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Irregular perfusion and related tissue hypoxia is a common feature of solid tumors the

role of which in the survival and progression cancer has been gradually recognized.

Adaptation and selection mechanisms in hypoxic areas in solid tumors are regulated

by Hypoxia Inducible transcriptional factor 1 (HIF1) and other hypoxia mediators and

are associated with aggressive clinical behavior in a large spectrum of malignancies.

Aggressive forms of lymphatic neoplasias present with solid tumor-like features, also

including rapid cell growth, necrosis and angiogenesis, the clinical potential of which

is still underestimated. While the role of regional hypoxia in normal B-cell maturation

and malignant transformation is becoming evident, the impact of tissue hypoxia on their

behavior is not well-understood. Compared to some of the common solid cancer types

data for some of the key regulators, such as HIF1 and HIF2, and for their downstream

effectors are available in a limited fashion. In the current review we aim to overview

the physiological aspects of major hypoxia pathways during B-cell maturation and

adaptation-related changes reported in lymphatic neoplasia covering important targets,

such as carbonic anhydrases IX and XII (CAIX, CAXII), glucose transporter 1 (GLUT-1)

and vascular endothelial growth factor (VEGF). In conclusion, experimental and clinical

results direct to important but currently unexploited role of hypoxia-driven resistance

mechanisms especially in aggressive forms of B-cell neoplasia.
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INTRODUCTION

The general presentation and clinical behavior of malignant neoplasias are strongly dependent on
tissue oxygenation and nutrient supply. Lymphomas are consisted of transformed cell masses with
at least some circulating capacity, and thus, have long been believed to be independent on tissue
blood perfusion. Indeed, the limited metabolic needs of indolent lymphoproliferations featured
by low proliferative activity may be directly served from the circulation. However, high-grade
variants growing in a solid tumor-like fashion require continuously growing perfusion in parallel
with the progressive increase of the tumor mass. Large tumor burden and related intra-tumoral
pressure dispose to relative tissue perfusion deficit similar to other cancer types. Significant oxygen
depletion will result in hypoxic areas turning into focal necrosis frequently seen in aggressive large
cell lymphomas (1), and in the progressive variants of Hodgkin’s lymphoma (2).
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Hypoperfusion may be transient or may occur in a moderate
fashion. Sublethal forms of hypoxia in cancer were associated
with metabolic reprogramming and adaptation leading to partial
tumor resistance and recovery (3). The clinical behavior and the
therapeutic response was found to be dependent on theO2 supply
of the tumor tissue and the hypoxic tumor mass could be related
with adverse prognosis in diverse malignancies (4). However,
the general impact of tissue hypoxia in lymphomas remains
unknown. As compensatory modifications potentially interact
with aggressive phenotype and therapeutic resistance, we felt the
need to overview and summarize the available knowledge on
hypoxia-associated functional changes reported in both normal
and neoplastic lymphoproliferations.

HYPOXIA AND HIFS

Tissue hypoxia is the result of the imbalance of local O2

consumption and supply due to several reasons, including
increased cellular activity or reduced perfusion. The consequence
of hypoxic stress at the cellular level is the activation of adaptation
mechanisms, and the key regulators are the Hypoxia Inducible
transcriptional Factors (HIFs). Oxygen and energy dependence
can be managed by the immediate stimulation of glucose uptake
and utilization in physiological and pathological conditions. As a
remarkable integral feature, transformed cells perform elevated
glycolytic activity despite sufficient O2-levels (the Warburg-
effect), representing dual capacity for glycolytic and oxidative
metabolism (5, 6). Although the exact clinical role of this
alternating carbon substrate utilization is still unclear, metabolic
heterogeneity offers high-grade flexibility and selective advantage
in a hypoxia independent fashion (7, 8).

The adaptive mechanisms regulated by the HIFs are the major
pathways induced in response to hypoxia and are recently also
considered as potential therapeutic targets (9–12). The active
HIF-heterodimer complexes are consisted of α and β subunits
(13–15). The oxygen-sensitive α subunit has three isoforms
(HIF-1α, HIF-2α, HIF-3α), while the β subunit is expressed
constitutively in an oxygen-independent manner.

HIF1α, a master regulator of cellular adaptation, has been
widely studied in different experimental and pathological
conditions (Figure 1). Under normoxia, HIF-1α is hydroxylated
by prolyl hydroxylases (PHDs) and binds to the von Hippel-
Lindau (vHL)-protein which leads to the ubiquitin-proteasomal
degradation of the molecule. However, PHDs are largely
inactivated by hypoxia and HIF1α enters the nucleus and
binds the β subunit (8, 12, 13). The active complex induces
the transcription of a set of genes associated with cellular
adaptation. Thus, hypoxia promotes metabolic reprogramming

Abbreviations: AID, activation induced deaminase; CAIX, carbonic anhydrase
IX; CAXII, carbonic anhydrase XII; cHL, classical Hodgkin lymphoma; CSR,
class switch recombination; DLCBL, diffuse largeB cell lymphoma; GC, germinal
center; GLUT-1, Glucose transporter type 1; HK2, Hexokinase 2; HIF, Hypoxia
Inducible transcriptional factor; HRS, Hodgkin-sternberg-reed cell; KSHV, kaposi
sarcoma-associated herpes virus; MVD, microvessel density; NHL, non-Hodgkin
lymphoma; PD-L1, programmed cell death ligand-1; PDGFRα, platelet derived
growth factor receptor α; PHD, prolyl hydroxylase; ROS, reactive oxygen species;
VEGF, vascular endothelial growth factor; vHL, von Hippel Lindau; XAF1, XIAP-
associated factor 1.

and survival in both normal and transformed cells and
thus, plays an important role in the resistance to chemo-
and radiotherapy (7, 13, 16, 17). Similar to HIF-1α, HIF-
2α is an alternative heterodimer factor, the transcriptional
activity of which is more prolonged and synchronizes a
chronic response to hypoxia. Interestingly, the expression of
HIF-2α is essential for the regulation of proinflammatory
cytokines during macrophage activation and an effect on
vascular remodeling was also reported. HIF-2α was also
associated with unfavorable prognosis, poor overall and disease-
free survival, progression and metastasis formation in solid
tumors (18). HIF-3α is expressed by diverse human organs
(kidney, heart, and brain) with the highest intensity levels
during fetal organogenesis (19). HIF-3α seems to be closely
interactive with HIF-1α and HIF-2α and controls gene
expression in a tissue-specific manner, e.g., during lung
development (20–22).

MOLECULAR PATHWAYS REGULATED BY
HIF-1α

The gene regulatory effect of HIF-1α and to a lesser degree
of HIF-2α and HIF-3α following hypoxia was demonstrated at
many levels, including the management of intracellular acidosis,
angioneogenesis, glucose uptake, and metabolism.

Carbonic anhydrases are the members of a large zinc-
metalloenzyme family which actively contributes to the pH
adaptation of the cells. The role of these cell membrane-bound
enzyme is to catalyze H+-capture and elimination in order
to neutralize intracytoplasmic acidosis resulting from increased
glucose utilization and lactate production. Normalization of the
intracellular pH is associated with enhanced cell survival and
the consequential extracellular acidosis -modifies the immediate
microenvironment. CAIX and CAXII isoenzymes are considered
as cancer-related adaptive factors and their upregulation was
reported to be highly HIF1α-dependent. The characteristic
expression of CAIX is strongly associated with intratumoral
hypoxia and can be nicely studied in histological conditions.
The expression of CAIX and CAXII correlated with chemo-
and radio-therapy resistance in a large variety of cancer types
(7, 23, 24).

Glucose transporter type 1 (GLUT1) expression is often
increased in malignant tumors characterized by high glycolytic
rate and intense energy consumption. The overexpression of
GLUT1 was found to be associated with the poor prognosis
of several major tumor types, including colon and breast
carcinoma (25–29).

Vascular endothelial growth factor (VEGF) is a member
of a multifunctional group of cytokines which stimulates
neoangiogenesis both in physiological and pathological
conditions. The family consists of five members: VEGFA,
VEGFB, VEGFC, VEGFD, and placenta growth factor (PIGF).
The effect is transduced through tyrosine-kinase receptors
VEGFR-1 and VEGFR-2 (30–32). VEGFR-3 is a unique receptor
binding the ligands VEGFC and VEGFD. VEGFC and VEGFD
are expressed by lymphatic endothelial cells playing an important
role in lymphangiogenesis (33–35).
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FIGURE 1 | Schematic illustration of Hypoxia Inducible factor 1-α (HIF1α) associated changes in hypoxic conditions. Under normoxia, HIF1α undergoes rapid

proteasomal degradation due to the oxygen-dependent modification by PHDs. In contrast, HIF1α is stabilized and translocated into the nucleus under hypoxia, and

after dimerization with the β-subunit, the active heterodimer initiates the transcription of hypoxia-responsive genes participating in adaptation. CAIX, CAXII, carbonic

anhydrase IX and XII; GLUT-1, Glucose transporter 1; PD-L1, Programmed cell death ligand 1; VEGFC and D, Vascular Endothelial Growth Factor C and D; FIH,

Factor Inhibiting HIF; PHD, Prolyl hydroxylase.

TISSUE OXYGENATION AND HYPOXIC
STRESS IN PHYSIOLOGICAL B-CELL
MATURATION

The availability of oxygen in normal lymphatic tissues is highly
variable and this potentially affects normal immune functions
according to the results of in vivo animal experiments. The
distance measured between the blood vessels and germinal
centers (GC) within lymphatic tissues was consequently larger
than expected, the majority of the GCs were >40µm away from
the nearest vascular structure in murine spleen (36). The results
indicated that the GCs are preferentially sited in hypoxic areas.
Furthermore, GL-7, a marker of the GC B-cells was upregulated
in these hypoxic B-cell areas, while HIF production was also
increased compared to B-cells in normoxic areas (36). Similar
variations of the local oxygen pressure within the bone marrow
was described in an alternative in vivo mouse model (37) and
it was found that the perisinusoidal parenchyma, approximately
40µm away from the endosteum, was far less oxygenated
and showed significant vascular irregularity compared with the
peritrabecular zone.

Both the maturation and activation of the normal lymphatic
cells seem to be influenced by the actual oxygen supply. The
HIF-1α-regulated glycolytic pathway essentially contributed to
the survival and the differentiation of the B-cells and was found
especially critical for the transition from the pro-B to pre-B
cell stage (38). Furthermore, HIF-1α deficiency significantly

influenced late B-lymphocyte responses (39). HIF-1α appears
to be important for the development and the activation of B-
cells and the resulting increase of the glycolytic rate essential
for the initial maturation process. However, it is not clear
how far HIF-1α plays a role in the terminal differentiation
of the B-cells (40, 41). While HIF-1α is expressed in B-cells
during physiological immune activation, HIF-2α overexpression
was observed only following malignant transformation, e.g., in
Diffuse large B cell lymphoma (DLBCL) (42).

Nevertheless, hypoxia appeared to play a dominant role
follicular B-cell maturation (36). Hypoxicmicroenvironment was
proposed to promote IgM to IgG class switch recombination
(CSR). In in vitro conditions, the peak of the CSR kinetics
was reached on the third day of experimental hypoxia that
was followed by a significant increase of apoptotic caspase
3 activation. Accordingly, clonal competition and affinity
maturation is influenced by the hypoxic niche of the follicular
GC (36). The antibody composition in the hypoxic GC was
investigated and the PHD/vHL/HIF axis was found to have a
basic influence on the quality of antibody response. In particular,
hypoxia had a direct effect on activation induced deaminase
(AID) enzyme levels essential for the rate of ongoing CSR (43).

To accurately reflect the regulatory complexity it is important
mentioning that oxygen independent activation of HIFs
in immune cell maturation was also repeatedly suggested.
The interaction of interleukins with the HIF-pathway in
inflammation could be demonstrated, e.g., IL-4 induced HIF-2α,
while IL-2 induced HIF-1α activation in CD8+ T-cells. In
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contrast, stabilization of HIF in B-cells is more likely to be
associated with chemokine and Toll-like receptor, as well as
through B-cell receptor signaling pathways (40).

HYPOXIA AND RELATED CHANGES IN
NHL

Intratumor Hypoxia and Adaptive
Mechanisms in Non-Hodgkin B-Cell
Neoplasias
B-cell lymphomas are biologically highly heterogeneous tumors.
The earliest data on the metabolic setup were provided on
DLBCL, the most common type of aggressive lymphomas
of the adults. According to the studies applying genome-
wide arrays and multiple gene expression clustering separate
functional groups were established (44). DLBCL could be
classified by the activity of (i) the B-cell receptor (BCR) signaling,
(ii) the inflammatory/host response genes, and of (iii) the
mitochondrial oxidative phosphorylation (OxPhos) genes. The
OxPhos signature is highlighted by the increased expression
of the mitochondrial respiratory chain complexes and other
members of the electron transfermachinery (45, 46). As such, this
special form of the Warburg-effect, mentioned earlier, represents
a unique, BCR-independent intracellular stimulus within the
clinical category of DLBCL.

Relative hypoxia and resultant intracellular acidosis
in lymphoma are both expected to induce escape
mechanisms through cellular adaptation similar to non-
hematological solid cancer. Histological and experimental
in vitro studies primarily concentrated on HIF-1-related
reprogramming and on angioneogenesis as major components
of hypoxia-related adaptation.

In cultivated lymphoma cells, constitutive HIF-1α activity
and vHL suppression were noted resulting in the maintenance
of the cancer stem cell phenotype (47). Not only were the
cellular functions studied but also the effect of HIF1α in the
context of oncogenic viral infection. Gene expression levels of
Kaposi sarcoma-associated herpesvirus (KSHV) was investigated
and HIF1α was found to contribute to the expression of the
KSHV-encoded genes. In return, KSHV had a positive effect
on the HIF1α levels suggesting a synergistic activation on each
other (48).

Angiogenesis has been intensively studied in non-Hodgkin
lymphomas (NHL). Minoia et al. examined neovascularization
by CD34 immunostaining and HIF1α expression in biopsies
of NHL patients. In paired diagnostic and second biopsies
they observed the up-regulation of HIF1α and increased tumor
vascularization in the follow-up biopsy which was explained by
treatment-related stress adaptation mechanisms (49). A general
increase in microvessel density (MVD) was described in NHL
and classical Hodgkin’s lymphoma (cHL) cases (34). A similar
observation was reported demonstrating prominent angiogenesis
in aggressive subtypes of NHL in parallel with increased MVD
and inflammatory infiltrates. An active secretion of angiogenic
cytokines by the neoplastic cells was proposed, which was

supported by the elevated levels of soluble angiogenic factors
measured in the sera of the subjects.

Further, angiogenic factors were also examined in NHL
(50). The high expression of VEGFC correlated with aggressive
features and short survival. VEGFA/VEGFC double negative
cases had longer survival rates compared to the double positive
cases. In support of these data, a meta-analysis concluded that
VEGF isoforms offer a promising tool to predict outcome in
high-grade lymphoma (51).

Hypoxia-related adaptive changes were recently demonstrated
in B-cell lymphoma cells. In vitro response to hypoxia resulted in
a highly dynamic fashion (e.g., CAIX upregulation) (52). HIF-1α,
HIF-2α, VEGF, and CAIX expression were evaluated in clinical
NHL samples as well (42). HIF-1α presented predominantly
with nuclear localization within the lymphoma cells, while the
HIF-2α was more prominent in adjacent reactive macrophages.
Cell membrane CAIX was variably expressed mostly within the
perinecrotic areas of DLBCL tissue samples. While the clinical
impact of hypoxia and angiogenesis-related genes e.g., HIF-1α,
VEGF, GLUT-1 is still not cleared, these genes are supposed to
be widely upregulated, as also stated in a primary central nervous
system DLBCL xenograft model (53).

The exact effect of hypoxia-associated markers on therapeutic
response in B-cell malignancies also requires further clinical
evaluation. Chemoresistance was associated with the parallel
upregulation of the anti-apoptotic Bcl-xL and HIF-1α and a study
reported a positive correlation between these factors and the
therapeutic efficacy in NHL cell lines (54). Furthermore, HIF-
1α was shown to be a promising prognostic factor in DLBCL
patients who received rituximab treatment. It was proposed that
further to HIF-1α the CD20 antigen expression could also be
induced by reactive oxygen species (ROS), thus, higher HIF-1α
and CD20 levels together lead to increased therapeutic effect (55).
Another study reported increased adaptive glucose metabolism
and specifically hexokinase 2 (HK2) overexpression suggesting a
potential therapeutic target in DLBCL (56).

Radiological signs of hypoxia and focal necrosis are prominent
and well known in everyday lymphoma diagnostics and follow
up. The FDG-PET-CT approach highlights the metabolic activity
of the malignant tissue by applying glucose transporters as in vivo
targets. In a clinical study on various lymphoma subtypes the
direct correlation between 18F-FDG PET activity and tissue
expression of GLUT1 but not of GLUT3 could be established
(57). More recent data further support the potential clinical
significance of the intratumoral metabolic status reflected by
GLUT1 in aggressive lymphoproliferations (58, 59). Functional
in vivo imaging of the hypoxic/necrotic tumor mass promises
new perspectives for treatment decision.

Hypoxia-Associated Changes in cHLs
The potential role of hypoxia in the evolution and progression
of cHL was not in the spotlight in the past. Hypoxia-related
pathways were not reported to be generally activated in HRS
cells determined by gene expression (60) or epigenetic profiling
(61, 62). On the other hand, a few data support the significance
of hypoxia in the progression of cHL. A dynamic B-cell
reprogramming and HRS cell phenotype switch induced by
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HIF-1a expression with the involvement of NFkB and MYC
was suggested by Wein et al. (63). Moreover, basic changes in
cellular metabolism and response to chemotherapeutic agents
could be recently observed upon hypoxia mimetic treatment
in vitro in Hodgkin lymphoma cell lines. Upregulation of
selected hypoxia/metabolism-associated genes were observed,
e.g., GLUT1 as well as therapy resistance genes, such as the
antiapoptotic XIAP-associated factor 1 (XAF1) (64).

HRS cells are likely to be placed in niches with limited
nutrient and oxygen supply and may be exposed to adaptation
signaling in order to survive. Prolyl hydroxylase domain proteins
(PHD1, PHD2, PHD3) were reported to have a role in the
cellular oxygen homeostasis, moreover the expression of PHD1
and PHD3 (along with HIF1α and HIF2α) were associated with
treatment resistance (65). Not only HIF-1α but HIF-2α has
been studied in comparison with GLUT1 and Programmed cell
Death Ligand 1 (PD-L1) (66). Interestingly, GLUT1 positivity
had a prognostic significance in advanced cHL, and expression
of GLUT1 significantly correlated with PD-L1 expression. The
analysis of pro-angiogenic expression profile (VEGF, Ang-1,
Ang-2, Tie-2) revealed a correlation between PD-L1 and VEGF,
with an elevated MVD in the positive samples. However, tissue
perfusion related markers did not show significant prognostic
effect in this series of cHL cases (21, 22).

HIF-1α, VEGF, and platelet-derived growth factor receptor
α (PDGFRα) were shown to be expressed in the HRS-cells,
although only a limited correlation could be seen (67). A
retrospective study focused on microvessel caliber in 286
cHL tissue samples where the diameter of the blood vessels
correlated with the stage of the lymphoma. Angiogenetic
adaptation was considered as an early event in cHL with the
assumption that newly formed vessels were subject of easy
penetration by the malignant cells (68). VEGFD expression
was examined in cHL and a correlation was reported between
the VEGFD and the elevated number of tumor microvessels
(69). Doussis-Anagnostopoulou et al. studied VEGF expression
in HRS-cells and described diffuse cytoplasmic and/or focal
paranuclear staining both in the HRS-cells and in the
bystanding reactive component. The production of VEGF was
also investigated in different cHL cell lines. VEGF promoted
monocyte chemotaxis and inhibited the maturation of the
antigen-presenting dendritic cells. In their interpretation, VEGF
promotes neoplastic progression through the inhibition of the
anti-neoplastic immune effector functions (70). Studies on
cHL cell lines, cHL lymphoma tissue, and on inflammatory
lymphs nodes revealed the overexpression of VEGFC in
HRS-cells promoting lymphangiogenesis through a VEGF3-R

receptor-associated pathway. Correlation of the results with
clinical data suggested higher risk for treatment failure and
recurrence upon elevated VEGFC expression rates (71).

Experimental and clinical data are also limited regarding
adaptationmechanisms to hypoxia-derived intracellular acidosis.
However, recent data show the hypoxia-associated phenotype
switch strongly influences therapeutic success in cHL, similar to
other malignancies. In a recent work by us (2) highly specific
cell membrane CAIX expression could be demonstrated in HRS-
cells in the 45% of evaluated cHL cases, which showed a positive
correlation with tissue necrosis determined histologically. Focal
CAIX expression in HRS cells was associated with depressed
cell proliferation capacity determined by Ki-67 nuclear positivity.
CAIX expression could bemeasured by digital image analysis and
proved to be different between the major histological subtypes
of cHL (72). Moreover, cHL cases featuring selective CAIX-
expression in the initial diagnostic sample showed a significantly
decreased progression-free survival compared to the CAIX-
negative cohort (2).

CONCLUDING REMARKS

Despite the increasing amount of experimental and clinical data
it is only clear that hypoxia related effects in lymphoproliferative
neoplasias are highly complex and heterogeneous, clinical
relations remain largely unknown. In contrast to the initial
skepticism, numerous details support the specific role of
metabolic adaptation in therapy response and immune
accessibility. The relation between perfusional/nutritional
defects and associated effectors seems to be established, however,
tissue biomarkers with the clear clinical impact are still in the
validation phase. More focused studies are needed to evaluate the
exact significance of HIF-1/2α mediated downstream effectors,
such as CAIX, CAXII, GLUT-1, VEGF in a cell of origin context.
Moreover, the correlation of tissue-based and related in vivo
metabolic imaging findings may better define the actual role and
the dynamics of hypoxia during lymphoma management.
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