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Abstract

Background: Recently, many parts of Hungary, as well as central Europe, have been hit by successive extreme
climatic events. The main aim of this research was to analyze hydrological and agricultural drought episodes in the
Debrecen Region in eastern Hungary from 1950 to 2010. Thus, data of monthly precipitation were collected and
tested. After that, three indices were applied, the Precipitation Concentration Index (PCI), dry Precipitation
Concentration Index (dPCI), and the Standardized Precipitation Index (SPI). Meanwhile, the correlation between SPI
and the normalized difference vegetation index (NDVI) was calculated.

Results: The results showed that the PCI values ranged between 9.44 and 15.8 with an average of 11.8, while the
dPCI values ranged between 8.6 and 20.7 with an average of 10.9, which indicates heterogeneity in rainfall
distribution from year to year. More than 103 events of severe agricultural drought were detected for the whole
studied period. In connection to this, severe hydrological drought was recorded in 16% of the total monthly rainfall
events from 1950 to 2010. Interestingly, a significant correlation was obtained between SPI-3, -6 (i.e., drought), and
NDVI in the summer season.

Conclusions: The SPI index could provide an easy tool for drought monitoring meanwhile drought evaluation and
monitoring should be taken seriously in the central Europe.
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Introduction
Climate change in the current decades is one of the
major threats of human food security all over the
world; where its consequences affect millions of
people every year (Tirado et al. 2010; Mohammed
and Fallah 2019; Mohammed et al. 2019a). Generally,
climate change events can be divided into two major
groups: the first one needs a long period to be no-
ticed, where it developed in silence as drought
(Mukherjee et al. 2018). While the second group

developed suddenly and created a big mass in the
ecosystem such as flash flood (Lehner et al. 2006).
Among climate change indicators, drought is consid-
ered to be one of the most current phenomena which
started to hit new places (countries and regions), that
used to be rarely subjected to droughts such as Eur-
ope and many other parts of the world (Sepulcre-
Canto et al. 2012). So far, many drought indices had
been developed such as the Palmer Drought Severity
Index (PDSI) (Palmer 1965); Standardized Precipita-
tion Index (SPI) (McKee et al. (1993, 1995), Crop
Moisture Index (CMI) (Palmer 1968); Standardized
Runoff Index (SRI) (Shukla and Wood 2008), Drought Sever-
ity Index (DSI) and many others for different reasons. Within
this context, PDSI and SPI used for meteorological drought
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monitoring, CMI for agricultural drought, SRI for hydro-
logical drought, and DSI for regional drought (Narasimhan
and Srinivasan 2005; Dai 2011; Mukherjee et al. 2018). How-
ever, SPI is one of the common indices for detecting drought
on a different scale (i.e., 1, 3, 6, 9, 12 months); which is
widely used in many countries such as Romania (Ionita et al.
2016); Ethiopia (El Kenawy et al. 2016); Italy (Bonaccorso
et al. 2015); Syria (Mohammed et al. 2019b), India (Dutta
et al. 2015), Poland (Łabędzki 2007); China (Zhang et al.
2009), Hungary (Mohammed and Harsányi 2019); Greece

(Livada and Assimakopoulos 2007); USA (Hayes et al. 1999),
and many other parts of the world.
For Hungary, some research can be found in sub-

regional levels for detecting drought trends and ana-
lysis. Makra et al. (2002) analyzed climatic data for
the eastern part of Hungary and concluded that the
period between 1901 and 1940 was wet, while the rest
of the years until the 1990s were found to be signifi-
cantly drier. Similarly, Szép et al. (2005) reported that
soil conditions became drier during the twentieth

Fig. 1 Location of Debrecen Region in Hungary

Table 1 The PCI and dPCI range and classification

PCI value Rainfall pattern description dPCI value Rainfall pattern description

PCI ≤ 10 Uniform monthly rainfall dPCI ≤ 10 Uniform precipitation distribution

PCI > 11 ≤ 20 Seasonality in rainfall distribution dPCI > 10 ≤ 15 Moderate precipitation distribution

PCI > 20 Strong irregularity of precipitation distribution dPCI > 16 ≤ 20 Irregular precipitation distribution

dPCI > 20 Strong irregularity of precipitation distribution
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century. On the national scale, Szinell et al. (1998)
detected an existing general drying tendency in
Hungary. Alsafadi et al. (2020) reported a significant
increase (P < 0.05) of the area affected by very ex-
treme drought in Hungary between 1960-2010.
Bartholy et al. (2013) predicted significant drought in
Hungary for the period 2071–2100, due to the signifi-
cant decrease of rainfall in the summer compared to
1961–1990 as a reference period
Even though many studies had been conducted lately

to analyze drought in Hungary, few studies deal with
drought on the sub-regional scale. Thus, the main aim
of this study is to analyze hydrological and agricultural
drought episodes in the Debrecen Region in Hungary
from 1950 to 2010.

Material and methods
Study area
Our study area—Debrecen Region—is located in the
eastern part of Hungary (47.5N, 21.5E), 100–150 m
above sea level (Fig. 1). This region has a continental
climate where the winter is cold (mean temperature
in January is − 2°) and the summer is warm (21 °C in
July). The mean annual temperature is 10.5 °C, while
the yearly average rainfall is 560 mm. The Western
part (from N to SE) of the surroundings of the town
Debrecen is dominated by chernozem soil with excel-
lent water management characteristics and fertility.
East to Debrecen (from N to SE), sandy soils are typ-
ical with large drought sensitivity and reduced
fertility.

Fig. 2 Yearly rainfall changes in the studied area from 1950 to 2010

Table 2 The statistical analysis for monthly rainfall from 1951 to 2010

Year Mean Minimum Maximum Range Median Standard deviation Variation coefficient Skewness (Pearson) Kurtosis (Pearson)

January 32.20 5.10 83.80 78.70 28.75 17.85 0.55 0.84 0.47

February 32.08 0.30 75.80 75.50 33.05 18.35 0.57 0.35 − 0.46

March 30.17 1.10 89.70 88.60 28.30 19.25 0.64 0.78 0.61

April 45.47 3.10 161.60 158.50 42.80 25.35 0.56 1.73 5.55

May 59.29 7.20 161.00 153.80 50.30 35.46 0.60 0.92 0.45

June 75.64 19.40 175.90 156.50 73.45 37.32 0.49 0.70 − 0.03

July 64.68 6.10 178.00 171.90 61.85 37.09 0.57 0.67 0.29

August 56.82 8.00 232.30 224.30 54.55 37.06 0.65 1.73 6.20

September 41.63 0.00 122.40 122.40 32.80 30.42 0.73 1.13 0.54

October 35.03 1.40 145.30 143.90 24.65 30.84 0.88 1.37 1.50

November 44.47 7.70 115.60 107.90 39.20 25.98 0.58 0.76 − 0.20

December 44.02 0.80 104.80 104.00 43.05 23.66 0.54 0.58 0.14
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Meteorological database and drought analysis
Our research was based on the 60-year-long (1951–
2010) monthly precipitation dataset of Debrecen
Meteorological Station (Hungarian Meteorological
Service). As a first step, primary statistical analysis for
each year was conducted which include mean, standard
deviation, skewness, and many other tests.
To track drought episodes within the study area,

three indices were used: the Standardized Precipita-
tion Index (SPI) (McKee et al. 1993), Precipitation
Concentration Index (PCI), and the dry Precipitation
Concentration Index (dPCI) (supra-seasonal scale)
(Oliver 1980).

The PCI and dPCI are typically used as an indicator
of rainfall pattern and erosivity. Values of PCI were
calculated for each year, and the dPCI was calculated
from April to September for monitoring changes in
the rainfall pattern, which highly affected agricultural
production.
The PCI can be calculated using the following

equation:

PCI ¼
P12

i¼1p
2
iP12

i¼1pi
� �2 �100 ð1Þ

where pi is monthly precipitation of any month i.

Fig. 3 Boxplot analysis of monthly rainfall from 1950 to 2010

Fig. 4 Trends of PCI and dPCI in the study area
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Also, the dPCI can be calculated for 6 months from
April until August as follows:

dPCI ¼
P6

i¼1p
2
iP6

i¼1pi
� �2 �50 ð2Þ

Classification of PCI and dPCI can be seen in Table 1.
In the next step, trend of rainfall (R), PCI, and dPCI

were analyzed by applying the Cramer-von Mises test
(CM). In our study, we adapted the CM for trend analysis;
where the determination of trend depends on the p value.
If P value > α (i.e., 0.05) → Ha is rejected. However, if P
value < α → Ha is accepted, and if P value = 0 → test was
failed. However, the CM can be calculated for variables x1,
…xN, for a specific continuous distribution f(x) as follows:

ω2 ¼
Z ∞

−∞
f N xð Þ− f xð Þ½ �2df xð Þ ð3Þ

For discrete data we use

ω2 ¼ 1
12n

þ
Xn

i¼1

2i−1
2n

−F xið Þ
� �2

ð4Þ

where fN(x) was defined as empirical distribution
function.
Also, we applied the SPI as a worldwide index used for

drought monitoring (Park et al. 2019), which can be cal-
culated by using the SPI software recommended by the
WMO https://drought.unl.edu/droughtmonitoring/SPI/
SPIProgram.aspx as follows:

SPI ¼ Xij−Xim

σ
ð5Þ

where Xij is the seasonal precipitation; Xim is the mean of
long-term period; and σ is the standard deviation. For
drought study, SPI values can be categorized into moderate
drought (− 1.49 to − 1), severe drought (− 1.99 to − 1.5),

and extreme drought (SPI < − 2). Usually, SPI is calculated
for different scales (i.e., 1, 3, 6, 9, 12, 24, 36 months).
In a final step, the smoothing technique was used for

detecting the trend of SPIs by using polynomial regres-
sion and weights, computed from Gaussian density func-
tion adopted from the SigmaPlot program.

Drought impact on vegetation greening
For tracking the impact of drought variability on vegeta-
tion greening, we analyzed the correlation between SPI
(drought) and NDVI (land cover sensitivity to SPI vari-
ation). The SPI data for 3 and 6 months were collected
from the Climate of the Carpathian region project-
CARPATCLIM, where data of 72 gridded points over the
county was employed, this dataset at spatial resolution 10
km × 10 km (CARPATCLIM 2019; Szalai et al. 2013). All
records of semi-monthly NDVI dataset from the NOAA-
AVHRR satellite (i.e., recognized NDVI datasets) were col-
lected from the Global Inventory Modelling and Mapping
Studies GIMMS3g. (https://ecocast.arc.nasa.gov/data/pub/
gimms/3g.v1/). The GIMMS3g is one of the globally NDVI
datasets which widely used (Vicente-Serrano et al. 2019).
The quality of this data assured carefully through consider-
ation of the effects of atmospheric, cloud cover and other
quality control linked by sensor and satellite, e.g., solar and
viewing angle due to satellite drift (Tucker et al. 2005; Pinzon
and Tucker 2014). Ultimately, results were converted by
using Geographic Information System (GIS) while maintain-
ing the same original spatial resolution.

Results
Trends of R, PCI, and dPCI in the study area from 1951
until 2010
Tracking rainfall changes in the study area showed that
the maximum rainfall reached 953 mm while the mini-
mum was 321 mm (Fig. 2), and the average rainfall for
the whole time series was 561 mm.
On a monthly scale, the average rainfall ranged from 30

mm (March) to 64mm (June); the minimum rainfall
ranged between 0 mm (September) and 19 mm (June);
however, the maximum rainfall was recorded in August
with 232 mm (Table 2). The statistical analysis also
showed also that the variation coefficient ranges from 49
to 88%, while Skewness ranges from 0.35 to 1.73 and Kur-
tosis reaches 6.2 as can be seen in Table 2 and Fig. 3.

Table 3 The CM Trend for R, PCI and dPCI in the study area
from 1951 till 2010

Indicator P value Trend

PCI 0.16 Positive trend

Rainfall 0.35 Positive trend

dPCI 0.00 Positive trend

Table 4 Distribution of Agricultural drought events from 1951
till 2010

Agricultural drought

SPI1 % SPI3 % SPI6 %

Value >− 1 105 14.58 123 17.08 119 16.53

Value >− 2 24 3.33 15 2.08 16 2.22

Table 5 Distribution of Hydrological drought events from 1951
till 2010

Hydrological drought

SPI9 % SPI12 % SP24 % SP36 %

Value >− 1 120 16.67 116 16.11 96 13.33 116 16.11

Value >− 2 15 2.08 9 1.25 15 2.08 25 3.47
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Fig. 5 SPI variability from 1951 to 2010

Fig. 6 SPI trends of the study area in different time scale by using smoothing technique
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These results indicate the presence of extreme events in
the study area as proposed by (Aladaileh et al. 2019).
The PCI values ranged between 9.4 and 15.8 with an

average of 11.8, while the dPCI values range between 8.6
and 20.7 with an average 10.9 (Fig. 4). These results indi-
cate a seasonality in rainfall distribution with changes
from year to year. Table 3 showed a positive but not sig-
nificant trend for R, PCI and a positive significant trend
for dPCI, which emphasizes the fact that most of the
rainfall had irregular distribution within a year.

SPI variability from 1951 to 2010
Drought analysis showed that more than 103 events of
severe agricultural drought (SPI-1, SPI-3, SPI-6) were
detected for the whole studied period (Table 4).
In connection with this, severe hydrological drought

(SPI-9, SPI-12, SPI-24, SPI-36) was recorded in 16% of
the total rainfall events from 1950 to 2010 as can be
seen in Table 5.
For the SPI-6, as a representative of agricultural

drought, we can highlight the years of 1962, 1974, 1976,
1990; 1992, 2000, and 2007 as the most affected years by
drought, where the agricultural production was badly af-
fected. In a similar vein, hydrological drought for SPI-36
was distinguished in 1961–1965, 1973–1974, and 1992–
1995, where recharge of natural bodies was affected by
severe drought. However, regardless the drought time

scale, the periods of 1962–1964, 1968, 1971–1974,
1986–1987, 1990, 1992–1995, and 2006–2007 can be se-
lected as the most affected years by different types of
drought as can be seen in Figs. 5 and 6.

Correlation matrix between SPI (-3, -6) and NDVI
The NDVI was used as an indicator of vegetation cover.
The NDVI ranges between − 1 and 1 where − 1 indicate
poor vegetation cover while + 1 indicate good vegetation
cover. In return, we choose SPI-3 and SPI-6 as an indi-
cator of agricultural drought. In other words, high cor-
relation between SPI and NDVI revel to drought
conditions in the study area. Figures 7 and 8 depict the
correlation matrix between both choose SPI (-3, -6) and
NDVI. Results showed a significant correlation between
studied indices in summer and early fall, which could be
explained by decreasing of vegetation cover as well as in-
creasing drought level in the study area. The highest
correlation was recorded on August, September, and
October.

Discussion
The smoothing technique analysis emphasised the previ-
ous results where the Debrecen Region was subjected to
drought in two distinguished periods, the first of which
was between 1960 and 1970, while the second one be-
tween 1990 and 2000. However, the trend of SPI-1, SPI-

Fig. 7 Spatial-temporal correlation between monthly SPI-3-time scale and NDVI during the period of 1981 to 2010, the dots indicate a statistically
significant correlation at 95% confidence level (P < 0.05)
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3, and SPI-6 showed a positive trend for the whole time
series, while a negative trend was detected for SPI-9,
SPI-12, SPI-24, and SPI-36 which indicate the tendency
to drought in a large time scale (Fig. 6).
Generally, SPI and dPCI use only monthly rainfall

data. Thus, any changes in rainfall potentially affect the
results of both indices. In the dPCI cases, our results
showed a moderate precipitation distribution (Fig. 4),
while the SPI results indicate two periods from 1960 to
1970, and from 1990 to 2000 as most affected years by
drought. Many researchers argued that rainfall data can-
not be sufficient to track drought where more climate el-
ements such as temperature and evapotranspiration
should be taken into consideration. However, rainfall in
Hungary was affected by different types of circulation
(Cwsw, Cse, Cwnw), which have a negative trend as well
as rainfall amount (Maheras et al. 2018). In connection
with this, our results support this idea where an in-
creased frequency of hydrological drought was detected
(Fig. 5) with a remarkable decrease of rainfall between
1985 and 2000 (Fig. 2). Interestingly, Maheras et al.
(2018) concluded that Debrecen (part of the Debrecen
Region) was more subjected to extreme events (rainfall)
which is consistent with our results in Table 2.
Generally, the highest portion of agricultural land is culti-

vated by maize followed by wheat and other crops (Széles

et al. 2012), where the common agricultural system is
rainfed system. Thus, any changes of rainfall patterns
could have a bad impact on crop productivity. Interest-
ingly, Adrienn and Janos (2012) reported that drought
(i.e., agricultural drought) was the main reason of yield
reduction in Hungary.
Yet, to our knowledge, few studies were con-

ducted to measure the effect of drought on eco-
systems, Móricz et al. (2018) indicate that the
severe drought in last decades (1992–1993, 2000–
2003, and 2011–2012) badly affected the Black pine
growing in southwest Hungary. Similarly, Gulácsi
and Kovács (2018) highlighted those years (2000,
2001, 2002, and 2003) as dry years in Danube-Tisza
intersection (central of Hungary). These results are
in conformity with our research as can be seen in
Figs. 5 and 6.

Conclusion
This present study helps to track drought episodes in
an important agricultural region in Hungary where
the economic damages of severe drought in the
Hungarian agricultural sector reach 145 million USD
annually. The key funding of this research can be
summarized as follows:

Fig. 8 Spatial-temporal correlation between monthly SPI-6-time scale and NDVI during the period of 1981 to 2010, the dots indicate to a
statistically significant correlation at 95% confidence level (P < 0.05)
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1. The PCI values ranged between 9.4 and 15.8 with
an average of 11.8, while the dPCI values range
between 8.6 and 20.7 with an average 10.9.

2. The most affected years by agricultural drought
(i.e., SPI 6) were 1962, 1974, 1976, 1990; 1992,
2000, and 2007.

3. The most affected years by Hydrological drought
(i.e., SPI-36) were 1961–1965, 1973–1974, and
1992–1995.

4. A notable significant correlation between SPI (-3, -6)
and NDVI in summer and early fall was detected.

To sum up, the SPI index could provide an easy tool for
drought monitoring in the study area. Successive steps should
be taken on a national scale for drought monitoring and de-
tecting by integrating different data sources such as remote
sensing and other climatic data.
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