Retrial Queues and their Application in Performance
Modelling of Communication Networks

PhD dissertation

JANOS ROSZIK

Faculty of Informatics, University of Debrecen

Debrecen, 2006

Ezen értekezést a Debreceni Egyetem Matematika- és Szamitastudomanyok Doktori Iskola
Informatikai rendszerek és halézatok programja keretében készitettem a Debreceni Egyetem
doktori (PhD) fokozatanak elnyerése céljabol.

Debrecen, 200..

Roszik Janos
jelolt

Tanusitom, hogy Roszik Janos doktorjeldlt 2003—2006 kozétt a fent megnevezett Doktori
Iskola Informatikai rendszerek és halézatok programjanak keretében irdnyitAasommal végezte
munkajat. Az értekezésben foglalt eredményekhez a jeldlt 6nallé alkotd tevékenységével
meghatéarozéan hozzajarult. Az értekezés elfogadasat javasolom.

Debrecen, 200..

Dr. Sztrik Janos
témavezéi

Acknowledgements

| would like to thank my supervisor Prof. Janos Sztrik for providing me an interesting
subject of research, as well as for his guidance and support throughout this work. | am also
grateful to Dr. Béla Almasi for his helpful discussions over the years, and to Gyodrgy Marcsek
for his valuable linguistic suggestions to the manuscript.

Contents

1 Introduction 1
| Retrial Queues 3
2 Introduction to Retrial Queues 5
2.1 A Retrial Queueing Model with Finite Number of Sources 7
2.2 A Truncated Infinite-source Retrial Queueing Model 9
3 The MOSEL Tool 13
4 Analysis of Single-server Non-reliable Finite-source Retrial Queues 15
4.1 TheM/M/1//K Model with Non-reliable Server 16
4.1.1 The Underlying MarkovChain 16
4.1.2 The MOSEL Implementation 19
4.1.3 \ValidationofResults 20
4.1.4 Numerical Examples 20
4.2 TheM/M/1//K Model with Non-reliable Server and Non-reliable Sources . 26
4.2.1 TheUnderlyingMarkovChain 26
4.2.2 ValidationofResults o oL 28
4.2.3 NumericalExamples 29
4.3 TheM /M /1//K Model with Non-reliable Server 35
4.3.1 The Underlying MarkovChain 35
4.3.2 \ValidationofResults 39
4.3.3 Numerical Examples 39
5 Analysis of Multiserver Non-reliable Finite-source Retrial Queues 45
5.1 TheM/M /c//K Model with Non-reliable Servers 46
5.1.1 The Underlying MarkovChain 46
5.1.2 \ValidationofResults 48
5.1.3 NumericalExamples 48
5.2 Comparison of Different Service Policies 52
5.2.1 \ValidationofResults oo 52

5.2.2 NumericalExamples 52

6 Retrial Queues in Random Environments 57

6.1 TheM /M /1//K Model in Random Environment 58
6.1.1 The UnderlyingMarkovChain. 58
6.1.2 \ValidationofResults 60
6.1.3 Numerical Examples o 60

Il Application of Retrial Queues in Performance Modelling of Com-

munication Networks 65
7 Retrial Queueing Models of Mobile Communication Networks 67
7.1 QualityofService e 67
7.2 Performance Analysisof GSM Lo o 68
7.2.1 Model Description 68
7.2.2 The Underlying MarkovChain 69
7.2.3 Model Conversionto MOSEL-2 71
7.2.4 NumericalExamples o 73
Il Conclusions 77
Summary 81
Osszefoglalé (Summary in Hungarian) 85
Bibliography 89
A Publications of the Author 95

B Conference Presentations 97

Chapter 1

Introduction

Performance evaluation plays an important role in the design, analysis and development of
practical systems, like computer and telecommunication systems and networks. Queueing
models are often used for the performance and reliability modelling of these systems, and
retrial queues are more and more frequently applied to certain types of them. The reason is
that the return of customers plays a special role in many of these systems as well as in other
practical applications, and it often has a non-neglectable negative effect on the performance
measures.

Another important characteristic of real-life systems is non-reliability, which also has a
negative influence on these measures, because most of the components of the systems are sub-
ject to random breakdowns and require repairs. Non-reliability has been extensively studied
for traditional queues with waiting lines, but only for infinite-source queues with returning
customers.

In the first part of the dissertation, some non-reliable finite-source retrial models and a
reliable retrial queue in random environment (which also can be applied in the performance
analysis of non-reliable systems) are analyzed. These models have not been treated in the
literature before. In the second part, a real-life system is modelled using a retrial queueing
model. A modelling way of the GSM system (Global System for Mobile Communications)
is treated with the MOSEL (Modeling, Specification and Evaluation Language) tool. This is
based on previous works of various authors and generalized with some model extensions.

Part |

Retrial Queues

Chapter 2

Introduction to Retrial Queues

Retrial queues (queueing systems with repeated attempts, or queues with returning cus-
tomers) are characterized by the following feature: a request finding all servers busy upon
arrival leaves the service area but after some (random) time repeats his demand.

Queueing models are often used for the performance analysis of computer and commu-
nication systems. In case of many real-life systems, retrial queues can be applied in the per-
formance modelling, for example, in modelling magnetic disk memory systems [44], cellular
mobile networks [56], computer networks [30], and local-area networks with non-persistent
CSMA/CD protocols [38], with star topology [32; 42], with random access protocols [33],
and with multiple-access protocols [34]. For more detailed information and results on this
type of queueing systems, see for example [13; 23; 27], and a complete survey can be found
on queueing systems without retrials in [55]. Further recent results with finite-source of pri-
mary requests can be found in [12; 14; 15; 22; 26; 29; 35; 38; 51].

In the next sections, two types of retrial queues are introduced from [27] (with some
modifications and extensions). The content of these sections in their original form can be
found in [27], on pages 268-269, 95 and 108-111. The first one is a finite-source retrial
queue, on which the analysis is based in Part I. The second one is a truncated infinite source
queue with returning customers. An extension of this model is applied in Part 1l to analyze
the GSM system.

2.1 A Retrial Queueing Model with Finite Number of
Sources

Consider a-server queueing system where primary calls are generatéd by K < oo,
sources. Each source can be in one of three states

e under service
e sending repeated calls (i.e. waiting for service)
o free

If a source is free at time (i.e. if it is not being served and is not waiting for service)
then it may generate a primary call during interiak + dt) with probability Ad.

If there is a free server at the time of arrival of a primary call then the call (or equivalently
the source which produced the call) starts to be served. During service the source cannot
generate new primary calls. After service the source moves into the free state and can generate
a new primary call.

If all servers are busy at time of arrival of a primary call, then the source starts generation
of repeated calls at exponential intervals with méan until it finds a free server, at which
time the source starts to be served. As before, after service the source becomes free and can
generate a new primary call.

The service time has an exponential distribution with a finite miean = 1 both for
primary calls and repeated calls.

The functioning of the system can be described by means of pr6€éss N (t)), where
C(t) is the number of busy servers add(¢) is the number of sources of repeated calls
(queue length) at time. Under the above assumptions procgs$t), N(¢)) is Markovian
with finite state spac® = {0,1,...,¢} x {0,1,..., K — c}. Its infinitesimal transition rates
4(ij)(nm) are given by:

lL.for0<i<c-—1

(K — i._j)A’ if (n,m)=_>G4+1,75)

i, if (n,m)=_(>—1,75)
_ ju, if (n,m)=(i+1,7—1)
AWip)nm) = (K —i— j)A
+i 4+ jv), if (n,m) = (4,5)
0 otherwise.
2. fori=c
(K —c—j)A, if (n,m)=_(c,j+1)
_ ¢, if (n,m)=_(c—1,7)
Henmm =3 (K —c—j)A+¢), if (n,m) = (c,)
0 otherwise.

Since the state space of the procé8st), N(t)) is finite, the process is ergodic for all
values of the rate of generation of new primary calls, and from now on we will assume that
the system is in the steady state.

From a practical point of view the most important characteristics of the quality of service
to subscribers are the following. (Noteo denotes the steady state in the definitions of the

performance measures.)
e Mean number of sources of repeated calls

c K-c
N = EN(c0) = ipis-
i=0 j=0
e Mean number of busy servers
c K—c
Y =EC(c0) =Y Y ipij.
i=0 j=0

e Mean rate of generation of primary calls

A= AE(K — C(00) — N(c0)) = AM(K —Y — N).
e Fraction of primary calls which were blocked (i.e. met all servers busy)
B AE(K — C(o0) — N(0); C(0) = ¢)
B AE(K — C(o0) — N(0)) '
e Mean waiting time
w="2.
A
e Mean response time
T=W+o
o
o Utilization of the sources
E(K —C(00) = N(x)) K—-N-Y _1_ N+Y
B K N K

Uso = %
e Overall utilization (i.e. the sum of the utilization of the components of the system)

Uo =Y + KUso.

2.2 A Truncated Infinite-source Retrial Queueing Model

Consider a group of fully available servers in which a Poisson flow of primary calls with
rate \ arrives.

If an arriving primary call finds some server free it immediately occupies a server and
leaves the system after service. Otherwise, if all servers are engaged, it produces a source
of repeated calls. Every such source after some delay produces repeated calls until after one
or more attempts it finds a free server, in which case the source is eliminated and the call
receives service and then leaves the system.

We assume that periods between successive retrials are exponentially distributed with
parameter, and service times are exponentially distributed with paramet&¥ithout loss
of generality we may assume that= 1. Furthermore, we suppose that interarrival periods,
retrial times and service times are mutually independent.

In this model, the orbit size (i.e. the number of sources of repeated calls) is bounded by
a given constand/. If the number of sources equald then the blocked calls are lost and
have no influence on the functioning of the system. The stochastic dynamics of the system
can be described by means of a bivariate pro¢€$8) (), NM)(t)), whereC M) (t) is the
number of busy servers amd(™) () is the number of sources of repeated calls at time
Under the above assumptions the procggs”) (t), N(M)(t)) is Markovian with the finite
lattice semi-stripS™™) = {0,1,...,¢} x {0,1,..., M} as the state space. lts infinitesimal
transition rate@éfj"g)(are given by:

nm)

lL.for0<i<c—1,0<j<M

A it (n,m) = (i +1,)
it (n,m) = (i —1,)
Gy = v, if (n,m)=(i+1,j—1)
ig)(nm) D : o
—(A+i+jv) if (n,m)=(i,75)
0 otherwise.
2.fori=¢,0<j<M-1
i (m) = (i + 1)
(M) _ c, if (n,m)=_(c—1,7)
Uei)em) =) —(A+¢), if (n,m) = (c, §)
0 otherwise.

.fori=c,j=M

¢, if(nym)=(c—1,M)
q((ivﬁ)(nm) = -6 if (n7m) = (Ca M)
0 otherwise.

Since the state space of the procés§™) (t), N(M)(t)) is finite, the process is always
ergodic. Its stationary distributionf ") = P{C(*)(t) = i, N(*)(t) = j} may be found as
a solution of the following set of linear equations:

(M)
ij

M ‘ M M
=)\pz(-_l)yj +(j+ 1)1/p§_) (M)

(A+i+jv)p i1t @+ iy,

0<i<c—1,0<j<M-1,

A+ i+ Mo)ply) = ™+ G+ 1plY
0<i1<ce—1,
(A + c)pgw))\pCM) + (j + 1)l/p£1t11)’j+1 + /\pc’j 1
(M)
CPemr :)\pc 1]\/I+>‘pzM i
which satisfies the normalizing condition
c M
M
>y =
i=1 j=0
Explicit formulas for the main performance characteristics
For generating functions
M .
pEM)(z) = Zz]pz(-j.w), 0<i<c
j=0
equations (2.1)-(2.4) become
) dpt™ (2 dpgi/[)(z)
(ot ip™ () v P 00 1 L)
0<i<ec—1,
dp™) (2
A+ e)pM (z) = XM (M) —)\p ()+V])°T1()—|—/\z(M)p
e M+1p£J]\V4)

Now introduce the generating function

Zlﬂ (]V[)

Then equations (2.6), (2.7) become:

(M)
A1 —2)p™)(z, 2) + v(z — x)apai(x,z)
z
Ap™M) (g,
o - 1)pT(“) +aaf(z — 2)pM)(2)
ng)(Z) M (M)
—l—vxc(aj—z)7+)\z z(z — 1)p.p, = 0.

10

(2.1)

2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

Differentiating this equation with respect toz, zx, xz, zz at the pointz = 1, z = 1 we get
the following equations:

/ M
yND —ABAD N 4 p(D =0,
A4 uNM) _y D) _ \pM) _)y N(M) —

&?pM(1,1) w A () ()
VT—)\NC()_VT—’_)\MPC]W :0,
2?pM(1,1) 2*pM(1,1)
AN 2 A g A\
v 022 +(1+v) 0xdz
d2pM (1) M)

AN _ pe N _ XeBM) 4 v + /\cpiM =0,

?pM, 1) 9pM(,1)

(M)) a0
AY Ty 0xdz Ox2 AcB - VCNC)
where
M
NG = ENOD (o0) = ap(1,1)
0z ’
BM) = p{cM)(x0) = ¢} = pM) (1),
M
Y M) = ECM)(0) = opD(1,1)
Ox ’
(M)
NI = BN (00); 0 (00) = ¢} = dem
z

Eliminating from these equations variables

yon P01 %MD, 1) a2t (1)
¢ 7 dxdz 022 T dz?
and taking into account that

92pM) (1,1 2
% = VarC™ (c0) + (ECW)(OO)) — EC™M) ()
we get:
YD — X — \p(h) (2.8)
o 1+vA+N-E (COD ()" A(c+1+N)1+v)+Mv o
N = -z PO (2.9)
v c— A v c— A

Equation (2.8) can be thought of as a variant of Little’s formula and represents a balance
between offered, carried and lost traffic. Equation (2.9) is much more interesting. It gives a
partial description of the dependence of the mean queue length upon the system parameters,
and reduces calculation of the mean queue length to the calculation of the characteristics of
the number of busy servers and the rate of lost traffic, which is a simpler problem.

11

12

Chapter 3

The MOSEL Tool

MOSEL (Modeling, Specification and Evaluation Language) [16] is a modelling environ-
ment with a high-level modelling language which allows us to describe complex real-world
systems and to calculate their system measures using other performance evaluation tools.
The MOSEL description can be translated automatically into the language of various perfor-
mance tools and then analyzed by the appropriate tool (at present SPNP — Stochastic Petri Net
Package and TimeNET are supported and suitable for the investigated models) to get these
measures.

Because of the fact that the state space of the underlying Markov chains of the investigated
queueing models is very large and the functioning of the systems is complex, it is quite
difficult to calculate the steady state probabilities in the traditional way of solving the system
of steady-state equations. To simplify these calculations and to make these studies more
usable in practice, the tool MOSEL was used to formulate the models and to calculate the
performance measures. With the tool, we can perform two steps in one, so we do not need to
write down and somehow solve the set of steady-state equations. The difficulty of modelling
lies in the description of the system and its behavior for the performance tool.

‘ the system to be modelled ‘

!

[description in MOSEL J

!

translatlon
| MOSES | | SPNP | TimeNET || PEPSY

SN //’"

‘ the MOSEL tool generatesresult and IGL files

Figure 3.1: The modelling process in the MOSEL environment

13

MOSEL has already been used, and it has proved its applicability for the modelling of
several computer and communication systems. For some examples about computer systems
see [5; 8; 61] and in the context of cellular systems [17; 18; 39].

The functioning and usage of MOSEL is illustrated by Figure 3.1. In the modelling pro-
cess, the user describes the system to be modelled in MOSEL, then the MOSEL description
is translated into the language of the chosen performance tool. The tool MOSEL invokes
the appropriate tool, parses its results and generates a result file containing the system mea-
sures which the user specified in the MOSEL description. If the modeler required graphical
representation of the results, an IGL (Intermediate Graphical Language) file is generated, too.

The technical details of programming can be found in [16], and in [19; 17], where the new,
revised version of MOSEL, called MOSEL-2, is introduced. Another language extensions
supporting non-Markovian distributions, that can be evaluated with the help of the tool SPNP
are provided in [59; 60].

In Part I, the original tool is used for the performance evaluation of finite-source retrial
gueueing systems. Because of page limitations, only the simplest MOSEL description was
included and discussed.

In Part Il, the GSM system is modelled with the revised modelling language and detailed
comments are provided about MOSEL-2 programming.

14

Chapter 4

Analysis of Single-server
Non-reliable Finite-source Retrial
Queues

The components of the real systems may be subject to random breakdowns (see for example
[36; 46; 57]), so itis important to investigate non-reliable queues because of limited ability of
repairs and heavy influence of the breakdowns on the performance measures of the systems
(see [3; 9; 53]). Besides this, the analysis of non-reliable retrial queues (where the sources
and the server may be subject to random breakdowns and repairs) is also important. For
related literature the reader is referred to the works [11; 1; 37; 58] where infinite-source
non-reliable retrial queues are treated.

In this chapter finite-source non-reliable retrial queues are investigated. The purpose is
to give the main stationary performance and reliability measures of the non-reliable models
described in the next sections, and to illustrate graphically the effect of changing various
parameters on them. Section 4.1 is devoted to the model described in [27] with server subject
to breakdowns and repairs. In Section 4.2, this is extended with non-reliable sources, and in
Section 4.3 with reliable but heterogeneous sources. These models were published in [J1;
J3; J4].

Note: Because of the fact that these sections contain the main parts of different papers

from the author, the reader will find some similarities between them, as well as in Chapter 5
and Chapter 6.

15

4.1 TheM/M/1//K Model with Non-reliable Server

Consider a single server queueing system, where the primary calls are generated by

1 < K < oo homogeneous sources. The server can be in operational (up) or non-operational
(down) states, and it can be idle or busy. If the server is idle and up, it can serve the calls
of the sources. Each of the sources can be in three states: free, sending repeated calls and
under service. If a source is free at timét can generate a primary call during interval

(t,t + dt) with probability A\dt + o(dt). If the server is free at the time of arrival of a call

then the call starts to be served immediately, the source moves into the under service state
and the server moves into busy state. The service is finished during the ir{terval dt)

with probability udt + o(dt) if the server is available. If the server is busy, then the source
starts generation of a Poisson flow of repeated calls withuratetil it finds the server free.

After service the source becomes free, and it can generate a new primary call, and the server
becomes idle so it can serve a new call. The server can fail during the intervat dt)

with probability ddt + o(dt) if it is idle, and with probabilityydt + o(dt) if it is busy. If

0 =0,v>0o0r§ =+ > 0 active or independent breakdoweoan be discussed, respectively.

If the server fails in busy state, it eitheontinues servicinghe interrupted call after it has

been repaired or the interrupted requestirns to the orbifi.e. the source starts generation

of repeated calls). The repair time is exponentially distributed with a finite rhéanlf the

server is failed two different cases can be treated. Narbklgked sourcesase when all the
operations are stopped, that is neither new primary calls nor repeated calls are generated. In
theunblocked (intelligent) source&mse only service is interrupted but all the other operations
are continued (new and repeated calls can be generated). All the times involved in the model
are assumed to be mutually independent of each other.

This model is another extension of investigations for homogeneous finite-source
gueueing systems without retrials but with server’s breakdowns which were treated in [53].
Similarly, it generalizes the results of [27] where homogeneous systems with reliable servers
were analyzed. As it can be seen, this system is more complicated than in the reliable
case, since it involves two types of failures, continued or repeated service and blocked or
unblocked operations during breakdowns.

In the next subsection the full description of the model by the help of the corresponding
multi-component Markov chain is given. Then, the main performance and reliability mea-
sures of the system are derived that can be obtained using the MOSEL tool. Finally, the
validation of the results and several humerical examples are presented and some comments
are made.

4.1.1 The Underlying Markov Chain

The system state at timecan be described with the proce&st) = (Y'(¢); C(t); N(t)),
whereY (t) = 0 if the server is upY (t) = 1 if the server is failed(C'(¢) = 0 if the server

is idle, C'(t) = 1 if the server is busy and/(t) is the number of sources of repeated calls

at timet. Because of the exponentiality of the involved random variables this process is a
Markov chain with a finite state space. Since the state space of the p(dc@sst > 0) is

finite, the process is ergodic for all values of the rate of generation of primary calls, and from
now on we will assume that the system is in the steady state.

16

We define the stationary probabilities as follows:

Plq,r,3) = Jim P(Y(t) = 4,C(t) = 7, N(t) = j),
g=0,1, r=0,1, j=0,..,K"*, where

K= K-1 for blocked casg
| K —r forunblocked case

Based on the following state transition diagram (which belongs to the simplest case, i.e.
the request under service returns to the orbit in case of server breakdowns, and neither new
primary calls nor repeated calls are generated during server failure)

(K- m (K 2)>\ (K 3 0 A
(0,10 (011] —~[012] —=(0,1,K-2]—=[0,1,K-1
(K— (K—l)v
KA\ (K—\ (K-\
[000 (0,01) \ (002] (0,0,k-2) \ [0,0,K-1]
6"1 ¥ E')HT ¥ SHT ¥
(Lo0] [1o1] [102] (L,0,K-2] (1,0,K-1]

the stationary probabilities can be found as a solution of the following set of steady state
equations:

(K =1)A4u+~)P(0,1,0) =vP(0,0,1) + KAP(0,0,0)
(K—i—DA+p+~)P(0,1,i) = (K —i)AP(0,1,: — 1) + 4w P(0,0,i+ 1)
+ (K —49)AP(0,0,7), i=1,... K —1
(K —i)A+d+4v)P(0,0,i) = pP(0,1,i) + 7P(1,0,4), i =0,...K — 1
TP(1,0,0) = 4P(0,0,0)
7P(1,0,7) = dP(0,0,i) + vP(0,1,i — 1), i=1,... K —1
which satisfies the normalizing condition

1 K-1 K-1
P(0,r,5)+ > P(1,0,5) = 1.
r=0 j=0 j=0

Knowing the stationary probabilities the main performance measures can be obtained as fol-
lows:

o Utilization of the server

K-
Z (0,1, 7).

Utilization of the repairman

Availability of the server

1 K*
Ag :ZZP(O,r,j) =1-Ug.

r=0 j=0
Mean number of sources of repeated calls

1 K~

N =E[N(c0)] = >3 "> " jP(g,r]).

q=0r=0 j=0

Mean number of calls staying in the orbit or in service

1
o
=
2
+
Q
2

I
=
+
i
=
c

M

Utilization of the sources

o KM Ag for blocked case
50~ for unblocked case

Overall utilization

Upo =Ug + KUgo + Ug.

Mean rate of generation of primary calls

(00); Y (00) = 0], for blocked casg

(00)], for unblocked case

5 _ | ABIK = C(o0) -
| AE[K — C(c0) —

Blocking probability of a primary call

AB[K —C(00) =N (20);¥ (00)=0;C(c0)=1] for blocked case
A b
B =
)\E[K—C(oo)—iV(oo);C(oo)zl]

S for unblocked case

Mean response time

E[T] = M/X.

18

e Mean waiting time

E[W] = N/X.

To simplify this procedure and to make our study more usable in practice, we use the soft-
ware tool MOSEL to formulate the model and to calculate the main performance measures.

4.1.2 The MOSEL Implementation

In this subsection the base MOSEL program and the explanation of its main parts are intro-
duced without the technical details of programming. This program belongs to the case of
continued service after server’s repair and requests’ generation is blocked during the server
repairing. It does not contain the picture section, which is needed to generate various graph-
ical representations of the measures. The figures in the next section are automatically gener-
ated by the tool with the corresponding picture part. In the MOSEL program the following
terminology is used: The server and the sources are referred to as a CPU and terminals,
respectively.

I* Declarations------ */
#define NT 3

VAR double prgen;

VAR double prretr;

VAR double prrun;

VAR double cpubreak_idle;

VAR double cpubreak_busy;

VAR double cpurepair;

enum cpu_states {cpu_busy, cpu_idle};

enum cpu_updown {cpu_up, cpu_down},

* Nodes ------ */
NODE busy_terminals[NT] = NT;

NODE retrying_terminals[NT] = 0;
NODE waiting_terminals[1] = O;
NODE cpu_state[cpu_states] = cpu_idle;

NODE cpu[cpu_updown] = cpu_up;
I* Transitions ------ */
IF cpu==cpu_up FROM cpu_idle, busy_terminals

TO cpu_busy, waiting_terminals W prgen*busy_terminals;
IF cpu==cpu_up AND cpu_state==cpu_busy FROM busy_terminals

TO retrying_terminals W prgen*busy_terminals;
IF cpu==cpu_up FROM cpu_idle, retrying_terminals

TO cpu_busy, waiting_terminals W prretr*retrying_terminals;
IF cpu==cpu_up FROM cpu_busy, waiting_terminals

TO cpu_idle, busy_terminals W prrun;
IF cpu_state==cpu_idle FROM cpu_up TO cpu_down W cpubreak_idle;
IF cpu_state==cpu_busy FROM cpu_up TO cpu_down W cpubreak_busy;
FROM cpu_down TO cpu_up W cpurepair;
I* Results ------ */
RESULT>> if(cpu==cpu_up AND cpu_state==cpu_busy) cpuutil += PROB;
RESULT>> if(cpu==cpu_up) goodcpu += PROB;
RESULT if(cpu==cpu_up) busyterm += (PROB*busy_terminals);
RESULT>> termutil = busyterm / NT;
RESULT>> if(cpu==cpu_up) retravg += (PROB*retrying_terminals);
RESULT if(waiting_terminals>0) waitall += (PROB*waiting_terminals);
RESULT if(retrying_terminals>0O)retrall += (PROB*retrying_terminals);
RESULT>> resptime = (retrall + waitall) / NT / (prgen * termutil);
RESULT>> overallutil = cpuutil + busyterm + (1 - goodcpu);

19

In thedeclarations partve define the number of terminal®d ("), this is the only program
code line that must be modified when modelling larger systems. The terminals have three
states: busy (primary call generation), retrying (repeated call generation) and waiting (job
service at the CPU). The CPU has two states: idle and busy, and it can be up or failed in both
states. We define the three parameters for the termipaig:n denotes the rate of primary
call generationprretr references to the rate of repeated call generatiorpandn denotes
the service rate. Thepubreak_idle, cpubreak_busy and cpurepair variables denote the
failure rate in the two CPU states and the repair rate.

Thenodes pardefines the nodes of the system. Our queueing network contains 5 nodes:
one node for the number of busy, retrying and waiting terminals, respectively, and two nodes
for the CPU. The CPU is idle and up and all the terminals are busy at the starting time.

Thetransitions partdescribes how the system works. The first transition rule defines the
successful primary call generation: the CPU moves from the idle state to busy and the ter-
minal from busy to waiting. The second rule shows an unsuccessful primary call generation:
if the CPU is busy when the call is generated then the terminal moves to state retrying. The
third rule handles the case of a successful repeated call generation: the CPU moves from the
idle state to busy and the terminal from retrying to waiting. The fourth rule describes the
request service at the CPU. The fifth and sixth rules describe the CPU fail in idle and busy
state. The last rule shows the CPU repair.

Finally, theresults partcalculates the requested output performance measures.

4.1.3 Validation of Results

The results in the reliable case (with very low failure rate and very high repair rate) were
validated by the (a little modified) Pascal program for the reliable case given in [27], on
pages 272-274. See Table 4.1 for some test results.

In Table 4.2 the results were tested by the help of non-reliable FIFO (First In First Out)
model, since if the retrial rate in the repeated calls model tends to infinity, the measures should
approach the corresponding ones in FIFO discipline. The derived results are the same up to
the 6th decimal digit.

non-rel. retr. (cont.)] non-rel. retr. (orbit)| reliable [27]
Number of sources: 5 5 5
Request’s generation rate: 0.2 0.2 0.2
Service rate: 1 1 1
Retrial rate: 0.3 0.3 0.3
Utilization of the server: 0.5394868123 0.5394867440 | 0.5394867746
Mean response time: 4.2680691205 4.2680667075 | 4.2680677918

Table 4.1: Validations in the reliable case

4.1.4 Numerical Examples

In this subsection some sample numerical results are considered to illustrate graphically the
influence of the non-reliable server on the mean responsefiffit and on the overall uti-
lization of the system.

20

non-rel. retr. (cont.)] non-rel. retr. (orbit)| non-rel. FIFO
Number of sources: 3 3 3
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1
Retrial rate: le+25 le+25 -
Server's failure rate: 0.01 0.01 0.01
Server's repair rate: 0.05 0.05 0.05
Utilization of the server: 0.2232796561 0.2232796553 | 0.2232796452
Mean response time: 1.4360656331 1.4360656261 | 1.4360655471

Table 4.2: Validations in the non-reliable case

In the first 3 cases the independent breakdowns are treated, then in the next 3 cases the
state dependent and independent ones are considered. In each case different comparisons are
made according to the breakdowfuependent, independengervice continuatiofcontin-
ued, repeatedland system operatiorfslocked, unblocked)

In the last 4 figures, the independent failure case is considered and different comparisons
are made according to service continuation and system operations.

The tool SPNP was used which was able to handle the model with up to 126 sources. In
this case, on a computer containing a 950 MHz processor and 512 MB RAM, the running
time was approximately 1 second.

K A 1 v 0 y T
Figure4.1 | 6 | x axis 4 0.4 0.05 0.05| 0.1
Figure4.2 | 6 5 10 | xaxis 0.05 0.05| 0.1
Figure4.3 | 6 0.1 | xaxis| 04 0.05 0.05| 0.1
Figure4.4 | 6 | x axis 4 0.4 | 0.005(0.05)| 0.05| 0.1
Figure4.5 | 6 5 10 | xaxis | 0.005(0.05)| 0.05| 0.1
Figure4.6 | 6 | 0.1 | xaxis| 0.4 | 0.005(0.05)| 0.05| 0.1
Figure4.7 | 6 0.8 4 0.5 X axis 0.1
Figure4.8 | 6 0.1 0.5 0.5 X axis 0.1
Figure4.9 | 6 | 0.8 4 0.5 0.05 0.05 | x axis
Figure 4.10| 6 | 0.05 0.3 0.2 0.05 0.05 | x axis
Table 4.3: System input parameters
Comments

e In Figures 4.1-4.3 we can see the mean response Hifii¢ for the reliable and the
non-reliable retrial systems with continuous, non-continuous service after repair, with
blocked and unblocked operations during service failure when the primary request gen-
eration rate, retrial rate and service rate increase. In these cases, the server’s failure
rate is independent of the state of the server. Figure 4.1 demonstrates a surprising phe-

21

Mean response time

Legend
~ reliable server

44 ™ non-reliable server
3.6 ".ﬂm—‘ (continuous)
32 —© non-reliable server
(non-continuous)
2.8 — non-reliable server
2.4+ (continuous,
2] intelligent)
1.6 —* non-reliable server
(non-continuous,
1.2 intelligent)
0.8
0.4 Req.
0 T T T T T T T T ol
0 06 12 18 24 3 36 42 48 54 6 rate

Figure 4.1:E[T] versus primary request generation rate

. Legend
Mean response time ~H reliable server
2.7+ ™ non-reliable server
2.4 oy (continuous)
~ non-reliable server
2.1+ (non-continuous)
1.8 — non-reliable server
(continuous,
159 = | i intelligent)
1.2 D\D\D\M —® non-reliable server
0.9 | | | | [] (non-continuous,
intelligent)
0.6 T
0.3
0 T T T T T T T T T Retr'
0 01 02 03 04 05 06 07 08 09 rate

Figure 4.2:F[T] versus retrial rate

. Legend
Mean response time —# reliable server
90 ~ non-reliable server
81 (continuous)
72 — non-reliable server
(non-continuous)
63+ ~ non-reliable server
544 (continuous,
45| intelligent)
36 —® non-reliable server
(non-continuous,
27+ intelligent)
18
9|
0 T T T T T T T T] Serv.

0 01

rate

Figure 4.3:E[T'] versus service rate

22

Mean response time

T
Legend
P reliable server

44 ~ non-reliable server
3.6 (continuous)
32 M\ —© non-reliable server
(continuous, breakdown|
2.8+ is dependent on server's
2.4 state)
2 ™ non-reliable server
(continuous, intelligent)
1.6 —® non-reliable server
1.2 (continuous, intelligent,
0.8 breakdown is dependent]
on server's state
0.4) Req.
0 T T T T T T T T T avil.
0 06 12 18 24 3 36 42 48 54 6 rate

Figure 4.4:E[T] versus primary request generation rate

. Legend
Mean response time —8 Leliable server
2.7+ ™ non-reliable server
2.4 (continuous)
— non-reliable server
2.1+ (continuous, breakdown is|
1.8 dependent on server's
state)
1.5 —_ .
non-reliable server
1.2 (continuous, intelligent)
0.9 ~® non-reliable server
(continuous, intelligent,
0.6 breakdown is dependent
03 on server's state)
0 T T T T T T T T T faett:"
0 01 02 03 04 05 06 07 08 09

Figure 4.5:F[T] versus retrial rate

. Legend
Mean response time —8 Lcliable server
90 - ~ non-reliable server
81 (continuous)
72 — non-reliable server
(continuous, breakdown is
63 dependent on server's
54 state)
45 | ™ non-reliable server
(continuous, intelligent)
36 ~® non-reliable server
27 (continuous, intelligent,
18 breakdown is dependent
9 on server's state)
0 T T T T T T T T T Serv.
0 01 02 03 04 05 06 07 08 09 1 "¢

Figure 4.6:E[T'] versus service rate

23

Mean response time

Legend
P reliable server

6 ™ non-reliable server
5.4 (continuous)
48| —© non-reliable server
(non-continuous)
4.2+ ~ non-reliable server
3.6 (continuous, intelligent)
3 ~° non-reliable server
2.4 (non-continuous,
. intelligent)
1.8+
1.2
0.6 Serv.'s
0 T T T T T T T T T failure
0 002 004 006 008 0.1 0.12 0.14 0.16 0.18 0.2 rate

Figure 4.7:E[T] versus server’s failure rate

Overall utilization

Legend

9 reliable server
—

non-reliable server

(continuous)

~© non-reliable server

(non-continuous)

— non-reliable server
(continuous,
intelligent)

—* non-reliable server

(non-continuous,

1.5
intelligent)
14 T T
0.5 Serv.'s|
0 T T T T T T T T —failure|
0 002 004 006 008 0.1 0.12 0.14 016 0.18 0.2 rate

Figure 4.8:Up versus server’s failure rate

Mean response time

Legend
& reliable server

54 ~ non-reliable server|
4.5 (continuous)
4 ~ non-reliable server|
(non-continuous)
3.51 ™ non-reliable server|
3 (continuous,
2.5 intelligent)
2 —® non-reliable server|
(non-continuous,
1.5+ intelligent)
1 -
0.5 Serv.'s
0 T T T T T T T T T I cpair
0 005 01 015 02 025 03 035 04 045 0.5 rate

Figure 4.9:E[T] versus server's repair rate

24

Legend

Overall utilization —a
reliable server

4.5 B | P on-reliable server
4 (continuous)

~ non-reliable server

3.5

(non-continuous)

3 ™ non-reliable server
(continuous,
2.5+ intelligent)
24 1 1 i H T T i —® non-reliable server
1.5 (non-continuous,
intelligent)

1

0.5 Serv.'s|

0

T T T T T T T T T T—repair
0 005 01 015 02 025 03 035 04 045 0.5 rate

Figure 4.10:U, versus server’s repair rate

nomenon of retrial queues having a maximun®df’] which was noticed in [25], too.

The difference between continuous, non-continuous service, moreover blocked, un-
blocked systems’ operations is clearly shown. However, if the retrial rate increases the
continuous and non-continuous service result in the same measure, as it was expected.

In Figures 4.4-4.6 the mean response tiffj&"] is displayed with continuous service

after repair but the server’s failure rate depends on its state. The system operation is
either blocked or unblocked. In Figure 4.4 we can see that the curves of independent
failure with blocked operations and dependent failures with unblocked operations in-
tersect each other. In each case the difference between the independent and dependent
failures is clearly demonstrated.

In Figure 4.7, we can see that when the request returns to the orbit at the breakdown of

the server, the sources will have always longer response times. Although the difference

is not considerable it increases as the failure rate increases. The almost linear increase
in E[T] can be explained as follows. In the blocked (non-intelligent) case the failure

of the server blocks all the operations and the response time is the sum of the down

time of the server, the service and repeated call generation time of the request (which

does not change during the failure) thus the failure has a linear effect on this measure.

In the intelligent case the only difference is that the sources send repeated calls during

the server is unavailable, so this is not an additional time.

In Figure 4.8 and Figure 4.10 it is shown how much the overall utilization is higher in
the intelligent case with the given parameters. It is clear that the continued cases have
better utilizations, because a request will be at the server when it has been repaired.

In Figure 4.9, we can see that if the request returns to the orbit at the breakdown of the
server, the sources will have longer response times like in Figure 4.7. The difference is
not considerable too, and as it was expected, the curves converge to the reliable case.

25

4.2 TheM/M/1//K Model with Non-reliable Server and
Non-reliable Sources

Consider a finite-source single server retrial queueing system, where the primary calls are
generated by(, 1 < K < oo homogeneous sources. The server can be in operational or
non-operational states, and it can be idle or busy. Each of the sources can be in four states:
generating a primary call (free), sending repeated calls, under service and failed. If a source
is free at timet it can generate a primary call during interv@al ¢t + dt) with probability
Adt + o(dt). If the server is up and idle at the time of the arrival of a call then the call
starts to be served immediately, the source moves into the under service state and the server
moves into busy state. The service is finished during the intétyak dt) with probability
pdt + o(dt) if the server is available.

The server can fail during the interv@al ¢ + dt) with probability ddt + o(dt) if it is idle,
and with probabilityydt + o(dt) if it is busy. Like in the previous section, we treat four types
of the model. If the server fails in busy state, it eitl@ntinues servicinghe interrupted
call after it has been repaired or the interrupted reqreatns to the orbit The repair time
of the server is exponentially distributed with a finite médm. If the server is failed, two
different cases can be treated. Namdilpcked sourcesase when all the operations are
stopped expect from the repair of the server. Inthblocked (intelligent) sourcesse only
service is interrupted but all the other operations are continued.

If the server is busy (or failed in the unblocked case) at the time of the arrival of a call then
the source starts generation of a Poisson flow of repeated calls with et it finds the
server free and up. After service the source becomes free, and it can generate a new primary
call, and the server becomes idle so it can serve a new call.

Sources can be non-operational only in free state. If a source is free at itirven fail
during the intervalt, t 4 dt) with probabilityndt + o(dt) and then it moves to the repairman
who follows FIFO discipline for the source breakdowns and gives preemptive priority to the
server failure. The repair time of the sources is exponentially distributed with a finite mean
1/k. All the times involved in the model are assumed to be mutually independent of each
other.

4.2.1 The Underlying Markov Chain

The system state at timet can be described with the procesX(t) =
(Y(t);C(t); N(t); Z(t)), whereY (t) = 0 if the server is up,Y (t) = 1 if the server
is failed,C(t) = 0 if the server is idle(’(t) = 1 if the server is busyN (¢) is the number of
sources of repeated calls aadt) is the number of failed sources at timeBecause of the
exponentiality of the involved random variables this process is a Markov—chain with a finite
state space.

Since the state space of the procéXqt),t > 0) is finite, the process is ergodic for
all values of the rate of generation of primary calls. From now on we will assume that the
system is in the steady state.

We define the stationary probabilities:

P(g;r:jiK) = Jim P(Y(t) = q,C(t) =, N(t) = J, Z(t) =),

26

q=0,1, r=0,1, 7=0,...,K k=0,...K —r—j, where

K= K-1 for blocked casg
~)|K —r forunblocked case

To obtain the system performance and reliability measures the tool MOSEL is used
to get the state probabilities in the equilibrium. Once we have obtained the steady state
probabilities, the main system performance measures can be derived in the following way:

o Availability of the server

i
o
~
Il
o
£
I
S

Mean number of sources of repeated calls

N=EN(o)] =337 iP(qr,j. k).

q=0r=0

<.

i
<)
x>

Il
=]

Mean number of calls staying in the orbit or in service
1
M = E[N(c0) + C(c0)] = N+ Y

Mean number of operational sources

1 K" K—r—j

No=K - ZZZ > kP(grjk)

q=07r=0j=0 k=1

o Utilization of the server

K-1K—-1-j

> P(0,1,5,k)
j=0 k=0
o Utilization of the repairman

1 K" K—r—j —7
Un=Y_Y"Y P(O,rjk +ZZ Z P(1,7,5,k).

r=0j=0 k=1

Utilization of the sources

K

- No=M 4y for blocked case
S0 w for unblocked case

27

e Overall utilization

Uo =Us+ KUso + Ug.

Mean rate of generation of primary calls

B N(o0) — Z(0);Y (00) = 0] for blocked casge
| AE[K — C(c0) — N(o0) — Z(0)] for unblocked case

N {)\E[K — C(0) —

Blocking probability of a primary call

AB[K —C/(00) = N (00) = Z(00);Y (00)=0:C(c0)=1]
A

for blocked casge
B =
AE[K —C(00) =N (00)=Z(20);C(00)=1]

< for unblocked case

Mean response time

Mean waiting time

4.2.2 Validation of Results

The results in the reliable case were validated by the Pascal program given in [27]. In the case
of server’s breakdowns and reliable sources the program was tested by the results of [10].

In Table 4.4 some test results are collected when the retrial rates are quite large. The cor-
responding performance measures should be very close to each other in the case of continued
service, restarted repeated call generation after server failure (abbreviated by orbit) and the
FIFO discipline which was studied in [5]. As we can see, the results confirm our expectation,
the derived results are the same up to the 6th decimal digit.

28

non-rel. retr. (cont.)] non-rel. retr. (orbit)| non-rel. FIFO

Number of sources: 3 3 3
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1

Retrial rate: le+25 le+25 -
Server's failure rate: 0.02 0.02 0.02
Server's repair rate: 0.05 0.05 0.05
Sources’ failure rate: 0.03 0.03 0.03
Sources’ repair rate: 0.05 0.05 0.05
Utilization of the server: 0.0965679029 0.0965679117 | 0.0965678743
Mean response time: 1.5546014407 1.5546014565 | 1.5546013953

Table 4.4: Validations

4.2.3 Numerical Examples

In this subsection some sample numerical results are treated to illustrate graphically the
influence of the non-reliable server and sources on the mean responsg|flipeon the

mean number of requests staying at the service facility (in the orbit and at the server), on
the overall system utilization, on the mean number of sources of repeated calls and on the
mean number of operational sources. The system input parameters of the following figures
are collected in Table 4.5.

K A ,u v 1) ~y T N K

Figure4.11| 5 | xaxis| 4.5 0.5 0.05 | 0.05 [0.1 | 0.06 | 0.15

Figure 4.12| 5 5 10 | xaxis| 0.05 | 0.05 | 0.1 | 0.06 | 0.15

Figure 4.13| 5 0.1 | xaxis| 0.4 005 | 0.05 | 01| 0.06 | 0.15

Figure 4.14| 5 | xaxis | 4.5 0.5 | 0.005| 0.05 | 0.1| 0.06 | 0.15
(0.05)

Figure 4.15| 5 5 10 | xaxis| 0.005| 0.05 | 0.1 | 0.06 | 0.15
(0.05)

Figure4.16| 5| 0.1 | xaxis| 0.4 | 0.005| 0.05 | 0.1 | 0.06 | 0.15
(0.05)

Figure4.17| 5 | 0.8 4.5 0.5 0.05 | xaxis | 0.1 | 0.06 | 0.15

Figure 4.18| 5 0.1 05 | xaxis| 0.05 | 0.05 | 0.1 | 0.06 | 0.15

Figure4.19| 5 | 0.1 0.5 | xaxis| 0.05 | 0.05 | 0.1| 0.06 | 0.15

Figure 4.20| 5 | 0.8 45 | x05 | 0.05 | 0.05 | 0.1 xaxis| 0.15

Table 4.5: System input parameters

29

Legend

Mean response time 9 reliable server and

3 sources
— .
2.7 non-reliable server and
sources (continuous)
2.4 — .
non-reliable server and
2.1+ sources (non-continuous)
1.8+ ~ non-reliable server and
1.5 sources (continuous,
intelligent)
1.2 — .
non-reliable server and
0.9 sources (non-continuous,
0.6 intelligent)
0.3 Req.
0 T T T T T T T T T ol

0 06 12 18 24 3 36 42 48 54 6 rate

Figure 4.11:E[T] versus primary request generation rate

. Legend
Mean response time ~H reliable server and
3 sources
2.7 — non-reliable server and
sources (continuous)
2.4 — .
non-reliable server and
2.1+ sources (non-continuous)
1.8+ — non-reliable server and
1.5 sources (continuous,
intelligent)
127 —® non-reliable server and
0.9 sources (non-continuous,
0.6 intelligent)
03
0 T T T T T T T T Il:letter'
0 01 02 03 04 05 06 07 08 09

Figure 4.12:F[T] versus retrial rate

. Legend
Mean response time P reliable server and sources
424 ~ non-reliable server and
sources (continuous)
36+ ~ non-reliable server and
sources (non-continuous)
30 ™ non-reliable server and
24 Ii 3 sources (continuous,
intelligent)
18- —® non-reliable server and
sources (non-continuous,
12 intelligent)
6 3
y Serv.
0 T T T T T T T T
0 01 02 03 04 05 06 07 08 09 rate

Figure 4.13:E[T] versus service rate

30

Mean response time

Legend
—a
reliable server and sources

34 ~ non-reliable server and sources|
2.7 (continuous)
2.4 \“‘r‘(A ~ non-reliable server and sources
(continuous, server breakdown
2.1+ //A/W is dependent on server's state)
1.8+ ~ non-reliable server and sources|
1.5 (continuous, intelligent)
12 —® non-reliable server and sources|
(continuous, intelligent, server
0.9 breakdown is dependent on
0.6, server's state)
g
0.3 Req.
0 T T T T T T T T—gen.
0 06 12 18 24 3 36 42 48 54 6 rate

Figure 4.14:E[T] versus primary request generation rate

. Legend
Mean response time ~F reliable server and sources
24+ ™ non-reliable server and sources|
(continuous)
2.1 —)
non-reliable server and sources
1.8 (continuous, server breakdown
is dependent on server's state)
154 ~ non-reliable server and sources|
1.2 (continuous, intelligent)

—® non-reliable server and sources
0.9+ (continuous, intelligent, server
0.6 breakdown is dependent on

server's state)
0.3
0 T T T T T T T T T T faett:"
0 01 02 03 04 05 06 07 08 09

Figure 4.15:E[T] versus retrial rate

Mean response time

Legend
—_
reliable server and sources

42 ~ non-reliable server and sources|
(continuous)
36 ~© non-reliable server and sources|
(continuous, server breakdown
304 is dependent on server's state)
24 ~ non-reliable server and sources|
(continuous, intelligent)
18 4 —® non-reliable server and sources
(continuous, intelligent, server
124 breakdown is dependent on
server's state)
6
0 T T T T T T T T T T Serv.
0 01 02 03 04 05 06 07 08 09 1 "¢

Figure 4.16:E[T] versus service rate

31

Legend

Mean response time — .
P non-reliable server and

20+ sources (continuous)
18 ~ non-reliable server and
reliable sources
16 .
(continuous)
14+ ~ non-reliable server and
124 sources (continuous,
10 intelligent)
~® non-reliable server and
8- .
reliable sources
6 (continuous, intelligent)
4
24 Serv.'s
0 T T T T T T T T failure

0 02 04 06 08 1 1.2 14 16 18 2 rate

Figure 4.17:E[T versus server failure rate in busy state

Legend
Mean number of requests “reliable server and sources
44 ™ non-reliable server and
3.6 reliable sources (continuous)
32 —® non-reliable server and
reliable sources (continuous,
2.8+ intelligent)
2.4+ ~ non-reliable server and
2 sources (continuous)
1.6 — non-reliable server and
sources (continuous,
1.2+ intelligent)
0.8
0.4
0 T T T T T T T T Retr.
0 01 02 03 04 05 06 07 08 09 1 "

Figure 4.18: Mean number of requests staying in the orbit or in service versus retrial rate

Legend
Overall system utilization —0 reliable server and sources
44 ~ non-reliable server and
3.6 reliable sources
(continuous)
3.2 —e)
non-reliable server and
2.8+ reliable sources
2.4 (continuous, intelligent)
2 ™ non-reliable server and
sources (continuous)
161 —° non-reliable server and
1.2+ sources (continuous,
0.8 intelligent)
0.4
0 T T T T T T T T T Retr.
0 01 02 03 04 05 06 07 08 09 1 "M

Figure 4.19: Overall system utilization versus retrial rate

32

System measure

3.6

3.2+ ‘
2.8

ILegend
—a . .
mean response time (continuous,
intelligent)
Y mean response time (continuous)

* mean number of sources of

2.4

2
1.6
1.2+

repeated calls (continuous,
intelligent)

~ mean number of sources of
repeated calls (continuous)

~—® mean number of operational
sources (continuous, intelligent)

° mean number of operational

0.8+ sources (continuous)
0.4 Souw.'s
0 \ \ : —failure
0 . X X . 1.2 14 16 18 2 rate

Figure 4.20: System measures versus source failure rate

Comments

In Figures 4.11-4.13 we can see the mean responseAiffiE for the reliable and

the non-reliable retrial system with continuous and non-continuous service after repair,
with blocked and unblocked operations during server failure when the primary request
generation rate, retrial rate and service rate increase. In these cases, the server’s failure
rate is independent of the state of the server. In Figures 4.14-4.16 the mean response
time E[T] is displayed with continuous service after repair but the server’s failure
rate depends on its state. The difference between continuous, non-continuous service,
moreover blocked, unblocked (intelligent) systems’ operations is clearly shown. How-
ever, if the retrial rate increases the continuous and non-continuous service cases result
in the same measure, as it was expected, see Figure 4.12.

In Figure 4.17 the effect of the server’s failure is displayed in the continuous cases.
The almost linear increase iR[7] in each case is because the response time is the
sum of the down time of the server, the service and repeated call generation time of the
request (which do not change during the failure) thus the failure has a linear effect on
this measure.

In Figure 4.18 the effect of the retrial rate on the mean number of requests staying
in the orbit or in service is pictured. It is worth pointing out that the values for the
reliable case and the blocked case with reliable sources coincide. However, it is not so
surprising since during the failure the number of requests remain the same.

In Figure 4.19 we can see the effect of the retrial rate on the overall system utilization.
At the beginning the overall system utilizations are larger for the continuous than the
non-continuous cases, then it changes and the difference increases as the retrial rate
increases.

In Figure 4.20 the effect of the sources’ failure rate is displayed on the mean response
time, on the mean number of sources of repeated calls and on the mean number of
operational sources. There is a very slight difference between the continuous and non-
continuous cases for the mean number of operational sources, and the mean response

33

time decreases as the failure rate increases, that is, the mean number of operational
sources decreases.

34

4.3 ThelM /M/1//K Model with Non-reliable Server

In this section single server finite-source queueing systems with the following assumptions
are investigated. The primary calls are generate&by < K < oo heterogeneous sources.

The server can be in operational or non-operational states, and it can be idle or busy. Ifitis
idle and up, it can serve the calls of the sources. Each of the sources can be in three states:
generating a primary call (free), sending repeated calls and under service. The i-th source can
generate a primary call during interval ¢ + dt) with probability \;dt + o(dt). If the server

is idle and up at the time of arrival of a call then the call starts to be served immediately, the
source moves into the under service state and the server moves into busy state. The service is
finished during the intervdl, t + dt) with probability ui;dt + o(dt) if the server is available

(up). If the server is busy, then the source starts generating a Poisson flow of repeated calls
with ratev; until it finds the server idle. After service the source can generate a new primary
call, and the server becomes idle so it can serve a new call. The server can fail during the
interval (¢, t 4 dt) with probability dd¢ + o(dt) if it is idle, and with probabilityydt + o(dt)

if it is busy. If the server fails in busy state, it eith@ntinues servicinghe interrupted call

after it has been repaired or the interrupted reqtegsirns to the orbit The repair time is
exponentially distributed with a finite mearir. If the server is failed two different cases can

be treated. Namelylocked sourcesase when all the operations are stopped, that is no new
primary and repeated calls are generated. Inuthilocked (intelligent) sourcesase only
service is interrupted but all the other operations are continued (new and repeated calls can
be generated). All the times involved in the model are assumed to be mutually independent
of each other.

This model generalizes the results of [27] where homogeneous systems with reliable
servers were dealt with. Similarly, it is another extension of investigations for heteroge-
neous finite-source queueing systems without retrials but with server's breakdowns which
were treated in [54]. Finally, it can be considered as the natural continuation of [8] in which
reliable heterogeneous finite-source retrial systems were analyzed.

4.3.1 The Underlying Markov Chain

Because of the exponentiality of the involved random variables the following process will be
a Markov chain. The state of the system at tihwan be described by the process

X(t) = ((Y(1); acwy; Brs - Bney)st = 0)

whereY (t) = 0 if the server is upY (¢t) = 1 if the server is down{'(t) = 0 if the server
is idle, C(t) = 1 if the server is busy, and¢ ;) is the index of the request under service at
timet if the server is busy. LeV (¢) be the number of sources of repeated calls at tiraed
because of the heterogeneity of the sources we need to identify their indices that are denoted
by 8;,j =1,..., N(t) if there is a customer in the orbit, otherwise the third componet is

Since its state space is finite the procé€ig¢),t > 0) is ergodic for all values of the
rate of generation of new primary calls, and from now on we assume that the system is in the
steady state.

We define the stationary probabilities

35

P(g;0;0) = lim P(Y(t) = ¢;C(t) = 0;N() = 0), ¢=0,1

P(g;5;0) = lim P(Y(t) = g;00 = j; N(t) = 0),
q:0717 j:17"'7K7

g=0,1, k=1, K"

P(q;j5i1, i) = lim P(Y(t) = ¢y a1 = j; 81 = i1, ., B = i),

t—oo

¢=0,1, k=1,.,K—1.

where

o K-1 for blocked casge
K for unblocked case

The traditional way is to derive the related Kolmogorov equations for these probabilities
and using the normalizing condition somehow we have to solve the set of equations. In this
case it is not so easy, but we perform these two steps by the help of the tool MOSEL.

Once we have obtained these limiting probabilities the main system performance mea-
sures can be derived in the following way.

e Server utilization with respect to sourge

U; = P (the server is up and busy with sougce

that is, we have to summarize all the probabilities where the first componerind
the second componentjs Formally,

—

K—
U; = > P03, i),
k=0 i1,...,ix#j

Hence theserver utilization

Us = E[Y (00) = 0;C(c0)] = Y _Uj.

e Utilization of sourcel

U = P ('source generates a new primary call).

It should be mentioned that in the blocked case the server have to be up, but in the
unblocked case the request generation is independent of the server’s state.

36

Utilization of the repairman

K K*

Up=E[Y(0)] =Y 3" Y P(Ljsin, . ix).

5=0 k=0i1,...,ix #]

Availability of the server

AS:I—UR.

Let us denote b)Pg) the steady state probability that requei staying in the orbit.
Itis easy to see that

4 1 K K*
Pg):z Z Z Z P(qg;j;i1, -y ik)-

4=0 j=0,j#i k=1 ie(i1,...,ix)

Similarly, it can easily be seen, that the steady state probaﬁlﬁythat request is at
the server is given by

1 K*
Péi)zzz Z P(q;t;01, ey ik).

q=0 k=0 ii1,...,i1)
Hence, the probability?(") that request is at the service facility can be obtained by
P9 =P+ PY).
Mean response time of sourte

The derivation of the following formulae are based on [4; 55]. Let us denofg[B})]
the mean response time of customeand byy; thethroughputof request, that is, the
mean number of times that requess served per unit time. These are related by

]_ .
-l U U, =l K 4.1
T B[]+ E[S)] et m e @4

whereE|[S;] denotes the mean sojourn time of requdstthe source. Since the server

is subject to random breakdowns which may stop the operations of the sources, it is
clear thatE[S;] = E[D;] + 1/\; > 1/);, whereE[D;] denotes the mean delay time
due to the failure of the server.

Hence, with the aid of (4.1) fa7 (V) we get

/X U
E[T,)+ E[S] X

U@ — <1-P9 i=1,.,K,

37

and for P(9 we have

E[T}]

P = ErT T ES]

= wE[T]) = \NUYE[T], i

I
—

LK, 4.2)

which represents Little’s theorem for requést the service facility.
By the help of (4.2) we can express the mean responsefiffig for request as

Mean waiting time of source

The mean waiting timé[WW;] of request is due to the time spent in the orbit (irrespec-
tive of whether the server is up or down), and the delay time because of the server’s
failure. It is easy to see thd|[IV;] is given by

E[Wl} = E[Tz] — 1//“ —

Mean number of sources of repeated calls

K
N = E[N(c0)] = > PY.

Mean number of calls staying at the service facility

K
M = E[C(00) + N(o0)] = Y P =

. i

K

K K
(PS + RS =3 PO + 3" PY.
1 i=1 i=1

Mean rate of generation of primary calls

K K K
i=1 i=1 i=1

Blocking probability of primary calt

K—1 -)
A Zj{:L]#i 2 k=0 Z#il% P(0;5501,...,0%)
By

for blocked casge

N St Rt Dy, PO i) P (i)
A

38

Henceblocking probability of primary calls

which is the fraction of primary calls which were blocked (i.e. met the server busy).

It is easy to see that in the case of unblocked operations (intelligent sources) with non-
reliable serverU¥ = 1 — P® i = 1,..., K, and we get the same formulae derived in
[8] that is, most performance measures can be expressed in the terms of the corresponding
utilizationsU; as it was stated in [25].

4.3.2 Validation of Results

In the cases when the server’s failure rate is very small and the repair rate is large the non-
reliable model should be very close to the reliable system. The results in the homogeneous
case were validated by the Pascal program given in [27]. For the heterogeneous case the cal-
culations were checked by the numerical results of [8]. In the case of homogeneous sources
but with server’s breakdowns the program was tested by the examples of [10].

In Table 4.6 some test results are collected when the server’s failure rate is quite small and
the requests’ retrial rates are quite large. Hopefully the corresponding performance measures
should be very close to each other in the case of continued, restarted (abbreviated by orbit)
service after repair and FIFO disciplines. As we can see, the results confirm our expectation.

non-rel. retr. (cont.)| non-rel. retr. (orbit)| non-rel. FIFO
Number of sources: 3 3 3
Request’'s generationrate: 0.2,0.3,0.5 0.2,0.3,0.5 0.2,0.3,0.5
Service rate: 1,1.2,11 1,1.2,11 1,1.2,11
Retrial rate: le+20 1le+20 -
Server’s failure rate: 0.002 0.002 0.002
Server’s repair rate: 0.04 0.04 0.04

Utilization of the server:

0.5785930082

0.5785934601

0.5785951436

Mean response time

Source 1:

1.6101659841

1.6102714374

1.6109393482

Source 2:

1.4136508315

1.4135712959

1.4128700761

Source 3:

1.3536212335

1.3536213788

1.3537299921

Table 4.6: Validations

4.3.3 Numerical Examples

In this subsection we consider some sample numerical results to illustrate the influence of
the non-reliable server on the mean response t#fi€] and the mean number of request

39

M staying at the service facility (in the orbit and at the server). The system input parame-
ters are collected in Table 4.7. In each case independent breakdowns were treated. In the
homogeneous cases the parameters are the arithmetic means of the corresponding values.

In Figures 4.21 - 4.26 the mean response tifi{&;] is displayed in continuous and non-
continuous service after repair in the case of blocked, unblocked (intelligent) operations, as
the function of primary request generation, retrial and service rates, respectively.

In Figures 4.27 - 4.28 alsf[T;] is pictured in the case of blocked operations with con-
tinuous and non-continuous service after repair as the function of the server’s failure rate in
busy state, respectively.

Finally, in Figures 4.29 - 4.30 the mean number of reqiésttaying at the service facility
can be seen in reliable and non-reliable case with homogeneous, heterogeneous sources under
blocked, unblocked operations combined with continuous and non-continuous service after
repair as the function of the retrial rate of repeated calls.

K Al oy AR sy K V1.0, VK 1) 5 T

Figure 4.21,| 5 X axis 4.1,4.3,4.5,/ 0.35,0.4,0.45 0.05| 0.05 | 0.1
Figure 4.22 4.7,4.9 0.6,0.7
Figure 4.23,| 5 25,34, 6,7,8, X axis 0.05| 0.05 | 0.1
Figure 4.24 6.5,9 13,16
Figure 4.25,| 5 | 0.04,0.06,0.1,, xaxis 0.2,0.25,0.3,| 0.05| 0.05 | 0.1
Figure 4.26 0.14,0.16 0.55,0.7
Figure 4.27,| 5 0.6,0.7,0.8, | 4.1,4.3,4.5,| 0.35,0.4,0.45, 0.05| xaxis | 0.1
Figure 4.28 09,1 4.7,4.9 0.6,0.7
Figure 4.29 | 5 0.1 0.5 X axis 0.05| 0.05 | 0.1
Figure 4.30 | 5 | 0.06,0.08,0.1, 0.3,0.4,0.5, X axis 0.05| 0.05 | 0.1

0.12,0.14 0.6,0.7

Table 4.7: System input parameters
Comments

e In Figures 4.21-4.22 we can see the mean responseHiffi¢ for the non-reliable sys-
tem with continuous, non-continuous service after repair, with blocked and unblocked
operations during service failure when the primary request generation rate increases.
The difference between continuous, non-continuous service, moreover blocked, un-
blocked (intelligent) systems’ operations is clearly shown. The non-continuous case
always have longer response times. Similarly, the intelligent sources suffer from longer
times, too. However, their curves are very interesting, for some sources at the begin-
ning decrease, then increase, finally decrease again. This shows that the systems are
very complex and at different parameter setups we can see different effects.

e In Figures 4.23,4.24, and similarly in Figures 4.25, 4.26 the effect of retrial rate, service
rate is demonstrated of[T;], respectively. Again the non-continuous cases always
have longer response times, and the intelligent sources suffers from longer times, too.
However, the difference between the continuous and non-continuous case decreases

40

Legend

Mean response time © homogeneous (non-continuous)

3.6 —® source 1 (non-continuous)

3.3

® source 2 (non-continuous)

3.0 —® source 3 (non-continuous)
2.7+ —© source 4 (non-continuous)
2.4 —© source 5 (non-continuous)
2.1 — homogeneous (continuous)
1.8+ — source 1 (continuous)

1.54 —* source 2 (continuous)

1.2 — source 3 (continuous)

0.9 - — source 4 (continuous)

0.6 14 — source 5 (conti)

0.3 ? Req.

=l

T T T T—gen.

0 06 12 18 24 3 36 42 48 54 6 rate

Figure 4.21:E[T] versus primary request generation rate

. Legend
Mean response time ~—° homogeneous (non-cont., int.
44 —® source 1 (non-cont., int.)
3.6 = 5 —® source 2 (non-cont., int.)
3.2 T = —® source 3 (non-cont., int.)
s — source 4 (non-cont., int.)
287 —© source 5 (non-cont., int.)
2.4+ — homogeneous (cont., int.)
24 } —@M@_@ — source 1 (cont., int.)
1.6 —* source 2 (cont., int.)
124 — source 3 (cont., int.)
— source 4 (cont., int.)
0.8 — source 5 (cont., int.)
04 Req.
0 T T T T T T T T T acn.
0 06 12 18 24 3 36 42 48 54 6 rate

Figure 4.22:E[T] versus primary request generation rate

. Legend
Mean response time —° homogeneous (non-continuous)
3 —® source 1 (non-continuous)
274 —® source 2 (non-continuous)
2.4 —® source 3 (non-continuous)
—© source 4 (non-continuous)
214 — source 5 (non-continuous)
1.8+ ~ homogeneous (continuous)
1.54 — source 1 (continuous)
1.2 ™ source 2 (continuous)
0.9 — source 3 (continuous)
— source 4 (continuous)
0.6 — source 5 (conti)
0.3
0 T T T T T T T T T Retr.
0 01 02 03 04 05 06 07 08 09 1 "¢

Figure 4.23:E[T] versus retrial rate

41

Mean response time

Legend
— homogeneous (non-cont., int.

4 —* source 1 (non-cont., int.)
3.6 —® source 2 (non-cont., int.)
32 —® source 3 (non-cont., int.)

— source 4 (non-cont., int.)
281 — source 5 (non-cont., int.)
2.4+ — homogeneous (cont., int.)

2 — source 1 (cont., int.)

1.6 ~* source 2 (cont., int.)
12 — source 3 (cont., int.)
— source 4 (cont., int.)
0.8+ — source 5 (cont., int.)
0.4 1
0 T T T T T T T T T Retr.
0 01 02 03 04 05 06 07 08 09 1 "M

Figure 4.24:E[T] versus retrial rate

. Legend
Mean response time =0 homogeneous (non-continuous)
80 —® source 1 (non-continuous)
72 —® source 2 (non-continuous)
64 —® source 3 (non-continuous)
—° source 4 (non-continuous)
56 —© source 5 (non-continuous)
48 = homogeneous (continuous)
40+ — source 1 (continuous)
32 — source 2 (continuous)
24 — source 3 (continuous)
— source 4 (continuous)
161 — source 5 (continuous)
8 -
0 T T T T T T k T T IS‘:::'
0 01 02 03 04 05 06 07 08 09

Figure 4.25:E[T] versus service rate

Serv.

. Legend
Mean response time — homogeneous (non-cont., int.
90 —* source 1 (non-cont., int.)
814 —® source 2 (non-cont., int.)
72 —® source 3 (non-cont., int.)
— source 4 (non-cont., int.)
637 — source 5 (non-cont., int.)
54+ — homogeneous (cont., int.)
454 — source 1 (cont., int.)
36 ~* source 2 (cont., int.)
27 — source 3 (cont., int.)
— source 4 (cont., int.)
184 — source 5 (cont., int.)
97 i aAs]
0 T T T T T T T T T
0 01 02 03 04 05 06 07 08 09 1 "M

Figure 4.26:E[T'] versus service rate

42

Legend

Mean response time — homogeneous
18 {continuous)
164 — source 1 (continuous)

— source 2 (continuous)
14+ — source 3 (continuous)
124 — source 4 (continuous)
10 — source 5 (continuous)

8

6
4
2 # Serv.'s
0- T T T T T T T —failure]

0 02 04 06 08 1 1.2 14 16 18 2 rate

Figure 4.27:E [T versus server failure rate in busy state

. Legend
Mean response time — homogeneous
18 (non-continuous)
164 —* source 1 (non-continuous)
—® source 2 (non-continuous)
14+ —® source 3 (non-continuous)
124 —° source 4 (non-continuous)
10 —© source 5 (non-continuous)
8-
6
4
2
g Serv.'s|
0 T T T T T T T r—failure

0 02 04 06 08 1 1.2 14 16 18 2 rate

Figure 4.28:E/[T’] versus server failure rate in busy state

Legend
Mean number of requests — reliable server
4 (homogeneous)
3.6 ™ non-reliable server
32 (homogeneous, cont.)
’ ~° non-reliable server
2.8+ (homogeneous, cont., int.)
2.4 ~ non-reliable server
2 (homogeneous, non-cont.)
1.6 —® non-reliable server
(homogeneous, non-cont.,
1.2 i T 1 T T int.)
0.8
0.4
0 T T T T T T T T Retr.
0 01 02 03 04 05 06 07 08 09 1 ™€

Figure 4.29:M versus retrial rate

43

Legend
Mean number of requests —0 reliable server
4 (heterogeneous)
3.6 ~ non-reliable server
(heterogeneous, cont.)
3.2 —o N
non-reliable server
2.8+ (heterogeneous, cont., int)
2.4+ — non-reliable server
2 (heterogeneous, non-cont.)
1.6 —° non-reliable server
(heterogeneous, non-cont.,
1.2 + T : int)
0.8
0.4
0 T T T T T T T T T T Retr.
0 01 02 03 04 05 06 07 08 09 1 "

Figure 4.30:M versus retrial rate

as the corresponding rates increase. Furthermore, in eactb¢agalecreases as we
expected.

In Figures 4.27, 4.28 the effect of server’s failure is displayed in the blocked operations
case. Again the non-continuous case always has longer response times, which is clear.
Moreover, for reliable busy server we have the same results, which was expected, too.

In Figures 4.29, 4.30 the effect of the retrial rate on the mean number of rebjliest
staying at the service facility is pictured. The curves confirm our expectation with re-
spect to the service after repair and blocked operations during the falludecreases

as the retrial rate increases, which is clear. It is also worth pointing out that the values
for the reliable case and non-reliable blocked case coincide.

44

Chapter 5

Analysis of Multiserver
Non-reliable Finite-source Retrial
Queues

In this chapter multiserver non-reliable finite-source retrial queues are investigated. The pur-
pose is to generalize the models of [27] and [10]. The novelty of this investigation is the
different service rates and different service policies with the non-reliability of the servers.
Section 5.1 is devoted to the extension of the models described in [27] and [10]. The
finite-source retrial queue is analyzed with non-reliable heterogeneous (asymmetric) servers,
that is the servers have different parameters in service, failure and repair rates. In Section 5.2
two service policies are compared in this model. These results will be published in [J5; J6].

45

5.1 TheM/M /c//K Model with Non-reliable Servers

Consider a finite-source retrial queueing system witlervers, where the primary calls are
generated by, ¢ < K < oo sources. Each server can be in operational (up) or non-
operational (down) states, and it can be idle or busy. Each source can be in three states: gen-
erating a primary call (free), sending repeated calls and under service by one of the servers.
If a source is free at timg it can generate a primary call during the intergiak + dt) with
probability \dt + o(dt). If one of the servers is up and idle at the moment of the arrival of the
call then the service of the call starts. At the arrival of the calls the availability and idleness
of the servers are always examined according to the increasing order of the servers’ indices,
resulting different load to the servers. The service is finished during the inferval dt)
with probability pi;dt + o(dt) if the ith server is available.

Server; can fail during the intervat, t + dt) with probabilityd;dt+o(dt) if it is idle, and
with probability v;dt + o(dt) if it is busy. If the server fails in busy state, it either continues
servicing the interrupted call after it has been repaired or the interrupted request returns to
the orbit. In this section we only investigate the case when the source moves into the sending
repeated calls state at the moment of server’s failure. The repairman follows FIFO discipline
for the servers’ breakdowns, and the repair time ofitheserver is exponentially distributed
with a finite meanl /7;. If all the servers fail we treat two different cases. Namblgcked
sourcescase when all the operations are stopped expect from the repair of the servers. In the
unblocked (intelligent) sourcesmse only service is interrupted but all the other operations are
continued.

If all the servers are busy (or failed in the unblocked case) at the moment of the arrival of
a call the source starts generation of a Poisson flow of repeated calls withuati¢it finds
an available free server. After service the source becomes free, and it can generate a new
primary call, and the server becomes idle so it can serve a new call. All the times involved in
the model are assumed to be mutually independent of each other.

5.1.1 The Underlying Markov Chain

The state of the system at timecan be described by the procels$t) = (ai (1), ..., a.(t);
N(t)), whereN(t) is the number of sources of repeated callgt), i=1, ..., ¢, denotes the
state of theth server attime. If there is a customer under service atttieserverp; (t) = 1,
if it is operational and idle then; () = 0, otherwise the server is failed ang(t) = —1.

Because of the exponentiality of the involved random variables this process is a Markov
chain with a finite state space. Since the state space of the pfoc¢égst > 0) is finite, the
process is ergodic for all reasonable values of the rates involved in the model construction.
From now on we assume that the system is in the steady state. Let us define the stationary
probabilities by:

P(i17"'7icaj) = tlggop{oq(t) = ila "'7a6(t) = ZCaN(t)]}7

i, ie=—1,0,1;j =0,..,K* where K*=K-— > i

Tyt =1

Furthermore, let us denote I6Y(¢) the number of busy servers, bBY¢) the number of avail-
able servers at tim¢, and denote by, = lim;P{C(t) = k,N(t) = j} the joint

46

distribution of the number of busy servers and the number of repeated calls.

Once we have obtained the above defined probabilities the main steady state system per-

formance measures can be derived as follows:

o Probability that at least one server is available

As=Plag > -1} ke{l,.,c} =1-Y P(-=1,..,~1,j).

e Mean number of sources of repeated calls

c K K*
N=FE[N(@)] =Y jpi= > > jP(i1,....ic,J).

k=0 j=1 U1y0ete J=1

e Utilization of the k-th server

U = Z ZP i1, ieyd), k=1,..,c

T1yeensbe,ip=17=0
e Mean number of busy servers

c

C=F = > ZKPZh.. ic;j) =Y Us.

ic j=0 k=1
K*>OC J

e Mean number of calls staying in the orbit or in service

M = E[N(o0) 4+ C(o0)] = N + C.

o Utilization of the repairman

UR: Z ZP 217.. ’LC,

e Utilization of the sources

K
LSO = {

E[K—C(o0)~N(co)] for unblocked case

e Overall utilization of the system

Uo=C+ KUgo + Ug.

47

e Mean rate of generation of primary calls

3 AE[K — C(00) — N(00); A(o0) > 0] for blocked casg
B AE[K — C(00) — N(0)] for unblocked case
e Mean waiting time
E[W] = N/
e Mean response time
E[T] = M/\.

5.1.2 Validation of Results

The results in the reliable case were validated by the Pascal program given in [27]. In Table
5.1 we can see that the corresponding performance measures are very close to each other,
they are the same at least up to the 8th decimal digit. In the case of non-reliable servers, the
results were tested by the//M/1//K retrial model with server’'s breakdowns which was
studied in [10].

MOSEL Pascal program
Number of servers: 2 2
Number of sources: 5 5
Request’s generation rate: 0.1 0.1
Service rate: 1 1
Retrial rate: 1.1 1.1
Servers’ failure rate: le-25 -
Servers’ repair rate: le+25 -
Mean waiting time: 0.0653833701] 0.0653833729
Mean number of busy servers: 0.4518596260 0.4518596267
Mean number of sources of repeated call€.0295441060 0.0295441065

Table 5.1: Validations

5.1.3 Numerical Examples

In this subsection some numerical results are considered in the case of homogeneous servers
to illustrate graphically the influence of the non-reliable servers on the mean response time
E[T] and on the overall system’s utilizatidf,. The system input parameters of the figures

are collected in Table 5.2.

The tool SPNP was used with MOSEL which was able to handle the model with up to 126
sources. In this case, on a PC containing a 1.1 GHz processor and 512 MB RAM, the running
time with one parameter setup with 2 servers was approximately 1 second. With 4 servers and
126 sources, in the blocked case, it was 2 minutes and 25 seconds. The maximum number

48

c| K A m v 0,y T
Figure 5.1 2| 5 | xaxis 1 1.1 0.001 | 0.01
Figure 5.2 2|5 0.2 1 x axis | 0.001 | 0.01
Figure 5.3 2|5 0.2 | xaxis| 1.1 0.001 | 0.01
Figure5.4,55/ 2 | 5 0.2 1 1.1 | xaxis | 0.01

Table 5.2: System input parameters

of servers that the program was able to calculate the system measures on this computer in an
acceptable time was 6. With 6 servers and 10 sources, the program finished its run after 20
minutes, and with 20 sources after 1 hour and 15 minutes.

In Figures 5.1-5.4 the effects of the primary request generation rate, retrial rate, service
rate and servers’ failure rate on the mean response time are displayed. In Figure 5.5 we can
see the effect of servers’ failure rate on the overall utilization. In each Figure, the reliable
case, the blocked and unblocked (intelligent) cases are illustrated.

Comments

In Figure 5.1 we can see that with these parameter setup the difference is very small
between the non-intelligent and intelligent cases. The interesting phenomenon, which
was mentioned in [25], too, that is retrial queues have a maximum of E[T] is also
noticed.

In Figure 5.2 it is demonstrated how long the retrial rate has a significant influence on
the mean response time.

In Figure 5.3 we can see that the increase of the service rate has almost the same
influence on the reliable and on the non-reliable systems.

In Figure 5.4 it can be observed that the increase of the servers’ failure rate can have
a heavy impact on the mean response time, and as it increases the difference between
the two non-reliable models increases significantly.

In Figure 5.5 it is shown that the overall utilization can be very low if the servers’
failure rate increases and the repair rate is not high enough.

49

Legend

Mean response time % reliable
3 servers
274 ~© non-reliable
servers
2.4
~® non-reliable
2.1 servers
1.8 | (intelligent)
1.54
1.2
0.9
0.6
0.3 Req.
0 ; ! : ‘ ! ! ; —gen.

0 06 12 18 24 3 36 42 48 54 6 rate

Figure 5.1:E[T] versus primary request generation rate

Legend
Mean response time — Leliable
34 servers
2.7 ~ non-reliable
servers
2.4
~° non-reliable
2.1 servers
1.8+ (intelligent)
1.5+
1.2+
0.9
0.6
03
Retr.
0 T T T T T T T T rate
0 04 08 12 16 2 24 28 32 36 4

Figure 5.2:F[T] versus retrial rate

Legend
Mean response time —8 Leliable
5 servers
4.5 ~© non-reliable
4 servers
~® non-reliable
3.5 servers
3 (intelligent)
2.5
2
1.5
14
0.5
Serv.
0 T T T T T T T T T erv
rate
0 02 04 06 08 1 1.2 14 16 18

Figure 5.3:E[T'] versus service rate

50

Mean response time

11
10
9

/

Legend

—a

—0

—e

reliable
servers
non-reliable
servers
non-reliable
servers
(intelligent)

Serv.'s

T

T

—failure

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 rate

Figure 5.4:FE[T] versus servers’ failure rate

Overall utilization

5

4.5
4

3.5

Ry

3

AT
T

Legend

T reliable

—0

—e

servers
non-reliable
servers
non-reliable
servers
(intelligent)

2.5
2

1.5

1

0.5

0

Serv.'s|

—failure]

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02 rate

Figure 5.5:Up versus servers’ failure rate

51

5.2 Comparison of Different Service Policies

In this section we analyze the finite-source retrial queue with non-reliable heterogeneous
(asymmetric) servers from Section 5.1. In this study, the most important heterogeneous char-
acteristic is the service rate, since we compare two service policies, namely Random and
Fastest Free Server (FFS). In the case of Random service discipline, the requests are assigned
to the idle servers randomly, and in the other case, the requests are assigned to the fastest
available free server, i.e. the Fastest Free Server case the availability and idleness of the
servers are always examined according to the increasing order of the servers indices.

In this study, we compare the service disciplines in the unblocked sources case with in-
dependent server breakdowns.

5.2.1 Validation of Results

The results of the tool in the reliable case were validated by the Pascal program given in [27].
The service rates are the same for all servers in each case. In Table 5.3 we can see that the
corresponding performance measures are very close to the reliable case and to each other
with Random and Fastest Free Server (FFS) disciplines with very low failure and very high
repair rates. The results are the same up to the 6th decimal digit.

In the non-reliable single server case, the results were tested By thé/1// K retrial
model with server breakdowns which was studied in [10].

Pascal [27] Random FFS
Number of servers: 4 4 4
Number of sources: 20 20 20
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1
Retrial rate: 1.2 1.2 1.2
Servers'’ failure rate: - le-25 le-25
Servers’ repair rate: - le+25 le+25
Mean waiting time: 0.1064954794 0.1064959317 0.1064959929
Mean number of busy servers: 1.8007480431] 1.8007485102 1.8007485548
Mean no. sources of repeated calls0.1917715262 0.1917717923 0.1917718470

Table 5.3: Validations in the reliable case

5.2.2 Numerical Examples

In this subsection some numerical results are presented to illustrate graphically the differences
between the service disciplines in the mean response time, in the utilizations of the servers
and in the overall system’s utilization. In the legends of the figures, the Fastest Free Server
policy is referenced agrdered and the random case where the service rate of the servers is
the average of the rates of the heterogeneous cases is referreal/graged random

The system input parameters of the figures are collected in Table 5.4.

52

K A H1y ooy e — Havg v 4,y T

20 | x axis 8,5,41-45 4 0.01 | 0.2
20 4 854,1-45 | xaxis| 0.01 | 0.2
20 1 8,5,41-45 4 xaxis | 0.2

Figure 5.6, 5.10
Figure 5.7,5.11
Figure 5.8, 5.9, 5.12

A AO

Table 5.4: System input parameters

Comments

e In Figure 5.6 we can see the difference between the three cases in the mean response
time depending on the primary request generation rate. The difference between the two
random cases is not too significant, but the Fastest Free Server (ordered) case always
has better response time, especially when more and more requests arrive.

e In Figure 5.7 it is demonstrated how long the retrial rate has a significant influence on
the mean response time, after that the decrease is not considerable.

e In Figure 5.8 it is shown how the increase of the servers’ failure rate affects the mean
response time. The averaged random case has a little better response time than the not
averaged random case like in the former figures. The surprising decrease in the mean
response time of the Fastest Free Server case can be explained by the help of Figure
5.9.

e In Figure 5.9 we can see the server utilizations versus the servers’ failure rate with
the same parameter setup as in Figure 5.8. In the random case, the slowest server has
the highest utilization and the fastest has the lowest, since it services the request much
faster and the requests are assigned to the available and free servers with the same
probability. In the beginning of the ordered case, the slowest server has the highest
utilization too, but as it fails more often, its service is interrupted more often and looses
from its utilization much faster than the faster servers, since it gets requests to serve
only if all the other servers are busy or failed.

e In Figure 5.10 the overall utilizations of the systems are displayed versus the primary
request generation rate. We can see that the random cases have almost the same while
the ordered case has higher utilization.

e In Figure 5.11 we can see the overall utilization versus the retrial rate. Similarly to
Figure 5.7, after a time the increase of the retrial rate does not affect this measure
significantly.

e In Figure 5.12 the overall utilization is displayed versus the servers’ failure rate. Like
in Figure 5.8 the mean response time, the overall utilization is getting better for a while
in the FFS case as the servers’ failure rate increases.

53

Legend

Mean response time —® ordered
1.2 ~ random
1.1 Mﬂ’;@ — averaged
1.0 i random
0.9
0.8
07 ———O0—0—9 .

0.6 -

0.5

0.4

0.3

0.2

0.1 Req.
0 T T T T T T T T L aE

0 08 16 24 32 4 48 56 64 72 8 rate

Figure 5.6: Mean response time versus primary request generation rate

Legend
Mean response time —® ordered
2 T random
— averaged
random
Retr.
0 T T T ! ! ! ! r:ter
0 1 2 3 4 5 6 7 8 9 10

Figure 5.7: Mean response time versus retrial rate

Legend
Mean response time —® o rdered
0.9 1 " random
0.8 - averaged
random
0.7
0.6
0.5
0.4
03
0.2
0.11 Serv.'s
0 T T T T T T T —failure|
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 rate

Figure 5.8: Mean response time versus servers’ failure rate

54

o Legend
Server utilization —*® server 1 (ordered)
11 ~—® server 2 (ordered)|
0.9 - O server 3 (ordered),
08 | T T | i — server 4 (ordered)
07 ~® server 1 (random)
] ~—® server 2 (random)
0.6 1 1 5 : 5 server 3 (random)
0.5 , + + z + O server 4 (random)|
0.4
0.3
0.2
0.1 Serv.'s
0 T T T T T T T T —failure
0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 rate

Figure 5.9: Server utilization versus servers’ failure rate

Legend
Overall utilization —® rdered
21 ~— random
— averaged
18 random
15
12
9
6
3
Req.
0 T T T T T T T T sl
0 08 16 24 32 4 48 56 64 72 8 rate

Figure 5.10: Overall utilization versus primary request generation rate

Legend
Overall utilization —® ordered
9 ~— random
8.1 — averaged
2l random
6.3
5.4
4.5
3.6
2.7
1.84
0.9 -
o | ‘ | | ‘ ‘ i ‘ Retr.
o 1 2 3 4 5 6 7 8 9 10Te

Figure 5.11: Overall utilization versus retrial rate

55

Legend

Overall utilization —® ordered
20 ~ random
18 — averaged
16 3@5@% i ’ ’ random
14 | | ! N
12
10

8 -

6

4 -

27 Serv.'s

0 T T T T T T T T r—failure

0 0.005 001 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 rate

Figure 5.12: Overall utilization versus servers’ failure rate

56

Chapter 6

Retrial Queues in Random
Environments

Finite-source queueing systems operating in random environments, sometimes called
Markov-modulated queues have been the interest of recent research, see for example
[6; 7; 28].

This chapter deals with a finite-source retrial queueing system with heterogeneous sources
operating in random environment, that is, the system parameters are subject to randomly oc-
curring fluctuations. Furthermore, itis shown how this type of queueing model can be applied
in the analysis of non-reliable retrial systems. Similar models without repeated attempts were
treated in [6; 7].

This model was published in [J7].

57

6.1 TheM/M/1//K Model in Random Environment

Consider a finite-source queue with sources and a single server, where each source has
different parameters and the operation of the sources and the server is influenced by the state
of a given random environment.

The server and the sources are collected Mtindependent groupd <K M < K + 1).
The members of a group operate in a common random environment. The environmental
changes are reflected in the values of the new and repeated call generation and in the values of
the service rates. The members of greu@re assumed to operate in a random environment
governed by an ergodic Markov chaig{(t);t > 0) with state spacel(...,r,,) and with
transition density matrix

(Ti(m.;‘)m) g = 1oy, Where ") = — > -
ki

The server can be in two states: idle and busy, and each of the sources can be in free,
sending repeated calls and under service states. If séurgkich is a member of group
m) is free at timet and the environmental proceés (t) is in statej,, the probability that
this source generates a new request during the time int@tvat dt) is \; (4.,)dt + o(dt),
m=1,..., M. If the server is idle at the time of arrival of a call then the call starts to be
served, that is the source moves into the under service state and the server moves into the
busy state. Assuming that the server belongs to grb@md the environmental process
&1(t) is in statej; the probability that the service of the request originating from client
i is completed in time intervalt, ¢ + dt) is p;(j1)dt + o(dt). If the server is busy on
arrival, then the source starts generation of a Poisson flow of repeated calls with rate
v;(jm) until it finds the server free. After service the source becomes free, and it can
generate a new primary call, and the server becomes idle and it can serve a new call. All
random variables and the random environments are supposed to be independent of each other.

6.1.1 The Underlying Markov Chain

Because of the exponentiality of the involved random variables the following process will be
a Markov chain. The state of the system at tinoan be described by the process

X(#) = (€1()s s Ear (8), (t), B1(8); oo By (1)),

whereé,, (t) denotes the states of the background processesl(..., M), and N (¢) is the
number of sources of repeated calls at tim€he index of the source at the server is denoted
by a(t), if there is a customer under service, otherwise this valOeBecause of the hetero-
geneity of the sources we need to identify the sources in the sending repeated calls state, so
we denote their indices by, (t), k=1, ..., N(t), if there is a customer in this state, otherwise
this last component i8.
Since its state space is finite the procé3qt),¢ > 0) is ergodic with the following
steady state probabilities.

P(jla 7]M7J’0) = tli}nolop{fl(t) = jl7~"7£]ﬂ(t) = jM7a(t) =]7N(t) = 0}

58

P(1y ey JM s Jy 815 ooy i) =

tli}rrolop{gl(t) = j17 7£M(t) = jlﬂ7a(t) = j7 ﬁl(t) = Z'17 75k(t) = Zk}a k=]-7 7K_]-

as:

Based on the steady state probabilities the system performance measures can be obtained

Utilization of the server with respect to source

USi: Z P(]la]M,Zao Z Z Z P.]la"'ajMvi;ilv"'vik)a

J1ye-odM Jis--odm k=1 i1, ig#i

i=1,..,K.

Utilization of the server

K
Us =Y Us.
=1

Probability of source is sending repeated calls

K K-1

Z S S Pliedatdiiteenin)s 0= 1,00 K.

Jiye-odm J=1 k=1 i1, ig#i

Mean number of repeated calls
K
N = Z N;.
i=1
Utilization of sourcel
U =1-Ug;—N;, 1=1,...,K.

Probability of source is free and its background process is in state

K K-1

Z ZZ Z P(plv' 7pJV[;]7@1;~~~,), ’L:].,,K

----- PM j=1 k=1 i1, ip#j
PL=Jz J# Qg {i1,..., i}

Throughput of source

Tl
Vi = ZFl(]l)Al(]l)v 1= 17"'7K'

Ji=1

Mean response time of sourte

6.1.2 Validation of Results

The calculated performance measures were validated by the results of [6], where an FCFS
(First-Come, First-Served) queueing model is studied. Some performance measures are col-
lected in Table 6.1 and can be compared. We can see that we get back the results of the
corresponding queueing model with waiting line, since with very high retrial rates and few
sources the difference between the two models is negligible.

The numerical calculations were checked by the results of the retrial model with a non-
reliable server [52], too. The model was used in which the sources are blocked if the server
is not operational, and the server continues servicing the interrupted call after it has been
repaired. In Table 6.2 we can see that the results are the same. It can easily be seen that a
non-reliable model can be considered as a system modulated by a 2-state background process.
The system failure can be modelled by setting the ratd®t3° in the second state of the
background process.

FCFS [6] retrial
Number of sources 5 5
Request’s generation rate: 0.12, 0.06 0.12,0.06
Service rate: 1,1 1,1
Retrial rate: - le+20
Rate of environment’s change: 0.5,1 05,1
Server queue length: 0.6418 -
Requests in the orbit or in service: - 0.6418567007|
Utilization of the server:| 0.4342 0.4342057023
Utilization of the sources] 0.8716 0.8716286599
Mean response time: 1.4782 1.4782319316

Table 6.1: Validation by the FCFS model

6.1.3 Numerical Examples

In this subsection some graphically displayed numerical examples are presented. For the
easier understanding only simple cases are considered. Only one random environment was
used with 2 states. The tool is able to deal with systems with several environments. The
system parameters for the figures are given in Table 6.3.

Comments

e In Figures 6.1 and 6.2 the mean response time is displayed as the primary request
generation increases. The difference is that in Figure 6.1 all operations are stopped
if the background process is in the second state, but in Figure 6.2, only service is
interrupted. The results are in agreement with the results of [52], where the same
parameters were used.

¢ In Figures 6.1 and 6.2 we can analyze the same curves as in Figures 6.1 and 6.2 with
modified input parameters. We can see the effect of the random environment and the
differences between the original and new parameter setups.

60

non-reliable retrial [52]

retrial in random env.

Number of sources

5

5

Request’s generation ratg

2:0.10, 0.15, 0.17,0.19, 0.2

10.10, 0.15, 0.17,0.19, 0.2

Service rate:

10,1.1,1.2,15,1.6

10,1.1,1.2,15,1.6

Retrial rate:| 0.15, 0.18, 0.21, 0.22, 0.250.15, 0.18, 0.21, 0.22, 0.2
Server’s failure/repair rate; 01,1 -
Rate of env. change: - 01,1
Utilization of the server: 0.404265368271 0.404265368271

Utilization of the sourceg

Source 1: 0.673069675362 0.673069675362
Source 2: 0.629766856845 0.629766856845
Source 3: 0.634124904383 0.634124904383
Source 4: 0.622974780687 0.622974780687
Source 5: 0.627325387151 0.627325387151
Mean response time
Source 1: 5.34303316033 5.34303316033
Source 2: 4,31118758383 4,31118758383
Source 3: 3.73337662001 3.73337662001
Source 4: 3.50379767493 3.50379767493
Source 5: 3.11179039958 3.11179039958

Table 6.2: Validation by the non-reliable retrial model

4
3.6
3.2
28
24

2
1.6
1.2
0.8
04

Mean response time

Legend
O source 1
™ source 2
~source 3

source 4

source 5

" Req.

0 Il Il
0 06 1

2

1.8 24 3 36 42 48

gen.
54 rate

Figure 6.1: Mean response time versus primary request generation rate

61

. [ILegend
Mean response time —0 source 1
4 ~ source 2
3.6 —O—M — source 3
3.2 - , , , — source 4
o M—A source 5
2.8 By F R s T
2.4
2
1.6
1.2
0.8
04 Req.
0 L Il Il 1 L | gen.
0 06 12 18 24 3 36 42 48 54 rate

Figure 6.2: Mean response time versus primary request generation rate

Legend
Mean response time —0 source 1
4 ~ source 2
3.6 I source 3
3.2 source 4
source S
2.8 —e
source 1 (run 2)
24 b 2 source 2 (run 2)
21¢8 —8 source 3 (run 2)
1.6 source 4 (run 2)
12 source 5 (run 2)
0.8 {d
04 Req.
0 1 Il Il 1 Il | 1 gen.
0 06 12 18 24 3 36 42 48 54 rate

Figure 6.3: Mean response time versus primary request generation rate

Legend

Mean response time — source 1

4 ™ source 2
36 — source 3
22 w source 4

o s S source 5

2.8 ¢ —8— ~®gource 1 (run 2)
247,45 % source 2 (run 2)

2 “P source 3 (run 2)
16 i | | i I source 4 (run 2)
- ‘ ’ i i | source 5 (run 2)
0.8
0.4 Req.

0 I I L I - L L gen.

0 06 12 18 24 3 36 42 48 54

rate

Figure 6.4: Mean response time versus primary request generation rate

62

M

Ar(1)As(1) | (L) 5 (1) vi(1)..v5(1) T2 | 21
)\1(2))\5(2) (5() V1(2)...l/5(2)
Fig. 6.1 xaxis | 4. 1 43454749 035040450607005 01
1e-20 1e-20 1e-20
Fig. 6.2 xaxis | 4143454749 0.350.4,0.450.6,0.70.05 0.1
x axis 1e-20 0.35,0.4,0.45,0.6,0.7
Fig. 6.3 xaxis | 4.1,434.54.7,4.9 0.350.4,04506,0.7 0.1 | 0.2
le-20 le-20 le-20
Fig. 6.3 xaxis | 4.1,43,4.54.7,4.9 0.350.4,0450.6,0.7 0.1 | 0.2
(run 2) M) As(d) 1e-20 1e-20
Fig. 6.4 xaxis | 4143454749 0350.4,04506,0.7 0.1 | 0.2
x axis 1e-20 0.35,0.4,0.45,0.6,0.7
Fig. 6.4 xaxis | 4143454749 0350.4,04506,0.7 0.1 | 0.2
(run 2) Al Asll) 1e-20 0.35,0.4,0.45,0.6,0.7

Table 6.3: System input parameters

63

64

Part Il

Application of Retrial Queues Iin
Performance Modelling of
Communication Networks

65

Chapter 7

Retrial Queueing Models of
Mobile Communication Networks

Queueing network models are widely used in the traffic modelling of cellular mobile systems,
such as GSM (Global System for Mobile Communications), GPRS (General Packet Radio
Service) and UMTS (Universal Mobile Telecommunication System). Most of the papers
consider queueing systems without retrials (see [40; 21] and references therein for some
recent results), but after the study of Tran-Gia and Mandjes [56], which demonstrated in
the context of cellular systems that the retrial phenomenon is not neglectable because of the
significant negative influence on the system performance measures, authors are more likely
to take it into consideration in their cellular mobile network model.

Cellular systems with customer redials are treated in [41], where an approximate tech-
nique is proposed for finite and infinite population Markovian models. The authors reduce
the state space of the continuous-time Markov chain model by registering only that if there
are retrying blocked and dropped customers in the system or not. In the works [45; 2], var-
ious infinite-source retrial queueing models are studied. In [45], not only customer redials,
but also automatic retrials by the cellular system are taken into consideration, but the dropped
customer redials handled as generating new fresh call attempts in the new cell and in case of
blocking the call is treated as a blocked fresh call. It is probably less realistic, because an
interrupted customer may try to reestablish the call with higher probability in shorter time
intervals. In [2], the blocked new and dropped handoff calls are not distinguished, but the
involved random variables have general phase type distributions.

7.1 Quality of Service
In cellular networks, the most important quality of service measures are the following:

o the fresh call blocking probabilityH;), i. e. the fraction of new call requests in the
cell that cannot be served due to the lack of free channels, and

o the handoff call dropping probabilityR,), that is the average fraction of incoming
handoff calls that are terminated because of the lack of free channels.

67

The grade of service (GoS) is generally defined as the combination of these two proba-
bilities, for example as
Pf + 105,

11 '

Because of the fact, that the handoff call dropping probability has more significant impact
on the grade of service, it is important to reduce it even at the expense of increased fresh call
blocking probability. In order to prioritize handoff calls, several channel allocation schemes
are utilized. One of the most popular policies is the guard channel scheme [21; 56; 41; 2],
where some channels are reserved for the calls that move across the cell boundary, that is if
there argy reserved channels in the cell, a new fresh call is only accepted if there are at least
g + 1 available channels. A handoff call is rejected only if all the channels in the cell are
occupied.

GoS =

In Section 7.2, where the GSM system is modelled, this equation is used for calculating
the GoS.

7.2 Performance Analysis of GSM

In this section, an infinite-source retrial queueing model of GSM networks is discussed,
based upon the ones that were studied by [56; 41; 45; 2]. The blocked and dropped users are
treated separately, that is they redial with different probabilities and different rates, like in
[41], but the state space is reduced by maximizing the number of redialing customers with
appropriately large values (i. e. when the ignored probability mass can be neglected). In
[56; 45; 2], these two types of redialing customers were not distinguished. Furthermore, in
this model not only the active but also both types of redialing customers are let to depart to
other cells, what was not allowed in the previous works. This work can be considered as the
initial step towards the analysis of more complex third generation systems focusing on the
quality of service issues.

In the next subsections, the accurate description of the cellular model is given along
with the underlying Markov chain. It is shown how the model description can be translated
into the description language of MOSEL-2. The last part of this section is devoted to some
numerical examples, where the analytical results of the calculations are displayed graphically
to demonstrate the effect of the changing of various system parameters on the quality of
service measures and on the grade of service. These results were published in [J2].

7.2.1 Model Description

In this subsection the following cell model (illustrated by Figure 7.1) is considered in a
cellular mobile network.

In this cellular network model only one cell is treated. The cells are considered identical
and to have the same traffic parameters, so itis enough to investigate one cell, and the handoff
effect from the adjacent cells to this cell and from this cell to adjacent cells is described by
handoff processes. Instead of the frequently used single arrival stream model the fresh call
and handoff call arrivals are distinguished, what is gainful if we investigate complex call
handling policies.

68

We assume, that the number of channels in the cél| end the number of guard channels
is g, whereg < C.

The arrival process of the fresh calls is a Poisson process with faté the number of
the active users is smaller thah— g, the incoming call starts to be served. Otherwise it is
blocked and it starts generation of a Poisson flow of repeated calls (redialing) with probability
©, or leaves the system with probability— ©;. A blocked customer repeats his call after
a random time which is exponentially distributed with mdaw,;, and it can be served or
blocked again like the fresh calls. The call duration time is exponentially distributed with
meanl/pu.

The arrival process of the handoff calls is a Poisson process with yatéthe number of
active users is smaller thar, the incoming call starts to be served. Otherwise it is dropped
(handoff failure) and it starts generation of a Poisson flow of repeated calls with probability
O, or leaves the system with probability— ©,. A dropped customer tries to repeat his
call after a random time which is exponentially distributed with meapy,.. If it is blocked
it continues redialing with probability,. The call duration time for handoff calls is also
exponentially distributed with mealy u.

The active, redialing blocked and dropped customers leave the cell after an exponentially
distributed time with meat/ ., 1/, and1/pg, respectively.

The number of redialing users because of blocking and dropping is limited to an ap-
propriately large values aV,; and V;,. to make the state space finite in order to make the
calculations possible by the tools in the steady state.

My

)\ f
—_—
o, i 1-0,
1

Ver

%%Vl

1

1

-0
-0

©
o,,1
vdrzj 2

_— =

Hq

Figure 7.1: Retrial queueing model of a cell

7.2.2 The Underlying Markov Chain

The state of the system can be described with a stochastic pra¥éss =
(C(t); N(t); M(t)), whereC(t) is the number of active customers (i. e. the number of busy

69

channels)N(t) is the number of blocked new customers who are sending repeated calls and

M (t) is the number of dropped customers at handoff who are trying to redial at.time
Because of the exponentiality of the involved random variables the describing process is

a Markov chain with a finite state spae= {0, ...,C} x {0, ..., Ny} x {0, ..., Ng,}. Since

its state space is finite, the process is ergodic for all values of the rate of the arrival of new

and handoff calls, and we can investigate it in the steady state.

Because of the fact that the state spacéXft),t > 0) with sufficiently largeN,; and
Ny, is very large and the functioning of the system is complex, it is very difficult to calculate
the steady state probabilities. The tool MOSEL-2 is used to formulate the model and to
calculate these probabilities and the system measures.

We define the stationary probabilities:
P(i; ji k) = im P(C(t) =i, N(t) = j, M(t) = k),

i=0,..,C, j=0,...Ny, k=0,...,Ng.

Knowing the steady state probabilities the system performance and the quality of service
measures can be obtained as follows.

e Mean number of active customers
C Nbl Nd?‘

Ne=>_>">"iP(i,j,k)

i=0 j=0 k=0

Mean number of sources of repeated calls because of the blocking of fresh calls

C Ny Nar

i=0 j=0 k=0

e Mean number of sources of repeated calls because of the dropping of handoff calls

C' Ny Nar
Na=)_) > kP(i.j.k)
i=0 j=0 k=0
e Fresh call blocking probability
g Ny Nd'r'
1=0 j=0 k=0

e Handoff call dropping probability
Ny Nar

Ph_ZZPC.]7

=0 k=0

70

7.2.3 Model Conversion to MOSEL-2

In this subsection we discuss the translation of the model into the language of the MOSEL-2
tool. The full MOSEL-2 program can be assembled from the following program parts among
the model description in the order of the part numbers.

The number of channels in the cellds which is denoted a_ CHSIin the program, and
the number of guard channelsgiswhich is denoted al_G_CHS

In the first part of the MOSEL-2 description, we have to define some other system input
parameters too, these will be introduced at the appropriate program parts.

(1) CONST N_CHS :=15;
CONSTN_G_CHS :=1;
CONST MAX_BL_USERS := 25;
CONST MAX_DR_USERS := 25;
CONST call_arrive :=1.5;
CONST call_retry bl :=5;
CONST call_retry_dr:=6;
CONST call_duration := 0.05;
CONST handoff_arrive := 0.4;
CONST handoff_dep_ac := 1/3;
CONST handoff_dep_bl := 1/3;
CONST handoff_dep_dr:=1/3;
CONST p_retry_bl:=0.7;
CONST p_retry_dr:=0.9;

The state of the system is described by the number of active users, the number of blocked
users who redial after some random time, and the number of users whose calls are dropped
at handoff and who are redialing. It can be wrote down in MOSEL-2 as defining the nodes of
the system. The number of active users is denoteschiye userslts maximum value is the
number of channels, and it is 0 at the starting time. The number of redialing users because
of blocking and dropping is limited tMAX_BL_USER&ndMAX_DR_USERSwhich are
defined in (1).

(2) NODE active_users[N_CHS] :=0;
NODE redialing_users_blI[MAX_BL_USERS] :=0;
NODE redialing_users_dr[MAX_DR_USERS] :=0;

The arrival process of the fresh calls is a Poisson process with\patthat is denoted
in the program asall_arrive, and defined in (1) like the other parameters. If the number
of active users is smaller thati — g, the incoming call starts to be served. Otherwise it is
blocked and it starts generation of a Poisson flow of repeated calls (redialing) with probability
O, (denoted by_retry_bl) or leaves the system with probability— ©;.

(3) IF active_users N_CHS-N_G_CHS
FROM EXTERN TO active_users
RATE call_arrive;
IF active_users= N_CHS-N_G_CHS
FROM EXTERN RATE call_arrive THEN {

71

TO redialing_users_bl
WEIGHT p_retry_bl;
TO EXTERN WEIGHT 1 - p_retry_bl;

}

The blocked user redials can be handled similar to the fresh call arrivals. If a user is
blocked, he repeats his call after a random time which is exponentially distributed with mean
1/vy. vy is denoted asall_retry_bl It can be served or blocked as the fresh calls in the
previous part.

(4) IF active_users N_CHS-N_G_CHS
FROM redialing_users_bl TO active_users
RATE call_retry_bl*redialing_users_bil;
IF active_users= N_CHS-N_G_CHS
FROM redialing_users_bl
RATE call_retry_bl*redialing_users_bl THEN {
TO redialing_users_bl
WEIGHT p_retry_bl;
TO EXTERN WEIGHT 1 - p_retry_bl;

}

The call duration time is exponentially distributed with mef:. p is denoted as
call_duration

(5) FROM active_users TO EXTERN
RATE call_duration*active_users;

The arrival process of the handoff calls is a Poisson process with gate, is denoted in
the program akandoff_arrive If the number of active users is smaller th@nthe incoming
call starts to be served. Otherwise it is dropped and it starts generation of a Poisson flow
of repeated calls with probabilit¢, (denoted byp retry dr) or leaves the system with
probability 1 — ©s.

(6) IF active_users N_CHS
FROM EXTERN TO active_users
RATE handoff_arrive;
IF active_users = N_CHS

FROM EXTERN RATE handoff_arrive THEN {

TO redialing_users_dr
WEIGHT p_retry_dr;

TO EXTERN WEIGHT 1 - p_retry_dr;

}

The dropped user redials can be handled like the blocked fresh call redials. The customer
repeats his call after a random time which is exponentially distributed with rhgap.
vq- 1S denoted agall_retry_dr. If it is blocked it continues retrying with probabilit§,
(p_retry_dr).

72

(7) IF active_users N_CHS-N_G_CHS
FROM redialing_users_dr TO active_users
RATE call_retry_dr*redialing_users_dr;
IF active_users= N_CHS-N_G_CHS
FROM redialing_users_dr
RATE call_retry_dr*redialing_users_dr THEN {
TO redialing_users_dr
WEIGHT p_retry_dr;
TO EXTERN WEIGHT 1 - p_retry_dr;
}

The active and redialing customers leave the cell after an exponentially distributed time

with parameteru,, u, and g, denoted ashandoff_dep_achandoff_dep_blkand hand-
off_dep_drrespectively.

(8) FROM active_users TO EXTERN
RATE handoff_dep_ac*active_users;
FROM redialing_users_bl TO EXTERN
RATE handoff_dep_bl*redialing_users_bl;
FROM redialing_users_dr TO EXTERN
RATE handoff_dep_dr*redialing_users_dr;

After describing the system functioning, we can define the system measures we would like
to calculate, such as the mean number of active and redialing customers because of blocking
and handoff failure, the fresh call blocking and the handoff call dropping probabilities.

(9) PRINT mean_active_users = MEAN(active_users);
PRINT mn_redialing_users_bl = MEAN(redialing_users_bl);
PRINT mn_redialing_users_dr = MEAN(redialing_users_dr);
PRINT call_blocking_prob = PROB(active_users N_CHS-N_G_CHS);
PRINT handoff_call_dropping_prob = PROB(active_users = N_CHS);

Finally, we define two pictures that show the changing of the blocking and dropping
probabilities depending on the number of channels. If weNiSEHSas parameter, we have
to define itin (1) as followsPARAMETER N_CHS :=6, 7, 8, 9, 10;

(10) PICTURE "Blocking probability vs N_CHS"
PARAMETER N_CHS
CURVE call_blocking_prob;
PICTURE "Dropping probability vs N_CHS"
PARAMETER N_CHS
CURVE handoff_call_dropping_prob;

7.2.4 Numerical Examples

In this subsection some sample numerical results are presented to illustrate graphically how
the quality of service measures depend on variable system parameters.

73

Comments

e In Figures 7.2 and 7.3 the fresh call blocking and handoff call dropping probabilities
are displayed versus the number of channels with and without user redials. The system
input parameters belonging to the curves without redials are the same as in [21], where
a similar model is studied without customer redigjs=€ 3, Ay = 0.5, ¢ = 0.05,

Wa = Uy = Ud = 1/3, A= 04, vy = vy, = 106, 0, =06, = 10~% and for the

other curvey,; = vy, = 6,01 = 0.8, ©5 = 0.9, furthermore the maximum number of
redialing customers is 25, respectively). These results are in agreement with theirs in
the exponential case.

e In Figures 7.4 and 7.5 the fresh call blocking and handoff call dropping probabilities
are displayed versus the mean handoff call arrival rate. The system input parameters
are the same as in Figures 7.2 and 7.3, except ofthat8, and), is on thex axis,
like in [21].

The negative influence of the retrial phenomenon is shown in each figures, and we can
see that it increases as the handoff call arrival rate increases.

e In Figure 7.6 we can see the fresh call blocking probability, the handoff call dropping
probability and the grade of service as the mean fresh call arrival rate increases.
The following system input parameters were uséd: = 7, g = 1, p = 0.05,
fa = iy = g = 1/3, \p = 0.4, vy = 6, v4, = 7,0, = 0.8andO, = 0.9.

e In Figure 7.7 the fresh call blocking and handoff call dropping probabilities and the
GoS are displayed versus the number of guard channels. We can see that a very few
number of guard channels can improve the grade of service significantly, but then only
a very small handoff call dropping advance can be achieved on the great expense of
fresh call blocking probability, and the GoS declines. The system input parameters are
the following: C' = 15, Ay = 3, u = 0.05, pq = ptp = pa = 1/3, A, = 0.4, vy = 6,
vgr = 7,01 = 0.8 andB, = 0.9.

74

Legend
0.35 < " without redials
~ with redials

0.3
0.25

0.2
0.15

0.1
0.05 | \\

\
0 ; : o
6 7 8 9 10

Figure 7.2: Fresh call blocking probability versus number of channels

Legend

0.0025 " without redials
—° with redials

0.002

0.0015

0.001
0.0005 \

\\ No.

o
chs.

Figure 7.3: Handoff call dropping probability versus number of channels

Legend
0.35 - " without redials
— with redials
03
0.25
0.2
0.15 /
0.1 /
0.05 -
s Hand-
0 — off
T T .
01 02 03 04 05 06 07 08 09 1 ™
rate

Figure 7.4: Fresh call blocking probability versus mean handoff call arrival rate

75

[Legend
0.01 " without redials
— with redials

0.009
0.008
0.007 4

o /
%

0.004

0.003
0.002
0.001+ Hand-

/ 7 off

0 R T T T T .
arriv.

T T T
01 02 03 04 05 06 07 08 09 1

rate

Figure 7.5: Handoff call dropping probability versus mean handoff call arrival rate

[ILegend

0.6 Pt

—Ph
0.5 I GoS
0.4 /
03
0.2
0.1

/ /"*’/ﬂ’/ﬂ Arriv.

0 ‘ ‘ ‘ "_rate
0.5 1 1.5 2 2.5

Figure 7.6: System measures versus mean fresh call arrival rate

Legend
0.18 —ort
™ Ph
0.16 GoS
0.14 -
0.12 »
0.1
0.08
0.06 /
0.04 - /
0.02 -
No.
0 T ™ guard
0 1 2 3 4 chs.

Figure 7.7: System measures versus number of guard channels

76

Part Il

Conclusions

77

In this dissertation the performance of different types of retrial queues was evaluated, and
a retrial queueing model was applied for the performance analysis of a cell based telecommu-
nication network. The efficient tool MOSEL was used, which made it much easier to analyze
these complex models.

In Part |, the performance of finite-source retrial queueing systems was investigated with
components subject to random breakdowns and repairs. A single-server queue was extended
and analyzed with non-reliable server and sources, and the non-reliable server case was gen-
eralized by heterogeneous sources, i.e. the sources were allowed to have different parameters.
Multiserver retrial queues were treated with non-reliable servers, and different service poli-
cies were compared. Finally, a reliable retrial queue was treated in random environment,
which also can be applied for the analysis of systems in which the components are subject
to random breakdowns. To the best know of the author, these finite-source retrial queueing
systems have not been investigated before in the literature.

In Part Il, a truncated infinite-source retrial queue was applied for the performance evalu-
ation of the GSM system. This was based on previous works of others in this topic, and some
generalizations were made. It was described in details how this system can be modelled by
the help of the tool MOSEL-2, which makes the modelling and the further extensions much
easier. This model can be developed to a layered one, and the newest version of MOSEL-2
allows us to use other distributions than the exponential, which can be applied and analyzed,
too.

79

80

Summary

Performance evaluation plays an important role in the design, analysis and development of
practical systems, like computer and telecommunication systems and networks. Queueing
models are often used for the performance and reliability modelling of these systems, and
retrial queues are more and more frequently applied to certain types of them. The reason is
that the return of customers plays a special role in many of these systems as well as in other
practical applications, and it often has a non-neglectable negative effect on the performance
measures.

Another important characteristic of real-life systems is non-reliability, which also has a
negative influence on these measures, because most of the components of the systems are sub-
ject to random breakdowns and require repairs. Non-reliability has been extensively studied
for traditional queues with waiting lines, but only for infinite-source queues with returning
customers.

The dissertation consists of two parts. In Part I, some non-reliable finite-source retrial
models and a reliable retrial queue in random environment (which also can be applied in the
performance analysis of non-reliable systems) are analyzed. To the best know of the author,
these models have not been treated in the literature before. In Part Il, a real-life system
is modelled using a retrial queueing model. A modelling way of the GSM system (Global
System for Mobile Communications) is treated with a modelling environment. This is based
on previous works of various authors and generalized with some model extensions.

Retrial Queues

Retrial queues (queueing systems with repeated attempts, or queues with returning cus-
tomers) are characterized by the following feature: a request finding all servers busy upon
arrival leaves the service area but after some (random) time repeats his demand. This feature
plays a special role in many computer and communication systems and networks as well as
in other practical applications. In case of many real-life systems, retrial queues can be ap-
plied in the performance modelling, for example in modelling local-area and cellular mobile
networks.

In Chapter 2, two types of retrial queues are introduced. The first one is a finite-source
retrial queue, on which the analysis is based in Part I. The second one is a truncated infinite
source queue with returning customers. An extension of this model is applied in Part Il to
analyze the GSM system.

81

The Applied Modelling Tool

MOSEL (Modeling, Specification and Evaluation Language) is a modelling environment with

a high-level modelling language which allows us to describe complex real-world systems and
to calculate their system measures using other performance evaluation tools. The MOSEL
description can be translated automatically into the language of various performance tools
and then analyzed by the appropriate tools (at present SPNP — Stochastic Petri Net Package
and TimeNET are supported and suitable for the investigated models) to get these measures.

Because of the fact that the state space of the underlying Markov chains of the investi-
gated queueing models is very large and the functioning of the systems is complex, it is quite
difficult to calculate the steady state probabilities in the traditional way of solving the system
of steady-state equations. To simplify these calculations and to make our studies more usable
in practice, the tool MOSEL was used to formulate the models and to calculate the perfor-
mance measures. This tool has already been used, and it has proved its applicability for the
modelling of several computer and communication systems. The functioning and usage of
MOSEL is illustrated by Figure 1.

‘ the system to be modelled ‘

!

[description in MOSEL J

'

| MOSES | | SsPNP | | TimeNET || PEPSY | ...

>~ N/

‘ the MOSEL tool generatesresult and IGL files ‘

Figure 1: The modelling process in the MOSEL environment

In Part 1, the original tool is used for the analysis of finite-source retrial queueing sys-
tems. Because of page limitations, only the simplest MOSEL description was included and
discussed.

In Part I, the GSM system is modelled with the revised modelling language, called
MOSEL-2, and detailed comments are provided about MOSEL-2 programming.

Analysis of Retrial Queueing Systems

The components of the real systems may be subject to random breakdowns so it is important
to investigate non-reliable queueing systems, as well as non-reliable retrial queues, because
of limited ability of repairs and heavy influence of the breakdowns on the performance mea-
sures.

82

e Analysis of Single-server Non-reliable Finite-source Retrial Queues
In Chapter 4, single-server non-reliable finite-source retrial queues are treated. The
purpose is to give the main stationary performance and reliability measures of the non-
reliable models, and to illustrate graphically the effect of changing various parameters
on them. Section 4.1 is devoted to the model described in the book of Falin and Tem-
pleton with server subject to breakdowns and repairs. In Section 4.2 this is extended
with non-reliable sources, and in Section 4.3 with reliable but heterogeneous sources.

o Analysis of Multiserver Non-reliable Finite-source Retrial Queues
In Chapter 5, a multiserver non-reliable finite-source retrial queue is investigated. Sec-
tion 5.1 is devoted to the extension of the model described in the book of Falin and
Templeton. The finite-source retrial queue is analyzed with non-reliable heteroge-
neous (asymmetric) servers, that is the servers have different parameters in service,
failure and repair rates. In Section 5.2 two service policies are compared in this model.

e Analysis of Retrial Queues in Random Environment
Chapter 6 deals with the performance analysis of a finite-source retrial queueing system
with heterogeneous sources operating in random environment, that is, the system pa-
rameters are subject to randomly occurring fluctuations. Besides, the queueing model
is applied for the analysis of non-reliable retrial models.

For an example analysis, see Figure 2, where we can see the difference between the
Fastest Free Server (referred to as ordered in the legend of the figure), Random and the
Averaged Random (where the service rate of the servers is the average of the rates of the
heterogeneous case) service policies in the mean response time depending on the primary
request generation rate. In the case of Random service disciplines, the requests are assigned
to the idle servers randomly. In the other case, the requests are assigned to the fastest available
free server. We can see that the difference between the two random case is not too significant,
but the Fastest Free Server case always has better response time, especially when more and
more requests arrive.

Legend
Mean response time —® ;rdered
1.2 ~— random
1.1 — averaged
1.0+ random
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1 i * Req.
0 T T T T T T T T—gen.
0 08 16 24 32 4 48 56 64 72 8 rate

Figure 2: Mean response time versus primary request generation rate

83

Application of Retrial Queues in Modelling of Communication Networks

Queueing network models are widely used in the traffic modelling of cellular mobile sys-
tems, such as GSM (Global System for Mobile Communications), GPRS (General Packet
Radio Service) and UMTS (Universal Mobile Telecommunication System). Most of the pa-
pers consider queueing systems without retrials, but after the study of Tran-Gia and Mandjes
(1997), which demonstrated in the context of cellular systems that the retrial phenomenon
is not neglectable because of the significant negative influence on the system performance
measures, authors are more likely to take it into consideration.

In Section 7.2, an infinite-source retrial queueing model of GSM networks is discussed,
based upon the ones that were studied by others. The blocked and dropped users are treated
separately, that is they redial with different probabilities and different rates. The state space is
reduced by maximizing the number of redialing blocked and dropped customers with appro-
priately large values (i. e. when the ignored probability mass can be neglected). Furthermore,
in this model not only the active but also both types of redialing customers are let to depart
to other cells, what was not allowed in the previous works. This work can be considered
as the initial step towards the analysis of more complex third generation systems using the
MOSEL-2 tool.

The accurate description of the cellular model is given along with the underlying Markov
chain. It is shown how the model description can be translated into the description language
of MOSEL-2. Some numerical examples are treated, where the analytical results of the calcu-
lations are displayed graphically to demonstrate the effect of the changing of various system
parameters on the quality of service measures.

For an example, see Figure 3, where the fresh call blocking and handoff call dropping
probabilities and the GoS (Grade of Service) are displayed versus the number of guard
channels. In this figure, we can see how many guard channels can improve the grade of
service significantly, and then the other reserved channels can achieve only very small
handoff call dropping advance on the great expense of fresh call blocking probability, and
the GoS declines.

Legend

0.18 | P

—Ph
GoS

0.16 -|

0.14
0.12 -

0.1
0.08
0.06
0.04

0.02 |
No.

0 T . c ~—guard
0 1 2 3 4 chs.

Figure 3: System measures versus number of guard channels

84

Osszefoglal6

A teljesitményelemzés fontos szerepet jatszik a gyakorlati rendszerek — mint példaul a tele-
kommunikaciés hal6zatok — tervezésében, elemzésében és fejlesztésében. Gyakran alkalmaz-
nak sorbanalladsi modelleket ezen rendszerek teljesitményének és megbizhatésdgéanak vizs-
galatdban. Kulénbdztipusaiknal egyre gyakrabban hasznaljak a visszatéréses sorbanallasi
rendszereket is. Ennek az oka az, hogy a visszaggnyek tébbiknél — akarcsak mint mas
gyakorlati alkalmazasoknal — gyakran specialis szerepet jatszanak, és nem elhanyagolhat6
negativ hatassal vannak a teljesitményjellékne.

A gyakorlati rendszerek egy masik fontos jelléfjeza meghibasodhatésag, mely, mivel
a rendszerkomponensek tébbsége meghibasodhat és javitast igényel, szintén negativ hatassal
van ezekre a jellentikre. A nem megbizhatésag hatasat alaposan tanulmanyoztak hagyoma-
nyos, varakozasi sorral rendelkezorbanallasi rendszereknél, visszatigenyekkel viszont
csak végtelen forrasi modellek esetén.

A disszertacié két résab all. Az |. részben néhany nem megbizhatd, véges forrasu
visszatéréses sorbanallasi rendszert vizsgalunk, valamint egy megbizhat6 visszatéréses rend-
szert véletlen kérnyezetben, ami szintén alkalmazhatd a nem megbizhaté modellek elemzésé-
ben. A szerd legjobb tudasa szerint ezeket a modelleket nem targyaltak korabbi munkakban.

A ll. részben egy valos rendszert vizsgalunk egy vissdatggnyeket tartalmazo sorbanal-

lasi rendszer segitségével. Itt egy modellezési modot tekintlink at masok korabbi munkaira
alapozva a GSM rendszer (Global System for Mobile Communications) teljesitményelemzé-
sére.

Visszatéréses sorbanallasi rendszerek

A visszatéb igényeket tartalmazo vagy visszatéréses sorbanallasi rendszerek olyan rendsze-
rek, melyekben ha egy beérkemgény minden kiszolgalét foglaltnak talal, akkor elhagyja
a kiszolgaldkat, majd egy (véletlen)dceltelte utan megismétli a kérést. Ez a tulajdonsag
mas gyakorlati alkalmazasok mellett specidlis szerepet jatszik szamos, napjainkban is hasz-
nalt szamitogép és kommunikacios rendszerben és halézatban is. igy tobb valos rendszer
teljesitményelemzése esetén is — mint példaul a helyi és a cellularis mobil halézatok — alkal-
mazhatoak a visszatéréses sorbanallasi modellek.

A 2. fejezetben két kulonb@zvisszatéréses sorbanallasi modellt tekintlink at. Az els
az a véges forrasu visszatéréses sorbanallasi rendszer, amelyen az I. részleteniee-
sek alapszanak. A masodik pedig egy végtelen forrdsu modell, melynek egy kiterjesztett
valtozatat alkalmazzuk a Il. részben a GSM rendszer hatékonysag-vizsgalatara.

85

Az alkalmazott modellezési eszkoz

A MOSEL (Modeling, Specification and Evaluation Language) egy olyan magasszint{ nyelv-
vel rendelked modellezési kdrnyezet, mely lebg€ teszi valés, bonyolult rendszerek leira-

sat, és ez alapjan kiszamitja a keresett rendszerjelleshznas hatékonysagvizsgalati esz-
kozok felhasznalasaval. A MOSEL leirdas automatikusan lefordithat6 a kiléresikozok
nyelvére (jelenleg az SPNP — Stochastic Petri Net Package és a TimeNET alkalmazhato a
vizsgalt modellek esetén), majd az adott eszkdzt felhasznalva elemezhetjiik a modellt és kap-
hatjuk meg a keresett rendszerjellékat.

Mivel a vizsgalt sorbanallasi modelleket leir6 Markov-lancok allapottere nagyon nagy
és a rendszerek mikddése bonyolult, ezért a hagyomanyos maédon, azaz az egyensulyi
allapotegyenlet-rendszer megoldasaval megteteet nehéz kiszamitani az egyensulyi alla-
potvaloszinliségeket. Hogy egyszerisitsik ezeket a szamitdsokat, tovabba a gyakorlatban
hasznalhatobba tegyik az elemzéseket, a MOSEL eszkozt hasznéljuk a modellek leirasara
és a teljesitményjellendk kiszamitasara, melyet mar szamos szamitdgép és kommunikacios
rendszer modellezésére hasznaltak, és bizonyitotta alkalmazhatésagat. A MOSEL miikbdését
és hasznalatat az itt lathato abra szemlélteti.

‘ a modellezni kivant rendszer ‘

!

| leirds MOSEL-ben |

¢

//\\\

| MOSES SPNP TimeNET || PEPSY

\\///"

‘ a MOSEL eszkoz eredmény és IGL fajlokat készit

4. dbra. A modellezési folyamat a MOSEL kdrnyezetben

Az |. részben az eredeti eszkdzt hasznaljuk véges forrasu visszatéréses sorbanallasi rend-
szerek elemzésére. Oldalszam korlatok miatt csak a legegyszeriibb MOSEL leirast targyaljuk.

A ll. részben az atdolgozott modeltazyelvet (MOSEL-2) alkalmazzuk — részletes ma-
gyarazatokkal a MOSEL-2 prgramozassal kapcsolatban — a GSM rendszer modellezésére.

Visszaéréses sorbanallasi rendszerek elemzése

Mivel a valés rendszerek komponensei altalaban meghibadsodhatnak, ezért a korlatozott ja-
vitasi lehebségek, és a meghibasodasoknak a teljesitményjélamgyakorolt jelertis ha-

tasa miatt fontos a nem megbizhat6 sorbanallasi rendszerek vizsgalata, igy a nem megbizhat6
visszatéréses modelleké is.

86

e Egykiszolgélés, nem megbizhatd, véges forrasu visszatéréses modellek elemzése
A 4. fejezetben egykiszolgalds, nem megbizhatd, véges forrasu visszatéréses sorbanal-
lasi rendszereket vizsgalunk. Célunk a nem meghbizhaté modellek legfontosabb egyen-
sulyi megbizhatésagi és teljesitményjelléimek megadasa, valamint kilontdopa-
ramétereknek az ezekre gyakorolt hatdsanak grafikus szemléltetése. A 4.1 alfejezetben
a Falin és Templeton kdnyvében leirt modellt vizsgajuk nem megbizhaté kiszolgalo-
val. A 4.2 alfejezetben ezt@vitjik nem megbizhato, 4.3-ban pedig megbizhato de
heterogén forrasokkal.

e TObbkiszolgalés, nem megbizhat6, véges forrasi visszatéréses modellek elemzése
A 5. fejezetben egy tobbkiszolgalds, nem megbizhat6, véges forrasi visszatéréses sor-
banallasi rendszert vizsgalunk. Az 5.1. alfejezetben a Falin és Templeton kdnyvében
leirt modellt <alanositjuk. Itt a véges forrasu visszatéréses modellt heterogén (aszim-
metrikus) kiszolgalokkal — melyek kiilonb@kiszolgalasi, meghibasodasi és javitasi
paraméterekkel rendelkezhetnek — elemezziik. Az 5.2. alfejezetben két kiszolgalasi
elvet hasonlitunk 6ssze ennél a modellnél.

e \isszatéréses sorbanallasi rendszerek véletlen kérnyezetben
A 6. fejezet egy véletlen kdrnyezetben ®é\heterogén forrasokat tartalmazo vissza-
téréses modell teljesitményelemzésével foglalkozik, azaz egy olyan sorbanallasi rend-
szerrel, melynek paraméterei egy hattérfolyamat alapjan valtozhatnak. Emellett ezt a
modellt is alkalmazzuk nem megbizhat6 visszatéréses rendszerek vizsgalatara.

Az 5. abran egy elemzési példa lathatd, ahol a leggyorsabb szabad kiszolgalo (Fastest
Free Server — FFS), a véletlen (Random) és az &tlagolt véletlen (itt mindegyik kiszolgalasi
intenzitds a heterogén eset intenzitasainak atlaga) kiszolgélasi elvek esetén lathatjuk az at-
lagos valaszolasi it az Uj igény érkezési intenzitas figgvényében. A véletlen kiszolgalasi
elvek esetén az igények véletlenszer(ien keriilnek az egyes szabad kiszolgalékhoz. A masik
elv esetén viszont a beérkemény a leggyorsabb szabad kiszolgaléhoz keril. Lathato, hogy
a kilonbség a két véletlen eset kézétt nem jélentle a leggyorsabb szabad kiszolgal6t va-
laszt6 elv mindig jobb atlagos valasicel rendelkezik, kiiléndsen mikor egyre tébb és tobb
igény érkezik.

. Jelmagyarazat
Atlagos valaszolasi idd —e pFs
1.2 ~ yéletlen
1.1 — atlagolt
1.0 véletlen
0.9
0.8 -
0.7 - 1 //'—0—‘—*—*—0—0—._...
0.6 ! 1 H H : H
0.5 L : ; : : :
0.4
0.3
0.2 1
0.1 - Igény
0 T T T T T T T T "‘l l\‘
0 08 16 24 32 4 48 56 64 72 8 int.

5. 4bra. Atlagos valaszolasidhz] igény érkezési intenzitas fiiggvényében

87

Visszatéréses sorbanallasi rendszerek alkalmazasa kommunikaciés hal6zatok modelle-
zésében

A sorbanallasi halézati modelleket gyakran alkalmazzak a cellularis mobil rendszerek, mint
példaul a GSM (Global System for Mobile Communications), a GPRS (General Packet Radio
Service) és az UMTS (Universal Mobile Telecommunication System) teljesitményelemzésé-
ben. El$sorban a klasszikus, visszdiégényeket nem tartalmazé sorbanallasi modelleket

hasznaljak, de Tran-Gia és Mandjes (1997) cikke utan egyre tdbben veszik figyelembe a

visszatéd igényeknek a teljesitményjelleidizre gyakorolt hatasat.

A 7.2. fejezetben a GSM hal6zatoknak egy végtelen forrasu sorbanallasi modelljét tar-
gyaljuk korabbi munkak alapjan. A modellben a blokkolt és megszakadt hivasok miatti is-
métiddd kéréseket kilon kezeljik, azaz a hivasismétlési valdszinliségek és intenzitasok ku-
[6nb6Bek lehetnek. Az allapotteret mindkét tipus esetén az igwiEthiivasokat generalo
felhasznalok maximalis szaméanak megfédel nagy értékekkel vald korlatozasaval redukal-
juk. A vizsgalt modellben tovabba nem csak az aktiv, hanem mindkét tipusu sikertelen hivas
miatt Gjra probalkozé felhasznal6 is tavozhat masik cellaba, ami a korabbi tanulmanyokban
nem volt megengedve. Ez a munka tekinthat el Iépésnek a bonyolultabb, harmadik
generacios rendszereknek a MOSEL-2 eszkdzzel thniasgalata felé.

A modellezés soran megadjuk a cella alapi modell pontos leirasat az azt leir6 Markov-
lanccal egyitt, majd megmutatjuk, hogyan fordithaté le ez a MOSEL-2 leird nyelvére. At-
tekintink néhany numerikus példéat, ahol az analitikus eredményeket grafikusan abrazolva
mutatjuk meg kulonbdz paraméterek valtozasanak hatdsat a szolgéaltatdssaganek jel-
lemzire.

A 6. abran erre lathato egy példa, ahol az Uj hivasok blokkoldsanak és az atadottak
megszakadasanak valdszinlisége, valamint a GoS (Grade of Service) fijyekgta
fenntartott csatornak szamanak fiiggvényében. Lathatd, hogy kis szamu csatorna fenntartdsa
jelensen javithatja a szolgaltatas raegi mértékét, de tobb ilyen csatorna esetén csak na-
gyon kis atadott hivasmegszakadasasi val6szinliség-csokkenésetijedtnts blokkolasi
valoszinliség-ndvekedés aran, és a GoS romlik.

Jelmagyarazat
0.18 - e
—Ph

GoS

0.16 -|

0.14
0.12 -

0.1
0.08
0.06
0.04

0.02
Fenn-

0 7 : - ~—tartott
0 1 2 3 4 csat.

6. abra. Rendszerjellerdk a fenntartott csatornak szamanak fliggvényében

88

Bibliography

[1] Aissani A. and Artalejo J. R. On the single server retrial queue subject to breakdowns,
Queueing Systems Theory and Applicatjofm. 30 (1998), 309-321.

[2] Alfa A. S. and Li W. PCS networks with correlated arrival process and retrial phe-
nomenon]EEE Transactions on Wireless Communicatiovid. 1 (2002) 630-637.

[3] Almaési B. A Queueing Model for a Processor-Shared Multi-Terminal System Subject
to Breakdowndcta CyberneticaVol. 10 (1993) 273-282.

[4] AlmasiB. Response time for finite-source heterogeneous nonreliable queueing systems,
Computers and Mathematics with Applicatiphl. 31 (1996) 55-59.

[5] AlmasiB., Bolch G. and Sztrik J. Performability Modeling of Non-homogeneous Ter-
minal Systems Using MOSEI5th International Workshop on Performnability Model-
ing of Computer and Communication Systems, Erlangen, Germany1Z008.

[6] Almasi B., Bolch G., Sztrik J. Performability Modeling a Client-Server Communi-
cation System with Randomly Changing Parameter Using MOSHL International
Workshop on Performability Modeling of Computer and Communication Systems, Er-
langen, Germany, 20037-41.

[7] Almasi B., Bolch G., Sztrik J. Analysing Markov-modulated finite-source queueing
systemsAnnales Univ. Sci. Budapest., Sect. Caripl. 22 (2003) 22-33.

[8] Almasi B., Bolch G. and Sztrik J. Heterogeneous finite-source retrial queldesirnal
of Mathematical Science¥ol. 121 (2004) 2590-2596.

[9] Almasi B., Sztrik J. Optimization Problems on the Performance of a Non-Reliable
Terminal SystemComputers and Mathematics with Applicatipivel. 38 (1999) 13-
21.

[10] Almasi B., Roszik J. and Sztrik J. Homogeneous finite-source retrial queues with
server subject to breakdowns and repditathematical and Computer Modellingol.
42 (2005) 673-682.

[11] Artalejo J.R. New results in retrial queueing systems with breakdown of the servers,
Statistica Neerlandicavol. 48 (1994) 23-36.

[12] Artalejo J.R. Retrial queues with a finite number of sourcéorean Math. So¢c\Vol.
35 (1998) 503-525.

89

[13] Artalejo J.R. Accessible bibliography on retrial queudath. Comput. Modelingvol.
30 (1999) 1-6.

[14] Artalejo, J.R. and Gomez-Corral, A. Information theoretic analysis for queueing sys-
tems with quasi-random inpu¥jathematical and Computer Modellingol. 22 (1995)
65-76.

[15] Artalejo J.R., Rajagopalan V. and Sivasamy R.On finite Markovian queues with
repeated attemphjvestigacion Operativavol. 9 (2000) 83-94.

[16] Begain K., Bolch G. and Herold H. Practical performance modeling, application of
the MOSEL languagésluwer Academic Publisher, Boston, 2001.

[17] Begain K., Barner J., Bolch G., Zreikat A. |. The Performance and Reliability Mod-
elling Language MOSEL and its Applicatiomternational Journal of Simulatigriol.
3 (2003) 66-80.

[18] Begain K., Bolch G., Telek M.Scalable Schemes for Call Admission and Handover in
Cellular Networks with Multiple ServicedVireless Personal Communications Jougnal
Kluwer Academic Publisher, 1999.

[19] Beutel B. Integration of the Petri Net tool TimeNET into the MOSEL modelling en-
vironment,MS ThesisDepartment of Computer Science, University of Erlangen, Ger-
many, 2003.

[20] Daigle J.N. Queueing theory for telecommunicationsddison-Wesley, Nwe York,
1992.

[21] Dharmaraja S., Trivedi K.S., Logothetis D. Performance modeling of wireless net-
works with generally distributed handoff interarrival tim€gmputer Communications
Vol. 26 (2003) 1747-1755.

[22] Dragieva V.I. Single-line queue with finite source and repeated cBitshlems of In-
formation Transmissigrvol. 30 (1994) 283-289.

[23] Falin G.I. A survey of retrial queuefueueing Systemsol. 7 (1990) 127-168.

[24] Falin G.I. A multiserver retrial queue with a finite number of sources of primary calls,
Mathematical and Computer Modellingol. 30 (1999) 33-49.

[25] Falin G.I. and Artalejo J.R. A finite source retrial queudsuropean Journal of Oper-
ational ResearchVol. 108 (1998) 409-424.

[26] Falin G.I. and Gomez Corral A. On a bivariate Markov process arising in the theory
of single-server retrial queueStatistica Neerlandicavol. 54 (2000) 67-78.

[27] Falin G.I. and Templeton J.G.C.Retrial gueuesChapman and Hall, London, 1997.

[28] Gaver D.P., Jacobs P.A., Latouche GFinite birth-and-death models in randomly
changing environmentédvances in Applied Probability/ol. 16 (1984) 715-731.

[29] Gomez Corral A. Analysis of a single-server retrial queue with quasi-random input and
nonpreemptive priorityComputers and Mathematics with Applicatiphsl. 43 (2002)
767-782.

90

[30] Houck D.J. and Lai W.S. Traffic modelling and analysis of hybrid fibercoax systems,
Computer Networks and ISDN Systeiwd. 30 (1998) 821-834.

[31] Jain R. The art of computer systems performance analyisibn Wiley and Sons, New
York, 1991.

[32] Janssens G.K.The quasi-random input queueing system with repeated attempts as a
model for collision-avoidance star local area netwdB&E Transactions on Commu-
nications Vol. 45 (1997) 360-364.

[33] Kalmychkov A.l. and Medvedev G.A.Probability characteristics of Markov local-area
networks with random-access protoc@sitomatic Control and Computer Scientéel.
24 (1990) 38-45.

[34] Khomichkov I.I. Study of models of local networks with multiple-access protocols,
Automation and Remote Contrdlol. 54 (1993) 1801-1811.

[35] Kok A.G. Algorithmic methods for single server systems with repeated atteBtpts-
tica NeerlandicaVol. 38 (1984) 23-32.

[36] Kovalenko I.N., Kuznetsov N.Yu. and Pegg P.AMathematical theory of reliability of
time dependent systems with practical applicatialmn Wiley and Sons, Chichester,
1997.

[37] Kulkarni V. G. and Choi B. D. Retrial queues with server subject to breakdowns and
repairs,Queueing Systems Theory and Applicatjofed. 7 (1990) 191-208.

[38] Li Hui and Yang Tao A single server retrial queue with server vacations and a finite
number of input sourceguropean Journal of Operational Researdfol. 85 (1995)
149-160.

[39] LiY., Al-Begain K., Awan |. Performance Modelling of GSM/GPRS Mobile System
with MOSEL, 4th PGNet, Liverpool, June 200245-250.

[40] Litiens R. and Boucherie R. J.Elastic calls in an integrated services network: the
greater the call size variability the better the Q&8rformance Evaluatignvol. 52
(2003) 193-220.

[41] Marsan M. A., Carolis G. D., Leonardi E., Cigno R. L., Meo M. Efficient estima-
tion of call blocking probabilities in cellular mobile telephony networks with customer
retrials,IEEE Journal on Selected Areas in Communicatjdrfod. 19 (2001) 332-346.

[42] Mehmet-Ali M.K., Hayes J.F. and Elhakeem A.K. Traffic analysis of a local area
network with star topologylEEE Transactions on Communicationgol. 36 (1988)
703-712.

[43] Nobel R.D. and Tijms Henk C. Optimal control of a queueing system with heteroge-
neous servers and setup cofEEE Trans. Autom. ContrpVol. 45 (2000) 780-794.

[44] Ohmura H. and Takahashi Y. An analysis of repeated call model with a finite number
of sourcesElectronics and Communications in Japafl. 68 (1985) 112-121.

91

[45] Onur E., Delic H., Ersoy C. and Caglayan M. U.Measurement-based replanning of
cell capacities in GSM network§omputer Networks/ol. 39 (2002) 749-767.

[46] Ravichandran N. Stochastic methods in reliability theodohn Wiley and Sons, New
York, 1990.

[47] Roszik J. Homogeneous finite-source retrial queues with server and sources subject
to breakdowns and repair8nnales Univ. Sci. Budapest., Sect. Camvpl. 23 (2004)
213-227.

[48] Roszik J., Almasi B., Sztrik J. Multiserver retrial queues with finite number of hetero-
geneous sourceBroceedings of 6th International Conference on Applied Informatics
Eger, Hungary, (2004) Vol. I, 19-26.

[49] Roszik J., Sztrik J. The effect of server's breakdown on the performance of finite-
source retrial queueing systeniroceedings of 6th International Conference on Ap-
plied Informatics Eger, Hungary, (2004) Vol. 11, 221-229.

[50] Roszik J., Sztrik J., Kim C.S. Retrial queues in the performance modeling of cellular
mobile networks using MOSEllnternational Journal of Simulation: Systems, Science
& Technology Vol. 6 (2005) 38-46.

[51] Stepanov S. N.The analysis of the model with finite number of sources and taking
into account the subscriber behavioigtomation and Remote Contydlol. 55 (1994)
100-113.

[52] Sztrik J., Almasi B., Roszik J. Heterogeneous finite-source retrial queues with server
subject to breakdowns and repailsurnal of Mathematical Sciencegol. 132 (2006)
677-685.

[53] Sztrik J. and Gal T. A recursive solution of a queueing model for a multi-terminal
system subject to breakdowr®erformance Evaluatigrivol. 11 (1990) 1-7.

[54] Sztrik J. and Pésafalvi A. On the heterogeneous machine interference with limited
server’'s availabilityEuropean Journal of Operational Reseaydfol. 28 (1987) 321-
328.

[55] Takagi H. Queueing Analysis, A Foundation of Performance Evaluation, Vol. 2., Finite
SystemsNorth-Holland, Amsterdam, 1993.

[56] Tran-Gia P. and Mandjes M. Modeling of customer retrial phenomenon in cellular
mobile networks]EEE Journal of Selected Areas in Communicatiovid. 15 (1997)
1406-1414.

[57] Trivedi K. S. Probability and statistics with reliability, queueing and computer science
applications,Prentice-Hall, Englewood Cliffs, 1982.

[58] Wang J., Cao J. and Li Q. L. Reliability analysis of the retrial queue with server

breakdowns and repairQueueing Systems Theory and Applicatjovid. 38 (2001)
363-380.

92

[59] Wichner P. Extending the interface between the modeling languages MOSEL and
CSPL by adding simulation constructSemester Thesis SA-14-2003-@epartment
of Computer Science, University of Erlangen, Germany, 2003.

[60] Wuchner P. Performance modelling of mobile networks using MOSEIMZS. Thesis
Department of Computer Science, University of Erlangen, Germany, 2004.

[61] Zreikat A. I., Bolch G., Sztrik J. Performance Modeling of Non-homogeneous Unre-
liable Multi-Server Systems Using MOSEComputers and Mathematics with Appli-
cations Vol. 46 (2003) 293-312.

93

94

Appendix A

Publications of the Author

International Journal Papers

[J1] Roszik J.Homogeneous finite-source retrial queues with server and sources sub-
ject to breakdowns and repainnales Univ. Sci. Budapest., Sect. Carivpl.
23 (2004) 213-227.

[J2] Roszik J., Sztrik J., Kim C.S. Retrial queues in the performance modeling of
cellular mobile networks using MOSEllnternational Journal of Simulation:
Systems, Science & Technolplgl. 6 (2005) 38-46.

[J3] Almési B., Roszik J., Sztrik J. Homogeneous finite-source retrial queues with
server subject to breakdowns and repaMsthematical and Computer Mod-
elling, Vol. 42 (2005) 673-682.

[J4] Sztrik J., Almési B., Roszik J. Heterogeneous finite-source retrial queues with
server subject to breakdowns and repalogirnal of Mathematical Sciencegol.

132 (2006) 677-685.

[J5] Roszik J., Sztrik J. Performance analysis of finite-source retrial queues with non-
reliable heterogeneous servelsurnal of Mathematical Sciencésubmitted for
publication)

[J6] Sztrik J., Roszik J. Finite-source retrial queueing systems with heterogeneous
non-reliable servers and different service policitsyrnal of Mathematical Sci-
enceqsubmitted for publication)

[J7] Roszik J., Sztrik J., Virtamo J. Performance analysis of finite-source retrial
queues operating in random environmetgernational Journal of Operations
Researcito appear)

International Conference Papers

[C1] Roszik J., Almasi B., Sztrik J. Multiserver retrial queues with finite number of
heterogeneous sourcé&pceedings of 6th International Conference on Applied
Informatics Eger, Hungary, (2004) Vol. 1l, 19-26.

[C2] Roszik J., Sztrik J. The effect of server’'s breakdown on the performance of
finite-source retrial queueing systenfspceedings of 6th International Confer-
ence on Applied Informatic&ger, Hungary, (2004) Vol. 1l, 221-229.

95

[C3] Hyytia E., Lassila P., Penttinen A., Roszik J.Traffic load in dense wireless
multihop network Proceedings of The 2nd ACM International Workshop on Per-
formance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-
WASUN '05) Montreal, Quebec, Canada, (2005) 9-17.

Publications in Hungarian

[H1] Roszik J. Visszatéréses sorbanallasi rendszerek a telekommunikaciés hal6za-
tok modellezésébennformatika a Fels6oktatdsban 200Bebrecen, Hungary,
(2005) 6 pages

[H2] Roszik J. Szamitégép-halézatok gyakorlati segédanymgbiDIAK konyvtar
Debrecen, Hungary, (2005) 43 pages

96

Appendix B

Conference Presentations

International

[Ic1]

[1Cc2]

[IC3]

[1C4]

[IC5]

[1C6]

[IC7]

[1Cc8]

Almasi B., Roszik J., Sztrik J. Heterogeneous finite-source retrial queues with
server subject to breakdowns and repa¥X]Il International Seminar on Sta-
bility Problems for Stochastic ModelPamplona, Spain (2003) (presented by J.
Sztrik)

Almasi B., Roszik J., Sztrik J. Homogeneous finite-source retrial queues with
server subject to breakdowns and repédithy EURO/INFORMS Joint Interna-
tional Meeting Istanbul, Turkey (2003) (presented by J. Sztrik)

Bolch G., Roszik J., Sztrik J. Heterogeneous finite-source retrial queues in
the analysis of communication systems with CSMA/CD protodatgrnational
Conference on Modern Mathematical Methods of Analysis and Optimization of
Telecommunication Network&omel, Belarus (2003) (presented by J. Sztrik)

Roszik J., Almasi B., Sztrik J. Multiserver retrial queues with finite number of
heterogeneous sourcd§Al '2004 - 6th International Conference on Applied
Informatics Eger, Hungary (2004) (presented by J. Roszik)

Roszik J., Sztrik J. The effect of server’'s breakdown on the performance of
finite-source retrial queueing systerGAl '2004 - 6th International Conference
on Applied InformaticsEger, Hungary (2004) (presented by J. Sztrik)

Roszik J., Sztrik J. Retrial queues for performance modelling and evaluation
of heterogeneous networkdET-NETs '04 - The Second International Working
Conference on the Performance Modelling and Evaluation of Heterogeneous Net-
works llkley, West Yorkshire, U.K. (2004) (presented by J. Sztrik)

Roszik J., Sztrik J. Performance analysis of finite-source retrial queues with non-
reliable heterogenous servexsIV International Seminar on Stability Problems
for Stochastic Mode|slurmala, Latvia (2004) (presented by J. Sztrik)

Hyytia E., Lassila P., Penttinen A., Roszik J.Traffic load in dense wireless
multihop network,The 2nd ACM International Workshop on Performance Eval-
uation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN '05)
Montreal, Quebec, Canada (2005) (presented by E. Hyyti&)

97

Hungarian

[HC1] Roszik J.Nem-megbizhato kiszolgalét és forrasokat tartalmazo visszatéréses sor-
banallasi rendszerek teljesitményelemz&s€/I. Operaciokutatasi Konferengia
Gyor, Hungary (2004) (presented by J. Roszik)

[HC2] Sztrik J., Roszik J. Véges forrdsu visszatéréses sorbanalldsi rendszerek kilon-
b6z nem-megbizhaté kiszolgalokkal és kiszolgalasi elvekke{VI. Opera-
ciokutatasi KonferencigGydr, Hungary (2004) (presented by J. Sztrik)

[HC3] Roszik J.Visszatéréses sorbandllasi rendszerek a telekommunikaciés halézatok
modellezésébemformatika a Fels6oktatasban 200B5ebrecen, Hungary (2005)
(presented by J. Roszik)

98

Retrial Queues and their Application in Performance Modelling of Communication
Networks

Ertekezés a doktori (PhD) fokozat megszerzése érdekében a
matematika- és szamitastudomanyok tudomanyagban.

irta: Roszik Janos okleveles programteiyezatematikus

Készilt a Debreceni Egyetem Matematika- és Szamitastudoméanyok doktori iskola
Informatikai rendszerek és halézatok programja
keretében

Témavezdi: Dr. Sztrik Janos

A doktori szigorlati bizottsag:

elnok: 3
tagok: 5
3
A doktori szigorlat idpontja 200...ccccceeeeeeeenn ...

Az értekezés biraloi:

A biraldbizottsag :
elnok: 3
tagok: D

