values [31, 22]. As the various diverse logics, the
infinitely many truth-valued Lukasiewicz logics are among the most attractive
candidates for fuzzy logic [32]. In this system, all real numbers in the closed
interval [0, 1] can be truth values [33]. The language has two primitive logical
connectives, i.e., —, -, where — is the Lukasiewicz implication and — is the
negation operation. Based on those two operations the other connectives, the
Lukasiewicz type conjunction (A) and disjunction (V) were also defined. Here
we use these four connectives and describe the system based on them. The
syntax of this logic is exactly the same as the syntax of Boolean logic: negation
(=) is unary, implication (—), conjunction (A), and disjunction (V) are binary
connectives. Formula trees can also be defined and used similarly. The seman-
tics of Lukasiewicz logic is defined in the following way. Generally, the variables
and the constants may have any values from the closed real interval [0,1] in-
cluding the classical two values. The truth-values of formulae with connectives
can be computed from the value of their main subformulae [31, 32].

|—A[=1—[A4] (3.1)

|A s B| = min(1 — |A| +|B]|,1) (3.2)
|A A B| = maz(|A| + |B| - 1,0) (3.3)
|AV B| = min(|A] + |B],1) (3.4)

4]

We note that the above conjunction and disjunction operators are consid-
ered as the strong conjunction and disjunction operators. The weak variants of
them are the same as in the Godel type fuzzy logic, hence we do not perform
the experiment with them in this research.

Lukasiewicz logic with similar semantics can also be used to have a finite
number of truth values. In these systems, denoted by L(k) for each integer
k > 2, the values are: 0 = %,kfll,...,]]zj = 1. In the special case k = 2,
one gets back the classical Boolean connectives working on the classical truth
values. The computation of the final value of a formula can be done with a

bottom-up evaluation. As in the case of Boolean logic and the other fuzzy logic

12

types described above, we do not need always to evaluate each sub-formulae
to get the final result. In the subchapter 5.3 we present our fast evaluation
strategy that can omit from the evaluation the nodes or sub-trees that do not
affect the final result of the formula [4].

3.8 Neural networks

Neural network algorithms are supervised machine learning algorithms,
widely used in machine learning. Their major applications include classifi-
cation, regression, pattern recognition, function approximation, intelligent con-
trol, learning from data. The neural network is basically a set of interconnected
artificial neurons and the appropriate algorithms working on them [10]. Sim-
ple and widely used neural network architecture is the Multi-Layer Perceptron
(MLP) model.

3.9 Multilayer perceptron (MLP)

The basic architecture of an applicable neural network (MLP) is presented
in Figure 1.

Input Hidden QOutput
layer Q layers layer
y | > y y

| Q-
0 |
] @] (@] O<

Se T
o

Figure 1: Simple multi-layer neural network architecture. (Drawn by the au-
thor)

>0
>0

A RR

13

1. Input: The sequence z(n) = (x1(n),...,xm(n)). This is a vector of m
elements, which can be considered the input signal, given at the mth time.
These values are known to us, available, or observable and measurable.

2. Weights: They make the connection between successive layers. They are

w11 w12 o Win

w21 w22 et Wop
Am,n =

Wm1 Wm2 - Wmn

matrix of values where wj; is the weight connecting the ith neuron from the
previous layer to the jth neuron of the next layer, wj; are used for its nth time
weights. These values, at least the target values, are not known. It is our (the
algorithm’s) job to determine them. In each step, we approach the target value
by approximation.

3. Neurons: Neurons of all other layers except the input layer get their
values from the previous layers, so each layer but the output one will be the
input to the next layer. The weighted sum of the nth time input data is formed
according to the following formula, where ¢ is the index of the source neurons
1 to m and j is the index of the target neuron:

m
yi(n) = @(bj(n) + Y _(wji(n) - 2:(n)))

i=1
The distortion (bias) was shown in the formula, although in real applications it
is often replaced by a neuron with a constant 1 value, so its weight corresponds
to the bias. Its nth approximation is formally denoted by b;(n). ¢ is the acti-
vation function, which converts the result of the summation to the appropriate
interval [10].

In the MLP model successive layers are usually fully connected.

3.10 Convolutional neural networks (CNN)

A variation of the multi-layer perceptron model is the convolutional neural
network. LeNet was one of the very first convolutional neural networks creat-
ing an area of deep learning. Yann LeCun’s pioneering work has been named
LeNet-5, after many successful iterations [34]. Convolutional networks have
shown to be very effective e.g. in image classification [10, 35|, natural language
processing [36] and time series forecasting [37]. CNNs have a convolution op-
erator, hence the name convolutional network. This convolution operator does

14

feature extraction, e.g. when learning to classify a 2D image, smaller (e.g. 3x3
or 5x5 pixels) parts of the image will be processed as a sliding window over the
whole image, so the network learns such smaller-scale features of the images.
Neural network and Convolutional neural network algorithms are among the
best performing machine learning algorithms. However, the performance of the
algorithms may vary between multiple runs because of the stochastic nature
of these algorithms. This stochastic behavior can result in worse-than-average
accuracy for a single run, and in many cases it is difficult to decide whether we
should repeat the learning, giving a chance to have a better result. Among the
useful techniques to solve this problem, we can use the committee machine and
the ensemble methods, which in many cases give better than average or even
better than the best individual result [38].

Just as in human society combining the knowledge of experts can be very
useful in machine learning as well. When several learner algorithms learn the
same problem or parts of the problem, their knowledge can be combined in
numerous ways [39, 11]. This can be used both for getting satisfactory results
from weak learners and for reaching top performance when using strong learn-
ers. In the following two subchapters 3.11 and 3.12 some committee machine
and ensemble methods are introduced.

3.11 Committee machine, voting functions

Committee machine algorithms use multiple instances of neural networks
or other machine learning algorithms to make predictions and combine their
results [40, 41]. This can work with multiple instances of the same algorithm
(e.g. [35]) or different algorithms or models (e.g. [42]) as well. Several simple
committee machine variants are used efficiently with the committee working on
the same problem and combining their results with voting functions [43]. The
most prominent ones are described in the following.

For each voting function, let o; be the actual output vector of class mem-
bership values predicted by learner ¢ for the actual sample given as input.

e fuzzy average voting (V1 in chapter 8.3):

Averaging is one of the most simple linear combiner voting schemes having
the 1/N weight for the outputs of each learner [44].

Calculate the average of the individual predictions:

N
o[j] = Nzoz‘[ﬂ

=1

15

for each j output class, where N is the number of learners, o;[j] is the jth
element (class membership value) in the output vector of the prediction.

Then find for each sample the class with the highest class membership
value as the chosen class for the given sample:

[= argmax(o)

plurality voting [45] (sometimes called majority voting) (V5 in
chapter 8.3):

Find for each learner i the class with the highest membership value from
the prediction o;. If it is at index h; (h; = argmax(o;)), then let

cimz{l’ if j="h

0, otherwise

for all j classes. Then calculate the sum

N

slil = ail]

i=1
for each j class, where N is the number of learners. The winner of the

voting for the sample is a class with maximum value:

[= argmax(s)

We note, that sometimes this method is called majority voting, although
majority voting means choosing the winner only if more than 50% of the
learners have voted on it. When using majority voting it is recommended
to use an odd number of voters.

Borda voting (Borda, 1784.) [46] (V6 in chapter 8.3):

For each individual learner i, calculate the index s;[j] in order of the
membership values from the prediction o,. Let s;[j] be n if o;[j] has
the nth smallest value, for each j class for each ¢ learner. Eventually
si = argsort(o;). Then calculate the sum

N

slf) =) sill)

i=1
for each j class, where N is the number of learners used for the prediction.
The winner of the voting is a class with maximum value:

[= argmax(s)

16

e Nash (product) voting [46](we will replace it with geometric
mean in subchapter 7.2, (V7) in chapter 8.3):

For each j class evaluate the product of the predictions of all of the

individual learners:
N

olj] = [J oili]
i=1
where N is the number of learners Then find for each sample the class
with the highest membership value:

[= argmax(o)

The plurality voting and the Borda voting are suitable for classification only,
while the fuzzy voting and product voting can be used efficiently for regression
as well.

These voting functions can be applied simply on the predictions of the
individual learners that have learned either sequentially or in parallel.

Note that more voting functions are available, e.g. minimum, maximum,
median voting [47]. We use the most well-known voting functions: fuzzy av-
erage, weighted fuzzy average, plurality, Borda, and product voting in our re-
search.

3.12 Ensemble methods in machine learning

Another approach to combine the knowledge of several learners effectively is
to use ensemble methods [48]. Ensemble methods also can be used in machine
learning to learn a target function by training multiple individual learners and
combining their results. The most popular ensemble methods are bagging,
boosting, stacking, and random forest.

The ensemble methods can not only apply a voting function on the pre-
dictions of the individual learners combining their knowledge (see subchapter
3.11), but also they can control the learning process to reach a collaboration
between the individual learners.

Ensemble methods have been very successful in setting record performance
on challenging data sets [12]. We give a short introduction to some well-known
ensemble methods below.

3.12.1 Bagging

The Bagging (bootstrap aggregating) method works by executing individual
learners on different parts of the training data sets to achieve a diverse ensemble

17

of learners. This algorithm works by selecting sample data set from training
data, run it for a given number of iterations, then combine the learned classi-
fiers. The bagging algorithm generates a different data set from the training
data for each member of the ensemble. The predictions are combined either by
uniform averaging or voting over class labels. The samples the individual learn-
ers are working on are called bootstrap; the name of the algorithm comes from
chosen letters of Bootstrap AGGregatING. This algorithm makes a very good
improvement even on weak learners’ predictions. For the voting algorithm or
formula, bagging uses both the averaging and the majority (or plurality) voting,
the first for regression, the latter for classification [49].

3.12.2 Boosting

Boosting is similar to Bagging in that it also works by generating a diverse
set of learners. It is another efficient algorithm which ensembles weak learners
to achieve a strong learner. One of the best boosting algorithms is Adaboost,
which is an adaptive boost algorithm. This algorithm iteratively creates weak
learners and updates the weights of training data to combine the predictions
of the weak learners by averaging to produce a strong learner. A boosting
algorithm finds such a combination of weak learners which can produce much
better accuracy than the individual participants. To achieve this it chooses
sample data subsets from the training data strategically to get the most effective
training data for each individual classifier. In the beginning, each data element
has equal probability to be randomly chosen to be part of the training data for a
learner. During training, the weights of the misclassified data will be increased
to have a higher probability to get into the data set for the individual learners.
Adaboost is a well-known and very efficient boosting algorithm [50].

3.12.3 Stacking

Wolpert’s stacked generalization (or stacking) algorithm is a scheme to min-
imize the generalization error rate. It creates a set of learners in the first stage.
These will be trained and used with the bootstrap ensemble method. They
produce predictions which will feed the second stage learners, which can be
considered as meta-learners. Their job is to learn how effective the first stage
learning was. They can learn if the first stage learners have not learned partic-
ular pieces of the training data or training region and correct them when using
for predictions. They also learn which first stage learners give correct output
for the given input [51|. Unlike bagging and boosting, stacking may be (and
often is) used to combine models of different types.

18

3.12.4 Random forest

A random forest [52] is an ensemble method working with (decision) tree
learners of classification or regression trees. It uses the general bagging ensemble
method on tree learners with the difference that the bagging usually can be
used with various learners, in the case of the random forest, it will be used only
with tree learners. Its individual learners usually can be considered very weak
learners, its specialty is using a large number of individual tree learners [11].

3.13 Handling noise and avoid overfitting

Noise plays a significant role in teaching neural networks. On the one hand,
adding noise can help generalization, i.e. avoid overfitting. Adding random
distortion or data augmentation to training data are useful techniques widely
used in machine learning. On the other hand, noise can make inaccuracies
and can lead to misleading patterns or mislabeled training instances. The
effect of inaccurate class labels in training samples has been shown by research
to degrade the performance of even the best algorithms over a wide range of
classification problems [53, 54]. It has also been observed that noisy labels are
generally more harmful than noisy input patterns [55].

3.14 MNIST (Modified National Institute of Standards and
Technology database)

Public domain databases help researchers with providing training and test
samples for teaching and testing the machine learning algorithms. These include
data sets from a variety of areas. Data sets containing labeled images are among
the most well-known ones.

One of the most widely used datasets is the Modified National Institute
of Standards and Technology database (MNIST) [56], which contains 60,000
handwritten numbers in the training set and 10,000 handwritten numbers in
the test set. Different classifiers, like K-Nearest Neighbors, SVMs, Neural Nets,
Convolutional Neural Nets, on this database have shown fail rate down to below
1%. State-of-the-art architecture as of the time writing this dissertation is the
squeeze-and-excitation network [57, 58].

The MNIST database has samples that can be easily classified and hard (or
impossible) ones as well.

We show examples from the easily recognizable samples below.

19

O3 6

Figure 2: Easily recognizable images from the MNIST database test samples.

Figure 2 shows three chosen images from the test dataset of MNIST, that
are eagy to classify. In the case of such images, the binary class membership
values of the classification are reasonable.

We also provide examples of hard-to-recognize images from the test samples.

§ 5 L

Figure 3: Hard-to-recognize images in the MNIST test dataset

Figure 3 presents three of the test images from the MNIST database that
are among the ones which are not easily recognizable. Similar quality images
are present in the training dataset as well. This quality issue is one of the
reasons that motivate our research.

20

4 Fuzzy logic expression tree generation

We have developed a framework for our research to produce a large number
of formula trees, on which the evaluation algorithms can be executed. The
framework has been created for flexible purposes, allowing to set parameters
for the distribution of values in the [0, 1] interval, the shape of the tree, the
allowed maximal number of child nodes for the node types, and the number of
nodes [3, 59].

Since the various fuzzy logic types are three or more valued, many-valued,
infinitely many-valued distributions, the ability to generate formula trees for
such value distributions has been added to our framework. It can even gener-
ate two-valued formula trees for experimental purposes. Also, it can be used
with random values generated from the [0, 1] closed interval using the available
accuracy provided by the machine and the programming environment.

The parameter setting to determine the shape of the formula tree has been
added to be able to set a simulation environment to various needs since real-life
cases show that the shape of formula trees can be very diverse. In some cases, we
can find problems that can be described by balanced or roughly balanced trees,
similar to a decision tree, which shouldn’t have great depth for faster decisions.
In other cases, the tree can be narrow and deep, e.g. in a communication
network, or a wireless sensor network. The formula shapes that can be used by
our generator:

- max 10 nodes at each tree level;

- max constant v/N nodes at each tree level, where N is the required number
of nodes of the tree, given as parameter;

- max h nodes at the tree level of depth h (h =1 for the root);

- max 10h nodes at the tree level of depth h;

- max h® nodes at tree level h;

- no limit is used (i.e., the natural limit 2" nodes at depth level h for a
binary tree);

- balanced tree, that is, the depth level of the leaves may differ by no more
than 1.

The last two tree shapes are the most condensed ones, their depth can be
thought of as minimal. These are extremal classes in our experiment. These
two shapes are very similar since when generating the tree with the limit of
2" nodes at depth level h, it will be naturally very close to the balanced tree.
We also have a parameter for the maximal number of child nodes for each
node type, which is provided for the case when operators can have more than

21

2 operands. In this research, we have not used operators with more than 2
operands.

The usable node types also can be set for the formula tree generation, for
experimental or analysis purposes.

All the parameters described above can be used to determine the proper-
ties of the generated tree, which can be done for different tree sizes. Since
our pruning algorithms have an overhead due to the extra computations and
conditions, their advantage comes when we are using them for large expression
trees. The node count parameter is used to determine the size of the tree. For
our experiments, we have used the tree generator with tree sizes from 10 to
100000, effectively.

Now we will show the minimum and the maximum depth of the formula
trees generated with the limits determining the tree shape, as described above.

¢ max nodes/level = 10
12 —
max nodes/level is constant VN

¢ max nodes/level = h
¢ max nodes/level = 10h

10

« max nodes/level = h?
« max nodes/level = 2"
6 balanced tree

et anatersitil

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

175 * max nodes/level = 10
' max nodes/level is constant VN’

15.0 ¢ max nodes/level = h
* max nodes/level = 10h
12.5 + max nodes/level = h?2

« max nodes/level = 2"
balanced tree

10.0

0.0

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 4: Executing two batches of formula tree generation, above we show the
minimum tree depth (level of leaf nodes) for tree sizes up to 4000 nodes, below
tree sizes up to 100000 nodes are shown.

22

In Figure 4 we show the minimum of tree depths as a function of the tree
size for different tree shapes. The minimum depth is very important because
short-cuts cannot be made without evaluating at least one leaf node.

The maximal depth of expression trees is important as well since there can
be threads in the recursive function call flow, where we reach the maximum
depth, at which we find the leaf node with the needed value.

¢ maxnodes/level=10
400

max nodes/level is constant VN’
350 ¢ max nodes/level = h
¢ max nodes/level = 10h

300
« max nodes/level = h? e

2501 '« max nodes/level = 2"
200 balanced tree e

150

(ot I

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

10000 ¢ max nodes/level = 10 o
max nodes/level is constant VN
+ max nodes/level = h e
* max nodes/level = 10h i
« max nodes/level = h?

8000

60001 < max nodes/level = 2"
balanced tree

- e o

2000

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 5: Maximum tree depth, above we show the maximum level of leaf nodes
for tree sizes up to 4000 nodes, below sizes up to 100000 nodes are shown.

Figure 5 shows the maximum level of leaf nodes on average for the expression
trees generated in various shapes.

As one can see, the narrowest tree shapes have the lowest minimum depths
and the highest maximum depths, while the widest shapes on the figure have
the lowest maximum depths and their average minimum depths are among the
highest ones. There is no contradiction, there can be leaf nodes closer to the
root node only if other leaf nodes will be farther.

23

Also, we must note for the reader that depths on the figures can be not
only integral numbers because many experiments were executed with the same
parameters including the number of nodes and we show the average results.

24

5 New fast evaluation algorithms for fuzzy logic for-
mula trees

5.1 Short circuit evaluations in Godel type fuzzy logic

A research discovering several pruning techniques has been presented in [2].
Although alpha-beta pruning was mentioned there as a possible pruning tech-
nique which might be applied for the evaluation of Gdodel type fuzzy logic tree
[2, 21], the research there was focused on special cases that can occur in a Gédel
formula tree where pruning can be done. Such special cases are: implication
node with min and max (or max and min) children, implication with negation
child, negation when all connected leaves are non-zeros. In this dissertation
we present an other solution with a simple but very effective recursive fast
evaluation algorithm and its yet better variant.

In this chapter, versions of simple pruning algorithms using lower and upper
limits, inspired by alpha-beta pruning [8, 60|, are proposed with some simple
extensions for the effective evaluation of expression trees in Godel logic, in
which the previously defined operations are used.

We are dealing with trees with a bounded set of truth values: the real
numbers of the closed interval [0, 1] can be used. In our expression trees, in a
similar manner to the Boolean expressions (actually, the syntax of expressions
of Godel logic is the same as the syntax of Boolean expressions) since both
AND and OR are associative, without loss of generality we can allow multiple
children of nodes of these types. Nodes with negation must have exactly one
child, while nodes with implications must have exactly two children, called a
left child and right child, respectively.

The proposed algorithms to accelerate the evaluation of this kind of tree
are described in detail in the following.

We will use a technique similar to alpha-beta pruning. Despite the simi-
larity, we will use the terms lower and upper for the known lower and upper
limits of the interval in which in the actual function call the exact value of the
node is interesting. If the interval has zero-length then the value of the node
can be omitted from the evaluation.

25

function PruneEvall (node,
if lower >= upper:
return lower # Prune

if NODE_TYPE == NEG:
v = PrumneEvall (child,
if v == 0:
v =1.0

elif NODE_TYPE == MIN:
vV = upper
for child in children:
v = min(v, PruneEval
if v <= lower:
return lower

elif NODE_TYPE == MAX:
v = lower
for child in children:
v = max(v, PruneEval
if v >= upper:
return upper

elif NODE_TYPE == IMP:
leftval = PruneEvall (1l

rightval = PruneEvall(rightchild, min(max(leftval-MINPOS ,0.0)

, lower), min(leftval,

if leftval <= rightval
v =1.0

else:
v = rightval

lower , upper):

0.0, MINPOS)

1 (child, lower,

v))

1 (child, v, upper))

eftchild, 0.0, upper)

upper))

else: # NODE_TYPE == LEAF

v = node value
return v
end function

value_of_the_expression =

PruneEvall (root,

0.0,

1.0)

Algorithm 1: PruneEvall for Godel fuzzy logic

The function must be called with the root node as the first parameter, 0.0
for lower parameter, and 1.0 for upper parameter. The evaluation works recur-
sively, it will calculate the value of a node from its children nodes via recursive

26

function calls, making short-cuts where possible. The lower parameter, when
calling the function for a given node, means that at the evaluation of that node,
it does not matter that the value of it is less than lower or equal to lower. Sim-
ilarly, the upper parameter means, that if we know that the value of the node
is at least the value of this parameter, then the exact value is not needed.

Pruning the evaluation, i.e. short-cut, will be made if the value of the lower
parameter is higher than or equal to the value of the upper parameter because
it means that the value of that node has no effect on the value of the formula
tree.

In case the actual node is a negation, we know that the result of it will
be zero if its child node has any value above 0. Therefore we can use an
arbitrarily small positive real number which is higher than 0 in the programming
environment we are using. We use the MIN PO.S constant for that purpose,
which can represent the smallest float value which is greater than 0. For the
lower parameter we cannot give a value above 0.0.

For the MIN (AN D) nodes we can use the actual lower parameter as the
lower parameter for the function call to evaluate its first child. It is because
when the value of the first child will be lower than or equal to the lower
parameter, then the final result of the actual node cannot be higher than that.
We also can use the value of the actual upper parameter as the upper parameter
for the evaluation of the child nodes, because one of the values of the child
nodes will be the final result of the evaluation of the actual node and we are
not interested in values higher than upper. When iterating over the children
nodes we also know that the final value of the actual node cannot be greater
than any of them, so we can use the minimal known child value or the value
of the actual upper parameter, which is less, for the upper limit for subsequent
function calls. Furthermore, we can cut-off the evaluation of further child nodes
if the current known minimal value is less than or equal to the actual lower
parameter because the value of the actual node cannot be higher than that.

When the type of the actual node is MAX (OR), we can make similar
decisions. We can use the actual upper parameter as the upper parameter
for the function call to evaluate its first child. It can be done because if the
value of the first child will be at least the value of the upper parameter, then
the result of the evaluation of the actual node cannot be less than that value.
Additionally, we can use the value of the actual lower parameter as the lower
parameter when evaluating its children because values less than that are not
interesting. When we evaluate the children nodes we also can use the actual
known maximal value of them because the final value of the actual node cannot
be less than that. We can prune the evaluation of further child nodes in case
the maximal value of the already evaluated nodes is higher than or equal to the

27

actual upper parameter. This can be done since the final result of the actual
node cannot be lower than that value.

In the case of an IM P node in Algorithm 1 (PruneEvall for Gédel fuzzy
logic), we also use simple pruning. We start the evaluation with the left child
node. For this function call, we cannot use the lower parameter, because the
lower left node values can lead to higher values for the actual node. We can use
the actual upper parameter for the upper parameter of the function call since
for the actual node we are not interested in higher values than the value of the
upper parameter and if the left child node is greater than or equal to that, then
we have the following cases:

a) leftval < rightval: the result is 1 which is higher than or equal to upper

b) leftval > rightval: the result is rightval,
so increasing leftval cannot lead to lower result value.

For the second step in this evaluation of the I M P node, for the right child
node, we know that the result of the evaluation of the current node cannot be
less than the value of the right child node. We also know that if the right child
node has a value greater than or equal to the value of the left child node then
the value of the current node will be 1. Therefore, for the upper parameter
of the function call, we can use the minimum of the current upper parameter
and the value of the left child node. For the lower parameter of the function
call to calculate the value of the right child node, we can use the value of the
actual lower parameter or the value of the left child, which is less, since the
right child node can give the value for the actual node if and only if it is less
than the value of the left node.

In the following, we present a slightly enhanced version of the algorithm.

function PruneEval2(node, lower, upper):
if lower >= upper:
return lower # Prune

if NODE_TYPE == NEG:
v = PruneEval2(child, 0.0, MINPOS)
if v ==
v =1.0
else:
v = 0.0
elif NODE_TYPE == MIN:
vV = upper

if childltype!=NODE_TYPE_LEAF and child2type==NODE_TYPE_LEAF:
childl,child2=child2,child1l

28

for child in children:
v = min(v, PruneEval2(child, lower, v))
if v <= lower:
break

elif NODE_TYPE == MAX:

v = lower

if childitype!=NODE_TYPE_LEAF and child2type==NODE_TYPE_LEAF:
childl,child2=child2,childl

for child in children:
v = max(v, PruneEval2(child, v, upper))
if v >= upper:

break

elif NODE_TYPE == IMP:
if childltype!=NODE_TYPE_LEAF and child2type==NODE_TYPE_LEAF:
leftval = PruneEval2(leftchild, 0.0, upper)
rightval = PruneEval2(rightchild, min(max(leftval-MINPOS
,0.0), lower), min(leftval, upper))
BlsE 8
rightval = PruneEval2(rightchild, 0.0, upper)
leftval = PruneEval2(leftchild, rightval ,min(rightval+
MINPOS , upper))
if leftval <= rightval:
v=1.0
BlsE 8
v = rightval

else: # NODE_TYPE == LEAF
v = node value

return v

end function

value_of_the_expression = PruneEval2(root, 0.0, 1.0)

Algorithm 2: PruneEval2 for Godel fuzzy logic

Algorithm 2 (PruneEval2 for Gédel fuzzy logic) has similar properties as

Algorithm 1, and has additional features.

For the evaluation of the MIN and M AX nodes, we can first check whether

the first two child nodes should be processed in reverse order. This is done by
checking their node types. If the first child node is not a leaf node and the
second child node is a leaf node then the two nodes will be swapped in the
row of processing. This is because thus the leaf node will give immediate value
when calling the function recursively for its evaluation. Choosing a leaf child

29

node to process first, can lead to an earlier cut-off. We note that it would be
possible to change the algorithm to check further node(s) as well when there
are more than two child nodes and the first two child nodes are not leaf nodes.
This change would have a smaller effect on the probability of the earlier cut-off
but would lead to a slower execution because of the additional complexity.

A similar technique has been introduced for the IM P node as well. For this
type of node, this cannot be done by a simple swap in the order of processing the
child nodes because setting the lower and upper parameters for the recursive
function calls will differ regarding which child node will be processed first. If
there will be no swap in the order of processing the child nodes then it will work
the same way as in PruneEvall. If the order of the processing of the nodes will
be changed then the possible settings of the lower and upper parameters can
be done as follows. When we evaluate the right child node first, we can use the
value of the actual upper parameter for the upper parameter of the function
call, because the value of an I'M P node is greater than or equal to the value of
its right child node. Next, for the evaluation of the left child node, we can use
the previously calculated value of the right child node for the lower parameter
because if the value of the left node is less than or equal to the value of the right
child node, the result of the actual node will be 1. For the upper parameter we
can use the value of the actual upper parameter, when it is not greater than
the previously calculated value of the right child node.

5.2 Algorithm with short-cuts in Product fuzzy logic

We will now discuss some short-cut possibilities which can be used to eval-
uate Product logic formula trees [25, 26, 3|. We are working with formula trees
of different shapes and different value distributions. These properties have an
effect on the possible efficiency of the pruning evaluation. The shape of the for-
mula tree determines the minimal, mean, and maximal depth of the tree. The
minimal depth of the tree determines the minimal number of processed nodes
before a short-cut can be made. The algorithm gets the formula, represented
by an expression tree. The vertices have a type and connections (edges) to
its children nodes, while the leaf nodes have their real values from the closed
interval [0,1]. The evaluation starts at the root node by calling the recursive
evaluation function, and it will compute the value at the root, recursively. For
the Product logic formula tree, the negation nodes have exactly one child, while
the nodes of the AND, OR, and IM P operators have two child nodes. Al-
though in product logic the algorithm can be easily extended to allow more
than two child nodes for the AND and the OR nodes, in this implementation
we will not use more than two child nodes for them.

30

In the following, we include two versions of the new algorithm with expla-
nations of the major possible pruning possibilities.

function PruneEvall(node, lower, upper):
if lower >= upper:
return lower # Prune

if NODE_TYPE == NODE_TYPE_NEG:
v = 1.0 - PruneEvall(child, 1.0-upper, 1.0-lower)

elif NODE_TYPE == NODE_TYPE_AND:
v = PruneEvall(childl, lower, 1.0)
if v > lower:
v = v * PruneEvall(child2, lower, 1.0)

elif NODE_TYPE == NODE_TYPE_OR:
v = PruneEvall(childl, 0.0, upper)
if v < upper:

B = PruneEvall(child2, 0.0, upper)
v =v +B - v x B
elif NODE_TYPE == NODE_TYPE_IMP:
A = PruneEvall(childl, 0.0, 1.0)
if A == 0.0:
v =1.0
else:

B = PruneEvall(child2, 0.0, A)
v = min(B / A, 1.0)

else: # NODE_TYPE_LEAF
vV = nv

return v
end function

33 value_of_the_expression = PruneEvall (root, 0.0, 1.0)

Algorithm 3: PruneEvall for Product fuzzy logic

Algorithm 3 has only the simplest short-cut techniques for the Product logic
formula evaluation implemented. The algorithm works as follows. It must be
started with the root node as a parameter. For the support of the pruning a
lower and an upper parameter are presented, which mean the boundaries of
the interval in which we are interested in the exact value of the node, that
means, that if the value of the node falls below the lower parameter, then this
is enough information for us, similarly, if the value of the node is higher than
or equal to the value of the upper parameter, then we don’t need to know the
exact value of it.

31

The short-cut can be done simply when the lower has a value higher than or
equal to the value of the upper parameter because in that case, the interesting
interval has zero length.

In the case of the negation node, the setting of the values of the lower and
upper parameters of the function call for the evaluation of the child node of the
negation node can be done by simply mirroring in respect of the interval, i.e.
subtracted from 1.

For the AN D nodes we know that it is commutative and if either node has
already its calculated value, then the result of the AND operation cannot be
higher than that value. Therefore for the calculation of either node, we can use
the value of the actual lower parameter for the lower parameter of the function
call, and can stop the evaluation without calling the function for the second
child node if we already know that the value of this node will be less than or
equal to lower.

The OR nodes have a similar possibility to cut-off the unnecessary nodes
from the evaluation. The result of the OR operation will be higher than or
equal to the value of either of its child nodes. Therefore we can use the value
of the actual upper parameter for evaluating both of its children, as the upper
parameter of the function call. Also we can stop the evaluation before the
second child node if the first child node had a value at least upper.

In the case of IM P node, the first function call to evaluate their children
must be called with lower = 0 and upper = 1 parameters since the result of
the operation can be any value between 0 and 1. If we already got the value of
the left child node, it can be used as the upper parameter of the function call
to compute the value of the right child node because if the value of the right
child node is higher than or equal to the value of the left node, then the result
of the operation will be 1.

An improved variant of the presented pruning algorithm will also be shown.

function PruneEval2(node, lower, upper):
if lower >= upper:
return lower # Prune

if NODE_TYPE == NODE_TYPE_NEG:
v = 1.0 - PruneEval2(child, 1.0-upper, 1.0-lower)

elif NODE_TYPE == NODE_TYPE_AND:
if childltype!=NODE_TYPE_LEAF and child2type==NODE_TYPE_LEAF:
childl,child2=child2,child1l
A = PruneEval2(childl, lower, 1.0)
if A == 0.0:

32

14 else:

15 v = A * PruneEval2(child2, min(lower/A, 1.0),

16 min (upper/A, 1.0))

19 elif NODE_TYPE == NODE_TYPE_OR:

20 if childltype!=NODE_TYPE_LEAF and child2type==NODE_TYPE_LEAF:
21 childl,child2=child2,childl

22 A = PruneEval2(childl, 0.0, upper)

23 if A == 1.0:

24 v =1.0

25 else:

26 B = PruneEval2(child2, max((lower-A)/(1.0-4),0.0),
27 (upper-4)/(1.0-4))

28 v=A+B - A *xB

29

30 elif NODE_TYPE == NODE_TYPE_IMP:

31 if childltype==NODE_TYPE_LEAF or child2type!=NODE_TYPE_LEAF:
32 A = PruneEval2(childli, 0.0, 1.0)

33 if A == 0.0:

34 v = 1.0

35 else:

36 B = PruneEval2(child2, Axlower, A*upper)
37 v = min(B/A,1.0)

38 else:

39 B = PruneEval2(child2, 0.0, 1.0)

40 if B == 1.0:

41 v = 1.0

42 else:

43 A = PruneEval2(childl ,min(B/upper ,1.0),
44 1.0 if B==0 else

45 min(1.0 if lower==0 else B/lower,1.0))
16 if A == 0.0:

A7 v = 1.0

A8 else:

19 v = min(B/A,1.0)

51 else: # NODE_TYPE_LEAF
52 Vv = nv

54 return v
55 end function
56

57 value_of_the_expression = PruneEval2(root, 0.0, 1.0)

Algorithm 4: PruneEval2 for Product fuzzy logic

33

Algorithm 4 has all the pruning capabilities as the variant Algorithm 3, and
it has been further developed to include more cut-off possibilities.

For the negation nodes, there has been no new pruning technique intro-
duced.

In the case of an AN D node, it can swap the order of the evaluation of its
child nodes if the first child is not a leaf node and the second child is a leaf
node. It will improve the efficiency because at a leaf node we know that there
are no further nodes below it, so it will give an immediate value, which then
might possibly lead to a short-cut. After the order of the processing of the child
nodes has been determined, the first child node will be evaluated the same way,
no new pruning technique added here. For the recursive call to evaluate the
second child node, however, we introduce improvements for setting the lower
and upper parameters for the function call. Instead of using 0.0 for lower, now
we set it to lower /A if it is less than 1.0, otherwise, we use 1.0. This can be
done because the value of the node will be a factor in the multiplication. We
also can use a better limit for the upper parameter of the function call. This
will be upper /A if it is less than 1.0 otherwise it will be 1.0.

For the OR nodes, we also have improved the pruning capability. Similar
to the AND nodes we introduced the swapping ability in the order of the
evaluation of its child nodes. For the evaluation of the first child, the method
given in algorithm PruneEvall for Product logic has been kept unchanged. At
the evaluation of the second child node, we have made an improvement to the
algorithm. Instead of having only one pruning condition, which was the usage
of the actual upper parameter for the upper parameter of the function call, we
can set a value for it which is less than or equal to that, so it can lead to mode
short-cuts. This value will be (upper — A)/(1.0 — A), which comes for F'B from
the inequality

A+ B — Ax B > upper.

For the lower parameter of the function call, we also can now use the already

calculated value of the first child node. From the inequality

A+ B — Ax B < lower
we get the (lower — A)/(1.0 — A) for B, which we can use there for parameter
lower if it is higher than or equal to 0.0, otherwise we use 0.0.

We also have improvements for the implication nodes. We start by deter-
mining the order of the evaluation of the child nodes by checking their types.
We make note that only the processing order of the child nodes can be changed
here, it is not allowed to swap them because the IM P operation is not com-
mutative. For the first recursive function call, we cannot make a restriction for
the lower and upper bounds. If we started with the left child node then we
can use its value multiplied by lower for the lower parameter, and multiplied

34

1

by upper for the upper parameter for the function call. On the other branch,
when we have started the calculation of the IM P node with the right child
node, then we can use B/upper for the lower parameter and B/lower for the
upper parameter of the recursive function call to evaluate the left child node.

5.3 Fast evaluation algorithms for Lukasiewicz fuzzy logic

We use expression trees with the set of truth values from the real numbers
of the closed interval [0, 1], they can be used on the nodes of the tree. They
are given on the leaves of the tree at the beginning of the evaluation, and the
task is to calculate the value at the root. Trees are unary-binary in the sense
that each vertex has a maximum of two children: the vertices assigned to the
negation must have exactly one child, while the other vertices with assigned
(binary) connections must have exactly two children, the so-called left child
(childl) and the right child (child2).

We have written the algorithms by recursive pseudo-codes, see e.g. Al-
gorithm 5. Given the input formula tree with its root and two parameters,
lower and upper, the algorithms compute the value y of the expression if
lower < y < upper. The interesting interval is represented by the numbers
lower and upper, as its lower and upper limits, for the value v of a node such
that this value has an influence on the result of the main formula, if v is in its
interesting interval. This interval depends on the already analyzed part of the
expression(tree). The cuts during the evaluation are performed by adjusting
the parameters lower and upper dynamically during the run for each node of
the formula tree. More precisely, the role of the parameters lower and upper
is as follows.

While evaluating the children of the current node we must continue the
evaluation only if their value can be between the actual limits lower and upper
provided for their evaluation. Intuitively, when lower >= upper, there is no
interval between them, thus the given node or sub-tree can be cut, the value
of the main formula does not depend on the value(s) of this node or sub-tree.
We do the recursive evaluation of the formula tree with the simple recursive
function call. The main call can be seen in the last line of the Algorithm 5.

Below we show the recursive pseudo-code for pruning evaluation of expres-
sions in tukasiewicz logic.
function PruneEvall (node, lower, upper):

if lower >= upper:
return v = lower # cut

if nodetype == NODE_TYPE_NEG:
v = 1 - PruneEvall(child, 1-upper, l1-lower)

35

elif nodetype == NODE_TYPE_AND:
vl = PruneEvall(childl, lower, 1)

v2 = PruneEvall(child2, min(l+lower-vl,1), min(l+upper-vi,1))
v = max(vli+v2-1, 0)
elif nodetype == NODE_TYPE_OR:

vl = PruneEvall(childl, O, upper)

v2 = PruneEvall(child2, max(lower-v1,0), max(upper-vi,0))
v = min(vi+v2, 1)
elif nodetype == NODE_TYPE_IMP:
vl = PruneEvall(childl, 1-upper, 1)
v2 = PruneEvall(child2, max(lower -1+v1,0), max (upper-1+v1,0))

v min(l-vi+v2, 1)

else: # NODE_TYPE_LEAF
v = node value

return v
end function

) value_of_the_expression = PruneEvall(root, 0.0, 1.0)

Algorithm 5: PruneEvall for Lukasiewicz fuzzy logic

The negation node will mirror the [0, 1] interval, so the limits lower and
upper must also be transformed to 1 — upper and 1 — lower for the evaluation
of its child node.

There are two special possibilities to prune at a conjunction (AN D) node.
The first is, that if the value of its first child is less than or equal to lower,
then we do not need to evaluate the second child, because the value of the
conjunction node cannot be higher than the value of any of its children. The
second pruning possibility is that the value of the first child can be used to set
stronger limits for the evaluation of the second child.

There are also two special possibilities for pruning at a disjunction (OR)
node. The first one is that if the value of the first child is at least the upper limit,
then the precise value of it is not needed because the result of the disjunction
node cannot have a value less than the value of any of its children. The second
pruning possibility is that the value of the first child can be used to set tighter
limits for the evaluation of the second child.

For evaluating the implication (I M P) node, at least one of its children must
be evaluated because until then any value from the [0, 1] interval is possible.
For simplicity, in Algorithm 5 we always start with the evaluation of the first

36

child. The value of it can then be used to set the limits lower and upper for
the evaluation of the second child.

The classical short-circuit evaluation techniques are also working and they
are encoded in the algorithm in the following way.

When evaluating a conjunction node, if its first child has value v; = 0, then
the evaluation of the second child is called with lower = 1 and upper = 1,
resulting short-cut for that child, the value of the conjunction node will be set
to 0 (by the statement v = max(v; + vo — 1,0), independently of the value
0<vy < 1)

Similarly, at a disjunction node, having a child with value v; = 1, the
evaluation of the other child is called with lower = upper = 0 implying an
automatic cut for this child. Moreover, the value 1 is assigned to the disjunction
node as v = min(1 + vg, 1) independently of the actual value of vs.

Because of symmetry, for the first view, there is no real reason why the
evaluation should break the usual left to right order. This assumption holds
without taking into account the sizes of the branches, i.e., the sizes of the left
and right sub-formulae. On average, for random formulae, the sizes of the left
and right sub-formulae are equal. Algorithm 5 uses the traditional left to right
evaluation. Intuitively one can feel that the evaluation process could be faster
if the shorter branches are evaluated first. We have applied a similar idea also
in [2, 3]. Here we can also use it as follows: if the right child of the node is
a leaf, but the left child is not a leaf, then we evaluate the right child earlier
than the left child. The two children of conjunction and disjunction nodes can
be checked for their type, to evaluate the leaf node first if there is one. This
improvement gives better pruning ratios and evaluation times. In the code, this
can be done, e.g., in the following way, by simply interchanging them.

if childltype!=NODE_TYPE_LEAF and

child2type==NODE_TYPE_LEAF :
childl,child2=child2,childl

A similar trick can be done at implication nodes taking into account that
implications are not commutative. Algorithm 6 has only one additional feature
comparing it to Algorithm 5: the leaf checking. At binary operations, i.e., at
conjunctions, disjunctions, and implications, if the left child is not a leaf, but
the right child is a leaf, then we break the left to right order of the evaluation, we
start first by evaluating the right child, the leaf by taking its value, and we can
already use this value to have a stronger constraint (i.e., a smaller interesting
interval) to evaluate the other, the left child.

Next, we show the recursive code for pruning by evaluating the right child
leaf node first if the left child is non-leaf.

37

1 function PruneEval2(node, lower, upper):

2

if lower == upper:
return v = lower # cut
if nodetype == NODE_TYPE_NEG:

v = 1-PruneEval2(child, 1-upper, 1-lower)

elif nodetype == NODE_TYPE_AND:
if childltype!=NODE_TYPE_LEAF and child2type==NODE_TYPE_LEAF:
childl ,child2=child2,childl
vl = PruneEval2(childl,lower,1)

v2 = PruneEval2(child2 ,min(1+lower-v1l,1) ,min(1+upper-vi,1))
v = max(vl+v2-1,0)
elif nodetype == NODE_TYPE_OR:

if childltype!=NODE_TYPE_LEAF and child2type==NODE_TYPE_LEAF:
childl,child2=child2,child1l

vl PruneEval2(childl ,0,upper)

v2 PruneEval2(child2 ,max (lower-v1,0), max (upper-v1,0))

v = min(vi+v2, 1)

elif nodetype == NODE_TYPE_IMP:
if childltype==NODE_TYPE_LEAF or child2type!=NODE_TYPE_LEAF:
vl PruneEval2(childl ,1-upper, 1)
v2 = PruneEval2(child2 ,max(lower-1+v1,0) ,max (upper-1+v1,0))

<
N
n

PruneEval2(child2,0, upper)
PruneEval2(childl ,min (1+v2-upper ,1) ,min(1+v2-lower ,1))
min(1-v1i+v2,1)

<

n <
=
|

else: # NODE_TYPE_LEAF
v = node value
return v

34 end function

35

36

value_of_the_expression = PruneEval2(root, 0.0, 1.0)

Algorithm 6: PruneEval2 for Lukasiewicz fuzzy logic

This improved version includes the ability to change the order of evaluation

of the child nodes for the IM P node as well, although this operator is not
commutative. To do this, it must change the setting of the lower and upper
parameters for the function calls evaluating the child nodes, when we evaluate
the right child node first if it is a leaf node and the left node is non-leaf.

38

5.3.1 Proof of correctness of the algorithms [4]:

Now we are proving the correctness of our algorithms. Some parts of the
two algorithms are very similar, or even identical, thus some parts of the proof
can be considered for both algorithms. While we use the variables lower and
upper for the current node, for its child(ren) we use the variables lower; and
uppery and lowery and uppers (for the second child if exists) in the proof
(see Appendix). We start the proofs with a simple but important observation
written in the following lemma.

Lemma 1. Both Prunel and Prune2 use variables lower, upper and v such
that they always have values with condition 0 < lower < 1,0 < upper < 1,0 <
v < 1 during the recursive calls.

The proofs of this and the next lemmas are moved to the Appendix for
better readability of the paper.

Lemma 2. Each time Algorithm 5 (PruneEvall for Lukasiewicz logic)
and Algorithm 6 (PruneEval2 for Lukasiewicz logic) is called recursively if the
condition 0 < lower < upper < 1 is fulfilled, then this will also hold for the
parameters of the subsequent recursive call(s).

The next lemma presents a trivial fact, but it plays an important role in
the proof by induction later on.

Lemma 3. For any expression having value z, if Algorithm 5 (Algorithm
6, resp.) assigns the correct value x to it, then one of the following statements
is fulfilled.

a) The parameters have the relation lower < x < upper, and thus the as-
signed value is also between lower and upper (inclusively, allowing equal-
ity also).

b) If z < lower, then the algorithm assigns a value that is not larger than
lower.

c) If x > upper, then the algorithm assigns a value that is not less than
upper.

Now, let us analyze the special cases when lower = upper.

Lemma 4. For any expression having value z, if Algorithm 5 (Algorithm
6, resp.) is called with parameters lower = upper, then it assigns

a) the value x of the expression correctly if lower = x = upper,

39

b) a value not larger than lower if the value of the formula z is less than
lower, and

c¢) a value that is at least upper if the value of the formula z is greater than
upper.

By Lemma 2, it is clear that lower < upper in each recursive call, and we have
already seen the case of equality (Lemma 4). In the next lemmas, we consider
the case when lower < upper.

Lemma 5. For any expression having value x, if lower < upper, then
Algorithm 5 assigns

a) the value x of the expression correctly if lower < x < upper,

b) a value not larger than lower if the value of the formula z is less than
lower, and

c) a value that is at least upper if the value of the formula z is greater than
upper.

Let us state analogous statement for Algorithm 6.

Lemma 6. For any expression having value z, if lower < upper, then
Algorithm 6 assigns

a) the value x of the expression correctly if lower < x < upper,

b) a value not larger than lower if the value of the formula x is less than
lower, and

c) a value that is at least upper if the value of the formula z is greater than
upper.

Theorem 1. Algorithm 5 is correct: PruneEvall evaluates correctly the input
formula.

Proof. We have just shown in Lemma 5 that the algorithm gives the value
x of the expression correctly if it is called with parameters satisfying lower <
x < upper. Initially, calling the algorithm with lower = 0 and upper = 1 give
the sufficient condition that the value of the expression is correctly computed.
Theorem 2. Algorithm 6 is correct: it evaluates correctly the input formula.
Proof. Tt is analogous to the proof of Theorem 1, by applying Lemma 6.

40

6 Simulation results of fast evaluation of fuzzy logic
formula trees

The simple evaluation algorithm must process each node of the expression
tree exactly once, therefore its execution time is linear to the number of the
nodes of the tree. The pruning algorithm variants we developed, do not usu-
ally evaluate or even do not touch all nodes, so the execution time is usually
below linear to the number of nodes, depending on parameters like the formula
shape or the distribution of the values of the leaf nodes. We note that com-
paring execution times of the algorithm variations can be misleading because
our experiment was executed by collecting information and that has an over-
head on the performance. For small expressions, it can require relatively more
time to evaluate. Its advantage can be manifested when it is executed on large
formula trees. The algorithm has been developed in the Python language and
executed 1,000,000 tests on formulae generated with different parameters, e.g.
with various sizes, tree shapes, and value distributions.

Since one of the major goals with optimization is to reach faster execution,
we start with a comparison of the execution times. Note that the execution
times shown were measured in a multitasking environment and should not be
considered accurate.

41

3.0 ¢ Simple

PruneEvall
251 '« PruneEval2

2l0 e
15

1.0

Number of nodes (N)

100 ¢ Simple
PruneEvall

¢ PruneEval2
80

60

40

20

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 6: The execution times (in milliseconds) of simple evaluation and the
pruning algorithms when run on Gdédel fuzzy logic formula trees. See the exec
time for tree sizes up to 4000 nodes above and up to 100000 nodes below.

Figure 6 shows the execution time in milliseconds of the pruning algorithms
executed on Godel fuzzy logic formula trees, and also the execution time of
the simple evaluation. Our pruning algorithms performed much better, even
with smaller formula trees. Their execution times are only a fraction of the
execution time of the simple evaluation, the difference grows when we increase
the tree sizes.

42

10 Simple

PruneEvall
8 ¢ PruneEval2

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)
Simple
100 PruneEvall

PruneEval2

80

60

40

20

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 7: The execution times (in milliseconds) of simple evaluation and the
pruning algorithms when for Product logic expressions. See the exec time for
tree sizes with up to 4000 nodes above and up to 100000 nodes below.

In Figure 7 we present the simulation results of the executions of the al-
gorithms on Product logic. The difference is significant compared to the case
of Gddel logic, the execution times for Product logic are much higher. This is
a consequence mainly of the characteristics of the negation operator in Gédel
logic because the result of a negation operation in Gdédel logic can only be 0
or 1, which leads to more pruning possibilities. If we compare the pruning
algorithms vs. the simple evaluation, we can see that the execution time of the
simple evaluation is an almost linear function of the number of nodes of the
expression trees for the simple evaluation algorithm, and it below linear using
the pruning algorithm.

43

Simple
PruneEvall
PruneEval2

3.0

2.5

2.0

1.5

1.0

0.5

0.0 1
1000 1500 2000 2500 3000 3500 2000

Number of nodes (N)

100
Simple

PruneEvall
80 ¢ PruneEval2

60
40

) e

Number of nodes (N)

Figure 8: The execution times (in milliseconds) of simple evaluation and the
pruning algorithms when run on Fukasiewicz logic formula trees. See the exec
time for tree sizes with up to 4000 nodes above and up to 100000 nodes below.

Figure 8 presents the execution times of the evaluation of expression trees
in Lukasiewicz fuzzy logic. These results are between the results of the exe-
cution times on Godel logic and Product logic expression trees. We already
mentioned the characteristics of the negation operator of the Gédel fuzzy logic
with resulting only 0 or 1 helps the pruning algorithm. The reason why there
is a better pruning possibility of the Fukasiewicz pruning algorithm compared
to the Product logic lies in the conjunction and disjunction operators, i.e. the
conjunction gives 0 with higher probability and the disjunction gives 1 with a
higher probability.

The execution time may vary depending on implementation and machine
performance, and also we have used information gathering from the algorithms
which affects the execution time, so we give some more evidence of our algo-
rithms’ efficiency.

44

1.0

0.9

0.8

0.7

0.61.

0.5 ¢ PruneEvall
PruneEval2

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

0.99
0.98
0.97
0.96

0951

PruneEvall

0.94 PruneEval2

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 9: The ratio of the pruned nodes executed on Gédel type fuzzy logic
expression trees. See the result for tree sizes with up to 4000 nodes above and
up to 100000 nodes below.

Figure 9 shows the ratio of pruned nodes. For the Godel type logic the
pruning ratio is very high. The ratio of the not evaluated nodes approaches 1
as the number of nodes increases. This very high efficiency is due in part to
the fact that the operator of the denial operates in a special way in that type
of fuzzy logic, as we discussed earlier.

Because of this behavior, we show below the same figure executed also on
Godel fuzzy logic formulas, but this time the negation was replaced to the same
as in Product fuzzy logic.

45

0.9
0.8
0.7
0.6
0.5

0.44.
PruneEvall

0.3 X PruneEval2

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

1.00
0.98 -
0.96
0.94
0.92
0.90
0.88
0.86 .

PruneEvall
0.841. PruneEval2

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 10: The ratio of the pruned nodes evaluating on Godel type fuzzy logic
expression trees with using negation nodes changed to the one in Product fuzzy
logic. See the result for tree sizes with up to 4000 nodes above and up to 100000
nodes below.

For comparison, Figure 10 shows the results of a similar experiment for
expression trees on Gdédel type fuzzy logic with negation nodes temporarily
changed to the one in the Product fuzzy logic. The difference is apparent,
the simpler version of the pruning algorithm has a lower efficiency than the
more advanced one and both pruning algorithms can work with lower efficiency
compared to the original case, when there were much more of 0 and 1 values
in the formula tree during evaluation because of the behavior of the negation
operator.

The proportion of non-evaluated nodes increases with the number of nodes,
although not as much as in the previous case.

46

0.9
0.8
0.7
0.6
0.5
0.4
031" * PruneEvall

PruneEval2

0.2
0 500 1000 1500 2000 2500 3000 3500 4000

Number of nodes (N)

0.975
0.950
0.925
0.900
0.875
0.850

0.825
¢ PruneEvall

0.800 PruneEval2

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 11: The ratio of the pruned nodes executed on Product type fuzzy logic
expression trees. See the result for tree sizes with up to 4000 nodes above and
up to 100000 nodes below.

Figure 11 presents the ratio of the nodes not evaluated by the pruning
algorithms on Product logic expression trees. As we might have expected from
the comparison of the execution times, this ratio is lower, compared to the
results of the evaluation on Gédel type logic formulas because of the different
behavior of the negation operator.

47

0.9
0.8
0.7
0.6
05] "
0.4l

0.3

PruneEvall
PruneEval2

1000

1500 2000

Number of nodes (N)

2500 3000 3500 40

00

0.98

0.96

0.94

0.92

0.90

0.88

PruneEvall
PruneEval2

0 20000

40000 60000
Number of nodes (N)

80000 100

000

Figure 12: The ratio of the pruned nodes executed on fukasiewicz type fuzzy
logic expression trees. See the result for tree sizes with up to 4000 nodes above
and up to 100000 nodes below

Figure 12 shows the ratio of the nodes was omitted from the evaluation by
the pruning algorithms on Fukasiewicz logic formula tree. As for the execution
times, this ratio is between the pruned node ratios of the Product logic and
the Godel logic. The reason is the same, as described for the execution time

measurement.

The pruning ratio can be different for the various trees with different prop-
erties. Now we will see how the value distribution affects the pruning ratio.

48

1.0

0.9

0.8

0.74 .
0.6

0.5

1.00

0.99

0.98

0.97

0.961 *

0.95

segtenntiinestesttann el

500

1000

1500 2000 2500
Number of nodes (N)

3000

3500

4000

Shgegeanesptinsisisnestnnatiisesees
R U IR B *

3)
10)
25)

L
L
L
L(100)

20000

40000 60000
Number of nodes (N)

80000

100000

Figure 13: The ratio of nodes of Gédel formula tree pruned by the PruneEval2
algorithm for the Gédel logic, by value distributions. See the result for tree
sizes with up to 4000 nodes above and up to 100000 nodes below.

Figure 13 gives more detailed information on the ratio of the not evaluated
nodes for Godel fuzzy logic expressions by value distributions. As we can see,
the ratio of pruned nodes is higher on average with fewer values, and it is less
if we have a larger set of values. In the case of L(3) there is a significant (2/3)
probability that the value of a leaf node will be 0 or 1. Besides the probabilities
of 0 and 1, which easily can lead to pruning, the probability of the equality of
two values is also higher, which also can lead to pruning.

49

1.0

0.9

0.8

071
061
051 .

0.47

0.2

1.00

0.95{ -

0.90

0.85{ -

0.801 °

0.3

3)
10)
25)
100)

g gy g g

500 1000 1500 2000 2500 3000
Number of nodes (N)

3500

4000

3)
10)
25)
100)

L
L
L
L

20000 40000 60000
Number of nodes (N)

80000

100000

Figure 14: The ratio of nodes of Product formula tree pruned by the PruneEval2
algorithm for the Product logic, by value distributions. See the result for tree
sizes with up to 4000 nodes above and up to 100000 nodes below.

Figure 14 shows the ratio of the not evaluated nodes for Product fuzzy logic
expressions for the different value distributions we used. The proportion of
pruned nodes is different for the various value distributions. As we can see, the
ratio is higher if fewer values were used, and lower if we have a larger set of
values. The difference between the L(3) and L(100) cases is much larger than
in the case of Gédel fuzzy logic. This is because the Godel logic had the effect
that the negation operator reduces the number of values other than 0 and 1.

50

1.0

0.9

0.8
0.7{ "
0.6{

0.51:

3)
10)
25)
100)

0.4

g gy g g

0.3{
0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

1.00

0.98

0.96

0.94{. -

3)
10)
25)
100)

0.921 . L
L
L
L

0.901.

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 15: The ratio of nodes of Lukasiewicz formula tree pruned by the
PruneEval2 algorithm for the fukasiewicz logic, by value distributions. See
the result for tree sizes with up to 4000 nodes above and up to 100000 nodes
below.

Figure 15 gives more detailed information on the ratio of the not evaluated
nodes for L.ukasiewicz fuzzy logic expressions by value distributions. As we can
see, the ratio of pruned nodes is higher than for the Product logic experiment
but lower than compared to the Gédel logic prune ratios. Also, there is a
difference in the pruning ratios for value distributions with less or more values.

We will also check the number of the evaluated nodes because the evaluated
nodes require performance during the evaluation. We also include the perfor-
mance of the evaluation using the trivial short-cut possibilities that are used
for the evaluation of binary logic formulas.

51

2001 . PruneEvall
PruneEval2
Binary short-cut

175
150
125
100
75
50

5

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

700 ¢ PruneEvall
PruneEval2
6001 « Binary short-cut

500
400
300

200

100 :

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 16: The number of not pruned nodes of Godel fuzzy logic expression
tree. See the result for tree sizes with up to 4000 nodes above and up to 100000
nodes below.

Figure 16 shows how many nodes of G&del logic formula tree have been
evaluated. Both of our algorithms have done short-cuts very efficiently. The
count of the not pruned nodes is below 100 up to tree sizes of 4000 nodes, and
just a few hundreds when closing to the large tree sizes of 100k nodes. We can
see that using our algorithms only about 50% of the nodes had to be checked
compared to the algorithm which used the short-cuts usual in binary logic (e.g.
if the first operand of the AN D operation is 0 then we don’t need to evaluate
the second operand).

52

PruneEvall
500 PruneEval2
Binary short-cut

400
300

200

100

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

PruneEvall
2500 PruneEval2
Binary short-cut

2000

1500

1000

500

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 17: The number of not pruned nodes of Product fuzzy logic expression
tree. See the result for tree sizes with up to 4000 nodes above and up to 100000
nodes below.

Figure 17 shows how many nodes were not pruned when evaluating Product
fuzzy logic formulae. Both algorithms have pruned efficiently. The ratio of the
evaluated nodes is below 10% up to tree sizes of 4000 nodes, and just about
1.5% when closing to the large tree sizes of 100k nodes. The algorithm using
the binary short-cut possibilities had to evaluate almost twice the number of
nodes compared to our better pruning algorithm (PruneEval2 for Product fuzzy
logic).

53

350 PruneEvall

PruneEval2
Binary short-cut

300
250
200
150
100

501

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

1600
PruneEvall

1400 PruneEval2
Binary short-cut
1200
1000
800
600
400

2001

0 20000 40000 60000 80000 100000
Number of nodes (N)

Figure 18: The number of not pruned nodes of Lukasiewicz fuzzy logic expres-
sion tree. See the result for tree sizes with up to 4000 nodes above and up to
100000 nodes below.

Figure 18 shows the number of nodes that were touched when evaluating
Lukasiewicz fuzzy logic formula tree. Both new pruning algorithms have been
performed efficiently. The count of the not pruned nodes is around 5% with tree
sizes of 4000 nodes, and just about 1% with the PruneEval2 Lukasiewicz version
when closing to the large tree sizes of 100k nodes. We can compare the results
of the new pruning algorithms with the performance of the algorithm using the
well-known binary short-circuit methods during the evaluation. Similar to the
previous results, our proposed new pruning algorithms performed much better,
the algorithm PruneEval2 for Lukasiewicz fuzzy logic touching only 50% nodes
compared to it.

All the above figures show the results with average values from many ex-
ecutions with different tree shapes and different value distributions. Now we
will show the effect of the tree shape parameter on how effectively the pruning

54

can be done. As we already mentioned, the shape of the formula tree has a
significant effect on the efficiency of the pruning algorithms. In the following
figures, we will show how efficient the pruning algorithms can be with several
different tree shapes.

10

pa
200 VN

10h
hZ
oh
bal.

150

100

50

0 500 1000 1500 2000 2500 3000 3500 4000
Number of nodes (N)

1200
1000] . 10n
800, . o
600

400

Number of nodes (N)

Figure 19: The number of nodes of Gédel formula trees not pruned by the Gédel
version of the PruneEval2 algorithm, for various tree shapes (limit number of
nodes at each h levels). See the result for tree sizes with up to 4000 nodes
above and up to 100000 nodes below.

Figure 19 gives more detailed information on the number of the evaluated
nodes for Goédel fuzzy logic expressions. As we see, the number of not pruned
nodes is very low with the narrower trees. It is because leaf nodes have been
found closer to the root node, and this led to an earlier cut. For wider trees,
the ratio of the evaluated nodes is higher since the minimal depth is greater,
where the algorithm can find the closest leaf nodes.

95

700

600

500

400

300

200

100

4000

3000

2000

1000

500

1000

1500 2000 2500

Number of nodes (N)

3000

3500

4000

10h
hZ
oh
bal.

40000 60000

Number of nodes (N)

80000

100000

Figure 20: The number of nodes of the Product logic formula trees not pruned
by the PruneFval2 algorithm for Product logic, for various tree shapes. See
the result for tree sizes with up to 4000 nodes above and up to 100000 nodes

below.

Figure 20 shows the statistics of the evaluated nodes for Product logic ex-
pressions. For narrower formula trees for the same number of nodes, the number
of the not pruned nodes is very low. In such trees there are leaf nodes closer
to the root node, this can help the earlier cut. In the case of wider trees, the
closest leaf nodes are at deeper levels, so the number of the evaluated nodes is

higher.

96

400

300

200

100

3000

2500

2000

1500

1000

500

10
N

10h
h?
oh
bal.

1500 2000 2500 3000 3500 4000
Number of nodes (N)

20000

40000 60000 80000 100000
Number of nodes (N)

Figure 21: The number of nodes of fukasiewicz formula trees not pruned by
the PruneEval2 algorithm for various tree shapes. See the result for tree sizes
with up to 4000 nodes above and up to 100000 nodes below.

Figure 21 gives more detailed information on the number of the evaluated
nodes for Lukasiewicz logic expressions. As we see, the number of not pruned
nodes is very low, similar to the other two logic types, for the narrower trees.
This is because leaf nodes were found closer to the root node, and this led to
an earlier short-cut. For wider trees, the number of evaluated nodes is larger
because the minimum depth at which the algorithm finds the leaf nodes is

larger.

57

7 Improvements for neural network classifiers

We propose simple additions that can be used for machine learning classifiers
to possibly achieve better performance.

The proposed fuzzification of training data output class membership values
can be used with standalone learners and with multiple (ensemble) learners as
well for better results. This can be useful for datasets where the given train-
ing data has crisp (binary) class membership values although the “real” class
membership values might be fuzzy. Such datasets can be e.g. images con-
taining male and female faces, which might be misleading to have binary class
membership values for each image, or weather data where e.g. the class “rain”
could be fuzzy class as well. In addition to the possible performance improve-
ment, this technique has an additional advantage as well. If the algorithm gives
fuzzy class membership values, it has an additional level of information for the
classification.

Another proposed addition is defining new variants for committee machine
voting functions which, in some cases, might have better performance compared
to the well-known voting functions. Having multiple possible voting functions
we also provide meta voting functions which combine the output of the single
voting functions.

These additions can be used separately or together as well.

We note that our experiment was done using neural network and convolu-
tional neural network classifiers, however, these techniques might be used for
every classifier, that can produce fuzzy output values, as well.

7.1 Fuzzification of neural network training data class mem-
bership crisp values

Neural network and convolutional neural network algorithms are powerful
machine learning tools for solving classification or other problems. Their per-
formance can certainly be influenced by the quality of the training data. One
common issue is that training data usually have binary output values, even
when the training samples may belong to more than one class at a certain
fuzzy level |61, 19]. These data come usually labeled so that each sample has
one or more labels, each of which means the crisp True membership value in the
class behind that label, and crisp False membership value for the other classes
in the same category. There can be cases where these crisp class membership
values can be considered misleading, so the correction of these values can lead
to reducing the confounding effect of them. Modification of training data is

58

often useful for regularization. This can be done by e.g. making distortion,
adding noise, using data augmentation [62], or adversarial training [63].

The proposed fuzzification technique might be applied to other classifying
algorithms as well, in case they are able to give fuzzy membership values in
their output. Research on other algorithms, in order to apply the fuzzification
technique on them, can be future work, in the current research we conducted
our measurements with neural network algorithms.

We define simple methods that can be used to modify the target output
values given for the training patterns during the training process, to produce
fuzzy target output values from the crisp (binary) values of the training data set.
This class membership value fuzzification is done so that the knowledge gained
during the learning process will be used to correct the inaccurate output class
membership values of the training patterns. In the following, we will show and
describe the proposed algorithm variants. The performance of these algorithm
variations will be analyzed and shown in subchapter 8.2.

Three versions of the algorithm will be presented below. The first of them
(Algorithm 7) is for single learners, the second version (Algorithm 8) is for
multiple learners, the result of which can be used also with committee machine
voting functions, the third variant (Algorithm 9) is a simple modification to
handle the parameters of the fuzzification for multiple learners.

procedure FuzzyTraining(model,train_X,train_Y,FA,FB,FC):

epoch = 0

fuzzy_ Y = train_Y

while epoch<MAX_EPOCHS and CheckEarlyStopCondition()==False:
model.fit(train_X, fuzzy_Y, epochs=1)
out = model.predict(train_X)
if epoch >= START_FUZZY:

fuzzy_ Y = FAxfuzzy_ Y + FB*xout + FC*train_ Y

epoch = epoch + 1

Algorithm 7: Fuzzy Training

Algorithm 7 must be called with the training inputs and outputs, and the
parameters for the fuzzification for the training of a learning model. The pa-
rameter F'A is the weight for the momentum which means the importance
of the actual (current) class membership values (the fuzzy Y vector). This
affects the change from original values towards the desired values giving the
momentum for the actual knowledge. The parameter F'B is the weight for the
current knowledge (the out vector), which means the courage to change. The
parameter F'C' is the weight used for the train_Y vector, which means the
importance of the original target output data. The sum of the parameters F'A,
FB, and FC must be 1.0. In the above-presented algorithm, it is a simple

99

condition to have some epochs before the first correction. This, of course, can
be changed to an adaptive condition to achieve better performance, however,
for our measurement, it is more important to know the number of correction
operations. When the learning starts, the initial values in the fuzzy Y vector
are the same as given in the train_Y vector.

As it can be seen in Algorithm 7, the defined algorithm can work with
individual learner algorithm. Our research had one such experiment which will
be shown in chapter 8.2.

We give an extended variant of the algorithm as well, to enable us to use the
combined knowledge of multiple (ensemble) learners. As we have discussed ear-
lier, the usage of multiple learners of similar levels gives better results compared
to the results of the individual learners. In this version of the algorithm, all
the learners in the ensemble will modify the same fuzzy Y corrected output
values, so their combined opinion will have an effect on the subsequent training
epochs.

procedure FuzzyTrainingEnsemble (models,train_X,train_Y,FA,FB,FC):
epoch = 0
fuzzy_ Y = train_Y
while epoch<MAX_EPOCHS and CheckEarlyStopCondition()==False:
for model in models:

model .fit (train_X, fuzzy_Y, epochs=1)

out = model.predict(train_X)

if epoch >= START_FUZZY:

fuzzy_ Y = FAxfuzzy_ Y + FB*out + FC*train_Y

epoch = epoch + 1

Algorithm 8: Fuzzy Training Ensemble

In the case of this new variant of the algorithm (Algorithm 8) the correction
of the training data outputs will be better because the combined knowledge
of the learners has a better performance compared to the individual results.
The correction will also be faster because after every learning epoch of each
individual learner a correction of the training data outputs will be done. In the
case of multiple learners, parameter F'A affects the change from original values
towards the desired values and it affects the averaging effect on the outputs of
multiple learners too. In future development, it might be useful to change the
algorithm with an additional parameter to separately control these two effects.
Of course, the condition when to start the correction must be also considered.

In this case, the number of times the correction statement will be run is
the number of (epochs - START FUZZY) multiplied by the number of the
learners. This can be taken into account when setting the parameters for the
training data output value fuzzification.

60

We provide a modification to Algorithm 8 with a simple normalization with
respect to the number of learners.

Let M be the number of learners, FA, FB, and FC the weights for the
training output class membership value fuzzification, as described for the algo-
rithm. We can calculate the normalized FA’, FB’ and FC’ weights as follows:

1) FA'= NY/FA

) pp = epyes
3) FC' =1— (FA' + FB')

The parameters FA’, FB’, FC' now correspond to the parameters FA, F'B,
FC so that the speed of convergence with M learners giving the same output

will be the same as the speed of convergence would be using the parameters
FA, FB, and FC with one learner.

Now we apply the above formulae to get the new version of this algorithm.

1 procedure FuzzyTrainingEnsemble2 (models,train_X,train_Y,FA,FB,FC)

power (FA, 1/len(models))
FB (1-FA)*FB/(FB+FC)
FC 1- (FA+FB)
epoch = 0
6 fuzzy_Y = train_Y
7 while epoch<MAX_EPOCHS and CheckEarlyStopCondition()==False:
for model in models:
model.fit (train_X, fuzzy_ Y, epochs=1)
) out = model.predict(train_X)
11 if epoch >= START_FUZZY:
12 fuzzy_ Y = FA*fuzzy_Y + FB*out + FC*train_Y
epoch = epoch + 1

2 FA

Algorithm 9: Fuzzy Training Ensemble 2

In Algorithm 9 the normalization of the parameters has to be done only
once, before the training loop. Certainly, it might be possible to adaptively
change the parameters during the training process, the research on this can be
conducted in the future.

Note that we have overwritten the original values of the parameters F A,
FB, and FC. If this is not the desired behavior then these values can be
preserved.

Since with a given number of learners and given (not changing) FA, FB,
and F'C parameters the difference between the Algorithm 8 and Algorithm
9 variants lies only on changing the parameters, we have not conducted any
separate measurements on Algorithm 9.

61

7.2 New committee machine voting functions

We described some well-known committee machine voting functions in chap-
ter 3.11. Their good performance motivated us to develop our new ones. We
defined the following new committee machine voting functions which we will
compare with some of the well-known voting functions. Some of them belong
to the locally weighted average voting functions [40], others are meta voting
functions.

e Fuzzy average voting weighted by confidence (V2 in chapter
8.3):

Fuzzy average voting can be weighted by confidence [64]. Here we pro-
pose a simple function with getting confidence from the class membership
values. This method obviously needs less performance compared to other
more advanced methods. Class membership values closer to 0 or 1 will
have a stronger weight, we transform the output of the individual learners
before calculating the fuzzy average so that the values which are consid-
ered uncertain (not close to 0 or 1) will be less important by multiplying
with a lower weight. Given the network output o;[j] for each i learner for
each j class we calculate the combined result with the following formula
with N learners:

N

Then we get the winner class from this weighted average:

[= argmax(o)

e Fuzzy average voting weighted by 1-difference from the com-
bined output (V3 in chapter 8.3):

Knowing the outputs of N learners, we can base another weighted aver-
age method based on the better performance of the fuzzy average voting
compared to the individual learners. Starting with the calculation of the
fuzzy average, individual predictions will be multiplied by a weight which
is the difference from the ensemble prediction subtracted from 1. Let olj]
for each j class be calculated as defined for the fuzzy voting in chapter
3.11. Then we calculate the new variant with N learners as follows:
1
ol = 5 D_((oild] = 0.5) (1 = |oi[] — o[]]) + 0.5)

i=1

62

We can find the winner class from the weighted average:
| = argmaz (o)
e Fuzzy average voting weighted by the reciprocal value of the

number of failed training samples (V4 in 8.3):

Let f; be the number of failed (misclassified) samples for each learner ¢
on the training dataset if it is not equal to 0, otherwise, we use a value
between 0 and 1, e.g. 0.5.

The reciprocal value of f; will be used as the weight for the learner i.

N
o[j] = (]if Z O}[:j]

) (v

From this weighted average we get the winner class:

I = argmax(o)

¢ Geometric mean (Nash voting with Nth root) (V7 in 8.3):

We create a variant of the Nash (product) vote function for using in
meta voting function as well. Since with a higher number of voters (N)
the product of many values from the interval [0,1] can be a very small
number, much smaller than e.g. the fuzzy average so we take the Nth
root of the product, getting the geometric mean of the output values.

We note that the geometric mean will choose the same winner as the Nash
(product) voting since the Nth root function is strictly monotonically
increasing over the interval [0, 1].

For each j class evaluate the Nth root of the product sum of the predic-
tions of all of the ¢ individual learners:

Then find the class with the highest membership value:

[= argmax(o)

Meta-voting variants Fuzzy average or plurality vote by combining selected
voting functions by calculating the fuzzy average or the plurality of votes on
the classes of the results of the selected voting functions.

For analysis purposes, we define three meta voter variants.

63

e V8: Plurality voting from the results of V1, V2, V3, V4, V5, V6, V7
e V9: Plurality voting from the results of V1, V2, V3, V4, V7

e V10: Fuzzy average voting from the results of V1, V2, V3, V4, V7

For the above three meta voting functions, we calculate the results of the
required voting functions first, then we combine them as it was described earlier
for the voting functions calculated from the results of the individual learners.

We note that any data used to calculate the weights certainly can only be
part of the training data or result of the learning process, without any knowledge
about test data or performance on test data.

We note also that plurality vote and Borda vote functions do not give fuzzy
class membership values, so they cannot be combined well by fuzzy average
with the fuzzy results of other voters. For the performance evaluation, we will
use the three meta voter functions described above (V8, V9, V10) for better
understanding and comparison.

64

8 Performance evaluation of fuzzification and voting
functions

8.1 Performance evaluation framework

The experiments ran on personal computers equipped with NVIDIA and
AMD GPUs using Tensorflow from Python programs. Our simple framework
was based on a file interface that enables us to run the machine learning on
multiple machines, and then later collect and process the output files generated
by the learners. For the research, one multi-layer perceptron model and two
convolutional neural network learning algorithms with different strengths have
been chosen as the basis of the modifications [65, 58|. The problem set given
to the learning algorithms was the well-known MNIST database of handwrit-
ten digits [56] (see subchapter 3.14). We plan to perform research on other
problem sets as well. The results may vary given the stochastic nature of the
algorithms, so thousands of experiments with different parameters were per-
formed, and average results were analyzed. For the analyses, we first measured
the performance of the individual learners on the test dataset with different
parameters for fuzzification. Since multiple learners have proven to be more
successful when we combine their results through voting, we might expect bet-
ter results producing the fuzzified class membership together as well. In this
experiment ensemble learners in different group sizes were run. We will show
the results of this research in the next subchapters. In these experiments, we
have measured the standalone test results of the learners, as well as the results
of the fuzzy average voting of the groups. When we talk about committee ma-
chine voting, we can choose from many voting functions, e.g. fuzzy averaging,
plurality(or majority) voting, etc. In our research, we have compared the re-
sults of some of the most well-known voting functions with our newly defined
ones.

For the analyses, we used the Python Numpy and Pandas frameworks.

The algorithms run with different epoch counts to see the behavior of our
proposed algorithm variations not only with the statistically best settings.

In the following two subchapters, we will show the performance of the pro-
posed fuzzification of training data binary class membership values and the
proposed voting functions.

For the evaluation, we run a total of about one million learning sessions with
one MLP and two convolutional neural network algorithms, modified according
to our proposed methods.

The first algorithm variant used a very simple multi-layer perceptron (MLP)
with 1024 and 128 neurons in the hidden layers, the activation function of

65

which was the relu (rectified linear unit), the activation function selected for
the output was the softmax.

The second algorithm was built from the algorithm introduced in |65]. It is
a simple convolutional neural network algorithm, the network architecture of
which will be shown below.

input: | (Nonc, 28, 28, 1)
conv2d_1_input: InputLayer

output: | (None, 28, 28, 1) input: | (None, 10, 10, 64)
conv2d_5: Conv2D —
output: (None, 8, 8, 64)

)

batch_normalization_5: BatchNormalization

(None, 28, 28, 1)

(None, 26, 26, 32)

input: | (None, 8, 8, 64)
output: | (None, 8, 8, 64)

input: | (None, 26, 26, 32) l
output: | (None, 26, 26, 32)

input: | (None, 8, 8, 64)
conv2d_6: Conv2D
output: | (None, 4, 4, 64)

)

batch_normalization_6: BatchNormalization

(None, 26,

(None, 24,

26, 32)
24,32)

input: | (None, 4, 4, 64)
output: | (None, 4, 4, 64)

(None, 24, 24, 32)
(None, 24, 24, 32)

f—

input: | (None, 4, 4, 64)
dropout_2: Dropout
output: | (None, 4, 4, 64)

input: | (None, 24, 24, 32)

output: | (None, 12, 12, 32)

l—

input: (None, 4, 4, 64)
conv2d_7: Conv2D
output: | (None, 1, 1, 128)

(None, 12, 12, 32)

(None, 12, 12, 32)

input: | (None, 1, 1, 128)

batch_normalization_7: BatchNormalization

output: | (None, 1, 1, 128)
(None, 12, 12, 32)
dropout_1: Dropout TRTE
MNone, 12, 12, 32) input: | (None, 1. 1, 128)
flatten_1: Flatten
output: (None, 128)

input: | (None, 12, 12, 32)

l—

conv2d_4: Conv2D

output: | (None, 10,

input: | (None, 10, 10, 64)
batch_normalization_4: BatchNormalization
output: | (None, 10, 10, 64)

Figure 22: Network architecture for the first convolutional neural network vari-
ant created from the algorithm [65].

input: | (None, 128)
dropout_3: Dropout
output: | (None, 128)

input: | (None, 128)
dense_1: Dense
output: | (None, 10)

Figure 22 shows the model which was built in the Keras/Tensorflow frame-
work. The figure was generated from the model using the framework. It shows
the layers used in the model and how they are connected.

Similarly, we also will show the network architecture used in the third algo-
rithm variant as well. This variant was based on the algorithm [58] which uses
the Squeeze-and-Excitation Network method.

Figure 23 shows the neural network architecture which we used for our third
neural network program. This program was based on the algorithm [58] using
Squeeze-and-Excitation architecture. We have added the proposed fuzzification
of binary class membership values of training data and also the proposed voting
functions.

66

input: | (Nonc, 28, 28, 1)

input_1: InputLayer
putt: Tnputay output: | (None, 28, 28, 1)

input: | (None, 28, 28, 1)
output: | (None, 28, 28, 128)

conv2d_1: Conv2D

input: | (None, 28, 28, 128)
conv2d_2: Conv2D
output: | (None, 28, 28, 128)

input: | (None, 28, 28, 128)
conv2d_3: Conv2D
output: | (None, 28, 28, 128)

[input: [(None, 28,28, 128) |

batch_t
[output: | (None, 28, 28, 128) |

=

input: [(None, 28, 28, 128)
output: \ (None, 128)

global_average_pooling2d_1: Global AverageF m.SZDI

input: | (None, 128)
output: | (None, 1, 128)

\

input: | (None, 1, 128)
output; (None, 1, 4)

|

input: (None, 1, 4)
output: | (None, 1, 128)

N

Moty 1 Mulior [input: [[(None, 28, 28, 128), (None, 1, 128)] |
mutiply - Multiply [output: | (None, 28, 28, 128) |

reshape_1: Reshape

dense_1: Dense

dense_2: Dense

input: | (None, 28, 28, 128)

conv2d_4: Conv2D
output: | (None, 28, 28, 128)

input: | (None, 28, 28, 128)

conv2d_5: Conv2D
output: | (None, 28, 28, 128)

input: | (None, 28, 28, 128)
output: | (None, 28, 28, 128)

conv2d_6: Conv2D

[input: [(None, 28,28, 128) |

batch_
[output: | (None, 28, 28, 128) |

o

input: [(None, 28, 28, 128) |
output: [(None, 128) |

global_average_pooling2d_2: Global AverageF m.SZDI

N

reshape_2: Reshape

input: | (None, 128)
output: | (None, 1, 128)

N

dense_3: Dense

input: | (None, 1, 128)
output; (None, 1, 4)

|

input: (None, 1, 4)
output: | (None, 1, 128)

N

oty 2: Mulior [input: [[(None, 28, 28, 128), (None, 1, 128)] |
muliply_2: Multiply [Coutput: | (None, 28, 28, 128) |

i 1 - [Cinput: | None, 28,28, 128) |
average_pooling2d_1: AveragePooling?]
poo © = [output: | (None, 14,14, 128) |

!

dense_4: Dense

67

input: | (None, 14, 14, 128)
output: | (None, 14, 14, 128)

conv2d_7: Conv2D

input: | (None, 14, 14, 128)
output: | (None, 14, 14, 128)

conv2d_8: Conv2D

input: | (None, 14, 14, 128)
output: | (None, 14, 14, 128)

conv2d_9: Conv2D

[input: | (None, 14, 14,128) |
batch_ 3
[ouput: | None, 14, 14,128) |
bl ine2d 3 Global » [input: | (None, 14, 14, 128) |
lobal_average_pooling2d_3: Global AveragePooling2]
global ge-pooiing2c- < © [ourpul | (None, 128) ‘
input: (None, 128)

reshape_3: Reshape

output: | (None, 1, 128)

N

input: | (None, 1, 128)
dense_5: Dense
output; (None, 1, 4)

!

input: (None, 1, 4)
dense_6: Dense
output: | (None, 1, 128)

N

[input:_ [[(None, 14, 14, 128), (None, 1, 128)] |
output: | (None, 14, 14, 128) |

multiply_3: Multiply

[input: | (None, 14, 14, 128) |
[Coutput: |~ None, 7,77, 128) |

average_pooling2d_2: AveragePooling2D

input: | (None, 7, 7, 128)
output: | (None, 7, 7, 128)

/ \

input: | (None, 7,7, 128)
output: | (None, 128)

o [input:] [(None, 128), (None, 128)] |

- | output: ‘ (None, 256) ‘

dropout_1: Dropout

[input: [(None,7,7, 128) |

global_max_pooling2d_1: GlobalMaxPooling2D global_average_pooling2d_4: Global AveragePooling2D
‘outpull (None, 128) |

input: | (None, 256)
dense_7: Dense
output: | (None, 10)

Figure 23: Network architecture for the second convolutional neural network
variant for our performance evaluation based on the algorithm [58].

8.2 Performance evaluation of training data class membership
value fuzzification

We have executed several experiments with three algorithms with different
strengths. The algorithm variations were executed with different parameters,
e.g. the number of epochs to run, the number of instances in the ensembles,
and the parameters for the fuzzification of binary class membership values of
training data, including parameters that keep the original class membership
values. We note that we have executed thousands of learning sessions without
fuzzification in order to have more reliable results. For the fuzzification experi-
ments, we made the FUZZY START = 1 setting, i.e. with each learner, the
change of the class membership values of the training data was executed after
each epoch, except after the first one.

8.2.1 Fuzzification experiment 1

The first experiment was executed using a very simple multi-layer percep-
tron architecture with 784, 1024, 128, 10 neurons in the successive layers. The
activation function of the hidden layers was the relu, the output activation
function was the softmax. This algorithm can be considered a weak learner,
compared to the current state-of-the-art algorithms. Thousands of learners
learned 20 epochs in ensembles of 10 learners. The ensembles had different
parameters for fuzzification, including parameters that keep the original class
membership values (FA = 0, FB = 0, FC = 1). Input data distortions were
applied during the training.

We will first show the average results as a function of the FC/(FB + FC)
ratio.

Figure 24 shows the average accuracy of the individual learners with dif-
ferent parameters used for the fuzzification. The ratio FC/(FB + FC) of the
fuzzifying parameters of our algorithms has the meaning of how important the
original binary class membership values provided in the training data are. If
the ratio is 1.0, then no fuzzification occurs. As can be seen, the accuracy
achieved was better when the algorithin was used with fuzzification.

We will also show the performance using the fuzzy average voting function
when using multiple learners.

69

@ @ TSTAVG
0.9884

0.9883 +
0.9882 +
0.9881 ®

0.9880

Accuracy TSTAVG

0.9879
0.9878 ®

0.9877 -

T T T
0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ratio of weight for training class membership { ¢/(b+c))

Figure 24: The average accuracy results of our MLP based algorithm on test
data using different parameters for the fuzzification of the training data class
membership values.

0.9931 b e v
o ©
0.9930 Py ®
® e

2 0.9929 - o
5 ®
3 0.9928 - o
2 LIPS

0.9927 -

09926{ @ g

o
T T T T T T T
0.4 05 0.6 0.7 0.8 0.9 10

Ratio of weight for training class membership { ¢/(b+c))

Figure 25: The performance results of our algorithms with V1 fuzzy average
voting function by 5 — 20 voters on test data using different parameters for the
fuzzification of the training data class membership values.

Figure 25 shows the results of the V1 fuzzy average voting of the same
experiment. As we can see, the results using the fuzzy average voting are

70

different compared to the individual results, fuzzification could help to achieve
better accuracy of the algorithm on the training dataset only for a range of the

fuzzification parameters.

Since the fuzzification is controlled with multiple parameters, we also show
3D diagrams to better understand the results for different parameters. Since
the sum of the parameters F'A, F'B, and FC must be 1.0 (see subchapter 7.1)
we can choose two of these parameters for the X and Y axes of the diagram,
and the Z-axis can show the average accuracy values. We have chosen the
F A and F'B parameters for that, the F'C parameter for every measurement is
1—-(FA+ FB).

First, we will show the individual accuracies of the learners with this

method.

98830
98820
98810
.98800

.98790

AVG accuracy

.98780

.98770

35 40

0 30

20
30 0 2
3 meterl ol%
pard

Parg 60
Meter a0,) 00 g 5

Figure 26: The average performance results of our algorithms on test data, using
different parameters for the fuzzification of the training data class membership

values.

Figure 26 shows the average individual accuracy of the learners on test data
for the F'A and F B parameters (parameter values shown in %). The value with
FA = 0,FB = 0 coordinates shows the average result without fuzzification.
We can see that with values of parameter F'B around 40 we had better accuracy,
especially when the value of parameter F'A was close to 20. This means that
the stronger fuzzification with a stronger momentum factor resulted in better

accuracy. The difference was significant.

71

Below we also show a 3D diagram to see the performance of the fuzzy
average voting (V1) results from the same experiment.

.99290
.99285
99280

.99275

AVG accuracy

.99270
.99265
199260

Q
10
20 g4

40
Parg 60
Meter a(%) 70 80 5

5
parame"

Figure 27: The average performance results of our algorithms’ fuzzy average
voting on test data using different parameters for the fuzzification of the training

data class membership values.

Figure 27 shows the average accuracy of the algorithm on test data for the
F A and F B parameters (parameter values shown in %). The value with FA =
0, FB = 0 coordinates shows the average result without fuzzification. We can
see that only the ensemble learning executions with fuzzification performed with
lower values of the F'A and F'B parameters were able to achieve better accuracy
using committee machine fuzzy average voting, compared to the learning done

without fuzzification.

It is very interesting to see on the previous two figures, that the learning
sessions with the best individual results had about the lowest accuracy using

them as committee machine.

72

8.2.2 Fuzzification experiment 2

The second experiment was performed using the modified variant of a convo-
lutional neural network [65]. Thousands of learners learned a different number
of epochs and with different parameters for fuzzification, including parameters
that keep the original class membership values (FA=0,FB =0,FC =1).

We will first show the average results as a function of the FC/(FB + FC)
ratio.

[) @ TSTAVG
[
0.99640
L °

0.99635 []
> o
)
3
5 0.99630 Y
O

) ®)
0.99625
o
0.99620)
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Ratio of weight for training class membership (c/(b+c))

Figure 28: The average accuracy results of our algorithm on test data using
different parameters for the fuzzification of the training data class membership
values.

Figure 28 shows the learners’ average prediction accuracy with different pa-
rameters used for the fuzzification. The ratio FC/(F B+ FC) of the fuzzifying
parameters of our algorithms shows the importance of the original binary class
membership values given in the training data. If the ratio is 1.0 , then no
fuzzification will happen. We can see that the performance using fuzzification
was better.

In the following, we also show the performance using the fuzzy average
voting function when using multiple learners.

73

0.99760{ @ [vt
0.99755 °® o
0.99750 o
o
30.99745 PY °®
©
g
§ 0.99740 ® P
<2 () o
0.99735 o P
o
0.99730 o)
o
0.99725
o
0.99720
03 0.4 05 0.6 07 0.8 0.9 10

Ratio of weight for training class membership (c/(b+c))

Figure 29: The average performance results of our algorithms V1 fuzzy average
voting function by 5 — 20 voters on test data using different parameters for the
fuzzification of the training data class membership values.

Figure 29 presents the results of the V1 fuzzy average voting on the same ex-
periment. As we can see, the results using the fuzzy average voting are similar,
the fuzzification helps to achieve better performance, i.e. higher accuracy of the
prediction on the training dataset. As the ratio of FC/(FB + FC) increases,
i.e., the possibility of fuzzification decreases, so the accuracy achieved tends to
decrease as well. We note, that although the presented results are mean values
of several measurements, the stochastic behavior of the algorithms can result
in fluctuations in performance, e.g. the two average values with lower accuracy
compared to the non-fuzzified version can be the effect of that.

We also show a 3D diagram to better understand the results using different
parameters for fuzzification. Since the sum of the parameters FA, FB, and FC
must be 1.0 (see subchapter 7.1) we have chosen the F'A and F'B parameters for
the X and Y axes, the F'C parameter for every measurement is 1 — (F A+ FB).

74

.99635
.99633
.99630
199628

AVG accuracy

99625
199623
199620

0
30

20
20
r o

10 paramet

U’M

3
Parg,
Meter afo,) 50

Figure 30: The average accuracy results of our algorithms on test data using
different parameters for the fuzzification of the training data class membership

values.

Figure 30 shows the average accuracy of the algorithm on test data for the
various F'A and F'B parameters. The result with coordinates FA = 0, FB =
0 shows the average result without fuzzification. The stronger fuzzification
resulted in better accuracy, especially when the value of the F'A parameter
setting the factor of the current knowledge (momentum) was between 20% and
30%. The difference between the individual accuracy of the algorithms with

and without fuzzification was significant.

As in the previous experiment, there was an interesting difference between
the behavior of the individual results and the results using committee machines,
we present below the fuzzy average voting results for this experience as well.

75

.99755

.99750

.99745

.99740

AVG accuracy

99735

99730

.99725

0
30
20

P, er D
aramete, a) 40 - 10 pa;amet

U’m

Figure 31: The average performance results of our algorithms used as committee
machine fuzzy average voting with up to 20 voters on test data using different
parameters for the fuzzification of the training data class membership values.

Figure 31 shows the average accuracy achieved on test data by up to 20
voters using the fuzzy average voting with different F'A and F'B parameters.
The value with FA = 0, FB = 0 coordinates shows the average result with-
out fuzzification. With values of parameter F'B around 40%, we had better
accuracy, especially when the value of parameter F'A was close to 30%.

These results are different from the previous experiment. Now we can see
that stronger fuzzification led to better accuracy with using committee machine
fuzzy average voting, as well. We examined the possible reasons for this. We
found that in this experiment the results of the voting functions had negative
correlation with the accuracy on the training data. We also found that with
that algorithm the V4 voting function had worse result and weaker correlation
to other voting functions. This both can mean that we had greater overfit-
ting in that experiment, and stronger fuzzification had a benefit to lower the

overfitting.

76

8.2.3 Fuzzification experiment 3

In the third experiment, we executed the learning sessions using a modified
algorithm of [58], using the parameters for the fuzzification. The number of
epochs we had executed our algorithm was set from 15 to 20.

0.997625 4] ® @ TSTAVG

09976001 @
0.997575
0.997550

0.997525 4

Accuracy TSTAVG
®

0.997500 4

0.997475

0.997450 4

T T T T
0.5 0.6 0.7 0.8 0.9 1.0
Ratio of weight for training class membership { c/(b+c))

Figure 32: The individual accuracy results of the algorithm on test data using
different parameters for the fuzzification of the training data class membership
values.

Figure 32 shows the average accuracy of the individual learners with differ-
ent parameters used for the fuzzification. As we already described for Figure
24, the ratio FC/(FB+FC) tells the importance of the original class member-
ship values of the training data, fuzzification can be done only if the ratio is
below 1.0. As we can see, the accuracy can be better with modest fuzzification.
We also note that if the ratio of FC/(FB+FC) decreases to about 0.5 or below,
then the accuracy decreases as well. This can be the effect of too much freedom
of the algorithm to change the class membership values.

For this experiment, too, we have measured the performance using the well-
known fuzzy average voting function (V1) when using multiple (5-20) learners.

7

0.99815

] o

0.99810 -
0.99805 ~
0.99800 ~ [] ®

0.99795 A

Accuracy V1

0.99790 A

0.99785 A

0.99780 A

T T T T
0.5 0.6 0.7 0.8 0.9 1.0
Ratio of weight for training class membership { c/(b+c))

Figure 33: The performance results of our algorithms V1 fuzzy average voting
function by 5 — 20 voters on average on test data using different parameters for
the fuzzification of the training data class membership values.

Figure 33 shows the results of the V1 fuzzy mean vote in this experiment.
The results are different in this case. The accuracy averages using fuzzified
training data class membership values were lower for most parameters compared
to the accuracy using only the original training data. However, there is a
promising range which we can look at from another perspective, as well.

Below we show the average accuracy of the learners for different F'A, F'B,
and F'C parameters of the fuzzification algorithm on a 3D figure.
First, the performance of individual predictions will be shown.

78

*
AT .99760
99758
99756
99754
99752
.99750
99748
99746
99744

AVG accuracy

20 30

a0
Parg,
Meter agg,) 70 g 5

Figure 34: The results of our algorithms average accuracy on test data using
different parameters for the fuzzification of the training data class membership

values.

Figure 34 shows the results of thousands of learning sessions that were
executed with different FFA, F'B, and F'C parameters. The point with FFA =
0, FB = 0 coordinates shows the average result when class membership values
of training data were not corrected. We can see that the results were higher with
lower F'A and F'B parameter values. For such parameters the F'C parameter is
higher, so only minor corrections on the training data class membership values
can be made.

Similar to the previous experiments the performance of fuzzification was
significant with this strong algorithm, as well. Although the algorithm without
performing fuzzification has a good performance, adding our method to correct
the class membership of the training data improved the accuracy of the indi-
vidual learners. The stronger fuzzification, i.e. larger value for the factor of the
actual output of the learner, resulted in higher accuracy.

79

.99813
.99810
.99808
.99805

.99803

AVG accuracy

.99800
99798
.99795

35 40

0 30

25
20
ramete’ o)
Pa

15

10

Figure 35: The results of our algorithms fuzzy average (V1) voting accuracy
on test data using different parameters for the fuzzification of the training data

class membership values.

Figure 35 shows the committee machine fuzzy average voting performance
(with 5 —20 voters) of thousands of learning sessions which were executed with
different FA, FB, and FC parameters. The point with FA = 0,FB = 0
coordinates shows the average result when class membership values of training
data were not corrected. We can see that the results were higher with lower F'A
and F'B parameter values. For such parameters the F'C' parameter is higher,
so only minor corrections on the training data class membership values can be
made in these cases.

This is a strongly different behavior compared to the performance of fuzzi-
fication with the previous (weaker) algorithm variant.

For a range of parameter values, where parameter F'A and F'B are not zero
but both have low values, the accuracy was better using the proposed fuzzifi-
cation. That means that the fuzzification at a lower rate had an improvement

even for this strong algorithm.

80

8.2.4 Fuzzification experiment 4

Finally, we examined the behavior of the fuzzification algorithm, based on
the same squeeze-and-excite convolutional neural network, comparing the re-
sults with different number of parallel learners, changing the class member-
ship values of training data together during the training in each epoch after
START FUZZY =1 epochs already done, using the fuzzification algorithm
8.

This evaluation has run the same algorithm as in the previous Fuzzification
experiment 3.

In this experiment about 500 training sessions were executed, there were a
total of about 5000 learner instances. We run the convolutional neural network
algorithm with our fuzzification algorithm ensemble variant (Algorithm 8) in
sessions with 1,2,5,7,12 and 20 parallel learners. We also include the results
of learning sessions performed with no fuzzification (labeled with m = 0) for
comparison.

As we can see from Table 1, the average accuracy of the predictions of
the learners was better for a larger number of parallel learners. This is in
line with our expectations since the accumulated knowledge of the ensemble is
usually better than the knowledge of the individual learners. In the case of one
learner, the improvement was smaller, we got better and better results with the
increasing number of learners.

81

epoch

m—0

m—1

m—2

m=>5

m—=8

m—12

m=—20

1

0.976588

0.976200

0.975500

0.975685

0.975005

0.974602

0.974305

0.981150

0.982004

0.982854

0.983807

0.984461

0.985054

0.986008

0.984246

0.984741

0.985561

0.986446

0.986917

0.987526

0.988113

0.987010

0.987690

0.987921

0.988603

0.988896

0.989314

0.989682

0.989467

0.989684

0.989809

0.990218

0.990281

0.990529

0.990716

0.990244

0.990641

0.990750

0.991144

0.991263

0.991473

0.991735

0.991383

0.991599

0.991652

0.991996

0.992034

0.992154

0.992298

0.990086

0.990347

0.991007

0.991630

0.991954

0.992372

0.992846

2
3
4
5
6
7
8
9

0.992601

0.992734

0.992723

0.992967

0.992961

0.993020

0.993131

10

0.992611

0.992810

0.992973

0.993259

0.993345

0.993484

0.993690

11

0.993238

0.993417

0.993469

0.993683

0.993744

0.993897

0.994013

12

0.993132

0.993403

0.993498

0.993767

0.993843

0.994006

0.994186

13

0.993731

0.993921

0.993978

0.994160

0.994233

0.994337

0.994471

14

0.996517

0.996531

0.996498

0.996613

0.996584

0.996598

0.996630

15

0.996719

0.996731

0.996711

0.996798

0.996773

0.996778

0.996804

16

0.996813

0.996841

0.996837

0.996921

0.996912

0.996924

0.996955

17

0.997011

0.997032

0.997036

0.997100

0.997095

0.997106

0.997132

18

0.997157

0.997171

0.997181

0.997229

0.997231

0.997239

0.997261

19

0.997254

0.997269

0.997293

0.997335

0.997349

0.997362

0.997387

20

0.997550

0.997560

0.997579

0.997591

0.997604

0.997607

0.997619

Table 1: Average accuracy of individual predictions on the test
ensemble learning voting experiment 4

82

samples for

8.3

Performance of voting functions

For the evaluation, we have included the well-known voting schemes and
our new variants as well.
We have the following voters implemented (see subchapters 3.11, and

7.2):

V1: fuzzy voting, i.e. averaging

V2: fuzzy variant - the average of individual predictions weighted by a
confidence estimation of the class membership values

V3: fuzzy variant - the average of individual predictions weighted by
1-difference from V1 results, predictions will be multiplied by a weight
which is the difference from the ensemble prediction subtracted from the
value 1.0

V4: fuzzy variant - the average of individual predictions weighted by
1/training failures

V5: plurality voting

V6: Borda voting

V7: geometric mean voting (instead of product voting)

V8: meta-voter: plurality vote by using all the above voting functions

V9: meta-voter: plurality meta vote of voters without the plurality and
Borda voting (V1-V4, VT7)

V10: meta voter: fuzzy average meta vote of voters without the plurality
and Borda voting (V1-V4, V7)

We note that variations of the plurality vote also can be applied [66], how-
ever, plurality and Borda votes, according to our measurements, are not among
the best performing voting functions, we included them for reference and com-
parison purposes.

83

8.3.1 Voting experiment 1 with our algorithm based on simple
multi-layer perceptron (MLP)

The first experiment ran 1000 training sessions based on a very simple neural
network algorithm, an MLP architecture with 784, 1024, 128, 10 neurons in
the successive layers. It was executed with different epoch counts (16,18,20)
to eliminate the effect of a possibly statistically optimized epoch count for a
specific dataset.

voting function MIN AVG MAX

min(accuracy) 0.981700 0.986263 | 0.990600
avg(accuracy) 0.983600 0.988148 | 0.990900
max(accuracy) 0.983800 0.989761| 0.991900
V1-fuzzy average 0.987600 0.992755| 0.994800
V2-weighted by confidence 0.987600 0.992769| 0.994700
V3-weighted by diff from V1 0.987600 0.992752| 0.994800
V4—weighted by 1/training fails 0.987600 0.992761| 0.994700
V5—plurality voting 0.981100 0.992449| 0.994800
V6-Borda voting 0.982000 0.992537| 0.994600
V7—geometric mean voting 0.987500| 0.992790| 0.994800
V8-meta-plurality (V1-V7) 0.987600 0.992764| 0.994800
V9-meta-plurality (V1-V4, V7) | 0.987600 0.992765| 0.994800
V10-meta—fuzzy avg (V1-V4, V7) | 0.987700 0.992776 | 0.994800

Table 2: Minimum, maximum, and average accuracy for ensemble learning
voting experiment 1

Table 2 shows the results where 5 — 20 voters cast their votes in each turn
which were then combined using the above-defined voter functions. The best
individual result was 81 misclassification on 10000 test samples, the worst indi-
vidual result was 183 failed samples and on average they performed only 118.52
fails as individual learners. The well-known fuzzy voting performed 72.45 misses
on average. There were no big differences among the voting functions, the best
average result (72.1 fails on average) was achieved by the geometric mean (V7)
voting function.

84

Also, we can check whether the difference between the voting functions
depends on the number of voters. In the next figure, we can check that for
some of the best performing voting functions.

It is also interesting to see the performances for different sizes of the com-
mittees. It is obvious to expect better results with a larger number of learners.
Below we show the accuracy of some voting functions, which are among the
best performers.

0.9931 - :
g o0
0.9930 : i i
i
0.9929 : i
0.9928 - -
n i
s i
3 0.9927 1
£
0.9926 l
e V1
0.9925 l V2
e 7
099241 ¢ \9
H e V10
0.9923 . . . ; ; . . .
6 8 10 12 14 16 18 20

Number of voters

Figure 36: The performance results of our algorithm with V1 fuzzy average vot-
ing function by 5 — 20 voters on average on test data using different parameters
for the fuzzification of the training data class membership values.

As we can see in figure 36 the accuracy of each of the depicted voting
functions grows similarly with the increasing number of voters. With a lower
size of the committee, there were somewhat larger differences between their
performance, with a higher number of voters the difference was smaller.

85

8.3.2 Voting experiment 2 with our algorithm based on a convolu-
tional neural network [65]

Our second committee machine experiment on voting schemes has been run
with 1000 sessions. In each turn, 5—20 learners voted with the voting functions
(V1-V10) described above.

voting function MIN AVG MAX

min(accuracy) 0.992700 0.995422| 0.996900
avg(accuracy) 0.995188 0.996306| 0.997260
max(accuracy) 0.995600 0.997043| 0.998000
Vi1-fuzzy average 0.996000 0.997351| 0.998400
V2-weighted by confidence 0.995900 0.997360| 0.998300
V3—weighted by diff from V1 0.996000 0.997346| 0.998300
V4—weighted by 1/failures 0.995500 0.997321| 0.998300
V5—plurality voting 0.995500 0.997280| 0.998400
V6-Borda voting 0.995600 0.997296| 0.998400
V7-geometric mean voting 0.996000| 0.997367| 0.998300
V8-meta—plurality (V1-V7) 0.995900 0.997353| 0.998400
V9-meta—plurality (V1-V4, V7) | 0.996000 0.997356| 0.998400
V10-meta—fuzzy avg (V1-V4, V7)| 0.996100 0.997350| 0.998300

Table 3: Minimum, maximum, and average accuracy on the test samples for
ensemble learning voting experiment 2

Table 3 shows the accumulated results of the tested voting functions with
the minimum, average, and maximum number of the failed samples of the
individual learners included. The best individual result was 20 fails on 10000
test samples, the worst was 73 failed samples and on average they performed as
low as 36.94 fails from 10000 samples as individual learners. The well-known
fuzzy voting performed 26.49 fails on average. There were no big differences
among the voting functions, the best result was given by the product voting
(i.e. geometric mean—V7) from committee results on training failures.

86

For some of the best performing voting functions, we also show the accuracy
achieved by them with different number of voters.

[]
0.99750 ' i H
y 0
0.99745 -]
. []
. ‘
0
oy H
20.99740- .
o "
b .
]
0.99735 . . V1
] V2
o V7
0.997304{ ° e 9
H o VIO
T T T T T T T T
6 8 10 12 14 16 18 20

Number of voters

Figure 37: The performance results of our algorithm with V1 fuzzy average vot-
ing function by 5 — 20 voters on average on test data using different parameters
for the fuzzification of the training data class membership values.

As we can see in Figure 37 the five voting functions show similar behavior.
All of them resulted in better accuracy with more voters. There were voting
functions that performed better with the lower number of voters, while others
gave higher accuracy with increasing the number of voters. This behavior can
be further examined in the future since that can mean, that for specific problems
different voting functions might be chosen for better performance in case of the
different committee sizes.

87

8.3.3 Voting experiment 3 with an algorithm based on the squeeze-
and-excite algorithm

The third experiment ran also 1000 times on a modified version of [58]. It
was executed with 20 epochs for each learner.

voting function MIN AVG MAX

min(accuracy) 0.996200 0.996878 | 0.997700
avg(accuracy) 0.996840 0.997418| 0.997886
max(accuracy) 0.997100 0.997914| 0.998500
Vi1-fuzzy average 0.997300 0.998126 | 0.998700
V2—weighted by confidence 0.997300 0.998122| 0.998700
V3—weighted by diff from V1 0.997200 0.998128 | 0.998700
V4—weighted by 1/failures 0.997300 0.998126| 0.998700
V5-plurality voting 0.997000 0.998044 | 0.998700
V6-Borda voting 0.997000 0.998044 | 0.998700
V7-geometric mean voting 0.997100 0.998126 | 0.998700
V8-meta—plurality (V1-V7) 0.997200 0.998125| 0.998700
V9—meta—plurality (V1-V4, V7) | 0.997200 0.998128 | 0.998700
V10-meta—fuzzy avg (V1-V4, V7)| 0.997200| 0.998129| 0.998700

Table 4: Minimum, maximum, and average accuracy for ensemble learning
voting experiment 3

Table 4 shows the results where 5 — 20 voters voted in each turn using
the above-defined voter functions. The best individual result was 15 fails from
10000 test samples, the worst individual result was 38 failed samples and on
average they performed only 25.82 fails as individual learners. The well-known
fuzzy voting performed 18.74 on average. There were no big differences among
the voting functions, the best result (18.71 fails) came from our meta fuzzy
voter function (V10).

88

For chosen voting functions (V1, V2, V7, V9, V10) we also show the accu-
racy achieved by them with different number of voters.

0.99804
" |
o
'
0 (]
0.99802 . '
']
)
] []
5. 0.99800
(¥}
’
(=]
'
< 99798 { '
l s V1
)
0.99796 - + V7
. o \9
o VIO
T T T T T T T T
6 8 10 12 14 16 18 20

Number of voters

Figure 38: The performance results of our algorithm with V1 fuzzy average vot-
ing function by 5 — 20 voters on average on test data using different parameters
for the fuzzification of the training data class membership values.

As we can see in Figure 38 the behavior of the chosen voting functions
was similar. The accuracy of them grows similarly with the increasing number
of voters. With lower committee size there were more significant differences
between their accuracy, this difference is lower when the number of voters in-
creases.

Although the difference with larger committees is not significant, this behav-
ior can be interesting for machine learning environments on lower performance
hardware, where only smaller ensembles can be executed.

89

8.3.4 Correlation of variables

Since we have performed multiple experiments that gave a large number of
results, these data can also serve for subsequent researches.

For that purpose, we also provide a correlation matrix that shows the cor-
relation between the measured variables, i.e. the performance of the individual
learners and the voting functions V1-V10.

10

TRNMAX
TRNAVG
TRNMIN
TSTMAX
TSTAVG
TSTMIN
V1

V2

V3

A3

V5

\'J

v7

v8

V9

V10

Figure 39: The correlation (corrcoef) between the variables MAX, AVG, MIN
accuracy of individual learners on training and test data, and V1-V10 voting
functions

As can be seen in Figure 39, the correlation can be different between the

90

measured variables. As we can expect, it is stronger between the fuzzy voting
function variants; and stronger between the plurality and the Borda voting too,
and it is weaker between fuzzy and plurality voters. This correlation between
voting functions can be important for the selection of voting functions for meta
voting functions.

When we examine the correlation, we can find that the TSTMAX has a
stronger correlation with the accuracy of the voting functions, compared to
TSTMIN. One obvious reason for that can be that with increasing the size of
the ensemble, the probability to have learners achieving lower performance is
higher, but it also leads to better accuracy of the committee machine, as we
described previously.

It is also interesting to check the correlation of the training accuracy with the
voting functions. As we can see, the TRNMAX has a negative correlation with
them. It probably means that it is the effect of overfitting since TRNMAX has
a negative correlation also with TSTAVG, so the learners having top accuracy
on training data negatively affect the average test accuracy. This justifies the
importance of introducing a stopping condition, or generalization methods.

91

9 Conclusions and future work

In our research we successfully developed fast (short-cut) evaluation algo-
rithms for expression trees of three main fuzzy logic types, the Godel fuzzy
logic, the Product fuzzy logic, and the Lukasiewicz fuzzy logic. The presented
results show that using these algorithms the evaluation of large expression trees
can be much faster, the majority of the nodes can be cut from the evaluation
saving time and other resources.

Further research and development can be done to improve the fast eval-
uation algorithm to include the weak and strong conjunction and disjunction
operators in the same algorithm, and to develop it for other fuzzy logic types,
as well.

From the results of our fuzzification experiments, we can conclude that the
fuzzification of the training data binary class membership values can improve
the accuracy of the predictions for both individual learners and multiple learners
as an ensemble method.

The performance of this method can be different using it with the various
machine learning algorithms. For algorithms, which don’t have peak perfor-
mance, our method gave better improvement. With top performance algorithm
variants, that can probably already better handle inaccuracies in training data,
the advantage was smaller.

The research and development on this can be continued possibly to make de-
cisions during run-time, e.g. when to start fuzzification and with what factors.

As a conclusion regarding the voting functions, we discovered that there
is no voting function which is always the winner. The availability of multiple
voting functions can however lead to better performance if the best performer
function will be chosen for a specific problem set. Larger differences were en-
countered with smaller committees, this means, that our research might be
more useful for lower performance environments.

Some of the voting functions, including the ones proposed in our research,
resulted in better accuracy in our experiments, compared to the most frequently
used well-known fuzzy average and plurality voting functions (V2, V7, V9,
V10).

Future work should be performed in this research to further analyze the
behavior of the voting functions, with the goal to make automatic decisions on
choosing a good voting function for the specific problem.

92

10 Summary

In recent decades, the increase in computing capacity, and the availability
of large amounts of data, the Internet, and sensors (including image capture
devices), the development of machine learning algorithms have brought the need
and the opportunity to apply ever-increasing levels of artificial intelligence into
our everyday lives. Fuzzy logic and neural networks also play a significant role
in decision support systems, in the dissertation, we discuss our efficient, new
solutions developed for these areas.

After the introduction and the description of the motivations, chapter 2
briefly describes the objectives and results achieved in the field of rapid evalu-
ation of Goédel, Product, and Lukasiewicz fuzzy logic expression trees, as well
as further developments, to improve the performance of neural network algo-
rithms.

Chapter 3 describes the basics required for the presented results, from
Boolean logic expressions to fuzzy logic expression trees, and then describes
the three main fuzzy logics for which fast evaluation algorithms were devel-
oped.

The introduction to neural networks was followed by an introduction to
the committee machines, and finally a summary of some well-known ensemble
methods.

Chapter 4 describes the generation of formula trees used for measurements,
which was necessary for the analyses related to the algorithms presented in the
next chapter. The formula tree generator can be flexibly parameterized to be
suitable for the production of formulas of various shapes with adjustable values
for all three fuzzy logic involved.

Chapter 5 shows the new algorithms developed for evaluating fuzzy logic
formula trees in three subchapters, according to the rules of Gédel fuzzy logic,
Product fuzzy logic, and finally, Lukasiewicz fuzzy logic.

In chapter 6, we present the results of measurements from a large number
of simulations run with algorithms and their analysis. The simulations run
with fast evaluation algorithms on Gdédel, Product, and YLukasiewicz fuzzy logic
expression trees, generated with different parameters for various expression tree
shapes and value distributions. The results show high efficiency.

Chapter 7 shows our new algorithm for increasing the efficiency of neural
networks, first the algorithm for fuzzification of binary class membership values
of the training data, followed by our new voting functions and meta voting
functions for committee machines.

In chapter 8, we present the results of the algorithms, developed in our

93

research on neural network algorithms, based on a large number of learning
measurements.

From measuring the performance of our algorithms developed for fast eval-
uation of fuzzy logic expression trees, we can conclude that the improvement
is very significant compared to simple evaluation. Furthermore, we have also
shown that the cutting possibilities of binary logic have been extended, with a
significant increase in performance compared to them.

From our research, we can conclude that the fuzzification of the binary
class membership values of the training data can improve the accuracy of the
predictions. For algorithms that do not have peak performance, our method
had stronger improvement. With the high-performance algorithm variants,
which are probably already better able to handle training data inaccuracies,
the advantage was smaller.

As a conclusion about voting functions, we found that there is no voting
function that is always that winner. However, the availability of multiple voting
features can lead to better performance if the function with the best perfor-
mance is selected for a given set of problems. Some of the proposed voting
features had better accuracy in our experiments compared to the most com-
monly used fuzzy mean and plurality voting functions.

94

11. Osszefoglalas

Az elmult évtizedekben a szamitasi kapacitas novekedése, az adatok nagy
tomegének rendelkezésre dlldsa, az internet és a szenzorok (ideértve a képrog-
zit6 eszkozoket is), a gépi tanuld algoritmusok fejlédése a mindennapjainkba
is elhoztédk az egyre magasabb szint(i mesterséges intelligencia alkalmazisidnak
igényét és lehetségét. A déntéstamogato rendszerekben a fuzzy logika és a ne-
uralis halézatok is jelentés szerepet kapnak, a disszertacidéban ezen teriiletekre
fejlesztett hatékony, 4j megoldasainkrol értekeziink.

A dolgozatban, a bevezetés és a motivaciok leirdsa utan, a 2. fejezet réviden
ismertette a célkitiizéseket és az elért eredményeket mind a Gédel, a Product,
valamint a bukasiewicz fuzzy logika kifejezésfak gyors kiértékelése, mind pedig
a neurdlis hdlézat algoritmusok teljesitményének javitdsat célz6 tovabbfejlesz-
tések terén.

A 3. fejezet ismerteti a bemutatott eredményekhez sziikséges alapokat, a
Boolean logika kifejezésektél a fuzzy logika kifejezésféikig, majd ismertet harom
{6 fuzzy logikat, amelyekre a gyors kiértékel§ algoritmusok késziiltek. A neurélis
halézatokba torténd bevezetés utan a bizottsag-gépek ismertetése, végiil néhany
ismertebb egyiittes (ensemble) modszer ismertetése kovetkezett.

A 4. fejezetben a fuzzy logika gyors kiértékels algoritmusokkal kapcsolatos
mérésekhez, vizsgalatokhoz hasznalt formula fak generdlasanak leirdsa kévetke-
zett, amely sziikségeltetett a kovetkez6 fejezetben bemutatott algoritmusokkal
kapcsolatos analizisekhez.

A formula fa generator rugalmasan paraméterezhetd, hogy mindharom érin-
tett fuzzy logikira szabalyozhaté értékekkel rendelkezs, szabalyozhaté alaku
formula fak elgallitasara alkalmas legyen.

Az 5. fejezetben mutatjuk be a fuzzy logika formula fak kiértékelésére kifej-
lesztett j algoritmusokat harom alfejezetben, sorrendben a Gédel fuzzy logika,
a Product fuzzy logika, majd végil a fLukasiewicz fuzzy logika szabalyainak
megfelelGen.

A 6. fejezet prezentalja az algoritmusokkal futtatott nagy szamua szimula-
ciorol késziilt mérések eredményeit, és azok analizisét. A Goédel, a Product,
valamint a Lukasiewicz fuzzy logika kifejezésfik gyors kiértékelésére futtatott
szimulaciokkal, kiilénb6z8 paraméterekkel generélt, valtozatos alaka kifejezés-
fak esetében mutatjuk be az eredményeket, melyek magas hatékonysigot mu-
tatnak.

A 7. fejezetben bemutatjuk a neurdlis haldézatok hatékonysagit noveld j
fuzzifikilé algoritmusunkat a tanulasi adatokhoz megadott binaris osztélytagsa-
gi értékek korrekcidjara, valamint a bizottsag-gépekhez hasznalhaté 4j szavazd
fliggvényeinket és meta szavazo6 fliggvényeinket.

95

A 8. fejezet a neuralis hilézat algoritmusokkal kapesolatos kutatéasunk sorén
alkotott 1j algoritmus, valamint Gj szavazé fliggvények alkalmazasaval kapott
futtatasi eredményeket mutatja be nagyszami tanulas soran folytatott mérések
alapjan.

Kutatasunk alapjan a fuzzy logika kifejezésfik gyors kiértékelésére fejlesz-
tett algoritmusaink teljesitményének mérésébsl megallapithatjuk, hogy az egy-
szer(kiértékeléshez viszonyitva nagyon jelentés a javulas. Tovabba megmutat-
tuk azt is, hogy a binéris logika vagasi lehetGségeit sikeresen kiterjesztettiik,
azokhoz képest is szamottevd a teljesitmény novekedése.

A neuralis héalozatokkal kapcsolatos kutatasunkbol arra a kovetkeztetésre
juthatunk, hogy a tanulasi adatok bindris osztalytagsagi értékeinek fuzzifikala-
sa javithatja az el6rejelzések pontossédgat. Azon algoritmusok esetében, amelyek
nem rendelkeznek csucsteljesitménnyel, a moédszeriink erételjesebben javitotta
az eredményeket. A nagy teljesitményd algoritmus varidnsokkal, amelyek valo-
szintileg mar jobban képesek kezelni a tanulasi pontatlansigait, a javulas kisebb
mértékd volt.

A bizottsag-gép szavazd fliggvényekkel kapcsolatos kovetkeztetésként azt ta-
pasztaltuk, hogy nincs olyan szavazasi funkcio, amely mindig jobb a tobbinél.
A t6bb szavazasi funkci6 elérhetdsége azonban jobb teljesitményhez vezethet,
ha a legjobb funkciot valasztja egy adott problémakérre. Biztaté eredmény,
hogy a javasolt szavazasi funkciok koziil tobbnek a pontossaga jobb volt a ki-
sérleteinkben, Osszehasonlitva a leggyakrabban hasznalt fuzzy mean és plurality
szavazasi funkcidkkal.

96

12

Publications

Journal publications related to the dissertation

[1]
2]

3]

B. Nagy, R. Basbous, and T. Tajti. “Lazy evaluations in Lukasiewicz type
fuzzy logic”. In: Fuzzy Sets and Systems 376 (2019), pp. 127-151.

T. Tajti. “Fuzzification of training data class membership binary values
for neural network algorithms”. In: Annales Mathematicae et Informaticae
52 (2020), pages to be approved.

T. Tajti. “New voting functions for neural network algorithms”. In: An-
nales Mathematicae et Informaticae 52 (2020), pages to be approved.

Foreign language conference proceedings related to the disser-
tation

4]

R. Basbous, B. Nagy, and T. Tajti. “Short Circuit Evaluations in Godel
Type Logic”. In: Proc. of FANCCO 2015: 5th International Conference on

Fuzzy and Neuro Computing, Advances in Intelligent Systems and Com-
puting. Vol. 415. 2015, pp. 119-138.

R. Basbous, T. Tajti, and B. Nagy. “Fast Evaluations in Product Logic:
Various Pruning Techniques”. In: FUZZ-IEEE 2016 - the 2016 IEEE
International Conference on Fuzzy Systems. Vancouver, Canada: IEEE,
2016, pp. 140-147.

C. Biré, G. Kusper, and T. Tajti. “How to generate weakly nondecisive
SAT instances”. en. In: Intelligent Systems and Informatics (SISY), 2013
IEEFE 11th International Symposium on : IEEE 11th International Sym-
posium on Intelligent Systems and Informatics : proceedings. Budapest,
Magyvarorszag: IEEE Hungary, 2013, pp. 265-269.

Other publications

[7]

8]

T. Tajti. “Fuzzification of neural network pattern outputs for classifica-
tion problems [abstract]”. ICAI 2020 : 11th International Conference on
Applied Informatics, Eger, Hungary. 2020.

7. Gal, T. Tajti, and G. Terdik. “Surprise event detection of the supercom-
puter execution queues”. en. In: Annales Mathematicae et Informaticae
44 (2015), pp. 87-97.

97

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Z. Gé&l et al. “Performance evaluation of massively parallel communica-
tion sessions”. en. In: The Sizth International Conference on Parallel, Dis-
tributed, GPU and Cloud Computing for Engineering. Civil-Comp Press,
2019, pp. 1-19.

T. Tajti and B. Nagy. “Motion sensor data correction using multiple
sensors and multiple measurements”. en. In: SAMI 2016 : IEEE 14th In-
ternational Symposium on Applied Machine Intelligence and Informatics,
New York (NY), Amerikai Egyesilt Allamok. IEEE, 2016, pp. 287-291.

T. Tajti et al. “Indoor localization using NFC and mobile sensor data
corrected using neural net”. en. In: ICAI 2014: Proceedings of the 9th
International Conference on Applied Informatics. Vol. 1-2. Eszterhazy
Karoly Tanarképzo Foiskola, 2014, pp. 163-169.

T. Gregus ; G. Geda ; P. Magyar ; T. Tajti ; A. Perjési. “Business Oriented
Creature Identification”. en. In: ICAI 2014 The 9th International Con-
ference on Applied Informatics to be held in Eger. Eger, Magyarorszag:
Eszterhazy Karoly College, 2014.

C. Bir6 et al. Look-ahead alapi SAT solver-ek pdrhuzamosithatdsdgdnak
vizsgdlata. hu. Budapest, Magyarorszag, 2013.

G. Kusper, C. Biro, and T. Tajti. WnDGen: Weakly Nondecisive
SAT Problem Generator. en. Tudoményos célu szoftver, Version: 1.0,
29.05.2012, Current version: 2.0, 07.01.2013, Megjelenés: Magyarorszag.
2013.

G. Kusper, C. Biro, and T. Tajti. SATCounter: Count Clear Clauses SAT
Solver. en. Vol. 1. Magyarorszag, 2013.

7. Gal and T. Tajti. “Complex event processing in supercomputer en-
vironment: sensor and neural network based analysis”. en. In: IEEE 4th
International Conference on Cognitive Infocommunications: CoglnfoCom
20138, New York (NY), Amerikai Egyesiilt Allamok. IEEE, 2013, pp. 735~
740.

J. Kajdi ; K. Nagy ; O. Legeza ; J. Kovesi ; T. Tajti ; A. Vigvari. Az
onkormdnyzati addssdgregiszter kialakitisanak megalapozdsa. hu. Magyar
Kozigazgatéasi Intézet, 2001, pp. 197-283.

98

13

2]

[10]

[11]

[12]

References

C. Biré, G. Kusper, and T. Tajti. “How to generate weakly nondecisive
SAT instances”. en. In: Intelligent Systems and Informatics (SISY), 2013
IEEE 11th International Symposium on : IEEE 11th International Sym-
posium on Intelligent Systems and Informatics : proceedings. Budapest,
Magyarorszag: IEEE Hungary, 2013, pp. 265-269.

R. Basbous, B. Nagy, and T. Tajti. “Short Circuit Evaluations in Goédel
Type Logic”. In: Proc. of FANCCO 2015: 5th International Conference on

Fuzzy and Neuro Computing, Advances in Intelligent Systems and Com-
puting. Vol. 415. 2015, pp. 119-138.

R. Basbous, T. Tajti, and B. Nagy. “Fast Evaluations in Product Logic:
Various Pruning Techniques”. In: FUZZ-IEEE 2016 - the 2016 IEEE
International Conference on Fuzzy Systems. Vancouver, Canada: IEEE,
2016, pp. 140-147.

B. Nagy, R. Basbous, and T. Tajti. “Lazy evaluations in f.ukasiewicz type
fuzzy logic”. In: Fuzzy Sets and Systems 376 (2019), pp. 127-151.

T. Tajti. “Fuzzification of neural network pattern outputs for classifica-
tion problems [abstract]”. ICAI 2020 : 11th International Conference on
Applied Informatics, Eger, Hungary. 2020.

T. Tajti. “Fuzzification of training data class membership binary values
for neural network algorithms”. In: Annales Mathematicae et Informaticae
52 (2020), pages to be approved.

T. Tajti. “New voting functions for neural network algorithms”. In: An-
nales Mathematicae et Informaticae 52 (2020), pages to be approved.

S. Russell and P. Norvig. Artificial Intelligence, a Modern Approach. en.
New Jersey: Prentice-Hall, 2003.

E. Rich and K. Knight. Artificial Intelligence. en. New York: McGraw-Hill
Inc, 1991.

Simon Haykin. Newral Networks: A Comprehensive Foundation. 2nd.
USA: Prentice Hall PTR, 1998.

Shaohua Wan and Hua Yang. “Comparison among Methods of Ensemble
Learning”. In: 2013 International Symposium on Biometrics and Security
Technologies (2013), pp. 286—290.

D. Opitz and R. Maclin. “Popular ensemble methods”. en. In: An empirical
study Journal of Artificial Intelligence Research 11 (1999), pp. 169-198.

99

[13] R. Basbous and B. Nagy. “Strategies to Fast Evaluation of Tree Networks,
Acta Polytechnica Hungarica”. en. In: Acta Polytechnica Hungarica 12.6
(2015), pp. 127-148.

[14] J. Bell and M. Machover. A Course In Mathematical Logic, North-
Holland. en. New York and Oxford, 1977.

[15] R. Basbous and B. Nagy. “Generalized Game Trees and their Evaluation”.
en. In: Proc. of CoglnfoCom 2014: 5th IEEE International Conference on
Cognitive Infocommunications. Italy: Vietri sul Mare, 2014, pp. 55-60.

[16] L. Zadeh. “Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers
by Lotfi A”. en. In: Advances in Fuzzy Systems-Applications and Theory.
Ed. by Zadeh. Vol. 6. River Edge, NJ, USA: World Scientific, 1996.

[17] P. Hajek. “Metamathematics of Fuzzy Logic”. nl. In: Trends in Logic 4
(1998).

[18] L.A. Zadeh. “Fuzzy sets”. In: Information and Control 8.3 (1965), pp. 338
353.

[19] L. Zadeh. Fuzzy logic-a Personal Perspective, Fuzzy Sets and Systems. en.
2015.

[20] R. Hahnle. “Many-valued logic and mixed integer programming”. en. In:
Annals of Mathematics and Artificial Intelligence 12 (1994), pp. 231-264.

[21] K. Godel. “Zum intuitionistische Aussagenkalkiil”. In: Mathematish-
Naturwissenschaftliche Klasse 69 (1932). reprinted in Kurt Gédel, Col-
lected Works, Oxford University Press, 1985, pp. 65-66.

[22] S. Gottwald. Many-Valued Logic. en. Edward N. Zalta (ed.) The Stanford
Encyclopedia of Philosophy, URL=http://plato.stanford.edu/entries/logic-
manyvalued. 2015.

[23] Matthias Baaz, Norbert Preining, and Richard Zach. “First-order Godel
logics”. In: Annals of Pure and Applied Logic 147.1-2 (2007), pp. 23-47.

[24] B. Nagy. “A General Fuzzy Logic Using Intervals”. en. In: Proc of. 6th
International Symposium of Hungarian Researchers on Computational In-
telligence. Budapest, Hungary, 2005, pp. 613—624.

[25] P. Hajek, L. Godo, and F. Esteva. “A complete many-valued logic With
product-conjunction”. en. In: Archive for Mathematical Logic 35 (1996),
pp. 191-208.

[26] R.J. Adillon and V. Verdu. “On product logic”. en. In: Soft Computing
2.ue 3 (1998), pp. 141-146.

100

[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

M. Baaz et al. “Embedding logics into product logic”. pt. In: Studia Logica
61 (1998), pp. 35-47.

G. Metcalfe, N. Olivetti, and D. Gabbay. “Analytic Calculi for Product
Logics”. en. In: Archive for Mathematical Logic 43 (2004), pp. 859-889.

G. Metcalfe, N. Olivetti, and D. Gabbay. Proof Theory for Fuzzy Logics.
en. Vol. 36. Springer-Verlag, 2008.

B. Nagy. “Many-valued logics and the logic of the C programming lan-
guage”. en. In: Proc. of ITI 2005: 27th International Conference on In-
formation Technology Interfaces (IEEE), Cavtat, Croatia. 2005, pp. 657
662.

J. Lukasiewicz and A. Tarski. “Investigations in the Sentential Calcu-
lus”. en. In: (1930). translation in J. Lukasiewicz, Selected Works, Reidel,
Dordrecht (1970).

S. Kundu and J. Chen. Fuzzy Logic or Lukasiewicz Logic: A Clarifica-
tion, Fuzzy Sets and Systems. en. 1998.

S. Aguzzoli and A. Ciabattoni. “Finiteness in infinite-valued Lukasiewicz
logic”. et. In: Journal of Logic, Language, and Information 9 (2000), pp. 5-
29.

Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. en. In: Proc. IEEE 86 (1998), pp. 2278-2324.

Dan Ciresan, Ueli Meier, and Jiirgen Schmidhuber. “Multi-column deep
neural networks for image classification”. In: 2012 IEEE conference on
computer vision and pattern recognition. IEEE. 2012, pp. 3642-3649.

Alexis Conneau et al. “Very deep convolutional networks for text classi-
fication”. In: arXiv preprint arXiv:1606.01781 (2016).

Anastasia Borovykh, Sander Bohte, and Cornelis W Qosterlee. “Con-
ditional time series forecasting with convolutional neural networks”. In:

arXiv preprint arXiv:1703.04691 (2017).

Volker Tresp. “The generalized Bayesian committee machine”. In: Proceed-
mngs of the sizth ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD ’00. ACM Press, 2000.

Yoav Freund. “Boosting a weak learning algorithm by majority”. In: In-
formation and computation 121.2 (1995), pp. 256-285.

Volker Tresp. “Committee machines”. In: Handbook for neural network
signal processing (2001), pp. 1-18.

101

[41]

[42]

[43]
[44]
[45]

|46]

[47]

[48]

[49]

[50]

[51]
[52]

[53]

G. Fumera and F. Roli. “A theoretical and experimental analysis of lin-
ear combiners for multiple classifier systems”. In: IEFEE Transactions on
Pattern Analysis and Machine Intelligence 27.6 (2005), pp. 942-956.

Kamran Kowsari et al. “Rmdl: Random multimodel deep learning for
classification”. In: Proceedings of the 2nd International Conference on In-
formation System and Data Mining. 2018, pp. 19-28.

Galina Rogova. “Combining the results of several neural network classi-
fiers”. In: Neural Networks 7.5 (1994), pp. 777-781.

G. Brawn. “Ensemble Learning”. In: Encyclopedia of Machine Learning.
Springer US, 2011, pp. 312-320.

Whitman Richards, H Sebastian Seung, and Galen Pickard. “Neural vot-
ing machines”. In: Neural Networks 19.8 (2006), pp. 1161-1167.

Gasser Auda, Mohamed Kamel, and Hazem Raafat. “Voting schemes
for cooperative neural network classifiers”. In: Proceedings of ICNN’95-
International Conference on Neural Networks. Vol. 3. IEEE. 1995,
pp. 1240-1243.

Ludmila I Kuncheva. “A theoretical study on six classifier fusion strate-
gies”. In: IEEFE Transactions on pattern analysis and machine intelligence
24.2 (2002), pp. 281-286.

Ury Naftaly, Nathan Intrator, and David Horn. “Optimal ensemble aver-
aging of neural networks”. In: Network: Computation in Neural Systems

8.3 (1997), pp. 283-296.

B. Efron. “Bootstrap methods: another look at the jackknife”. en. In: The
Annals of Statistics 7.1 (1979), pp. 1-26.

C. Shen and H. Li. “On the dual formulation of boosting algorithms”.
en. In: IEEFE Transactions on Pattern Analysis and Machine Intelligence
32.12 (2010), pp. 2216-2231.

D.H. Wolpert. “Stacked Generalization”. de. In: Newral Networks 5.2
(1992), pp. 241-259.

L. Breiman. “Random forests”. en. In: Machine Learning 45.1 (2001),
pp. 9-32.

David F. Nettleton, Albert Orriols-Puig, and Albert Fornells. “A study of
the effect of different types of noise on the precision of supervised learning
techniques”. In: Artificial Intelligence Review 33.4 (2010), pp. 275-306.

102

[54]

[53]

[56]

[57]

[58]

[59]
[60]
[61]

[62]

[63]
[64]

[65]

[66]

M. Pechenizkiy et al. “Class Noise and Supervised Learning in Medical
Domains: The Effect of Feature Extraction”. In: 19th IEEE Symposium
on Computer-Based Medical Systems (CBMS’06). 2006, pp. 708-713.

Xingquan Zhu and Xindong Wu. “Class Noise vs. Attribute Noise:
A Quantitative Study”. In: Artificial Intelligence Review 22.3 (2004),
pp. 177-210.

Yann LeCun, Corinna Cortes, and Christopher JC Burges.
“The MNIST database of handwritten digits, 1998”. In: URL
http://yann.lecun.com/exdb/mnist 10.34 (1998), p. 14.

Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-excitation networks”. In:
Proceedings of the IEEFE conference on computer vision and pattern recog-
nition. 2018, pp. 7132-7141.

Matuzas77. MNIST classifier with average 0.17% error. https : / /
github . com/Matuzas77 /MNIST-0.17/blob/master /MNIST _final _
solution.ipynb. 2020 (last accessed October 30, 2020).

J. Siltaneva. “A Comparison of Random Binary Tree Generators”. In: The
Computer Journal 45.6 (2002), pp. 653-660.

D. E. Knuth and R. W. Moore. “An analysis of alpha-beta pruning”. es.
In: Artificial Intelligence (1975), pp. 6, 293-326.

Robert Fullér. “Fuzzy systems”. In: Introduction to Neuro-Fuzzy Systems.
Springer, 2000, pp. 1-131.
Sebastien C Wong et al. “Understanding data augmentation for classifi-

cation: when to warp?” In: 2016 international conference on digital image
computing: techniques and applications (DICTA). IEEE. 2016, pp. 1-6.

Florian Trameér et al. “Ensemble adversarial training: Attacks and de-
fenses”. In: arXiv preprint arXiv:1705.07204 (2017).

Leijun Li et al. “Exploration of classification confidence in ensemble learn-
ing”. In: Pattern recognition 47.9 (2014), pp. 3120-3131.

Chris Deotte. 25 Million Images! [0.99757] MNIST. https : / / wuw .
kaggle.com/cdeotte/25-million-images-0-99757-mnist. 2020 (last
accessed October 30, 2020).

Louisa Lam and Ching Y Suen. “Optimal combinations of pattern classi-
fiers”. In: Pattern Recognition Letters 16.9 (1995), pp. 945-954.

103

https://github.com/Matuzas77/MNIST-0.17/blob/master/MNIST_final_solution.ipynb
https://github.com/Matuzas77/MNIST-0.17/blob/master/MNIST_final_solution.ipynb
https://github.com/Matuzas77/MNIST-0.17/blob/master/MNIST_final_solution.ipynb
https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist
https://www.kaggle.com/cdeotte/25-million-images-0-99757-mnist

14 Appendix

For better readability some of the proofs about the algorithms are moved
to the appendix. We also recall the lemmas themselves.

Lemma 1. Both PruneEvall and PruneEval2 for bukasiewicz fuzzy
logic formula tree evaluation (Algorithm 5 and Algorithm 6 respectively) use
variables lower, upper and v such that they always have values with condition
0 <lower <1,0 <wupper < 1,0 < v <1 during the recursive calls.

Proof. First, we note that lower and upper are having the values lower = 0
and upper = 1 at the initial call in both of the algorithms. The proof goes by
induction on the height of the formula tree.

e The base case is with height 0, i.e., for formulae without connectives. If
such a formula is evaluated with parameters 0 < lower < 1,0 < upper <
1, then it gets value without any recursive calls, i.e., it either gets the
value of lower (in case of cut) or its real value. However, in both cases,
the condition 0 < v < 1 definitely holds.

e Let the induction hypothesis be formulated as follows. Assume that both
algorithms use 0 < lower, upper,v < 1 at each recursive call for all for-
mulae having height at most for any fixed non-negative integer k if at the
initial call the condition 0 < lower, upper < 1 meets.

e Let us prove the inheritance, i.e., the statement that the conditions
0 < lower < 1,0 < upper < 1,0 < v < 1 hold also for formulae with
height k£ + 1

o When the formula is evaluated by any of the algorithms with param-
eters 0 < lower = upper < 1, then v = lower is assigned and, thus,
also 0 < v < 1 is satisfied. Further, in the proof, we assume that
lower # upper (i.e., we do not mention again the case of equality).

There are various cases by the connective given in the root of the expres-
sion.

o If the root is a negation node, then in both algorithms, lower; =
1 — upper and uppery = 1 — lower are used to evaluate its child.
If any of the algorithms are called with the condition 0 < lower <
1,0 < upper < 1, then 0 < lower; < 1,0 < wupper; < 1 also
hold, moreover the height of the formula-tree rooted at the child
is exactly k. Thus, applying the hypothesis, at each recursive call

104

during the evaluation the variables lower, upper have values that are
always between 0 and 1 (inclusively, i.e., allowing to have value 0 or
1 also, moreover each evaluated node x gets also value v, such that
0 < v, < 1. Consequently, the root gets the value v = 1 — v in
both algorithms, where vy is the value of the child. Since 0 < v; <1
implies 0 < v < 1, the inheritance in this case is proven.

o If the root is a conjunction node, then both children are roots of sub-
trees at most height k. One of the children is evaluated by lower; =
lower, and upper; = 1. Subsequently, if 0 < lower < 1, then
0 <lower; < 1,0 < upper; < 1 also hold, thus, by the induction
hypothesis, all subsequent calls for the formula rooted in this child
uses parameters lower and upper with the condition of the lemma,
and also value v, always fulfills 0 < v, < 1, for every evaluated
node of this sub-tree. Thus, also 0 < v; < 1 is satisfied. Then, the
other child is evaluated by parameters lowery = min{l+lowerv;, 1}
and upperes = min{1l + upper — vy, 1} in both algorithms. Knowing
that 0 < lower < 1,0 < upper < land0 < v; < 1, it is clear that
0 < lowers < 1,0 < uppers < 1. By applying the hypothesis the
sub-tree of this child is evaluated in such a way that
0 <lower < 1,0 < upper < 1is always satisfied, and each evaluated
node x gets a value v, such that 0 < v, < 1. Consequently, also this
child gets a value ve according to this condition. Then, the value v
is computed as v = max{v1 +ve — 1,0}, which inherits the property
0 <wv <1 from v; and vs.

o In case of disjunction at the root, again both children have sub-
formulae with height at most k. In both algorithms, one of the
children is a called with parameters lower; = Oanduppery = upper.
If 0 < upper < 1,then0 < lower; < 1,0 < upper; < 1 also hold.
By the hypothesis during the evaluation of this subformula the con-
ditions 0 < lower < 1,0 < upper < 1,0 < v < 1 hold. Especially,
0 < vy <1 also holds. The evaluation of the other child is called
with lowery = max{lower—wv1,0} and uppers = maz{upper —vy,0}
in both algorithms. By
0 < lower < 1,0 < wupper < 1,0 < v < 1, the conditions
0 < lowery < 1,0 < uppery < 1 also hold. Thus, the hypothesis
can be applied for the sub-tree rooted in this child. Consequently,
the value of this child vy also satisfies 0 < vy < 1. Then, value
v = min{vy + ve, 1} is computed, which satisfies 0 < v < 1.

o If the root is an implication node, let us analyze first Algorithm 5.

105

The first child is called with parameters lower; = 1 — upper, and
upper; = 1. The condition 0 < upper < 1 implies that both 0 <
lowery <1 and 0 < upper; < 1, thus the hypothesis is applicable
to the subformula rooted in the first child. Therefore, all the values
lower, upper, and v during the evaluation have values between 0
and 1 (inclusively), which also holds for v;.

Then, the second child is evaluated with parameters lowery =
maz{lower — 1+ v1,0} and upperes = max{upper —1+wv1,0}. Con-
sequently, 0 < lowers < 1,0 < uppere < 1, and the hypothesis is
applicable to the subformula rooted in the second child. Thus, dur-
ing the evaluation of this subformula the condition of the lemma is
satisfied and also 0 < vy < 1. Then, value v = min{l — vy + vo, 1}
is computed, which satisfies 0 < v < 1. The proof of inheritance for
Algorithm 5 is finished. Now, let us consider Algorithm 6. If the
second child of the implication root is not a leaf or the first child
is a leaf, Algorithm 6 executes the “else” branch in case of implica-
tion. This case is entirely the same as the case of the implication in
Algorithm 5, and it was proven just some lines above. Now, let us
consider the other possibility, i.e., the lines in which the two algo-
rithms differ at implication nodes (when the first child is not a leaf,
but the second is). In this case, the second child is evaluated first
by parameters lowers = 0 and uppers = upper. By the induction
hypothesis, it gets a value v9 such that 0 < v < 1. Further, the first
child is evaluated by parameters lowery = min{l + vy — upper, 1}
and upper; = min{l + vy — lower,1}. Knowing 0 < lower < 1,
0 <upper <1,0<wvy <1, also 0 <lowery <1, 0 < upper; <1 are
satisfied. The hypothesis can be applied for the first child, and thus,
its evaluation satisfies the condition of the lemma and also its value
satisfies 0 < vy < 1. Then, by v = min{l — v 4+ v, 1}, the assigned
value to the root also satisfies 0 < v < 1. This case has also been
proven. The induction works also for Algorithm 6.

Lemma 2. Each time Algorithm 5 (Prunel) and Algorithm 6 (Prune2) is
called recursively, if the condition 0 < lower < upper < 1 is fulfilled, then this
will also hold for the parameters of the subsequent recursive call(s).

Proof. The fact that 0 < lower, upper < 1 is already proven in Lemma
1. Here we prove only the part lower < upper. The proof goes by induction.
The first call in both of the algorithms, to evaluate the root, i.e., the main
formula itself, goes by lower = 0, and upper = 1, for which the condition of
the statement definitely holds.

106

Now, as an induction hypothesis, assume that 0 < lower < upper < 1 holds
at the actual node. Let us prove that similar condition holds for its children, if
any.

e At the first possible recursive call, i.e., if the actual node is a negation
node, in both algorithms, lower; = 1 — upper and upper; = 1 — lower
are used. Thus, applying the hypothesis, 0 < lower; < upper; < 1 also
holds.

e In case the actual node is a conjunction or a disjunction node, the two
algorithms have similar code (the renaming of the children does not affect
the following arguments). At a conjunction node, the first evaluated child
is called with lower; = lower and upper; = 1. Trivially, 0 < lower; <
upper; < 1 holds by the hypothesis. Then, a value v; is assigned to
this child. From Lemma 1 it is known that 0 < v; < 1. The second
child is called with values lowers = min{l + lower — vy, 1} and uppers =
min{1 + upper — v1,1} which can also be written in the form lowery =
1 + min{lower — v1,0} and uppery = 1 + min{upper — v1,0} clearly
showing that lower < upper implies lowers < uppers.

e At a disjunction node, the first child is evaluated with parameters,
lower; = 0 and upper; = upper. Thus, lower; < upper; holds by the
hypothesis (or by knowing from Lemma 1 that) 0 < upper. Then, the
second child is evaluated by parameters lowers = max{lower —v;,0} and
uppers = max{upper — v1,0} and thus, the hypothesis lower < upper
implies lowers < uppers.

e At implication nodes in the root, let us analyse, first Algorithm 5.
The first child is evaluated with parameters lower; = 1 — upper and
uppery = 1. Applying 0 < wupper, lowery < upper; is proven. The
second child is evaluated with lowery = max{lower — 1 + v1,0} and
uppery = maz{upper — 1 + v1,0}. Consequently, by lower < upper, the
condition lowery < uppers also holds.

In Algorithm 6, exactly the same parameters are used in the “else” branch,
thus the proof of this case is exactly the same as for Algorithm 5.

In the other case, when the second child is evaluated first, the param-
eters lowery = Oandupperys = upper are used. Since 0 < wupper, the
relation lowers < uppers is proven. Then, the first child is evaluated by
lower; = min{l 4+ v — upper,1} and uppery = min{l + vy — lower, 1}
which can be written as lower; = 1 + min{vy — upper, 0} and upper; =
1+ min{vy — lower,0}. Clearly, lower < upper implies

lowery < uppery also in this case.

107

Thus, the condition is inherited for all the subsequent calls.

Lemma 3. For any expression having value z, if Algorithm 5 (Algorithm
6, resp.) assigns the correct value x to it, then one of the following statements
is fulfilled.

a) The parameters have the relation lower < x < upper, and thus the as-
signed value is also between lower and upper (inclusively, allowing equal-
ity also).

b) If z < lower, then the algorithm assigns a value that is not larger than
lower.

c) If x > upper, then the algorithm assigns a value that is not less than
upper.

Proof. If the correct value is assigned to a formula, it always satisfies one of
the three cases a), b) and ¢) depending on the values lower and upper: If the
value of the formula z is between lower and upper, then case a) works. If z is
less than lower, then case b) applies. Finally, if x is larger than upper, case c)
is used.

Lemma 4. For any expression having value z, if Algorithm 5 (Algorithm
6, resp.) is called with parameters lower = upper, then it assigns

a) the value x of the expression correctly if lower = x = upper,

b) a value not larger than lower if the value of the formula z is less than
lower, and

c) a value that is at least upper if the value of the formula z is greater than
upper.

Proof. In this case, in both algorithms, we apply a cut, and the common value
of lower = upper is assigned to the formula in evaluation. Let the actual value
of the formula be z. In case x # lower (the formula has a value that differs
from these bounds), then z is either less than lower, and the returned value is
lower, or x is greater than upper and the returned value is the same as upper.
Finally, if « has the same value as lower, then the correct value is assigned (case
a). In either case, the statement of the lemma holds for any formula evaluated
with parameters lower = upper. Lemma 5. For any expression having value
x, if lower < upper, then Algorithm 5 assigns

a) the value x of the expression correctly if lower < x < upper,

108

b) a value not larger than lower if the value of the formula z is less than
lower, and

c¢) a value that is at least upper if the value of the formula z is greater than
upper.

Proof. The proof goes by induction on the height of the formula tree. The
base of the induction, height 0, corresponds to the evaluation of every formula
containing only a value and no connectives, that is, formula tree containing
only a leaf node. Consequently, calling the algorithm to evaluate such formula,
with parameters lower < upper the “else” branch is executed by assigning the
correct value of the leaf to v that is returned. Due to Lemma 3 the base case
is proven. The induction hypothesis is as follows. Assume that the algorithm
works correctly, that is, assigns the correct value of any expression having
the height of its expression tree at most k (for any fixed nonnegative integer
k) if the value x of the formula is between the values lower and upper, i.e.,
lower < x < upper. Moreover, it assigns a value at most lower if the formula
has a lower value than lower; and it assigns a value at least upper if the formula
has a greater value than upper. Let us prove the inheritance, let our formula
have the height £+ 1. This part of the proof goes by cases (we call them Claims
below) depending on the connective at the root of the formula tree. Notice
that the condition for cut does not hold for the formula with height k4 1 if its
evaluation is called with lower < upper. (The case where an immediate cut is
applied is already proven in Lemma 4.) Claim 1. Let the root of the formula
having height k£ + 1 represent a negation and let y be the value of the formula.
If Algorithm 5 (Prune 1) is called with parameter values lower and upper such
that lower < upper, then

a) Algorithm 5 assigns value v = y to the formula if lower < y < upper;
and

b) it assigns a value v to the formula with v < lower if y < lower; and
c) it assigns a value v to the formula with v > upper if y > upper.

Proof (of Claim 1). Let us see case a) first: when the formula has a value y
such that lower <y < upper. The resulted value is computed by the formula
v = 1— Prunel(child, 1 —upper, 1 —lower), that is, the algorithm is called with
the child representing the main subformula and parameters lower; = 1 —upper
and upper; = 1 — lower. Notice that 0 < lower < upper < 1 implies also
0 < lower; < uppery < 1. The main sub-formula, in this case, has height k,
and thus, by the induction hypothesis, we assume that its value x is correctly

109

computed by the algorithm if 1 — upper < & < 1 — lower. This condition
is fulfilled in our case since we have assumed that lower < y < upper, and
consequently, the value y = 1 — x is correct for our formula with negation in
the root of its formula tree. If the value y of the formula is less than lower, then
at the recursive call, its child is called with parameters lower; = 1 —upper and
uppery = 1 — lower. However, in this case, the value x of the child, z =1 —y,
is larger than upper; = 1 — lower. Thus, by the induction hypothesis the
algorithm assigns a value vy to the child such that v;1 > 1 —lower. This implies
that computing the value of the main formula, the assigned value v will be at
most the value of lower. The inheritance in case b) is shown. Now, let us
assume that the formula has a value y that is larger than upper. Then, its
child is evaluated with lower; = 1 — upper and upper; = 1 — lower. Since
the value x = 1 — y of the child is less than lower; = 1 — upper, by the
induction hypothesis, the algorithm assigns a value v; to the child which is at
most 1 — —upper. Therefore, the value v assigned to our main formula will be
at least upper.

Claim 1, i.e., the inheritance is proven for the case of negation. Claim 2. Let
a conjunction be in the root of the formula having height £ 4+ 1, and let y be
the value of this formula. If Algorithm 5 (Prune 1) is called with parameter
values lower and upper such that lower < upper, then

a) Algorithm 5 assigns value v = y to the formula if lower < y < upper;
and

b) it assigns a value v to the formula with v < lower if y < lower; and
c¢) it assigns a value v to the formula with v > upper if y > upper.

Proof (of Claim 2). Evaluating our conjunctive expression having value y, first,
the first child is evaluated by the call vy = Prunel(childl, lower, 1), i.e., with
lowery = lower and upper; = 1. This, by the induction hypothesis (since this
formula has height at most k), gives the correct value v; = x of the formula
rooted at the node childl if lower < vy. Otherwise, i.e., if lower > x, a value
v1 that is not larger than lower is assigned.

Then, the algorithm for child2 is called by vy = Prunel(child2, min{1+lower—
vy, 1}, min{1+upper —vy, 1}). There are three cases by the respective relations
of the values of lower, v1, and upper.

e If v; < lower (which definitely happens in all cases when the value x of
childl is less than or equal to lower, then min{l + lower — vy,1} = 1,
and thus, vy = Prunel(child2,1,1) which leads to a cut for the second
child (independently of its real value z, vy = 1 is returned). Consequently,

110

the value v = v; will be returned for the main conjunctive formula. On
the other hand, if one of the children of a conjunctive formula has a
value at most lower (as in this case the first child has value x), then it
implies that the main formula itself cannot have a value larger than lower.
Thus, knowing that both the real value y and the assigned value v of the
main formula are less than or equal to lower, case b) satisfies and the
inheritance for v1 < lower is proven.

e The second case occurs when lower < vy < upper. In this case, by the
induction hypothesis the value of v; is correct, i.e., v1 = z, it is exactly the
value of the formula represented by childl. Then, vy = Prunel(child2, 1+
lower — vy, 1) is computed with parameters lowerg = 1 + lower — v; and
uppery = 1. Then, there are two cases based on the real value z of child2
and lowery = 1 + lower — vy.

o In case child2 has a value z such that z < lowers, by the assumption
of the induction hypothesis a value vo < 14 lower — vy is computed
and assigned. Thus, for the main formula of the conjunction gets
value v = maz{v; + v2 — 1,0} is computed which has a value less
than or equal to lower. On the other hand, if the value z of child?2 is
not more than lowery (i.e., z < 1+ lower — v1), then the value y of
our main formula cannot be more than lower, knowing that v; = x
correctly denotes the value of child1l. Thus, case b) of the induction
is proven, in case z < 1 4 lower — v;.

o In the other case, child2 has a value z larger than lowery = 1+
lower — v1. Then, by the induction hypothesis, the value z = vy of
child2 is correctly computed. Consequently, the formula
v = mazx{vi + vy — 1,0} uses both the correct values x of childl and
z of child2, and the value v = y of the main formula is correctly
assigned. Thus, case a) has been proven if z > 1 + lower — vy.

e Now, let us see the third case, namely, when the value x of childl is at least
upper. Since child1l was evaluated by parameters lower; = lower < upper
and uppery = 1, and its value z satisfies lower; < x < uppery, by the
induction hypothesis, it gets exactly the value of the formula rooted at
childl, i.e., v1 = x. Thus, value vy has also the property v; > upper. The
evaluation of child2 goes with vy = Prunel(child2,1 + lower — vy, 1 +
upper —v1), i.e., with lowery = 14lower —v; and uppery = 1+upper —vl.
Now, there are three cases depending on the actual value z of child2.

o The first case is when z < lowery = 1 + lower — v1. In this case,
by the induction hypothesis, vo is a value that is not more than 1+

111

lower —vy. Consequently, our main conjunctive formula is evaluated
as v = max{v; + vy — 1,0}. Thus a value v not more than lower is
assigned to the main formula. We need to show that its real value y
is also not more than lower. Actually, y = max{x + z — 1,0}, using
v1 =z and z < 1+ lower — vy, we have y < max{x+1+lower —z—
1,0} = max{lower,0}. Thus, the conjunctive main formula cannot
have a value y which is larger than lower. This first case has been
proven.

o The second case occurs if 1 + lower — vy < z < 1+ upper — v1.
i.e., the value of child2 is between lowers and uppery. In this case,
by the hypothesis, the value z is the correct value of child2, that is,
vy = z. Then, v = maz{v; + vo — 1,0} is computed, where both
vy = x and v = z are exactly the values of the children, thus v =y
is also correctly assigned for the main formula.

o Finally, in the third case z > uppers = 1+upper —vi. The value z of
child2 and also the returned value vy are both at least 14+upper —v1,
by the hypothesis. Then, v = max{v; + va — 1,0} is computed,
where, actually, v; +v2 — 1 > upper. Thus, the algorithm gives
a value v that is at least upper. On the other hand, we need to
show that the real value y also has this property. Knowing that
z > 1+ upper — vy and v = z, we have y = maz{z + 2z — 1,0} =
maz{vy + 1 + upper — vy — 1,0} > max{upper,0} = upper. The
proof of this case, and so, the proof of Claim 2 is also finished.

Claim 3. Let a disjunction be in the root of the formula having height & + 1,
and let y be the value of this formula. If Algorithm 5 (Prune 1) is called with
parameter values lower and upper such that lower < upper, then

a) it assigns value v = y to the formula if lower <y < upper
b) it assigns a value v to the formula with v < lower if y < lower; and
c) it assigns a value v to the formula with v > upper if y > upper.

Proof (of Claim 3). Childl is evaluated by the algorithm with parameters
lowery = 0 and uppery = upper. There are some cases listed below, based on
the actual value x of the first child.

e Let us analyze the case x < upper. Then by the induction hypothesis,
Algorithm 5 computed the correct value, i.e., v1 = x is returned. Then
child2 is evaluated by Prunel(child2, max{lower—uv1,0}, upper—uv1), i.e.,
with parameters lowery = max{lower —v1,0}, and uppery = upper — v;.

112

Now, there are two possibilities according to the fact if the condition
lower < x = v1 holds or not. Let us start with the case, when x < lower
also holds. In this case Prunel(child2,lower —v1, upper —vy) is applied,
i.e., lowery = lower — vi. There are three possible subcases for the
value z of child2 comparing it to the values lowery = lower — v; and
uppery = upper — v1. They are listed below.

o When z < lowery = lower—uv1, by the hypothesis, the returned value
v2 < lower — v;. Then computing v = min{v; + v, 1}, knowing
that v1 + vy < lower, a value v not more than lower is returned. On
the other hand, let us see what we know about the real value y of
the formula. Applying that v; = z is the actual value of childl and
the actual value of child2 z < lower — vy, obviously, the value y of
our main formula is less than lower, therefore case b) is satisfied.

o The second subcase occurs when lower —v; < z < upper —vq. In this
case, by the hypothesis, the value of child2 is correctly computed,
i.e., v9 = z. Since both the values of child1l and child2 are correct,
using the formula v = min{v; + vg, 1} the correct value y of our
main disjunctive formula is assigned, this subcase is proven.

o In the third subcase, we have z > upper — v1. In this case, by
the hypothesis, the returned value vy is also at least upper — vy.
Substituting this condition into v = min{v, + v, 1}, we get that
v1 + ve > upper, and thus, a value v at least upper is assigned to
our main formula. On the other hand, z > upper — vy and x = 11
imply that the actual value y of our main formula is also larger than
upper. Case c) is proven.

e Now let us consider the case when lower < x < upper. In this case x = vy
still holds and child2 is evaluated by the call Prunel(child2,0, upper—uv1),
i.e., by parameters lowers = 0 and uppers = upper — v1. There are two
subcases by the actual value z of child2.

o First, let us see the case z < uppers = upper — v1. Then child2 is
correctly evaluated by the hypothesis, i.e., v = z. Consequently, the
value v = min{vy + ve, 1} is correctly assigned to the main formula.
By Lemma 3, the case is proven.

o Now, considering the case z > uppery = upper — vy, by the hypoth-
esis, the returned value vq is at least upper — v;. Then, by
v = min{vy + ve, 1}, the return value for the main formula is com-
puted, which has the value at least upper. Since the actual value of

113

child2, z > upper — vy, where v; = x is the actual value of childl,
our formula has a value larger than upper. Thus case ¢) is proven.

e The last case for childl occurs when x > wupper. In this case, by the
hypothesis, the computed value has also the value at least upper, that is,
vy > upper. Then child2 is computed by the call Prunel(child2,0,0),
which leads to an immediate cut, having v = 0. Then, the value of the
main formula is computed by v = min{vy, 1} assigning v; > upper to
our formula. On the other hand, its actual value y cannot be less than
upper since its first child has a value at least upper. Consequently, case
c) occurs.

Claim 3, and thus, the inheritance for all cases with disjunction in the root is
proven. The last possible case follows having implication as the main connec-
tive. Claim 4. Let an implication be in the root of the formula having height
k+1, and let y be the value of this formula. If Algorithm 5 (Prune 1) is called
with parameter values lower and upper such that lower < upper, then

a) it assigns value v = y to the formula if lower <y < upper;
b) it assigns a value v to the formula with v < lowerify < lower; and
¢) it assigns a value v to the formula with v > upper if y > upper.

Proof (of Claim 4). Childl is evaluated with the parameters, lower; = 1—upper
and upper = 1, respectively. There are two cases, depending on the actual value
x of childl: whether x < lower; = 1 — upper, or not.

e Let us start with the case z < lower; = 1 — upper. Then the returned
value v; < 1 — upper, by the induction hypothesis. Further, child2 is
evaluated by the parameters lowers = 0 and uppers = 0. This leads to
an immediate cut with v = 0. Then the return value is computed by
v =min{l — vy +v2,1} = 1 — v that has value at least upper. On the
other hand, we show a similar condition for the real value y of the main
formula. Since the first main sub-formula of the implication has a value
x less than 1 — upper, the actual value y of the main implication formula
cannot be less than upper, therefore case c) is applied and proven.

e Let us see the case when © > 1 — upper, then, by the hypothesis, v; =«
is correctly assigned. Then, there are two subcases based on the value of
the condition v; < 1 — lower.

o If this condition v; < 1—lower is true, then child2 is evaluated by the
parameters lowerg = 0 and uppery = v — (1 —upper). Consequently,

114

there are two possibilities based on the value z of child2. They are
detailed below.

m If 2 < v — (1 — upper), then by the hypothesis, it is correctly
computed and vo = z. Then, the value of the implication is
correctly assigned based on the fact that the assigned values are
correct for both children. By Lemma 3 the case is proven.

m The other possibility for child2 is that z > vy — (1 — upper). In
this case, by the hypothesis, also the assigned value
vy > v1 — (1 — upper) has this property. Then, by computing
the value of the main formula, v = min{1l —v; +wvg, 1} > upper.
On the other hand, we can establish the following about the real
value y of the main implication formula. In this case, since
x =1 and z > v; — 1 + upper, the actual value y of our main
formula is more than upper, thus case c) is proven.

o Now, we are looking at the case, when v; > 1 — lower. In this case
child2 is evaluated with parameters lowers = v; — (1 — lower) and
uppers = v; — (1 —upper). There are three possibilities for the value
z of child2.

m The first is z < lowery = v; — (1 — lower). By the hypothesis,
also vy < v1 — (1 — lower). In this case, computing the value
of the main formula, v < lower. Also, the actual value y is less
than lower, thus case b) applies.

m The second case happens, when lowers = v1 — (1 — lower) <
z < uppers = v1 — (1 — upper). Then, by the hypothesis, the
value vo = z is correct, and then, the value v of the implication
is correctly computed (both children have their correct values
assigned). By Lemma 3, this case is proven.

m In the third case, z > v; — (1 — upper) = uppery. Then, by the
hypothesis, the assigned value ve > uppers = v1 — (1 — upper).
Then, evaluating the main formula, we get v > upper, and also
the actual value cannot be less than upper since the second child
has a value larger than vy — (1 — upper), where
v; = x is the actual value of child1. Thus, case ¢) is proven for
this possibility.

The proof of Claim 4 is finished.

The previous claims imply that the algorithm Prunel works for all formula
trees up to height k + 1 satisfying the conditions of the lemma. Thus, the proof
of the lemma by induction is completed, the statement holds for every formula
with any length.

115

Lemma 6. For any expression having value z, if lower < upper, then
Algorithm 6 assigns

a) the value z of the expression correctly if lower < x < upper,

b) a value not larger than lower if the value of the formula x is less than
lower, and

c¢) a value that is at least upper if the value of the formula z is greater than
upper.

Proof. Similar to the proof of Lemma 5, the proof goes by induction on the
height of the formula tree. Since the two algorithms Prunel (Algorithm 5) and
Prune2 (Algorithm 6) share a large part of their code, in the present proof for
the sake of simplicity we detail only the differences. The base case and the
induction hypothesis are exactly the same for Prune2 as they are for Prunel.
The inheritance can be proven by similar Claims based on the main connective
of the complex formula having a tree with height £ + 1. Actually, at the case
of negation in the root, the code of Prune2 is exactly the same as the code
of Prunel, thus Claim 1 and its proof shows the inheritance. In the case of
conjunction or disjunction at the root of the formula tree with height k + 1,
similar statements as Claim 2 and Claim 3 can be proven for Algorithm 6.
The only difference between the codes of the Algorithm 5 and Algorithm 6
is that in case childl is not a leaf node, but child2 is a leaf, the children are
permuted. However, in Lukasiewicz logic both conjunction and disjunction
have the commutative property, which proves that by interchanging the order
of childl and child2 the formula has the same value as without this change.
Based on that, the inheritance of our inductive proof in cases of conjunction
and disjunction in the root, for Algorithm 6 is also proven. The most interesting
case is when the root contains an implication. Algorithm 6 has an additional
condition with a new part of the code (comparing it to Algorithm 5). For this
case we need to prove a statement similar to Claim 4. Claim 4°’. Let an
implication be in the root of the formula having height k£ + 1, and let y be the
value of this formula. If Algorithm 6 (Prune 2) is called with parameter values
lower and upper such that lower < upper, then

a) it assigns value v = y to the formula if lower <y < upper;
b) it assigns a value v to the formula with v < lowerify < lower; and

c) it assigns a value v to the formula with v > upper if y > upper.

116

Proof (of Claim 4’). When childl is a leaf node or child2 is not a leaf, Prune2
executes the same code as Prunel, thus the proof of Claim 4 in the proof of
Lemma 5 suffice. However, if childl is not a leaf node, but child2 is a leaf,
Algorithm 6 executes a different code. Let us prove the inheritance for this
case. If the “if” condition at implication node holds, then child2 is evaluated
first, moreover child2 is a leaf. The case upper = 0 is not possible since it was
already leading to a cut for this implication root as well (the case lower = upper
was already studied in Lemma 4). Since upper > 0, the leaf child2 is evaluated
and gets its correct value, that is vo = 2. Now, childl is evaluated by Prune2
with parameters lower; = min{l + vy — upper, 1} and upper; = min{l + vy —
lower,1}. There are three possibilities by the value va:

e The first possibility is vo < lower. Then, vy is evaluated by parameters
lowery = 1 4+ v9 — upper and upper; = 1 + vy — lower. Now, there are
three subcases depending on the actual value x of childl.

o If x < lowery = 1+ v — upper, then by the hypothesis, its assigned
value v1 < 1+ vo — upper. Then, the computed value for the root
v > upper. On the other hand, the real value y of the main impli-
cation formula can also be analyzed. By knowing that ve = 2 is the
correct value of child2 and = < 1 4 vy — upper, the actual value y
of the implication must have a value less than the value of upper.
Therefore, case ¢) applies and shows the inheritance.

o The second subcase occurs if lowery = 1+wvs—upper < x < uppery =
1+ v9 — lower. By the induction hypothesis, in this case v; = z is
correctly assigned. Since both children have their actual values cor-
rectly assigned, the result of the implication formula is also correctly
assigned. By Lemma 3, the inheritance is clearly shown.

o Let us consider the third subcase, when upper; = 1+wvy —lower < x.
Then, by the hypothesis, the assigned value v; > 1+ vo — lower.
Consequently, when computing v, v < lower holds. On the other
hand, vy = z is the correct value of child2, and then, 1+wvs —lower <
x for childl implies that the actual value of the implication is less
than lower. In this way, case b) is proven.

e Now, case lower < vy < upper is studied. After evaluating child2 and
having vo = z, Prune2(childl,1 4+ vy — upper,1) is called, i.e., childl
is evaluated with parameters lower; = 1 4+ vo — upper and upper; = 1.
There are two subcases by the actual value x of childl.

o If x1 < ve < upper, then, by the hypothesis, the assigned value vy
is not more than 1+ vy — upper. Then, evaluating the implication

117

formula we have v = min{l — vy + vo,1} > upper. However, in
this case, also the actual value y of the implication formula is y =
min{l—x+z,1} = min{l—z+wvg, 1} > min{l——(1+ve —upper)+
vg, 1} = upper, i.e., y is also not less than upper. Case c) is shown.

o In the other case, when = > lower; = 1 4+ vo — upper, its value
is correctly assigned by the hypothesis, i.e., v1 = z. Since both
children have correct values assigned, also v is correctly computed.
The inheritance is, then, follows by Lemma 3.

e The third case for child2 is vy > upper. In this case Prune2(childl,1,1)
is called (i.e., lower; = upper; = 1 leading to an immediate cut with
returned value v; = 1. Then v = min{l — 1+ va,1} = v9 is assigned that
is a value larger than upper. On the other hand, knowing that child2 has
a value z = vy larger than upper, the implication formula must also have
a value larger than upper. Case c¢) is proven in this case.

The proof of Claim 4’ is finished. This implies that Algorithm 5 also works for
all formula trees up to height k+1 satisfying the conditions of the lemma. Thus,
the proof by induction is completed, the statement holds for every formula with
any length.

118

	Introduction and motivation
	Objectives and theses
	Objectives
	Theses

	Preliminaries
	Artificial intelligence and machine learning
	Expression trees
	Boolean logic, Short Circuit Evaluation in Boolean logic
	Fuzzy logic, short-cut in fuzzy logic
	Gödel fuzzy logic
	Product logic
	Łukasiewicz logic
	Neural networks
	Multilayer perceptron (MLP)
	Convolutional neural networks (CNN)
	Committee machine, voting functions
	Ensemble methods in machine learning
	Handling noise and avoid overfitting
	MNIST (Modified National Institute of Standards and Technology database)

	Fuzzy logic expression tree generation
	New fast evaluation algorithms for fuzzy logic formula trees
	Short circuit evaluations in Gödel type fuzzy logic
	Algorithm with short-cuts on Product fuzzy logic
	Fast evaluation algorithms for Łukasiewicz fuzzy logic

	Simulation results for fast evaluation of fuzzy logic formula trees
	Improvements for neural network classifiers
	Fuzzification of neural network training data class membership crisp values
	New committee machine voting functions

	Performance evaluation of fuzzification and voter functions
	Performance evaluation framework
	Performance evaluation of training data class membership value fuzzification
	Performance of voting functions

	Conclusions and future work
	Summary
	Összefoglalás
	Publications
	References
	Appendix

