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A B S T R A C T   

Study region: Lake Tana sub-basin, Upper Blue Nile basin, Ethiopia. 
Study focuses: This study evaluated the degree to which climate is changing in the region, and its 
impact on stream flow of watersheds simulated by Soil Water Assessment Tool (SWAT) under the 
Representative Concentration Pathway (RCP8.5) emission scenario using six climate models 
including CanESM2, EC-EARTH, CNRM-CM5, HadGEM2- ES, NORESM1-M, and CSIRO-Mk3–6–0 
by comparing the last thirty years of the past century (1971–2000) and the same years of this 
century (2071–2100). Bias correction for maximum temperature, minimum temperature, and 
rainfall data obtained from all climate models have been done using CMhyd software. The SWAT 
model is calibrated and validated using eleven sensitive hydrological parameters. 
New hydrological insights: The result revealed that the change in maximum temperature ranges 
from 2.93 ◦C (November) and 5.17 ◦C (March), and the change in minimum temperature also 
ranges from 3.08 ◦C to 4.79 ◦C on a monthly basis. Rainfall is expected to increase up to 29.75% 
(November) and decrease up to 9.26% (March) in different seasons. Due to the change in climate, 
a flow is predicted to increase up to 27.82%, 27.47%, 26.47%, and 24.97% in Ribb, Gilgel Abay, 
Gumara, and Megech watersheds, respectively, and it is also decreasing in winter and spring 
seasons. On average, the streamflow is expected to increase by 5.89%, 5.63%, 4.92%, and 4.87% 
in Ribb, Gumara, Megech, and Gilgel Abay watersheds, respectively.   

1. Introduction 

Climate change is arguably the most important environmental challenge facing the world in the 21st century owing to its wide- 
reaching impacts on human society (Fulco et al., 2007). Although climate change is a naturally occurring phenomenon (US EPA, 
2016), there is now a common consensus among the scientific community that anthropogenic activities are largely responsible for its 
occurrence, mainly through burning fossil fuels like oil, coal, and gas, leading to emissions of greenhouse gases (GHGs) to the 
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atmosphere (Henderson and Reinert, 2016). Until the 1800 s, the emission of these GHGs was relatively stable but has since 
continuously increased due to industrialization, population growth, and the subsequent increase in energy consumption, deforestation, 
and human settlements (North, 2014). During the past 15–20 years, the growth rate in heat-trapping GHGs emissions increased from 
1.5 to 2 ppm per year (Hayhoe et al., 2017). Consequently, the global mean surface temperature for the decade 2006–2015 increased 
by 0.87 ◦C which is higher than the observed long-term average in the pre-industrial period (1850–1900) (IPCC, 2018). Due to the 
future anthropogenic activities and the emission of GHGs being uncertain, it is strongly believed that future global temperatures will 
keep changing. The Representative Concentration Pathways (RCPs), which are used for making projections based on these anthro-
pogenic factors, describe four different pathways of GHG emissions and atmospheric concentrations, air pollutant emissions, and land 
use, in terms of a stringent mitigation scenario (RCP2.6), two intermediate scenarios (RCP4.5 and RCP6.0), and one scenario with very 
high GHG emissions (RCP8.5) that assumes radiative forcing concentration will reach 8.5 W/m2 in the atmosphere and temperature 
increases up to 2.6–4.8◦Cin the end of 21 st century (IPCC, 2014). 

Over the past few decades, a plethora of climate models has been used to estimate the future climate of the earth under different 
scenarios. The annual values projected for precipitation by such models are inherently uncertain and often inconsistent because each 
model is slightly different (Tebaldi et al., 2011; Power et al., 2012; FAO, 2010; Schaller et al., 2011). However, the trend and 
magnitude of change in precipitation are fairly consistent among the models, most of which, revealed an increasing trend in heavy 
rainfall extremes towards the end of the 21st century almost in all parts of the world (Poveda and Martínez, 2011; Suppiah et al., 2013). 
Further projections show that the precipitation is very likely to increase in high latitudes and near major convergence zones in the 
tropics in some seasons, while decreases are expected in many subtropical regions (Stocker et al., 2013). Such changes in the intensity 
and distribution of precipitation will have serious implications on water (Seager et al., 2007; Sivakumar, 2011; Stoll et al., 2011), a key 
resource for economic growth and social development. Currently, approximately one-third of the world’s population lives in 
water-stress countries, and by 2025, two-thirds of the world’s population will experience water scarcity problems due to the reduction 
of river flow and groundwater recharge (FAO, 2010). 

Due to climate change, more frequent severe droughts and flood events are expected to intensify in different regions (US EPA, 
2016). In Ethiopia, over the past five decades, changes in rainfall and temperature have affected the various components of the hy-
drological cycle in major river basins (Gebremicael et al., 2013; Tesemma et al., 2010). In the country, the hydrological drought during 
dry seasons and flooding in rainy seasons have become a common problem in many perennial rivers as noted by (Bekele et al., 2021; 

Fig. 1. Study area location map.  
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Mengistu et al., 2021; Roth et al., 2018). Numerous studies indicate that the hydrology of headwater catchments of the upper Blue Nile 
basin in Ethiopia has been influenced by climate change (Kim and Kaluarachchi, 2009; Malede et al., 2022; Worqlul et al., 2018). 
Whereas there are many climate change studies conducted in the Lake Tana basin, very few studies used the RCP scenarios. For 
instance, the study conducted by (Chakilu et al., 2020; Tigabu et al., 2021) used the RCP 8.5 scenario, but the studies were conducted 
only on one or two catchments within the basin, which limits our understanding of the potential impacts of climate change in the entire 
basin. Besides, most of the previous studies conducted in the basin focused on projecting future climate under Special Report on 
Emissions Scenarios (SRES). For example, Setegn et al. (2011) used the A2 scenario, while Adem et al. (2014) used A2 and B2 emission 
scenarios with a single climate model. 

This study focused on how much the highest emission scenario (RCP8.5), suggested by the Fifth IPCC Assessment Report (AR5) 
(IPCC, 2014), influences the stream flow nature of the four gauged watersheds of Lake Tana Basin, which contributes more than 60% of 
the total flow of the Nile River (Mulat and Moges, 2014) by using six Global Climate Models (GCM) in (2071–2100) with relative to 
(1971–2000). Due to the inadequate number of meteorological stations in the basin, and considering that most of the existing stations 
do not have long-term historical recorded data for regional downscaling, Global Climate Models (GCM) were directly used through 
correcting the biases using CMhyd software. The finding of this study gives important indications on the extent to which this highly 
demanded water resources for both upper and lower catchment communities, will be affected by climate change, and it also gives 
essential output for policymakers concerned about the reduction of climate change vulnerability of water resources in the planning 
process of different micro and macro projects, including the Grand Ethiopian Renaissance Dam (GERD). 

2. Material and methods 

2.1. Study area description 

Lake Tana basin is located in the North-Western Highlands and stretches between 10.95◦ and 12.78◦N latitudes and 36.89◦ and 
38.25◦E longitudes with a drainage area of about 15,096 km2 of which, 3063 km2 of land is covered with Lake Tana (Fig. 1). Lake Tana 
is the largest lake in Ethiopia, covering a surface area of 3000–3600 km2 at an elevation of 1800 m above sea level and a maximum 
depth of 15 m. The climate of the Lake Tana sub-basin is dominated by tropical highland monsoon with most of its rainfall occurring 
between June and September. More than 93% of the flow of the lake is collected from four major rivers which are Gilgel Abay, Gumara, 
Ribb, and Megech (Setegn, 2010). Gilgel Abay is the largest watershed in the Lake Tana sub-basin which covers 1754 km2; followed by 
Ribb, Gumara, and Megech watersheds which cover 1407 km2, 1272 km2, and 514 km2, respectively. According to (Conway and 
Schipper, 2011), most of the rainfall (70–90% total rainfall) in the region occurs from June to September, and the mean annual 
precipitation of the study area ranges from 1200 to 1600 mm based on data from 1961 to 2000. The temperature of the basin varies 
between 9 ◦C and 28 ◦C. 

Based on the FAO soil classification map of the world (FAO and UNESCO, 1977), Chromic Luvisols, Eutric Cambisols, Eutric 
Fluvisols, Eutric Leptosols, Eutric Regosols, Eutric Vertisols, Haplic Alisols, Haplic Luvisols, Haplic Nitisols and Lithic Leptosols are the 

Table 1 
Meteorological stations with their accessed data and purposes used in the study.  

Stations Latitude Longitude Accessed data Data used for: 

Temperature Rainfall 

Gondar  12.3  37.25 1952–2009 1952–2009 Bias correction, SWAT model calibration & validation, and projection of future climate 
for simulation of future stream flow 

Makisegnit  12.39  37.55 1996–2008 1987–2008 SWAT model calibration & validation, and projection of future climate for Simulation of 
future stream flow 

Addis 
Zemen  

12.12  37.77 1996–2009 1997–2009 SWAT model calibration & validation, and projection of future climate for simulation of 
future stream flow 

Debretabor  11.86  37.99 1951–2009 1951–2009 Bias correction, SWAT model calibration & validation, and projection of future climate 
for simulation of future stream flow 

Werota  11.92  37.69 1992–2008 1969–2007 SWAT model calibration & validation, and projection of future climate for simulation of 
future stream flow 

Wanzaye  11.78  37.67 2000–2009 1984–2008 SWAT model calibration and projection of future climate for simulation of future stream 
flow 

Bahir Dar  11.60  37.36 1961–2009 1961–2009 Bias correction, SWAT model calibration & validation, and projection of future climate 
for simulation of future stream flow 

Dangila  12.25  36.84 1954–2009 1954–2009 Bias correction, SWAT model calibration & validation, and projection of future climate 
for simulation of future stream flow 

Injibara  10.99  36.92 1984–2008 1954–2008 SWAT model calibration & validation, and projection of future climate for simulation of 
future stream flow 

Adet  11.27  37.49 1989–2009 1989–2009 SWAT model calibration & validation, and projection of future climate for simulation of 
future stream flow 

Sekela  10.98  37.21 1989–2008 1988–2008 SWAT model calibration & validation, and projection of future climate for simulation of 
future stream flow 

Wetet Abay  11.37  37.04 1987–2008 1987–2008 SWAT model calibration & validation, and projection of future climate for simulation of 
future stream flow  
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major soil types in the basin. The majority of the land area, 51.3%, of the Lake Tana Basin is used for agriculture, 29% is an 
agro-pastoral area, and 20% of the basin is covered by the lake water ( Setegn et al., 2008). 

2.2. Climate and hydrological data collection and processing 

Meteorological data were obtained from the National Meteorological Agency of Ethiopia. Some of the data which span 30 years 
(1971–2000) were used for bias correction of climate model outputs. Twelve meteorological stations were used in and near the study 
area. Although there are more numbers of meteorological stations in the study area, many of them do not have adequate data and are 
full of missing values even in recorded data. The missing values were replaced by the long-term average recorded values of the 
corresponding dates of the preceding years and the years after the missed one to compare and evaluate the deviation of the data 
produced from climate models. During the SWAT model calibration and validation process, the missing data were replaced by − 99 
which is compatible with the SWAT model. Table 1. 

Climate model data were obtained from the Earth System Grid Federation (ESGF) website (https://esgf-node.llnl.gov/projects/ 
esgf-llnl/), which is hosted by the United States of America, Department of Energy, Lawrence Livermore National Laboratory. 
Given that most of the meteorological stations in the Lake Tana basin do not have long-term historical recorded data for regional 
downscaling, Global Climate Models (GCM) were directly used through bias correction using CMhyd software. Precipitation and 
temperature data are projected by six Global Climate Models including CanESM2, EC-EARTH, CNRM-CM5, HadGEM2-ES, NORESM1- 
M, and CSIRO-Mk3–6–0 in Coupled Model Inter-comparison Project Phase 5 (CMIP5). The data are produced under the experiment of 
the Representative Concentration Pathway (RCP8.5) emission scenario. 

Flow data of the four watersheds (Gilgel Abay, Gumara, Ribb, and Megech) were collected from the Ministry of Water and Energy of 
Ethiopia for calibration and validation of the SWAT model. Like meteorological data, flow data were also collected on a daily time scale 
with missing values replaced by − 99. 

2.3. Geophysical data collection and processing 

Besides climatic data, geophysical data such as land use/cover, soil, and altitude (DEM) were required to run the hydrological 
model (SWAT). The land use/cover data were obtained from the Ministry of Water and Energy of Ethiopia. Soil data of the study area 
were also obtained from the Digital Soil Map of the World website (https://data.apps.fao.org/map/catalog/srv/eng/catalog.search#/ 
metadata/446ed430–8383–11db-b9b2–000d939bc5d8), which is digitized by FAO-UNESCO Soil Map of the World with 1:5000000 
scale. SRTM Digital Elevation Model (DEM) data with 30 m * 30 m resolution was collected from the United State Geological Survey 
(USGS) website (https://earthexplorer.usgs.gov/). The altitude data was used for watershed delineation and slope classification in 
Hydrological Response Unit (HRU) definition and analysis process. 

2.4. Bias correction of climate models data 

Climate data are obtained from global-scale climate models. Climate variables such as rainfall and temperature obtained from such 
coarse resolution climate models are highly influenced by local topographies like mountains which may not probably be taken into 
consideration in the global climate models development process because of their coarse resolution. Thus, to minimize the deviation of 
climate models output from the real observed data of meteorological stations, the bias correction process was needed and it was done 
using variance scaling and power transformation methods for temperature and precipitation, respectively using CMhyd software 
(Rathjens et al., 2016). The reason why these two methods were selected for this study was, that both are more efficient than other 
methods in frequency-based statistics in other studies (Fang et al., 2015; Teutschbein and Seibert, 2012). Precipitation data obtained 
from all climate models were corrected by fitting them to the thirty years (1971–2000) data and measured for their Coefficient of 
Variation (CV) in the power transformation process. In this nonlinear correction, each daily precipitation amount P is transformed into 
a corrected P * by using Eq. (1) as follows: 

P∗ = aPb (1) 

The coefficient “a” and the superscript “b” were determined iteratively. The mean value of “b” was determined by equating the CV 
of the observed value of precipitation with that simulated value on a monthly basis, and the coefficient” a” was determined by equating 
the mean value of observed precipitation with that simulated value for the comparison period. 

Bias correction for temperature only involved scaling and shifting to adjust the mean and variance of simulated and observed 
climate data (Terink et al., 2010; Ho et al., 2012) by fitting it to thirty years period (1971–2000) data and the standard year’s deviation 
(SD). Thus the corrected daily temperature (Tcorr) was obtained by using the following Eq. (2): 

Tcorr = Tobs +
σ(Tobs)

σ
(
Tgcm

)
(
Tgcm − Tgcm

)
(2)  

Where Tcorr is the corrected daily temperature; Tgcm is the uncorrected daily temperature obtained from the climate model; Tobs is the 
observed daily temperature; an overbar (“‾”) denotes the mean value of the variable and σ is the standard deviation. 
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2.5. SWAT model setup and simulation 

Soil Water Assessment Tool (SWAT) is a semi-distributed small watershed or large river basin scale hydrological model, which 
simulates the quality, quantity of surface, and groundwater. It also simulates sediment transport on a particular watershed while 
predicting the environmental impacts of land use, land management practices, and climate change. It is widely used in the assessment 
of soil and water conservation and non-point pollution control in river basins (Neitsch et al., 2002). 

The model requires daily climate data and geophysical data to simulate surface runoff, groundwater flow, and evapotranspiration 
of watersheds. The model starts from the watershed characterization process, and basically, it passes six important steps: (1) watershed 
delineation, (2) Hydrological Response Unit (HRU) definition and analysis, (3) climate and weather data formation, (4) Simulation, (5) 
model calibration, and (6) model validation. 

SRTM DEM data of the entire Lake Tana basin was used for river networking and watershed delineation through the “burn-in” 
method. In the process, four outlets were selected for the study area, and each watershed was delineated with a combination of sub- 
watersheds. Sub-watersheds were further classified into Hydrological Response Units (HRUs) using land use, soil, and slope distri-
bution process. All land use, soil, and slope classes in each sub-basin were considered in the HRU definition process. Surface runoff is 
estimated separately for each sub-basin and routed to quantify the total surface runoff of the basin using the following equation (Eq. 
(3)) (Neitsch et al., 2002). 

SWt = SW0 +
∑t

i=1

(
Rday − Qsurf − Ea − Wsweep − Qgw

)

i (3)  

Where SWt is the final soil water content (mm), SWo is the initial soil water content on the day i (mm), t is time (days), Rday is the 
amount of precipitation on the day i (mm), Qsurf is the amount of surface runoff on the day i (mm), Ea is the amount of evapotrans-
piration on the day i (mm), Wseep is the amount of water entering the vadose zone from the soil profile on the day i, and Qgw is the 
amount of groundwater flow on the day i (mm). The amount of surface runoff is calculated using the following formula (Eq. (4)). 

Qsurf =

(
Rday − Ia

)2

(
Rday − Ia + S

) (4)  

Where Qsurf is the accumulated runoff or rainfall excess (mm); Rday is the height of rainfall for the day (mm); Ia is the initial abstractions 
(canopy interception, surface storage, infiltration before runoff) (mm), and S is the retention parameter. Therefore, retention 
parameter S is defined as Eq. (5): 

S = 25.4
(

1000
CN

− 10
)

(5)  

Where CN is the curve number for the day and the initial abstractions, Ia, are commonly approximated as 0.2 S. Eq. (6) is represented 
as follows: 

Qsurf =

(
Rday − 0.2S

)2

(
Rday + 0.8S

) (6) 

The runoff will only occur when Rday > Ia. 

2.6. SWAT model calibration and validation 

Once the flow was simulated with default parameters, sensitive parameters were selected using the sensitivity analysis process. For 
the four watersheds, ten and seven years of climate data were used for calibration and validation, respectively. These years were 
selected based on the availability of data. Based on the sensitivity analysis result, eleven parameters that have a prominent influence on 

Table 2 
SWAT model parameters with their description and ranges of values.  

No. Parameters Description Maximum value Minimum value 

1 R_CN2.mgt Initial SCS CN II value 0 1 
2 V_ALPHA_BF.gw Baseflow alpha-factor (days) -25 25 
3 V_ESCO.hru Soil evaporation compensation factor 0 1 
4 V_GW_DELAY.gw Groundwater delay (days) 0 10 
5 V_GW_REVAP.gw Groundwater “revap” coefficient (days) 0.02 0.2 
6 A_SLSUBBSN Average slope length (m) -0.5 1 
7 A_SOL_AWC Available water capacity (mm water/mm soil) 0 1 
8 A_SOL_K Saturated hydraulic conductivity (mm/hr) -0.5 1 
9 A_SOL_Z Soil depth (mm) -25 25 
10 V_SURLAG Surface runoff lag time (days) 0 12 
11 V_GWQMN Threshold water depth in the shallow aquifer for flow (mm) 0 10  
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the streamflow of watersheds were selected (Table 2), and the value of each parameter in the four watersheds was determined by the 
calibration process. The calibration process was done by using SWAT-CUP (SWAT-Calibration and Uncertainty Programs) version 12 
software and the Sequential Uncertainty Fitting (SUFI-2) algorithm. The fitted value of parameters was observed by iterating 2000 
simulations through automatically adjusting the values based on the range of adjustment domain. The output produced by using 
selected parameters and their adjusted values were compared with the observed streamflow of the watersheds so that the efficiency of 
the SWAT model was evaluated. The efficiency of the model was evaluated using statistical variables that determine the fitness of 
simulated flow with the measured flow data of watersheds. Those statistical variables are Nash–Sutcliffe Efficiency (NSE), and Relative 
Volume Error (RVE), shown in Eqs. (7) and (8), respectively. 

NSE = 1 −

∑n

i=1

(
Qsim(i) − Qobs(i)

)2

∑n

i=1

(
Qsim(i) − Qobs

)2
(7)  

Where Qobs and Qsim represent the observed and simulated daily stream flows at the ith time steps respectively, n refers to the number of 
days in the simulated or observed time series period. The overbar (־) symbol represents the mean value which indicates the average 
value of streamflow. The value of Nash–Sutcliffe Efficiency (NSE) ranges between 1 and ─∞ ; 1 shows the best fit of the model or that 
the model simulates similar values of streamflow with the observed values. A value between 0 and 1 is considered an acceptable level 
of performance (Nash and Sutcliffe, 1970). 

RVE =

∑n

i=1

(
Qobs(i) − Qsim(i)

)

∑n

i=1
Qobs(i)

∗ 100% (8) 

RVE indicates the ratios of the sum of differences in the observed and simulated value of streamflow to the total observed 
streamflow. The optimal value of RVE is 0. A positive value indicates underestimation and a negative value indicates overestimation 
(Gupta et al., 1999). 

3. Result and discussion 

3.1. The efficiency of climate models 

In this study, six climate models were used to predict future climate in the study area. The efficiency of each model was evaluated 
by comparing their historical data with station observed data. The error in rainfall and temperature are analyzed on monthly basis. The 
model error of rainfall ranges from an absolute value of 0.05–1.94%. The maximum variation is observed in August by the NORESM1- 
M climate model, and the minimum is observed in January by the CSIRO-Mk3–6–0 climate model. Almost all climate models 
reasonably capture the station-measured rainfall, especially in the winter season (December–March) (Fig. 2). Indeed, the change is 
more prominent in the summer season because rain is not common in the winter seasons in the study area. In general, the rainfall data 
produced by climate models are consistent with the measured data on the stations. 

All climate models except CNRM-CM5 overestimated the maximum temperature in six consecutive months (from December to 

Fig. 2. Rainfall model error.  
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May). The error ranges from the absolute value of 0.01 ◦C which is predicted in September CSIRO-Mk3–6–0 and January by HadGEM2- 
ES to 0.5 ◦C predicted in March by the CNRM-CM5 climate model. The overall deviation of the model in maximum temperature is 
0.19 ◦C, 0.03 ◦C, 0.25 ◦C, 0.14 ◦C, 0.12 ◦C, and 0.16 ◦C in CanESM2, EC-EARTH, CNRM-CM5, HadGEM2-ES, NORESM1-M, and 
CSIRO-Mk3–6–0 climate models, respectively (Fig. 3). 

All climate models are relatively more efficient in minimum temperature than the maximum temperature in capturing the 
measured data. The errors of models range from 0.01 ◦C to 0.35 ◦C, and the maximum error was recorded in October by the CNRM- 
CM5 climate model. Unlike maximum temperature, some climate models underestimate the minimum temperature on monthly basis. 
Generally, on average, errors by CanESM2, EC-EARTH, CNRM-CM5, HadGEM2-ES, NORESM1-M, and CSIRO-Mk3–6–0 are 0.03 ◦C, 
0.04 ◦C, 0.07 ◦C, 0.09 ◦C, 0.02 ◦C, and 0.05 ◦C, respectively (Fig. 4). 

3.2. Change in rainfall 

In the last thirty years of this century, rainfall is predicted to increase in the summer and autumn seasons in all climate models 
except the CNRM-CM5 model which predicted an increase in rainfall in September, and NORESMI-M in October. Seasonally, the 
change in rainfall ranges from the absolute value of 0.83–29.75% (Fig. 5). The maximum change is forecasted by the CNRM-CM5 
climate model in November. Most of the climate models predicted that rainfall will decrease in the spring/pre-summer season. The 
maximum decreasing change is observed in March which is − 9.26% by the CanESM2 climate model. As far as the region has been 
getting rainfall in the summer season (Conway and Schipper, 2011), it is obvious that the change is not that much expected to be high 
in the winter season and this study showed the same result. On an annual average basis, the change is relatively lower than the change 
in the monthly time step. Annually, the change ranged from 2.45% to 7.17%, in which the maximum change was predicted by 
CSIRO-Mk3–6–0. In general, the annual mean rainfall is expected to change by 6.85%, 2.45%, 4.89%, 2.46%, 2.57%, and 7.17% under 
CanESM2, EC-EARTH, CNRM-CM5, HadGEM2-ES, NORESM1-M, CSIRO-Mk3–6–0 climate models, respectively within one hundred 
years (Fig. 8). 

3.3. Change in temperature 

SWAT model requires daily maximum and minimum air temperature which may be read from records of observed data or may be 
generated (Neitsch et al., 2002). Seasonally, the maximum temperature is expected to increase with a range of 2.93 ◦C and 5.17 ◦C 
under all climate models based on the RCP 8.5 climate change scenario in the last thirty years of the 21st century. The lowest change in 
maximum temperature was forecasted by the CNRM-CM5 climate model in November, whereas the highest change is forecasted by 
CSIRO-Mk3–6–0 in March (Fig. 6). The change is higher in the winter than the summer season in almost all climate models. On an 
average basis, the highest change was observed in March which is 4.61 ◦C, and the lowest is 3.48 ◦C in November (Fig. 6). Temperature 
is one of the most important parameters for estimating the evapotranspiration which can potentially reduce the water availability in 
the catchments in the SWAT model (Neitsch et al., 2002). Because the area is dry in the winter season, and potential evapotranspiration 
which is used for water balance computation in this study is considering that the availability of moisture in the soil is sufficient enough 
(Allen et al., 1998), this highest change in maximum temperature observed in March may not have a significant effect in actual 
evapotranspiration of the catchments. Annually, the maximum temperature is expected to increase by 4.12 ◦C, 4.05 ◦C, 4.03 ◦C, 

Fig. 3. Maximum temperature model error.  
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3.99 ◦C, 3.96 ◦C, and 3.89 ◦C, under CSIRO-Mk3–6–0, HadGEM2-ES, CanESM2, CNRM-CM5, NORESMI-M, and EC-EARTH climate 
models respectively (Fig. 8). 

The overall change in minimum temperature follows a more or less similar seasonal pattern to the change in maximum temperature 
except for the difference in time when the highest changes are observed. The average change in minimum temperature ranges from 
3.08 ◦C observed in October by EC-EARTH to 4.79 ◦C observed in April by the CNRM-CM5 climate model (Fig. 7). Like maximum 
temperature, the change in minimum temperature is also higher in the winter season. In terms of average values of changes in all 
climate models, the highest change in minimum temperature is expected to be 4.42 ◦C in April. On annual basis, the change in 
minimum temperature is not showing significant variation between the climate models we used. At the end of thirty years of this 
century, the mean minimum temperature is expected to increase by 4.11 ◦C, 4.06 ◦C, 4.04 ◦C, 4.00 ◦C, 3.88 ◦C, 3.86 ◦C under CSIRO- 
Mk3–6–0, CanESM2, HadGEM2-ES, CNRM-CM5, EC-EARTH, and NORESM1-M climate models, respectively (Fig. 8). 

Fig. 4. Minimum temperature model error.  

Fig. 5. Change in precipitation in Lake Tana basin.  
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3.4. SWAT model efficiency 

SWAT model has a good efficiency in the gaged watersheds of the Lake Tana basin. The default efficiency of the model was very 
poor in both statistical parameters which are Nash–Sutcliffe Efficiency (NSE), and Relative Volume Error (RVE). Comparatively, the 
highest efficiency in terms of NSE was observed in the Gumara watershed (0.18), but in terms of RVE, it was good in the Ribb 
watershed (28.69%) in default simulation. The worst efficiency of the model was observed in the Megech watershed in terms of both 
NSE and RVE, the values were − 0.32 and − 48.52, respectively (Table 4). 

To enhance the efficiency of the SWAT model, some additional parameters were included and a total of 11 important parameters 
were selected after sensitivity analysis was done, and the values of the parameters were calibrated using automatic calibration and 
manual calibration processes. In the sensitivity analysis process, the parameter which has the highest value of the absolute value of t- 
stat and the lowest value of the P-value is taken as the most sensitive parameter (Neitsch et al., 2002). Among 11 parameters five of the 
most sensitive parameters in each watershed with their fitted values are presented in (Table 3). 

The model was more efficient in the Gilgel Abay watershed in both calibration and validation process in terms of NSE (0.86). Even 
though it shows some improvement through calibration, the model was still weak in the Megech watershed, and statistically, the 
efficiency of the model (NSE) in the watershed was 0.51, and 0.54 in the calibration and validation process, respectively. The RVE in 
this watershed recorded negative − 8.84%, and − 6.62% in the calibration and validation process, respectively. These negative RVE 
values indicate that the model overestimated the simulated streamflow relative to the measured value (Table 4). 

Fig. 6. Change in maximum temperature in Lake Tana basin.  

Fig. 7. Change in minimum temperature in Lake Tana basin.  
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The calibrated values of parameters were also verified by independent climate data, and it shows consistent efficiency with the 
calibrated one. As it is shown in (Fig. 9), the model captured the peak flows in some years; whereas it overestimated and under-
estimated in some other years in all watersheds. As it can be shown on the graph (Fig. 9), in the Megech watershed, simulated flow is 
higher than the observed flow in both calibration and validation time. In this simulation process, the model does not consider irrigation 
and other small scale water work projects that can reduce the stream flow at the lower catchment of the watershed. On the upper part 
of the Megech watershed, there is one dam (Angereb dam) which is used for the domestic water supply of Gondar town (Haregeweyn 
et al., 2012). Because, the dam stores water during the rainy season, the peak simulated flow is higher than the observed flow as it can 
be shown in (Fig. 9). 

Fig. 8. Change in mean annual Tmax, Tmin, and precipitation.  

Table 3 
The most five model parameters sensitivity, ranges of values, and fitted values in SWAT model.  

Watershed Parameter t-stat P-value Fitted value Rank 

Gumara R_CN2.mgt -10.14 0 0.14 1 
V_ALPHA_BF.gw 5.48 0 -12 2 
V_ESCO.hru -3.07 0.03 0.42 3 
V_GW_DELAY.gw -2.9 0.09 7.34 4 
V_GW_REVAP.gw -2.23 0.11 0.19 5 

Gilgel Abay R_CN2.mgt -58 0 -0.18 1 
V_ALPHA_BF.gw 10.8 0 0.12 2 
A_SOL_K.sol 6.1 0 0.47 3 
V_GW_REVAP.gw -1.2 0.2 0.10 4 
V_GWQMN.gw 1 0.3 1.31 5 

Ribb V__ESCO.hru 3.76 0.01 0.5 1 
R__SOL_AWC.sol 3.55 0.01 0.9 2 
V__EPCO.hru 2.55 0.04 0.7 3 
R__CN2.mgt -1.95 0.09 2.37 4 
V__ALPHA_BF.gw 1.77 0.12 0.5 5 

Megech R__CN2.mgt -10.55 0.00 -0.02 1 
V_ALPHA_BF.gw -8.27 0.00 0.76 2 
V_GW_DELAY.gw − 2.70 0.01 5.37 3 
V_GWQMN.gw 2.26 0.03 0.55 4 
A_SOL_K.sol 1.90 0.06 -0.17 5  

Table 4 
SWAT model efficiency in the four watersheds.  

Watersheds Default efficiency Calibration Validation 

NSE RVE (%) NS RVE (%) NSE RVE (%) 

Gilgel Abay  0.15  32.41  0.86  1.31  0.84  1.36 
Gumara  0.18  36.84  0.67  1.25  0.63  1.88 
Ribb  0.09  28.69  0.71  1.14  0.74  1.07 
Megech  -0.32  -48.52  0.51  -8.84  0.54  -6.62  
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3.5. Impacts of climate change on streamflow 

The streamflow in the four major watersheds of Lake Tana sub-basin under the worst Representative Concentration Pathway (RCP 
8.5) scenario shows visible changes in the last thirty years of this century. In all watersheds, seasonally, the change is more prominent 
in summer and the beginning of autumn. The impact of climate change on the dry season flow of the four watersheds is much less than 
the impact observed in rainy seasons. According to ( Chakilu and Moges, 2017; Gebrehiwot et al., 2010; Mekonnen et al., 2018; 
Rientjes et al., 2011) studies conducted in the region, and (Shao et al., 2018; Yihdego and Webb, 2013) out of the region, the dry season 
flow of watersheds is affected by the land-use change of the catchments. Even though the study area commonly gets rainfall in the 
summer season, especially in July and August, the change in rainfall was higher in the following three months. In all watersheds, the 
maximum value of change in streamflow was observed in November (Figs. 10–13). Unlike in the Ribb watershed, in the other three 
watersheds, the maximum change is shown under the CanESM2 climate model prediction. Given that the four watersheds are close to 
each other, the minimum, maximum, and average change of streamflow in all climate models did not show a significant variation 
among the watersheds. The maximum change in all watersheds ranges from 25% to 28% (approximately) in all climate models. The 
maximum value of changes in Gilgel Abay, Gumara, Ribb, and Megech is 27.47%, 26.47%, 27.82%, and 24.97%, respectively. Even 
though the change in streamflow between watersheds is not showing considerable variation, the change between the six climate 
models within each watershed showed great variation. 

In the Gilgel Abay watershed, the change ranges from 0.52% in June by the NORESM1-M climate model to 27.47% in November by 
CanESM2 including the decreasing change. The change under almost all climate models except under CNRM-CM5 in April shows a 
decreasing value in the winter and spring season and it ranges from − 0.59% to − 5.95% (Fig. 10). 

Like the Gilgel Abay watershed, in the Gumara watershed, the maximum change in streamflow is shown in November, and it is 
produced because of the CanESM2 climate model. The change in this watershed, except HadGEM2-ES in June, and NORESM1-M in 
October, under all climate models in all months of summer and autumn seasons, showed an increasing trend. In the Gumara watershed, 
the change ranges from − 0.71% (decreasing) in January under the CNRM-CM5 climate model to 26.47% in November under the 
CanESM2 climate model (Fig. 11). The result is consistent with other studies with different climate models (Ayele et al., 2016), and 

Fig. 9. Simulated flow Vs Observed flow of watersheds.  
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different hydrological models (Haile et al., 2017). This watershed is one of the highly vulnerable areas of the Lake Tana basin to climate 
change due to much of the upper catchment of the watershed being covered by mountainous land and being used for intensive 
agricultural activities (Chakilu and Moges, 2017). During the summer season, the area gets a high amount of rainfall which can result 
in flooding in the lower catchment of the watershed, and in another way, it is also highly exposed to hydrological drought in the winter 
(dry) season because of the expansion of agriculture, and plowing of sloppy areas without applying any soil and water conservation 
mechanisms (Mena, 2018) which enable the water to infiltrate into the soil and join the groundwater to enhance the base flow of the 
river (Dams et al., 2008; Zhang and Schilling, 2006). 

Unlike the other three watersheds, in the Ribb watershed, the maximum change in streamflow was observed under CNRM-CM5, but 
similar to others, it is observed in November (Fig. 12). Though there are some variations in the values of change in streamflow under all 

Fig. 10. Change in streamflow in Gilgel Abay watershed.  

Fig. 11. Change in streamflow in Gumara watershed.  
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climate models in all months, the change in the Ribb watershed showed a similar change pattern in time compared to the Gumara 
watershed. This similarity is because the two watersheds shared the same meteorological stations in simulations of the hydrological 
model. The increment of streamflow in the watershed was also verified by other studies conducted in the region (Wagena et al., 2016; 
Yimer et al., 2009). 

In the Megech watershed, the streamflow was projected and the change showed increasing in the summer and autumn seasons in 
the last thirty years of this century under all climate models except CRNM-CM5 which showed a decreasing trend in September. 
Compared to other watersheds, the lowest maximum change in streamflow was predicted (24.97 m3/s) in this watershed. In the region, 
the maximum temperature was observed in the winter and spring seasons, indicating that much of the rainfall is changed to evapo-
transpiration and the flow is predicted to decrease like other studies (Gleick, 1987; Karl and Riebsame, 1989; Wigley and Jones, 1985). 

Fig. 12. Change in streamflow in Ribb watershed.  

Fig. 13. Change in stream flow in Megech watershed.  
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The maximum decreasing value of change in streamflow (− 7.371%) is predicted in March under the CanESM2 climate model (Fig. 13). 
Besides to predicting the change in streamflow because of climate change in a monthly basis, the annual mean streamflow change 

between the baseline period and the last thirty years of this century is also evaluated. The annual mean streamflow in all watersheds 
under all climate models ranges from 1% to 6.43%. The maximum annual average change in streamflow was predicted in the Ribb 
watershed under CSIRO-Mk3–6–0, and the minimum change was forecasted in the Megech watershed under HadGEM2-ES. Unlike 
other climate models, the change in annual average streamflow under HadGEM2-ES in the Gilgel Abay watershed was predicted to 
decrease by 1.39% in the last thirty years of this century. As far as the four watersheds shared the same meteorological stations in the 
simulation process, the variation of change in streamflow on an annual average basis especially between the Gumara and Ribb wa-
tersheds was negligible. As it is shown in (Fig. 14), the two lines nearly overlapped especially in three climate models (EC-EARTH, 
CNRM-CM5, and HadGEM2-ES). 

4. Conclusion 

This study revealed that, under all climate models, the climate is changing and it is altering the flow conditions of watersheds in the 
Lake Tana basin. Despite this finding, the change in temperature and precipitation does not show consistent variability in all used 
climate model outputs, especially temperature showed an increasing trend in the highest emission scenario (RCP 8.5), over the last 
thirty years of this century. The highest annual mean temperature is likely to be increasing by 4.15 ◦C under the CSIRO-Mk3–6–0 
climate model relative to other models used in this study, whereas the lowest change is expected under the EC-EARTH climate model. 
Even though the change in precipitation seems insignificant, seasonally, it showed considerable variabilities due to this high emission 
scenario. 

The change in climate potentially increases the streamflow of the four watersheds during the rainy (summer) and autumn seasons. 
The highest change in stream flow is expected to be observed in November in all watersheds. Due to the increment of temperature 
being very high in the winter and spring seasons, the potential evapotranspiration is likely to be increasing in the basin. Furthermore, 
rainfall is not usually common in the winter and spring seasons in the region and even the change in rainfall showed a negative change 
under most climate models. Thus, the increment of potential evapotranspiration and reduction of rainfall is likely to cause a decreasing 
of stream flow in the dry seasons. 

Generally, the study showed that future climate change is expected to potentially alter the streamflow conditions, especially in the 
two extreme flow cases of watersheds, and therefore, any water management project plans should consider the future stream flow 
dynamics caused by climate change. Finally, based on the result of this study, appropriate physical and biological soil and water 
conservation measures are highly recommended to protect against flooding, soil erosion, and sedimentation of the lake, and hydro-
logical drought in the basin. 

Fig. 14. Change in flow of watersheds in Lake Tana basin.  
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