
Retrial Queues and their Application in Performance
Modelling of Communication Networks

PhD dissertation

JÁNOS ROSZIK

Faculty of Informatics, University of Debrecen

Debrecen, 2006

Ezen értekezést a Debreceni Egyetem Matematika- és Számítástudományok Doktori Iskola
Informatikai rendszerek és hálózatok programja keretében készítettem a Debreceni Egyetem
doktori (PhD) fokozatának elnyerése céljából.

Debrecen, 200..

. .
Roszik János

jelölt

Tanúsítom, hogy Roszik János doktorjelölt 2003–2006 között a fent megnevezett Doktori
Iskola Informatikai rendszerek és hálózatok programjának keretében irányításommal végezte
munkáját. Az értekezésben foglalt eredményekhez a jelölt önálló alkotó tevékenységével
meghatározóan hozzájárult. Az értekezés elfogadását javasolom.

Debrecen, 200..

. .
Dr. Sztrik János

témavezet̋o

Acknowledgements

I would like to thank my supervisor Prof. János Sztrik for providing me an interesting
subject of research, as well as for his guidance and support throughout this work. I am also
grateful to Dr. Béla Almási for his helpful discussions over the years, and to György Marcsek
for his valuable linguistic suggestions to the manuscript.

Contents

1 Introduction 1

I Retrial Queues 3

2 Introduction to Retrial Queues 5
2.1 A Retrial Queueing Model with Finite Number of Sources 7
2.2 A Truncated Infinite-source Retrial Queueing Model 9

3 The MOSEL Tool 13

4 Analysis of Single-server Non-reliable Finite-source Retrial Queues 15
4.1 TheM/M/1//K Model with Non-reliable Server 16

4.1.1 The Underlying Markov Chain . 16
4.1.2 The MOSEL Implementation . 19
4.1.3 Validation of Results . 20
4.1.4 Numerical Examples . 20

4.2 TheM/M/1//K Model with Non-reliable Server and Non-reliable Sources . 26
4.2.1 The Underlying Markov Chain . 26
4.2.2 Validation of Results . 28
4.2.3 Numerical Examples . 29

4.3 The ~M/ ~M/1//K Model with Non-reliable Server 35
4.3.1 The Underlying Markov Chain . 35
4.3.2 Validation of Results . 39
4.3.3 Numerical Examples . 39

5 Analysis of Multiserver Non-reliable Finite-source Retrial Queues 45
5.1 TheM/ ~M/c//K Model with Non-reliable Servers 46

5.1.1 The Underlying Markov Chain . 46
5.1.2 Validation of Results . 48
5.1.3 Numerical Examples . 48

5.2 Comparison of Different Service Policies 52
5.2.1 Validation of Results . 52
5.2.2 Numerical Examples . 52

6 Retrial Queues in Random Environments 57
6.1 The ~M/ ~M/1//K Model in Random Environment 58

6.1.1 The Underlying Markov Chain . 58
6.1.2 Validation of Results . 60
6.1.3 Numerical Examples . 60

II Application of Retrial Queues in Performance Modelling of Com-
munication Networks 65

7 Retrial Queueing Models of Mobile Communication Networks 67
7.1 Quality of Service . 67
7.2 Performance Analysis of GSM . 68

7.2.1 Model Description . 68
7.2.2 The Underlying Markov Chain . 69
7.2.3 Model Conversion to MOSEL-2 . 71
7.2.4 Numerical Examples . 73

III Conclusions 77

Summary 81

Összefoglaló (Summary in Hungarian) 85

Bibliography 89

A Publications of the Author 95

B Conference Presentations 97

Chapter 1

Introduction

Performance evaluation plays an important role in the design, analysis and development of
practical systems, like computer and telecommunication systems and networks. Queueing
models are often used for the performance and reliability modelling of these systems, and
retrial queues are more and more frequently applied to certain types of them. The reason is
that the return of customers plays a special role in many of these systems as well as in other
practical applications, and it often has a non-neglectable negative effect on the performance
measures.

Another important characteristic of real-life systems is non-reliability, which also has a
negative influence on these measures, because most of the components of the systems are sub-
ject to random breakdowns and require repairs. Non-reliability has been extensively studied
for traditional queues with waiting lines, but only for infinite-source queues with returning
customers.

In the first part of the dissertation, some non-reliable finite-source retrial models and a
reliable retrial queue in random environment (which also can be applied in the performance
analysis of non-reliable systems) are analyzed. These models have not been treated in the
literature before. In the second part, a real-life system is modelled using a retrial queueing
model. A modelling way of the GSM system (Global System for Mobile Communications)
is treated with the MOSEL (Modeling, Specification and Evaluation Language) tool. This is
based on previous works of various authors and generalized with some model extensions.

1

2

Part I

Retrial Queues

3

Chapter 2

Introduction to Retrial Queues

Retrial queues (queueing systems with repeated attempts, or queues with returning cus-
tomers) are characterized by the following feature: a request finding all servers busy upon
arrival leaves the service area but after some (random) time repeats his demand.

Queueing models are often used for the performance analysis of computer and commu-
nication systems. In case of many real-life systems, retrial queues can be applied in the per-
formance modelling, for example, in modelling magnetic disk memory systems [44], cellular
mobile networks [56], computer networks [30], and local-area networks with non-persistent
CSMA/CD protocols [38], with star topology [32; 42], with random access protocols [33],
and with multiple-access protocols [34]. For more detailed information and results on this
type of queueing systems, see for example [13; 23; 27], and a complete survey can be found
on queueing systems without retrials in [55]. Further recent results with finite-source of pri-
mary requests can be found in [12; 14; 15; 22; 26; 29; 35; 38; 51].

In the next sections, two types of retrial queues are introduced from [27] (with some
modifications and extensions). The content of these sections in their original form can be
found in [27], on pages 268–269, 95 and 108–111. The first one is a finite-source retrial
queue, on which the analysis is based in Part I. The second one is a truncated infinite source
queue with returning customers. An extension of this model is applied in Part II to analyze
the GSM system.

5

6

2.1 A Retrial Queueing Model with Finite Number of
Sources

Consider ac-server queueing system where primary calls are generated byK, c < K < ∞,
sources. Each source can be in one of three states

• under service

• sending repeated calls (i.e. waiting for service)

• free

If a source is free at timet (i.e. if it is not being served and is not waiting for service)
then it may generate a primary call during interval(t, t + dt) with probabilityλdt.

If there is a free server at the time of arrival of a primary call then the call (or equivalently
the source which produced the call) starts to be served. During service the source cannot
generate new primary calls. After service the source moves into the free state and can generate
a new primary call.

If all servers are busy at time of arrival of a primary call, then the source starts generation
of repeated calls at exponential intervals with mean1/ν until it finds a free server, at which
time the source starts to be served. As before, after service the source becomes free and can
generate a new primary call.

The service time has an exponential distribution with a finite mean1/µ = 1 both for
primary calls and repeated calls.

The functioning of the system can be described by means of process(C(t), N(t)), where
C(t) is the number of busy servers andN(t) is the number of sources of repeated calls
(queue length) at timet. Under the above assumptions process(C(t), N(t)) is Markovian
with finite state spaceS = {0, 1, ..., c} × {0, 1, ..., K − c}. Its infinitesimal transition rates
q(ij)(nm) are given by:

1. for 0 ≤ i ≤ c− 1

q(ij)(nm) =

(K − i− j)λ, if (n,m) = (i + 1, j)
i, if (n,m) = (i− 1, j)
jν, if (n,m) = (i + 1, j − 1)

−((K − i− j)λ
+i + jν), if (n,m) = (i, j)

0 otherwise.

2. for i = c

q(cj)(nm) =

(K − c− j)λ, if (n,m) = (c, j + 1)
c, if (n,m) = (c− 1, j)

−((K − c− j)λ + c), if (n,m) = (c, j)
0 otherwise.

Since the state space of the process(C(t), N(t)) is finite, the process is ergodic for all
values of the rate of generation of new primary calls, and from now on we will assume that
the system is in the steady state.

7

From a practical point of view the most important characteristics of the quality of service
to subscribers are the following. (Note:∞ denotes the steady state in the definitions of the
performance measures.)

• Mean number of sources of repeated calls

N = EN(∞) =
c∑

i=0

K−c∑

j=0

jpij .

• Mean number of busy servers

Y = EC(∞) =
c∑

i=0

K−c∑

j=0

ipij .

• Mean rate of generation of primary calls

λ = λE(K − C(∞)−N(∞)) = λ(K − Y −N).

• Fraction of primary calls which were blocked (i.e. met all servers busy)

B =
λE(K − C(∞)−N(∞); C(∞) = c)

λE(K − C(∞)−N(∞))
.

• Mean waiting time

W =
N

λ
.

• Mean response time

T = W +
1
µ

.

• Utilization of the sources

USO =
E(K − C(∞)−N(∞))

K
=

K −N − Y

K
= 1− N + Y

K
.

• Overall utilization (i.e. the sum of the utilization of the components of the system)

UO = Y + KUSO.

8

2.2 A Truncated Infinite-source Retrial Queueing Model

Consider a group ofc fully available servers in which a Poisson flow of primary calls with
rateλ arrives.

If an arriving primary call finds some server free it immediately occupies a server and
leaves the system after service. Otherwise, if all servers are engaged, it produces a source
of repeated calls. Every such source after some delay produces repeated calls until after one
or more attempts it finds a free server, in which case the source is eliminated and the call
receives service and then leaves the system.

We assume that periods between successive retrials are exponentially distributed with
parameterν, and service times are exponentially distributed with parameterµ. Without loss
of generality we may assume thatµ = 1. Furthermore, we suppose that interarrival periods,
retrial times and service times are mutually independent.

In this model, the orbit size (i.e. the number of sources of repeated calls) is bounded by
a given constantM . If the number of sources equalsM then the blocked calls are lost and
have no influence on the functioning of the system. The stochastic dynamics of the system
can be described by means of a bivariate process(C(M)(t), N (M)(t)), whereC(M)(t) is the
number of busy servers andN (M)(t) is the number of sources of repeated calls at timet.
Under the above assumptions the process(C(M)(t), N (M)(t)) is Markovian with the finite
lattice semi-stripS(M) = {0, 1, ..., c} × {0, 1, ..., M} as the state space. Its infinitesimal
transition ratesq(M)

(ij)(nm) are given by:

1. for 0 ≤ i ≤ c− 1, 0 ≤ j ≤ M

q
(M)
(ij)(nm) =

λ, if (n,m) = (i + 1, j)
i, if (n,m) = (i− 1, j)
jν, if (n,m) = (i + 1, j − 1)

−(λ + i + jν) if (n,m) = (i, j)
0 otherwise.

2. for i = c, 0 ≤ j ≤ M − 1

q
(M)
(cj)(nm) =

λ, if (n,m) = (c, j + 1)
c, if (n,m) = (c− 1, j)

−(λ + c), if (n,m) = (c, j)
0 otherwise.

3. for i = c, j = M

q
(M)
(cM)(nm) =

c, if (n,m) = (c− 1,M)
−c, if (n,m) = (c,M)
0 otherwise.

Since the state space of the process(C(M)(t), N (M)(t)) is finite, the process is always
ergodic. Its stationary distributionp(M)

ij = P{C(M)(t) = i,N (M)(t) = j} may be found as
a solution of the following set of linear equations:

(λ + i + jν)p(M)
ij = λp

(M)
i−1,j + (j + 1)νp

(M)
i−1,j+1 + (i + 1)p(M)

i+1,j ,

9

0 ≤ i ≤ c− 1, 0 ≤ j ≤ M − 1, (2.1)

(λ + i + Mν)p(M)
iM = λp

(M)
i−1,M + (i + 1)p(M)

i+1,M ,

0 ≤ i ≤ c− 1, (2.2)

(λ + c)p(M)
cj = λp

(M)
c−1,j + (j + 1)νp

(M)
c−1,j+1 + λp

(M)
c,j−1

0 ≤ j ≤ M − 1, (2.3)

cp
(M)
cM = λp

(M)
c−1,M + λp

(M)
i,M−1, (2.4)

which satisfies the normalizing condition

c∑

i=1

M∑

j=0

p
(M)
ij = 1. (2.5)

Explicit formulas for the main performance characteristics

For generating functions

p
(M)
i (z) =

M∑

j=0

zjp
(M)
ij , 0 ≤ i ≤ c

equations (2.1)-(2.4) become

(λ + i)p(M)
i (z) + νz

dp
(M)
i (z)
dz

= λp
(M)
i−1 (z) + ν

dp
(M)
i−1 (z)
dz

+ p
(M)
i+1 (z),

0 ≤ i ≤ c− 1, (2.6)

(λ + c)p(M)
c (z)− λzMp

(M)
cM = λp

(M)
c−1 (z) + ν

dp
(M)
c−1 (z)
dz

+ λz(M)pc(z)

−λzM+1p
(M)
cM . (2.7)

Now introduce the generating function

p(M)(x, z) =
c∑

i=0

xip
(M)
i (z).

Then equations (2.6), (2.7) become:

λ(1− x)p(M)(x, z) + ν(z − x)
∂p(M)(x, z)

∂z

+(x− 1)
∂p(M)(x, z)

∂x
+ λxc(x− z)p(M)

c (z)

+νxc(x− z)
dp

(M)
c (z)
dz

+ λzMxc(z − 1)p(M)
cM = 0.

10

Differentiating this equation with respect toz, x, xx, xz, zz at the pointx = 1, z = 1 we get
the following equations:

νN (M) − λB(M) − νN (M)
c + λp

(M)
cM = 0,

λ + νN (M) − Y (M) − λB(M) − νN (M)
c = 0,

ν
∂2p(M)(1, 1)

∂z2
− λN (M)

c − ν
d2p

(M)
c (1)
dz2

+ λMp
(M)
cM = 0,

−λN (M) − ν
∂2p(M)(1, 1)

∂z2
+ (1 + ν)

∂2p(M)(1, 1)
∂x∂z

+λN (M)
c − νcN (M)

c − λcB(M) + ν
d2p

(M)
c (1)
dz2

+ λcp
(M)
cM = 0,

λY (M) + ν
∂2p(M)(1, 1)

∂x∂z
− ∂2p(M)(1, 1)

∂x2
− λcB(M) = νcN (M)

c ,

where

N (M) ≡ EN (M)(∞) =
∂p(M)(1, 1)

∂z
,

B(M) ≡ P{C(M)(∞) = c} = p(M)
c (1),

Y (M) ≡ EC(M)(∞) =
∂p(M)(1, 1)

∂x
,

N (M)
c ≡ E{N (M)(∞); C(M)(∞) = c} =

dp
(M)
c (1)
dz

.

Eliminating from these equations variables

N (M)
c ,

∂2p(M)(1, 1)
∂x∂z

,
∂2p(M)(1, 1)

∂z2
,
d2p

(M)
c (1)
dz2

and taking into account that

∂2p(M)(1, 1)
∂x2

= VarC(M)(∞) +
(

EC(M)(∞)
)2

− EC(M)(∞)

we get:

Y (M) = λ− λp
(M)
cM (2.8)

N (M) =
1 + ν

ν

λ + λ2 − E
(
C(M)(∞)

)2

c− λ
− λ

ν

(c + 1 + λ)(1 + ν) + Mν

c− λ
p
(M)
cM (2.9)

Equation (2.8) can be thought of as a variant of Little’s formula and represents a balance
between offered, carried and lost traffic. Equation (2.9) is much more interesting. It gives a
partial description of the dependence of the mean queue length upon the system parameters,
and reduces calculation of the mean queue length to the calculation of the characteristics of
the number of busy servers and the rate of lost traffic, which is a simpler problem.

11

12

Chapter 3

The MOSEL Tool

MOSEL (Modeling, Specification and Evaluation Language) [16] is a modelling environ-
ment with a high-level modelling language which allows us to describe complex real-world
systems and to calculate their system measures using other performance evaluation tools.
The MOSEL description can be translated automatically into the language of various perfor-
mance tools and then analyzed by the appropriate tool (at present SPNP – Stochastic Petri Net
Package and TimeNET are supported and suitable for the investigated models) to get these
measures.

Because of the fact that the state space of the underlying Markov chains of the investigated
queueing models is very large and the functioning of the systems is complex, it is quite
difficult to calculate the steady state probabilities in the traditional way of solving the system
of steady-state equations. To simplify these calculations and to make these studies more
usable in practice, the tool MOSEL was used to formulate the models and to calculate the
performance measures. With the tool, we can perform two steps in one, so we do not need to
write down and somehow solve the set of steady-state equations. The difficulty of modelling
lies in the description of the system and its behavior for the performance tool.

TimeNET

the MOSEL tool generates result and IGL files

description in MOSEL

MOSES SPNP PEPSY ...

translation

the system to be modelled

Figure 3.1: The modelling process in the MOSEL environment

13

MOSEL has already been used, and it has proved its applicability for the modelling of
several computer and communication systems. For some examples about computer systems
see [5; 8; 61] and in the context of cellular systems [17; 18; 39].

The functioning and usage of MOSEL is illustrated by Figure 3.1. In the modelling pro-
cess, the user describes the system to be modelled in MOSEL, then the MOSEL description
is translated into the language of the chosen performance tool. The tool MOSEL invokes
the appropriate tool, parses its results and generates a result file containing the system mea-
sures which the user specified in the MOSEL description. If the modeler required graphical
representation of the results, an IGL (Intermediate Graphical Language) file is generated, too.

The technical details of programming can be found in [16], and in [19; 17], where the new,
revised version of MOSEL, called MOSEL-2, is introduced. Another language extensions
supporting non-Markovian distributions, that can be evaluated with the help of the tool SPNP
are provided in [59; 60].

In Part I, the original tool is used for the performance evaluation of finite-source retrial
queueing systems. Because of page limitations, only the simplest MOSEL description was
included and discussed.

In Part II, the GSM system is modelled with the revised modelling language and detailed
comments are provided about MOSEL-2 programming.

14

Chapter 4

Analysis of Single-server
Non-reliable Finite-source Retrial
Queues

The components of the real systems may be subject to random breakdowns (see for example
[36; 46; 57]), so it is important to investigate non-reliable queues because of limited ability of
repairs and heavy influence of the breakdowns on the performance measures of the systems
(see [3; 9; 53]). Besides this, the analysis of non-reliable retrial queues (where the sources
and the server may be subject to random breakdowns and repairs) is also important. For
related literature the reader is referred to the works [11; 1; 37; 58] where infinite-source
non-reliable retrial queues are treated.

In this chapter finite-source non-reliable retrial queues are investigated. The purpose is
to give the main stationary performance and reliability measures of the non-reliable models
described in the next sections, and to illustrate graphically the effect of changing various
parameters on them. Section 4.1 is devoted to the model described in [27] with server subject
to breakdowns and repairs. In Section 4.2, this is extended with non-reliable sources, and in
Section 4.3 with reliable but heterogeneous sources. These models were published in [J1;
J3; J4].

Note: Because of the fact that these sections contain the main parts of different papers
from the author, the reader will find some similarities between them, as well as in Chapter 5
and Chapter 6.

15

4.1 TheM/M/1//K Model with Non-reliable Server

Consider a single server queueing system, where the primary calls are generated byK,
1 < K < ∞ homogeneous sources. The server can be in operational (up) or non-operational
(down) states, and it can be idle or busy. If the server is idle and up, it can serve the calls
of the sources. Each of the sources can be in three states: free, sending repeated calls and
under service. If a source is free at timet it can generate a primary call during interval
(t, t + dt) with probabilityλdt + o(dt). If the server is free at the time of arrival of a call
then the call starts to be served immediately, the source moves into the under service state
and the server moves into busy state. The service is finished during the interval(t, t + dt)
with probabilityµdt + o(dt) if the server is available. If the server is busy, then the source
starts generation of a Poisson flow of repeated calls with rateν until it finds the server free.
After service the source becomes free, and it can generate a new primary call, and the server
becomes idle so it can serve a new call. The server can fail during the interval(t, t + dt)
with probability δdt + o(dt) if it is idle, and with probabilityγdt + o(dt) if it is busy. If
δ = 0, γ > 0 or δ = γ > 0 active or independent breakdownscan be discussed, respectively.
If the server fails in busy state, it eithercontinues servicingthe interrupted call after it has
been repaired or the interrupted requestreturns to the orbit(i.e. the source starts generation
of repeated calls). The repair time is exponentially distributed with a finite mean1/τ . If the
server is failed two different cases can be treated. Namely,blocked sourcescase when all the
operations are stopped, that is neither new primary calls nor repeated calls are generated. In
theunblocked (intelligent) sourcescase only service is interrupted but all the other operations
are continued (new and repeated calls can be generated). All the times involved in the model
are assumed to be mutually independent of each other.

This model is another extension of investigations for homogeneous finite-source
queueing systems without retrials but with server’s breakdowns which were treated in [53].
Similarly, it generalizes the results of [27] where homogeneous systems with reliable servers
were analyzed. As it can be seen, this system is more complicated than in the reliable
case, since it involves two types of failures, continued or repeated service and blocked or
unblocked operations during breakdowns.

In the next subsection the full description of the model by the help of the corresponding
multi-component Markov chain is given. Then, the main performance and reliability mea-
sures of the system are derived that can be obtained using the MOSEL tool. Finally, the
validation of the results and several numerical examples are presented and some comments
are made.

4.1.1 The Underlying Markov Chain

The system state at timet can be described with the processX(t) = (Y (t); C(t); N(t)),
whereY (t) = 0 if the server is up,Y (t) = 1 if the server is failed,C(t) = 0 if the server
is idle, C(t) = 1 if the server is busy andN(t) is the number of sources of repeated calls
at timet. Because of the exponentiality of the involved random variables this process is a
Markov chain with a finite state space. Since the state space of the process(X(t), t ≥ 0) is
finite, the process is ergodic for all values of the rate of generation of primary calls, and from
now on we will assume that the system is in the steady state.

16

We define the stationary probabilities as follows:

P (q, r, j) = lim
t→∞

P (Y (t) = q, C(t) = r,N(t) = j),

q = 0, 1, r = 0, 1, j = 0, ..., K∗, where

K∗ =

{
K − 1 for blocked case,

K − r for unblocked case.

Based on the following state transition diagram (which belongs to the simplest case, i.e.
the request under service returns to the orbit in case of server breakdowns, and neither new
primary calls nor repeated calls are generated during server failure)

(K−1)λ

τδτδ τδ
γ

ν

...

...

...

2ν

γ

(K−2)λ

τδτδ

λµ

λ

γ

(K−1)ν

0, 0, 0

0, 1, 0 0, 1, 1

0, 0, 1 0, 0, 2

0, 1, 2

(K−1) (K−2)λKλµ µ µ

1, 0, 0 1, 0, 1 1, 0, 2

λ

γ

(K−3)λ

3ν

0, 0, K−2

0, 1, K−2 0, 1, K−1

0, 0, K−1

2µ λ

1, 0, K−2 1, 0, K−1

λ

γ

(K−2)ν

2

the stationary probabilities can be found as a solution of the following set of steady state
equations:

((K − 1)λ + µ + γ)P (0, 1, 0) = νP (0, 0, 1) + KλP (0, 0, 0)
((K − i− 1)λ + µ + γ)P (0, 1, i) = (K − i)λP (0, 1, i− 1) + iνP (0, 0, i + 1)

+ (K − i)λP (0, 0, i), i = 1, ..., K − 1
((K − i)λ + δ + iν)P (0, 0, i) = µP (0, 1, i) + τP (1, 0, i), i = 0, ..., K − 1

τP (1, 0, 0) = δP (0, 0, 0)
τP (1, 0, i) = δP (0, 0, i) + γP (0, 1, i− 1), i = 1, ...,K − 1

which satisfies the normalizing condition
1∑

r=0

K−1∑

j=0

P (0, r, j) +
K−1∑

j=0

P (1, 0, j) = 1.

Knowing the stationary probabilities the main performance measures can be obtained as fol-
lows:

• Utilization of the server

US =
K−1∑

j=0

P (0, 1, j).

17

• Utilization of the repairman

UR =
1∑

r=0

K∗∑

j=0

P (1, r, j).

• Availability of the server

AS =
1∑

r=0

K∗∑

j=0

P (0, r, j) = 1− UR.

• Mean number of sources of repeated calls

N = E[N(∞)] =
1∑

q=0

1∑
r=0

K∗∑

j=0

jP (q, r, j).

• Mean number of calls staying in the orbit or in service

M = E[N(∞) + C(∞)] = N +
1∑

q=0

K−1∑

j=0

P (q, 1, j).

• Utilization of the sources

USO =

{
K−M

K AS for blocked case,
K−M

K for unblocked case.

• Overall utilization

UO = US + KUSO + UR.

• Mean rate of generation of primary calls

λ =

{
λE[K − C(∞)−N(∞); Y (∞) = 0], for blocked case,

λE[K − C(∞)−N(∞)], for unblocked case.

• Blocking probability of a primary call

B =

λE[K−C(∞)−N(∞);Y (∞)=0;C(∞)=1]

λ
, for blocked case,

λE[K−C(∞)−N(∞);C(∞)=1]

λ
, for unblocked case.

• Mean response time

E[T] = M/λ.

18

• Mean waiting time

E[W] = N/λ.

To simplify this procedure and to make our study more usable in practice, we use the soft-
ware tool MOSEL to formulate the model and to calculate the main performance measures.

4.1.2 The MOSEL Implementation

In this subsection the base MOSEL program and the explanation of its main parts are intro-
duced without the technical details of programming. This program belongs to the case of
continued service after server’s repair and requests’ generation is blocked during the server
repairing. It does not contain the picture section, which is needed to generate various graph-
ical representations of the measures. The figures in the next section are automatically gener-
ated by the tool with the corresponding picture part. In the MOSEL program the following
terminology is used: The server and the sources are referred to as a CPU and terminals,
respectively.

/*--- Declarations------*/
#define NT 3
VAR double prgen;
VAR double prretr;
VAR double prrun;
VAR double cpubreak_idle;
VAR double cpubreak_busy;
VAR double cpurepair;
enum cpu_states {cpu_busy, cpu_idle};
enum cpu_updown {cpu_up, cpu_down};
/*--- Nodes ------*/
NODE busy_terminals[NT] = NT;
NODE retrying_terminals[NT] = 0;
NODE waiting_terminals[1] = 0;
NODE cpu_state[cpu_states] = cpu_idle;
NODE cpu[cpu_updown] = cpu_up;
/*--- Transitions ------*/
IF cpu==cpu_up FROM cpu_idle, busy_terminals

TO cpu_busy, waiting_terminals W prgen*busy_terminals;
IF cpu==cpu_up AND cpu_state==cpu_busy FROM busy_terminals

TO retrying_terminals W prgen*busy_terminals;
IF cpu==cpu_up FROM cpu_idle, retrying_terminals

TO cpu_busy, waiting_terminals W prretr*retrying_terminals;
IF cpu==cpu_up FROM cpu_busy, waiting_terminals

TO cpu_idle, busy_terminals W prrun;
IF cpu_state==cpu_idle FROM cpu_up TO cpu_down W cpubreak_idle;
IF cpu_state==cpu_busy FROM cpu_up TO cpu_down W cpubreak_busy;
FROM cpu_down TO cpu_up W cpurepair;
/*--- Results ------*/
RESULT>> if(cpu==cpu_up AND cpu_state==cpu_busy) cpuutil += PROB;
RESULT>> if(cpu==cpu_up) goodcpu += PROB;
RESULT if(cpu==cpu_up) busyterm += (PROB*busy_terminals);
RESULT>> termutil = busyterm / NT;
RESULT>> if(cpu==cpu_up) retravg += (PROB*retrying_terminals);
RESULT if(waiting_terminals>0) waitall += (PROB*waiting_terminals);
RESULT if(retrying_terminals>0)retrall += (PROB*retrying_terminals);
RESULT>> resptime = (retrall + waitall) / NT / (prgen * termutil);
RESULT>> overallutil = cpuutil + busyterm + (1 - goodcpu);

19

In thedeclarations partwe define the number of terminals (NT), this is the only program
code line that must be modified when modelling larger systems. The terminals have three
states: busy (primary call generation), retrying (repeated call generation) and waiting (job
service at the CPU). The CPU has two states: idle and busy, and it can be up or failed in both
states. We define the three parameters for the terminals:prgen denotes the rate of primary
call generation,prretr references to the rate of repeated call generation andprrun denotes
the service rate. Thecpubreak_idle, cpubreak_busy andcpurepair variables denote the
failure rate in the two CPU states and the repair rate.

Thenodes partdefines the nodes of the system. Our queueing network contains 5 nodes:
one node for the number of busy, retrying and waiting terminals, respectively, and two nodes
for the CPU. The CPU is idle and up and all the terminals are busy at the starting time.

The transitions partdescribes how the system works. The first transition rule defines the
successful primary call generation: the CPU moves from the idle state to busy and the ter-
minal from busy to waiting. The second rule shows an unsuccessful primary call generation:
if the CPU is busy when the call is generated then the terminal moves to state retrying. The
third rule handles the case of a successful repeated call generation: the CPU moves from the
idle state to busy and the terminal from retrying to waiting. The fourth rule describes the
request service at the CPU. The fifth and sixth rules describe the CPU fail in idle and busy
state. The last rule shows the CPU repair.

Finally, theresults partcalculates the requested output performance measures.

4.1.3 Validation of Results

The results in the reliable case (with very low failure rate and very high repair rate) were
validated by the (a little modified) Pascal program for the reliable case given in [27], on
pages 272–274. See Table 4.1 for some test results.

In Table 4.2 the results were tested by the help of non-reliable FIFO (First In First Out)
model, since if the retrial rate in the repeated calls model tends to infinity, the measures should
approach the corresponding ones in FIFO discipline. The derived results are the same up to
the 6th decimal digit.

non-rel. retr. (cont.) non-rel. retr. (orbit) reliable [27]
Number of sources: 5 5 5
Request’s generation rate: 0.2 0.2 0.2
Service rate: 1 1 1
Retrial rate: 0.3 0.3 0.3
Utilization of the server: 0.5394868123 0.5394867440 0.5394867746
Mean response time: 4.2680691205 4.2680667075 4.2680677918

Table 4.1: Validations in the reliable case

4.1.4 Numerical Examples

In this subsection some sample numerical results are considered to illustrate graphically the
influence of the non-reliable server on the mean response timeE[T] and on the overall uti-
lization of the system.

20

non-rel. retr. (cont.) non-rel. retr. (orbit) non-rel. FIFO
Number of sources: 3 3 3
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1
Retrial rate: 1e+25 1e+25 –
Server’s failure rate: 0.01 0.01 0.01
Server’s repair rate: 0.05 0.05 0.05
Utilization of the server: 0.2232796561 0.2232796553 0.2232796452
Mean response time: 1.4360656331 1.4360656261 1.4360655471

Table 4.2: Validations in the non-reliable case

In the first 3 cases the independent breakdowns are treated, then in the next 3 cases the
state dependent and independent ones are considered. In each case different comparisons are
made according to the breakdowns(dependent, independent), service continuation(contin-
ued, repeated)and system operations(blocked, unblocked).

In the last 4 figures, the independent failure case is considered and different comparisons
are made according to service continuation and system operations.

The tool SPNP was used which was able to handle the model with up to 126 sources. In
this case, on a computer containing a 950 MHz processor and 512 MB RAM, the running
time was approximately 1 second.

K λ µ ν δ γ τ
Figure 4.1 6 x axis 4 0.4 0.05 0.05 0.1
Figure 4.2 6 5 10 x axis 0.05 0.05 0.1
Figure 4.3 6 0.1 x axis 0.4 0.05 0.05 0.1
Figure 4.4 6 x axis 4 0.4 0.005(0.05) 0.05 0.1
Figure 4.5 6 5 10 x axis 0.005(0.05) 0.05 0.1
Figure 4.6 6 0.1 x axis 0.4 0.005(0.05) 0.05 0.1
Figure 4.7 6 0.8 4 0.5 x axis 0.1
Figure 4.8 6 0.1 0.5 0.5 x axis 0.1
Figure 4.9 6 0.8 4 0.5 0.05 0.05 x axis
Figure 4.10 6 0.05 0.3 0.2 0.05 0.05 x axis

Table 4.3: System input parameters

Comments

• In Figures 4.1–4.3 we can see the mean response timeE[T] for the reliable and the
non-reliable retrial systems with continuous, non-continuous service after repair, with
blocked and unblocked operations during service failure when the primary request gen-
eration rate, retrial rate and service rate increase. In these cases, the server’s failure
rate is independent of the state of the server. Figure 4.1 demonstrates a surprising phe-

21

Figure 4.1:E[T] versus primary request generation rate

Figure 4.2:E[T] versus retrial rate

Figure 4.3:E[T] versus service rate

22

Figure 4.4:E[T] versus primary request generation rate

Figure 4.5:E[T] versus retrial rate

Figure 4.6:E[T] versus service rate

23

Figure 4.7:E[T] versus server’s failure rate

Figure 4.8:UO versus server’s failure rate

Figure 4.9:E[T] versus server’s repair rate

24

Figure 4.10:UO versus server’s repair rate

nomenon of retrial queues having a maximum ofE[T] which was noticed in [25], too.
The difference between continuous, non-continuous service, moreover blocked, un-
blocked systems’ operations is clearly shown. However, if the retrial rate increases the
continuous and non-continuous service result in the same measure, as it was expected.

• In Figures 4.4–4.6 the mean response timeE[T] is displayed with continuous service
after repair but the server’s failure rate depends on its state. The system operation is
either blocked or unblocked. In Figure 4.4 we can see that the curves of independent
failure with blocked operations and dependent failures with unblocked operations in-
tersect each other. In each case the difference between the independent and dependent
failures is clearly demonstrated.

• In Figure 4.7, we can see that when the request returns to the orbit at the breakdown of
the server, the sources will have always longer response times. Although the difference
is not considerable it increases as the failure rate increases. The almost linear increase
in E[T] can be explained as follows. In the blocked (non-intelligent) case the failure
of the server blocks all the operations and the response time is the sum of the down
time of the server, the service and repeated call generation time of the request (which
does not change during the failure) thus the failure has a linear effect on this measure.
In the intelligent case the only difference is that the sources send repeated calls during
the server is unavailable, so this is not an additional time.

• In Figure 4.8 and Figure 4.10 it is shown how much the overall utilization is higher in
the intelligent case with the given parameters. It is clear that the continued cases have
better utilizations, because a request will be at the server when it has been repaired.

• In Figure 4.9, we can see that if the request returns to the orbit at the breakdown of the
server, the sources will have longer response times like in Figure 4.7. The difference is
not considerable too, and as it was expected, the curves converge to the reliable case.

25

4.2 The M/M/1//K Model with Non-reliable Server and
Non-reliable Sources

Consider a finite-source single server retrial queueing system, where the primary calls are
generated byK, 1 < K < ∞ homogeneous sources. The server can be in operational or
non-operational states, and it can be idle or busy. Each of the sources can be in four states:
generating a primary call (free), sending repeated calls, under service and failed. If a source
is free at timet it can generate a primary call during interval(t, t + dt) with probability
λdt + o(dt). If the server is up and idle at the time of the arrival of a call then the call
starts to be served immediately, the source moves into the under service state and the server
moves into busy state. The service is finished during the interval(t, t + dt) with probability
µdt + o(dt) if the server is available.

The server can fail during the interval(t, t + dt) with probabilityδdt + o(dt) if it is idle,
and with probabilityγdt+ o(dt) if it is busy. Like in the previous section, we treat four types
of the model. If the server fails in busy state, it eithercontinues servicingthe interrupted
call after it has been repaired or the interrupted requestreturns to the orbit. The repair time
of the server is exponentially distributed with a finite mean1/τ . If the server is failed, two
different cases can be treated. Namely,blocked sourcescase when all the operations are
stopped expect from the repair of the server. In theunblocked (intelligent) sourcescase only
service is interrupted but all the other operations are continued.

If the server is busy (or failed in the unblocked case) at the time of the arrival of a call then
the source starts generation of a Poisson flow of repeated calls with rateν until it finds the
server free and up. After service the source becomes free, and it can generate a new primary
call, and the server becomes idle so it can serve a new call.

Sources can be non-operational only in free state. If a source is free at timet it can fail
during the interval(t, t+ dt) with probabilityηdt+ o(dt) and then it moves to the repairman
who follows FIFO discipline for the source breakdowns and gives preemptive priority to the
server failure. The repair time of the sources is exponentially distributed with a finite mean
1/κ. All the times involved in the model are assumed to be mutually independent of each
other.

4.2.1 The Underlying Markov Chain

The system state at timet can be described with the processX(t) =
(Y (t); C(t); N(t); Z(t)), whereY (t) = 0 if the server is up,Y (t) = 1 if the server
is failed,C(t) = 0 if the server is idle,C(t) = 1 if the server is busy,N(t) is the number of
sources of repeated calls andZ(t) is the number of failed sources at timet. Because of the
exponentiality of the involved random variables this process is a Markov–chain with a finite
state space.

Since the state space of the process(X(t), t ≥ 0) is finite, the process is ergodic for
all values of the rate of generation of primary calls. From now on we will assume that the
system is in the steady state.

We define the stationary probabilities:

P (q; r; j; k) = lim
t→∞

P (Y (t) = q, C(t) = r,N(t) = j, Z(t) = k),

26

q = 0, 1, r = 0, 1, j = 0, ..., K∗, k = 0, ..., K − r − j, where

K∗ =

{
K − 1 for blocked case,

K − r for unblocked case.

To obtain the system performance and reliability measures the tool MOSEL is used
to get the state probabilities in the equilibrium. Once we have obtained the steady state
probabilities, the main system performance measures can be derived in the following way:

• Availability of the server

AS =
1∑

r=0

K∗∑

j=0

K−r−j∑

k=0

P (0, r, j, k).

• Mean number of sources of repeated calls

N = E[N(∞)] =
1∑

q=0

1∑
r=0

K∗∑

j=0

K−r−j∑

k=0

jP (q, r, j, k).

• Mean number of calls staying in the orbit or in service

M = E[N(∞) + C(∞)] = N +
1∑

q=0

K−1∑

j=0

K−1−j∑

k=0

P (q, 1, j, k).

• Mean number of operational sources

NO = K −
1∑

q=0

1∑
r=0

K∗∑

j=0

K−r−j∑

k=1

kP (q, r, j, k).

• Utilization of the server

US =
K−1∑

j=0

K−1−j∑

k=0

P (0, 1, j, k).

• Utilization of the repairman

UR =
1∑

r=0

K∗∑

j=0

K−r−j∑

k=1

P (0, r, j, k) +
1∑

r=0

K∗∑

j=0

K−r−j∑

k=0

P (1, r, j, k).

• Utilization of the sources

USO =

{
NO−M

K AS for blocked case,
NO−M

K for unblocked case.

27

• Overall utilization

UO = US + KUSO + UR.

• Mean rate of generation of primary calls

λ =

{
λE[K − C(∞)−N(∞)− Z(∞); Y (∞) = 0] for blocked case,

λE[K − C(∞)−N(∞)− Z(∞)] for unblocked case.

• Blocking probability of a primary call

B =

λE[K−C(∞)−N(∞)−Z(∞);Y (∞)=0;C(∞)=1]

λ
for blocked case,

λE[K−C(∞)−N(∞)−Z(∞);C(∞)=1]

λ
for unblocked case.

• Mean response time

E[T] = M/λ.

• Mean waiting time

E[W] = N/λ.

4.2.2 Validation of Results

The results in the reliable case were validated by the Pascal program given in [27]. In the case
of server’s breakdowns and reliable sources the program was tested by the results of [10].

In Table 4.4 some test results are collected when the retrial rates are quite large. The cor-
responding performance measures should be very close to each other in the case of continued
service, restarted repeated call generation after server failure (abbreviated by orbit) and the
FIFO discipline which was studied in [5]. As we can see, the results confirm our expectation,
the derived results are the same up to the 6th decimal digit.

28

non-rel. retr. (cont.) non-rel. retr. (orbit) non-rel. FIFO
Number of sources: 3 3 3
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1
Retrial rate: 1e+25 1e+25 –
Server’s failure rate: 0.02 0.02 0.02
Server’s repair rate: 0.05 0.05 0.05
Sources’ failure rate: 0.03 0.03 0.03
Sources’ repair rate: 0.05 0.05 0.05
Utilization of the server: 0.0965679029 0.0965679117 0.0965678743
Mean response time: 1.5546014407 1.5546014565 1.5546013953

Table 4.4: Validations

4.2.3 Numerical Examples

In this subsection some sample numerical results are treated to illustrate graphically the
influence of the non-reliable server and sources on the mean response timeE[T], on the
mean number of requests staying at the service facility (in the orbit and at the server), on
the overall system utilization, on the mean number of sources of repeated calls and on the
mean number of operational sources. The system input parameters of the following figures
are collected in Table 4.5.

K λ µ ν δ γ τ η κ
Figure 4.11 5 x axis 4.5 0.5 0.05 0.05 0.1 0.06 0.15
Figure 4.12 5 5 10 x axis 0.05 0.05 0.1 0.06 0.15
Figure 4.13 5 0.1 x axis 0.4 0.05 0.05 0.1 0.06 0.15
Figure 4.14 5 x axis 4.5 0.5 0.005 0.05 0.1 0.06 0.15

(0.05)
Figure 4.15 5 5 10 x axis 0.005 0.05 0.1 0.06 0.15

(0.05)
Figure 4.16 5 0.1 x axis 0.4 0.005 0.05 0.1 0.06 0.15

(0.05)
Figure 4.17 5 0.8 4.5 0.5 0.05 x axis 0.1 0.06 0.15
Figure 4.18 5 0.1 0.5 x axis 0.05 0.05 0.1 0.06 0.15

Figure 4.19 5 0.1 0.5 x axis 0.05 0.05 0.1 0.06 0.15

Figure 4.20 5 0.8 4.5 x 0.5 0.05 0.05 0.1 x axis 0.15

Table 4.5: System input parameters

29

Figure 4.11:E[T] versus primary request generation rate

Figure 4.12:E[T] versus retrial rate

Figure 4.13:E[T] versus service rate

30

Figure 4.14:E[T] versus primary request generation rate

Figure 4.15:E[T] versus retrial rate

Figure 4.16:E[T] versus service rate

31

Figure 4.17:E[T] versus server failure rate in busy state

Figure 4.18: Mean number of requests staying in the orbit or in service versus retrial rate

Figure 4.19: Overall system utilization versus retrial rate

32

Figure 4.20: System measures versus source failure rate

Comments

• In Figures 4.11–4.13 we can see the mean response timeE[T] for the reliable and
the non-reliable retrial system with continuous and non-continuous service after repair,
with blocked and unblocked operations during server failure when the primary request
generation rate, retrial rate and service rate increase. In these cases, the server’s failure
rate is independent of the state of the server. In Figures 4.14–4.16 the mean response
time E[T] is displayed with continuous service after repair but the server’s failure
rate depends on its state. The difference between continuous, non-continuous service,
moreover blocked, unblocked (intelligent) systems’ operations is clearly shown. How-
ever, if the retrial rate increases the continuous and non-continuous service cases result
in the same measure, as it was expected, see Figure 4.12.

• In Figure 4.17 the effect of the server’s failure is displayed in the continuous cases.
The almost linear increase inE[T] in each case is because the response time is the
sum of the down time of the server, the service and repeated call generation time of the
request (which do not change during the failure) thus the failure has a linear effect on
this measure.

• In Figure 4.18 the effect of the retrial rate on the mean number of requests staying
in the orbit or in service is pictured. It is worth pointing out that the values for the
reliable case and the blocked case with reliable sources coincide. However, it is not so
surprising since during the failure the number of requests remain the same.

• In Figure 4.19 we can see the effect of the retrial rate on the overall system utilization.
At the beginning the overall system utilizations are larger for the continuous than the
non-continuous cases, then it changes and the difference increases as the retrial rate
increases.

• In Figure 4.20 the effect of the sources’ failure rate is displayed on the mean response
time, on the mean number of sources of repeated calls and on the mean number of
operational sources. There is a very slight difference between the continuous and non-
continuous cases for the mean number of operational sources, and the mean response

33

time decreases as the failure rate increases, that is, the mean number of operational
sources decreases.

34

4.3 The ~M/ ~M/1//K Model with Non-reliable Server

In this section single server finite-source queueing systems with the following assumptions
are investigated. The primary calls are generated byK, 1 < K < ∞ heterogeneous sources.
The server can be in operational or non-operational states, and it can be idle or busy. If it is
idle and up, it can serve the calls of the sources. Each of the sources can be in three states:
generating a primary call (free), sending repeated calls and under service. The i-th source can
generate a primary call during interval(t, t + dt) with probabilityλidt + o(dt). If the server
is idle and up at the time of arrival of a call then the call starts to be served immediately, the
source moves into the under service state and the server moves into busy state. The service is
finished during the interval(t, t + dt) with probabilityµidt + o(dt) if the server is available
(up). If the server is busy, then the source starts generating a Poisson flow of repeated calls
with rateνi until it finds the server idle. After service the source can generate a new primary
call, and the server becomes idle so it can serve a new call. The server can fail during the
interval(t, t + dt) with probabilityδdt + o(dt) if it is idle, and with probabilityγdt + o(dt)
if it is busy. If the server fails in busy state, it eithercontinues servicingthe interrupted call
after it has been repaired or the interrupted requestreturns to the orbit. The repair time is
exponentially distributed with a finite mean1/τ . If the server is failed two different cases can
be treated. Namely,blocked sourcescase when all the operations are stopped, that is no new
primary and repeated calls are generated. In theunblocked (intelligent) sourcescase only
service is interrupted but all the other operations are continued (new and repeated calls can
be generated). All the times involved in the model are assumed to be mutually independent
of each other.

This model generalizes the results of [27] where homogeneous systems with reliable
servers were dealt with. Similarly, it is another extension of investigations for heteroge-
neous finite-source queueing systems without retrials but with server’s breakdowns which
were treated in [54]. Finally, it can be considered as the natural continuation of [8] in which
reliable heterogeneous finite-source retrial systems were analyzed.

4.3.1 The Underlying Markov Chain

Because of the exponentiality of the involved random variables the following process will be
a Markov chain. The state of the system at timet can be described by the process

X(t) = ((Y (t); αC(t);β1, ..., βN(t)), t ≥ 0)

whereY (t) = 0 if the server is up,Y (t) = 1 if the server is down,C(t) = 0 if the server
is idle, C(t) = 1 if the server is busy, andαC(t) is the index of the request under service at
time t if the server is busy. LetN(t) be the number of sources of repeated calls at timet, and
because of the heterogeneity of the sources we need to identify their indices that are denoted
by βj , j = 1, ..., N(t) if there is a customer in the orbit, otherwise the third component is0.

Since its state space is finite the process(X(t), t ≥ 0) is ergodic for all values of the
rate of generation of new primary calls, and from now on we assume that the system is in the
steady state.

We define the stationary probabilities

35

P (q; 0; 0) = lim
t→∞

P (Y (t) = q; C(t) = 0; N(t) = 0), q = 0, 1

P (q; j; 0) = lim
t→∞

P (Y (t) = q; α1 = j; N(t) = 0),

q = 0, 1, j = 1, ..., K,

P (q; 0; i1, ..., ik) = lim
t→∞

P (Y (t) = q; C(t) = 0; β1 = i1, ..., βk = ik),

q = 0, 1, k = 1, ...,K∗,

P (q; j; i1, ..., ik) = lim
t→∞

P (Y (t) = q; α1 = j; β1 = i1, ..., βk = ik),

q = 0, 1, k = 1, ..., K − 1.

where

K∗ =

{
K − 1 for blocked case,

K for unblocked case.

The traditional way is to derive the related Kolmogorov equations for these probabilities
and using the normalizing condition somehow we have to solve the set of equations. In this
case it is not so easy, but we perform these two steps by the help of the tool MOSEL.

Once we have obtained these limiting probabilities the main system performance mea-
sures can be derived in the following way.

• Server utilization with respect to sourcej

Uj = P (the server is up and busy with sourcej)

that is, we have to summarize all the probabilities where the first component is0 and
the second component isj. Formally,

Uj =
K−1∑

k=0

∑

i1,...,ik 6=j

P (0; j; i1, ..., ik).

Hence theserver utilization

US = E[Y (∞) = 0; C(∞)] =
K∑

j=1

Uj .

• Utilization of sourcei

U (i) = P (sourcei generates a new primary call).

It should be mentioned that in the blocked case the server have to be up, but in the
unblocked case the request generation is independent of the server’s state.

36

• Utilization of the repairman

UR = E[Y (∞)] =
K∑

j=0

K∗∑

k=0

∑

i1,...,ik 6=j

P (1; j; i1, ..., ik).

• Availability of the server

AS = 1− UR.

Let us denote byP (i)
O the steady state probability that requesti is staying in the orbit.

It is easy to see that

P
(i)
O =

1∑
q=0

K∑

j=0,j 6=i

K∗∑

k=1

∑

iε(i1,...,ik)

P (q; j; i1, ..., ik).

Similarly, it can easily be seen, that the steady state probabilityP
(i)
S that requesti is at

the server is given by

P
(i)
S =

1∑
q=0

K∗∑

k=0

∑

i6=i1,...,ik)

P (q; i; i1, ..., ik).

Hence, the probabilityP (i) that requesti is at the service facility can be obtained by

P (i) = P
(i)
S + P

(i)
O .

• Mean response time of sourcei

The derivation of the following formulae are based on [4; 55]. Let us denote byE[Ti]
the mean response time of customeri, and byγi thethroughputof requesti, that is, the
mean number of times that requesti is served per unit time. These are related by

γi =
1

E[Ti] + E[Si]
= λiU

(i) = µiUi, i = 1, ..., K, (4.1)

whereE[Si] denotes the mean sojourn time of requesti in the source. Since the server
is subject to random breakdowns which may stop the operations of the sources, it is
clear thatE[Si] = E[Di] + 1/λi ≥ 1/λi, whereE[Di] denotes the mean delay time
due to the failure of the server.

Hence, with the aid of (4.1) forU (i) we get

U (i) =
1/λi

E[Ti] + E[Si]
=

µiUi

λi
≤ 1− P (i), i = 1, ..., K,

37

and forP (i) we have

P (i) =
E[Ti]

E[Ti] + E[Si]
= γiE[Ti] = λiU

(i)E[Ti], i = 1, ..., K, (4.2)

which represents Little’s theorem for requesti at the service facility.

By the help of (4.2) we can express the mean response timeE[Ti] for requesti as

E[Ti] =
P (i)

λiU (i)
=

P (i)

µiUi
, i = 1, ...,K.

• Mean waiting time of sourcei

The mean waiting timeE[Wi] of requesti is due to the time spent in the orbit (irrespec-
tive of whether the server is up or down), and the delay time because of the server’s
failure. It is easy to see thatE[Wi] is given by

E[Wi] = E[Ti]− 1/µi =
P (i) − Ui

µiUi
, i = 1, ..., K.

• Mean number of sources of repeated calls

N = E[N(∞)] =
K∑

i=1

P
(i)
O .

• Mean number of calls staying at the service facility

M = E[C(∞) + N(∞)] =
K∑

i=1

P (i) =
K∑

i=1

(P (i)
S + P

(i)
O) =

K∑

i=1

P
(i)
S +

K∑

i=1

P
(i)
O .

• Mean rate of generation of primary calls

λ =
K∑

i=1

γi =
K∑

i=1

λiU
(i) =

K∑

i=1

µiUi.

• Blocking probability of primary calli

Bi =

λi

PK
j=1,j 6=i

PK−1
k=0

P
i 6=i1,...,ik

P (0;j;i1,...,ik)

λ
for blocked case,

λi

PK
j=1,j 6=i

PK−1
k=0

P
i 6=i1,...,ik

(P (0;j;i1,...,ik)+P (1;j;i1,...,ik))

λ
for unblocked case.

38

Henceblocking probability of primary calls

B =
K∑

i=1

Bi

which is the fraction of primary calls which were blocked (i.e. met the server busy).

It is easy to see that in the case of unblocked operations (intelligent sources) with non-
reliable server,U (i) = 1 − P (i), i = 1, ..., K, and we get the same formulae derived in
[8] that is, most performance measures can be expressed in the terms of the corresponding
utilizationsUi as it was stated in [25].

4.3.2 Validation of Results

In the cases when the server’s failure rate is very small and the repair rate is large the non-
reliable model should be very close to the reliable system. The results in the homogeneous
case were validated by the Pascal program given in [27]. For the heterogeneous case the cal-
culations were checked by the numerical results of [8]. In the case of homogeneous sources
but with server’s breakdowns the program was tested by the examples of [10].

In Table 4.6 some test results are collected when the server’s failure rate is quite small and
the requests’ retrial rates are quite large. Hopefully the corresponding performance measures
should be very close to each other in the case of continued, restarted (abbreviated by orbit)
service after repair and FIFO disciplines. As we can see, the results confirm our expectation.

non-rel. retr. (cont.) non-rel. retr. (orbit) non-rel. FIFO
Number of sources: 3 3 3
Request’s generation rate: 0.2, 0.3, 0.5 0.2, 0.3, 0.5 0.2, 0.3, 0.5
Service rate: 1, 1.2, 1.1 1, 1.2, 1.1 1, 1.2, 1.1
Retrial rate: 1e+20 1e+20 -
Server’s failure rate: 0.002 0.002 0.002
Server’s repair rate: 0.04 0.04 0.04
Utilization of the server: 0.5785930082 0.5785934601 0.5785951436
Mean response time
Source 1: 1.6101659841 1.6102714374 1.6109393482
Source 2: 1.4136508315 1.4135712959 1.4128700761
Source 3: 1.3536212335 1.3536213788 1.3537299921

Table 4.6: Validations

4.3.3 Numerical Examples

In this subsection we consider some sample numerical results to illustrate the influence of
the non-reliable server on the mean response timeE[Ti] and the mean number of request

39

M staying at the service facility (in the orbit and at the server). The system input parame-
ters are collected in Table 4.7. In each case independent breakdowns were treated. In the
homogeneous cases the parameters are the arithmetic means of the corresponding values.

In Figures 4.21 - 4.26 the mean response timeE[Ti] is displayed in continuous and non-
continuous service after repair in the case of blocked, unblocked (intelligent) operations, as
the function of primary request generation, retrial and service rates, respectively.

In Figures 4.27 - 4.28 alsoE[Ti] is pictured in the case of blocked operations with con-
tinuous and non-continuous service after repair as the function of the server’s failure rate in
busy state, respectively.

Finally, in Figures 4.29 - 4.30 the mean number of requestM staying at the service facility
can be seen in reliable and non-reliable case with homogeneous, heterogeneous sources under
blocked, unblocked operations combined with continuous and non-continuous service after
repair as the function of the retrial rate of repeated calls.

K λ1, ..., λK µ1, ..., µK ν1, ..., νK δ γ τ
Figure 4.21, 5 x axis 4.1,4.3,4.5, 0.35,0.4,0.45, 0.05 0.05 0.1
Figure 4.22 4.7,4.9 0.6,0.7
Figure 4.23, 5 2.5,3,4, 6,7,8, x axis 0.05 0.05 0.1
Figure 4.24 6.5,9 13,16
Figure 4.25, 5 0.04,0.06,0.1, x axis 0.2,0.25,0.3, 0.05 0.05 0.1
Figure 4.26 0.14,0.16 0.55,0.7
Figure 4.27, 5 0.6,0.7,0.8, 4.1,4.3,4.5, 0.35,0.4,0.45, 0.05 x axis 0.1
Figure 4.28 0.9,1 4.7,4.9 0.6,0.7
Figure 4.29 5 0.1 0.5 x axis 0.05 0.05 0.1
Figure 4.30 5 0.06,0.08,0.1, 0.3,0.4,0.5, x axis 0.05 0.05 0.1

0.12,0.14 0.6,0.7

Table 4.7: System input parameters

Comments

• In Figures 4.21-4.22 we can see the mean response timeE[Ti] for the non-reliable sys-
tem with continuous, non-continuous service after repair, with blocked and unblocked
operations during service failure when the primary request generation rate increases.
The difference between continuous, non-continuous service, moreover blocked, un-
blocked (intelligent) systems’ operations is clearly shown. The non-continuous case
always have longer response times. Similarly, the intelligent sources suffer from longer
times, too. However, their curves are very interesting, for some sources at the begin-
ning decrease, then increase, finally decrease again. This shows that the systems are
very complex and at different parameter setups we can see different effects.

• In Figures 4.23,4.24, and similarly in Figures 4.25, 4.26 the effect of retrial rate, service
rate is demonstrated onE[Ti], respectively. Again the non-continuous cases always
have longer response times, and the intelligent sources suffers from longer times, too.
However, the difference between the continuous and non-continuous case decreases

40

Figure 4.21:E[T] versus primary request generation rate

Figure 4.22:E[T] versus primary request generation rate

Figure 4.23:E[T] versus retrial rate

41

Figure 4.24:E[T] versus retrial rate

Figure 4.25:E[T] versus service rate

Figure 4.26:E[T] versus service rate

42

Figure 4.27:E[T] versus server failure rate in busy state

Figure 4.28:E[T] versus server failure rate in busy state

Figure 4.29:M versus retrial rate

43

Figure 4.30:M versus retrial rate

as the corresponding rates increase. Furthermore, in each caseE[Ti] decreases as we
expected.

• In Figures 4.27, 4.28 the effect of server’s failure is displayed in the blocked operations
case. Again the non-continuous case always has longer response times, which is clear.
Moreover, for reliable busy server we have the same results, which was expected, too.

• In Figures 4.29, 4.30 the effect of the retrial rate on the mean number of requestM
staying at the service facility is pictured. The curves confirm our expectation with re-
spect to the service after repair and blocked operations during the failure.M decreases
as the retrial rate increases, which is clear. It is also worth pointing out that the values
for the reliable case and non-reliable blocked case coincide.

44

Chapter 5

Analysis of Multiserver
Non-reliable Finite-source Retrial
Queues

In this chapter multiserver non-reliable finite-source retrial queues are investigated. The pur-
pose is to generalize the models of [27] and [10]. The novelty of this investigation is the
different service rates and different service policies with the non-reliability of the servers.

Section 5.1 is devoted to the extension of the models described in [27] and [10]. The
finite-source retrial queue is analyzed with non-reliable heterogeneous (asymmetric) servers,
that is the servers have different parameters in service, failure and repair rates. In Section 5.2
two service policies are compared in this model. These results will be published in [J5; J6].

45

5.1 TheM/ ~M/c//K Model with Non-reliable Servers

Consider a finite-source retrial queueing system withc servers, where the primary calls are
generated byK, c < K < ∞ sources. Each server can be in operational (up) or non-
operational (down) states, and it can be idle or busy. Each source can be in three states: gen-
erating a primary call (free), sending repeated calls and under service by one of the servers.
If a source is free at timet, it can generate a primary call during the interval(t, t + dt) with
probabilityλdt+o(dt). If one of the servers is up and idle at the moment of the arrival of the
call then the service of the call starts. At the arrival of the calls the availability and idleness
of the servers are always examined according to the increasing order of the servers’ indices,
resulting different load to the servers. The service is finished during the interval(t, t + dt)
with probabilityµidt + o(dt) if the ith server is available.

Serveri can fail during the interval(t, t+dt) with probabilityδidt+o(dt) if it is idle, and
with probabilityγidt + o(dt) if it is busy. If the server fails in busy state, it either continues
servicing the interrupted call after it has been repaired or the interrupted request returns to
the orbit. In this section we only investigate the case when the source moves into the sending
repeated calls state at the moment of server’s failure. The repairman follows FIFO discipline
for the servers’ breakdowns, and the repair time of theith server is exponentially distributed
with a finite mean1/τi. If all the servers fail we treat two different cases. Namely,blocked
sourcescase when all the operations are stopped expect from the repair of the servers. In the
unblocked (intelligent) sourcescase only service is interrupted but all the other operations are
continued.

If all the servers are busy (or failed in the unblocked case) at the moment of the arrival of
a call the source starts generation of a Poisson flow of repeated calls with rateν until it finds
an available free server. After service the source becomes free, and it can generate a new
primary call, and the server becomes idle so it can serve a new call. All the times involved in
the model are assumed to be mutually independent of each other.

5.1.1 The Underlying Markov Chain

The state of the system at timet can be described by the processX(t) = (α1(t), ..., αc(t);
N(t)), whereN(t) is the number of sources of repeated calls,αi(t), i=1, ..., c, denotes the
state of theith server at timet. If there is a customer under service at theith server,αi(t) = 1,
if it is operational and idle thenαi(t) = 0, otherwise the server is failed andαi(t) = −1.

Because of the exponentiality of the involved random variables this process is a Markov
chain with a finite state space. Since the state space of the process(X(t), t ≥ 0) is finite, the
process is ergodic for all reasonable values of the rates involved in the model construction.
From now on we assume that the system is in the steady state. Let us define the stationary
probabilities by:

P (i1, ..., ic, j) = lim
t→∞

P{α1(t) = i1, ..., αc(t) = ic, N(t) = j},

i1, ...ic = −1, 0, 1; j = 0, ..., K∗ where K∗ = K −
∑

ik,ik=1

ik.

Furthermore, let us denote byC(t) the number of busy servers, byA(t) the number of avail-
able servers at timet, and denote bypkj = limt→∞P{C(t) = k, N(t) = j} the joint

46

distribution of the number of busy servers and the number of repeated calls.
Once we have obtained the above defined probabilities the main steady state system per-

formance measures can be derived as follows:

• Probability that at least one server is available

AS = P{αk > −1}, k ∈ {1, ..., c} = 1−
K∑

j=0

P (−1, ...,−1, j).

• Mean number of sources of repeated calls

N = E[N(∞)] =
c∑

k=0

K∑

j=1

jpkj =
∑

i1,...,ic

K∗∑

j=1

jP (i1, ..., ic, j).

• Utilization of the k-th server

Uk =
∑

i1,...,ic,ik=1

K∗∑

j=0

P (i1, ..., ic, j), k = 1, ..., c.

• Mean number of busy servers

C = E[C(∞)] =
∑

i1,...,ic
K∗>0

K∗∑

j=0

K∗P (i1, ..., ic, j) =
c∑

k=1

Uk.

• Mean number of calls staying in the orbit or in service

M = E[N(∞) + C(∞)] = N + C.

• Utilization of the repairman

UR =
∑

i1,...,ic
−1∈{i1,...,ic}

K∗∑

j=0

P (i1, ..., ic, j).

• Utilization of the sources

USO =

{ E[K−C(∞)−N(∞);A(∞)>0]
K for blocked case,

E[K−C(∞)−N(∞)]
K for unblocked case.

• Overall utilization of the system

UO = C + KUSO + UR.

47

• Mean rate of generation of primary calls

λ =

{
λE[K − C(∞)−N(∞);A(∞) > 0] for blocked case,

λE[K − C(∞)−N(∞)] for unblocked case.

• Mean waiting time

E[W] = N/λ.

• Mean response time

E[T] = M/λ.

5.1.2 Validation of Results

The results in the reliable case were validated by the Pascal program given in [27]. In Table
5.1 we can see that the corresponding performance measures are very close to each other,
they are the same at least up to the 8th decimal digit. In the case of non-reliable servers, the
results were tested by theM/M/1//K retrial model with server’s breakdowns which was
studied in [10].

MOSEL Pascal program
Number of servers: 2 2
Number of sources: 5 5
Request’s generation rate: 0.1 0.1
Service rate: 1 1
Retrial rate: 1.1 1.1
Servers’ failure rate: 1e-25 –
Servers’ repair rate: 1e+25 –
Mean waiting time: 0.0653833701 0.0653833729
Mean number of busy servers: 0.4518596260 0.4518596267
Mean number of sources of repeated calls:0.0295441060 0.0295441065

Table 5.1: Validations

5.1.3 Numerical Examples

In this subsection some numerical results are considered in the case of homogeneous servers
to illustrate graphically the influence of the non-reliable servers on the mean response time
E[T] and on the overall system’s utilizationUO. The system input parameters of the figures
are collected in Table 5.2.

The tool SPNP was used with MOSEL which was able to handle the model with up to 126
sources. In this case, on a PC containing a 1.1 GHz processor and 512 MB RAM, the running
time with one parameter setup with 2 servers was approximately 1 second. With 4 servers and
126 sources, in the blocked case, it was 2 minutes and 25 seconds. The maximum number

48

c K λ µ ν δ,γ τ

Figure 5.1 2 5 x axis 1 1.1 0.001 0.01
Figure 5.2 2 5 0.2 1 x axis 0.001 0.01
Figure 5.3 2 5 0.2 x axis 1.1 0.001 0.01
Figure 5.4, 5.5 2 5 0.2 1 1.1 x axis 0.01

Table 5.2: System input parameters

of servers that the program was able to calculate the system measures on this computer in an
acceptable time was 6. With 6 servers and 10 sources, the program finished its run after 20
minutes, and with 20 sources after 1 hour and 15 minutes.

In Figures 5.1-5.4 the effects of the primary request generation rate, retrial rate, service
rate and servers’ failure rate on the mean response time are displayed. In Figure 5.5 we can
see the effect of servers’ failure rate on the overall utilization. In each Figure, the reliable
case, the blocked and unblocked (intelligent) cases are illustrated.

Comments

• In Figure 5.1 we can see that with these parameter setup the difference is very small
between the non-intelligent and intelligent cases. The interesting phenomenon, which
was mentioned in [25], too, that is retrial queues have a maximum of E[T] is also
noticed.

• In Figure 5.2 it is demonstrated how long the retrial rate has a significant influence on
the mean response time.

• In Figure 5.3 we can see that the increase of the service rate has almost the same
influence on the reliable and on the non-reliable systems.

• In Figure 5.4 it can be observed that the increase of the servers’ failure rate can have
a heavy impact on the mean response time, and as it increases the difference between
the two non-reliable models increases significantly.

• In Figure 5.5 it is shown that the overall utilization can be very low if the servers’
failure rate increases and the repair rate is not high enough.

49

Figure 5.1:E[T] versus primary request generation rate

Figure 5.2:E[T] versus retrial rate

Figure 5.3:E[T] versus service rate

50

Figure 5.4:E[T] versus servers’ failure rate

Figure 5.5:UO versus servers’ failure rate

51

5.2 Comparison of Different Service Policies

In this section we analyze the finite-source retrial queue with non-reliable heterogeneous
(asymmetric) servers from Section 5.1. In this study, the most important heterogeneous char-
acteristic is the service rate, since we compare two service policies, namely Random and
Fastest Free Server (FFS). In the case of Random service discipline, the requests are assigned
to the idle servers randomly, and in the other case, the requests are assigned to the fastest
available free server, i.e. the Fastest Free Server case the availability and idleness of the
servers are always examined according to the increasing order of the servers indices.

In this study, we compare the service disciplines in the unblocked sources case with in-
dependent server breakdowns.

5.2.1 Validation of Results

The results of the tool in the reliable case were validated by the Pascal program given in [27].
The service rates are the same for all servers in each case. In Table 5.3 we can see that the
corresponding performance measures are very close to the reliable case and to each other
with Random and Fastest Free Server (FFS) disciplines with very low failure and very high
repair rates. The results are the same up to the 6th decimal digit.

In the non-reliable single server case, the results were tested by theM/M/1//K retrial
model with server breakdowns which was studied in [10].

Pascal [27] Random FFS
Number of servers: 4 4 4
Number of sources: 20 20 20
Request’s generation rate: 0.1 0.1 0.1
Service rate: 1 1 1
Retrial rate: 1.2 1.2 1.2
Servers’ failure rate: – 1e-25 1e-25
Servers’ repair rate: – 1e+25 1e+25
Mean waiting time: 0.1064954794 0.1064959317 0.1064959929
Mean number of busy servers: 1.8007480431 1.8007485102 1.8007485548
Mean no. sources of repeated calls:0.1917715262 0.1917717923 0.1917718470

Table 5.3: Validations in the reliable case

5.2.2 Numerical Examples

In this subsection some numerical results are presented to illustrate graphically the differences
between the service disciplines in the mean response time, in the utilizations of the servers
and in the overall system’s utilization. In the legends of the figures, the Fastest Free Server
policy is referenced asordered, and the random case where the service rate of the servers is
the average of the rates of the heterogeneous cases is referred to asaveraged random.

The system input parameters of the figures are collected in Table 5.4.

52

c K λ µ1, ..., µc − µavg ν δ,γ τ
Figure 5.6, 5.10 4 20 x axis 8,5,4,1 – 4.5 4 0.01 0.2
Figure 5.7, 5.11 4 20 4 8,5,4,1 – 4.5 x axis 0.01 0.2
Figure 5.8, 5.9, 5.12 4 20 1 8,5,4,1 – 4.5 4 x axis 0.2

Table 5.4: System input parameters

Comments

• In Figure 5.6 we can see the difference between the three cases in the mean response
time depending on the primary request generation rate. The difference between the two
random cases is not too significant, but the Fastest Free Server (ordered) case always
has better response time, especially when more and more requests arrive.

• In Figure 5.7 it is demonstrated how long the retrial rate has a significant influence on
the mean response time, after that the decrease is not considerable.

• In Figure 5.8 it is shown how the increase of the servers’ failure rate affects the mean
response time. The averaged random case has a little better response time than the not
averaged random case like in the former figures. The surprising decrease in the mean
response time of the Fastest Free Server case can be explained by the help of Figure
5.9.

• In Figure 5.9 we can see the server utilizations versus the servers’ failure rate with
the same parameter setup as in Figure 5.8. In the random case, the slowest server has
the highest utilization and the fastest has the lowest, since it services the request much
faster and the requests are assigned to the available and free servers with the same
probability. In the beginning of the ordered case, the slowest server has the highest
utilization too, but as it fails more often, its service is interrupted more often and looses
from its utilization much faster than the faster servers, since it gets requests to serve
only if all the other servers are busy or failed.

• In Figure 5.10 the overall utilizations of the systems are displayed versus the primary
request generation rate. We can see that the random cases have almost the same while
the ordered case has higher utilization.

• In Figure 5.11 we can see the overall utilization versus the retrial rate. Similarly to
Figure 5.7, after a time the increase of the retrial rate does not affect this measure
significantly.

• In Figure 5.12 the overall utilization is displayed versus the servers’ failure rate. Like
in Figure 5.8 the mean response time, the overall utilization is getting better for a while
in the FFS case as the servers’ failure rate increases.

53

Figure 5.6: Mean response time versus primary request generation rate

Figure 5.7: Mean response time versus retrial rate

Figure 5.8: Mean response time versus servers’ failure rate

54

Figure 5.9: Server utilization versus servers’ failure rate

Figure 5.10: Overall utilization versus primary request generation rate

Figure 5.11: Overall utilization versus retrial rate

55

Figure 5.12: Overall utilization versus servers’ failure rate

56

Chapter 6

Retrial Queues in Random
Environments

Finite-source queueing systems operating in random environments, sometimes called
Markov-modulated queues have been the interest of recent research, see for example
[6; 7; 28].

This chapter deals with a finite-source retrial queueing system with heterogeneous sources
operating in random environment, that is, the system parameters are subject to randomly oc-
curring fluctuations. Furthermore, it is shown how this type of queueing model can be applied
in the analysis of non-reliable retrial systems. Similar models without repeated attempts were
treated in [6; 7].

This model was published in [J7].

57

6.1 The ~M/ ~M/1//K Model in Random Environment

Consider a finite-source queue withK sources and a single server, where each source has
different parameters and the operation of the sources and the server is influenced by the state
of a given random environment.

The server and the sources are collected intoM independent groups (1 ≤ M ≤ K + 1).
The members of a group operate in a common random environment. The environmental
changes are reflected in the values of the new and repeated call generation and in the values of
the service rates. The members of groupm are assumed to operate in a random environment
governed by an ergodic Markov chain (ξm(t); t ≥ 0) with state space (1, ..., rm) and with
transition density matrix

(
τ

(m)
imjm

)
, im, jm = 1, ..., rm, where τ

(m)
imim

= −
∑

k 6=im

τ
(m)
imk .

The server can be in two states: idle and busy, and each of the sources can be in free,
sending repeated calls and under service states. If sourcei (which is a member of group
m) is free at timet and the environmental processξm(t) is in statejm the probability that
this source generates a new request during the time interval(t, t + dt) is λi(jm)dt + o(dt),
m=1, ...,M . If the server is idle at the time of arrival of a call then the call starts to be
served, that is the source moves into the under service state and the server moves into the
busy state. Assuming that the server belongs to group1 and the environmental process
ξ1(t) is in statej1 the probability that the service of the request originating from client
i is completed in time interval(t, t + dt) is µi(j1)dt + o(dt). If the server is busy on
arrival, then the source starts generation of a Poisson flow of repeated calls with rate
νi(jm) until it finds the server free. After service the source becomes free, and it can
generate a new primary call, and the server becomes idle and it can serve a new call. All
random variables and the random environments are supposed to be independent of each other.

6.1.1 The Underlying Markov Chain

Because of the exponentiality of the involved random variables the following process will be
a Markov chain. The state of the system at timet can be described by the process

X(t) = (ξ1(t), ..., ξM (t), α(t), β1(t), ..., βN(t)(t)),

whereξm(t) denotes the states of the background processes (m=1, ..., M), andN(t) is the
number of sources of repeated calls at timet. The index of the source at the server is denoted
by α(t), if there is a customer under service, otherwise this value is0. Because of the hetero-
geneity of the sources we need to identify the sources in the sending repeated calls state, so
we denote their indices byβk(t), k=1, ..., N(t), if there is a customer in this state, otherwise
this last component is0.

Since its state space is finite the process(X(t), t ≥ 0) is ergodic with the following
steady state probabilities.

P (j1, ..., jM , j, 0) = lim
t→∞

P{ξ1(t) = j1, ..., ξM (t) = jM , α(t) = j,N(t) = 0}

58

P (j1, ..., jM , j, i1, ..., ik) =

lim
t→∞

P{ξ1(t) = j1, ..., ξM (t) = jM , α(t) = j, β1(t) = i1, ..., βk(t) = ik}, k = 1, ..., K−1.

Based on the steady state probabilities the system performance measures can be obtained
as:

• Utilization of the server with respect to sourcei

USi =
∑

j1,...,jM

P (j1, ..., jM , i, 0) +
∑

j1,...,jM

K−1∑

k=1

∑

i1,...,ik 6=i

P (j1, ..., jM , i, i1, ..., ik),

i = 1, ...,K.

• Utilization of the server

US =
K∑

i=1

USi.

• Probability of sourcei is sending repeated calls

Ni =
∑

j1,...,jM

K∑

j=1

K−1∑

k=1

∑
i1,...,ik 6=j

i∈{i1,...,ik}

P (j1, ..., jM , j, i1, ..., ik), i = 1, ...,K.

• Mean number of repeated calls

N =
K∑

i=1

Ni.

• Utilization of sourcei

Ui = 1− USi −Ni, i = 1, ..., K.

• Probability of sourcei is free and its background process is in statejl

Fi(jl) =
∑

p1,...,pM
pl=jl

K∑
j=1
j 6=i

K−1∑

k=1

∑
i1,...,ik 6=j

i/∈{i1,...,ik}

P (p1, ..., pM , j, i1, ..., ik), i = 1, ...,K.

• Throughput of sourcei

γi =
rl∑

jl=1

Fi(jl)λi(jl), i = 1, ...,K.

• Mean response time of sourcei

E[Ti] =
1− Ui

γi
, i = 1, ...,K.

59

6.1.2 Validation of Results

The calculated performance measures were validated by the results of [6], where an FCFS
(First-Come, First-Served) queueing model is studied. Some performance measures are col-
lected in Table 6.1 and can be compared. We can see that we get back the results of the
corresponding queueing model with waiting line, since with very high retrial rates and few
sources the difference between the two models is negligible.

The numerical calculations were checked by the results of the retrial model with a non-
reliable server [52], too. The model was used in which the sources are blocked if the server
is not operational, and the server continues servicing the interrupted call after it has been
repaired. In Table 6.2 we can see that the results are the same. It can easily be seen that a
non-reliable model can be considered as a system modulated by a 2-state background process.
The system failure can be modelled by setting the rates to10−20 in the second state of the
background process.

FCFS [6] retrial
Number of sources: 5 5

Request’s generation rate: 0.12, 0.06 0.12, 0.06
Service rate: 1, 1 1, 1
Retrial rate: – 1e+20

Rate of environment’s change: 0.5, 1 0.5, 1
Server queue length: 0.6418 –

Requests in the orbit or in service: – 0.6418567007
Utilization of the server: 0.4342 0.4342057023

Utilization of the sources: 0.8716 0.8716286599
Mean response time: 1.4782 1.4782319316

Table 6.1: Validation by the FCFS model

6.1.3 Numerical Examples

In this subsection some graphically displayed numerical examples are presented. For the
easier understanding only simple cases are considered. Only one random environment was
used with 2 states. The tool is able to deal with systems with several environments. The
system parameters for the figures are given in Table 6.3.

Comments

• In Figures 6.1 and 6.2 the mean response time is displayed as the primary request
generation increases. The difference is that in Figure 6.1 all operations are stopped
if the background process is in the second state, but in Figure 6.2, only service is
interrupted. The results are in agreement with the results of [52], where the same
parameters were used.

• In Figures 6.1 and 6.2 we can analyze the same curves as in Figures 6.1 and 6.2 with
modified input parameters. We can see the effect of the random environment and the
differences between the original and new parameter setups.

60

non-reliable retrial [52] retrial in random env.
Number of sources: 5 5

Request’s generation rate:0.10, 0.15, 0.17, 0.19, 0.21 0.10, 0.15, 0.17, 0.19, 0.21
Service rate: 1.0, 1.1, 1.2, 1.5, 1.6 1.0, 1.1, 1.2, 1.5, 1.6
Retrial rate: 0.15, 0.18, 0.21, 0.22, 0.25 0.15, 0.18, 0.21, 0.22, 0.25

Server’s failure/repair rate: 0.1, 1 -
Rate of env. change: - 0.1, 1

Utilization of the server: 0.404265368271 0.404265368271
Utilization of the sources

Source 1: 0.673069675362 0.673069675362
Source 2: 0.629766856845 0.629766856845
Source 3: 0.634124904383 0.634124904383
Source 4: 0.622974780687 0.622974780687
Source 5: 0.627325387151 0.627325387151

Mean response time
Source 1: 5.34303316033 5.34303316033
Source 2: 4.31118758383 4.31118758383
Source 3: 3.73337662001 3.73337662001
Source 4: 3.50379767493 3.50379767493
Source 5: 3.11179039958 3.11179039958

Table 6.2: Validation by the non-reliable retrial model

Figure 6.1: Mean response time versus primary request generation rate

61

Figure 6.2: Mean response time versus primary request generation rate

Figure 6.3: Mean response time versus primary request generation rate

Figure 6.4: Mean response time versus primary request generation rate

62

K λ1(1)...λ5(1) µ1(1)...µ5(1) ν1(1)...ν5(1) τ
(1)
12 τ

(1)
21

λ1(2)...λ5(2) µ1(2)...µ5(2) ν1(2)...ν5(2)
Fig. 6.1 5 x axis 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.05 0.1

1e-20 1e-20 1e-20
Fig. 6.2 5 x axis 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.05 0.1

x axis 1e-20 0.35,0.4,0.45,0.6,0.7
Fig. 6.3 5 x axis 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.1 0.2

1e-20 1e-20 1e-20
Fig. 6.3 5 x axis 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.1 0.2
(run 2) λ1(1)

2 ...λ5(1)
2 1e-20 1e-20

Fig. 6.4 5 x axis 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.1 0.2
x axis 1e-20 0.35,0.4,0.45,0.6,0.7

Fig. 6.4 5 x axis 4.1,4.3,4.5,4.7,4.9 0.35,0.4,0.45,0.6,0.7 0.1 0.2
(run 2) λ1(1)

2 ...λ5(1)
2 1e-20 0.35,0.4,0.45,0.6,0.7

Table 6.3: System input parameters

63

64

Part II

Application of Retrial Queues in
Performance Modelling of
Communication Networks

65

Chapter 7

Retrial Queueing Models of
Mobile Communication Networks

Queueing network models are widely used in the traffic modelling of cellular mobile systems,
such as GSM (Global System for Mobile Communications), GPRS (General Packet Radio
Service) and UMTS (Universal Mobile Telecommunication System). Most of the papers
consider queueing systems without retrials (see [40; 21] and references therein for some
recent results), but after the study of Tran-Gia and Mandjes [56], which demonstrated in
the context of cellular systems that the retrial phenomenon is not neglectable because of the
significant negative influence on the system performance measures, authors are more likely
to take it into consideration in their cellular mobile network model.

Cellular systems with customer redials are treated in [41], where an approximate tech-
nique is proposed for finite and infinite population Markovian models. The authors reduce
the state space of the continuous-time Markov chain model by registering only that if there
are retrying blocked and dropped customers in the system or not. In the works [45; 2], var-
ious infinite-source retrial queueing models are studied. In [45], not only customer redials,
but also automatic retrials by the cellular system are taken into consideration, but the dropped
customer redials handled as generating new fresh call attempts in the new cell and in case of
blocking the call is treated as a blocked fresh call. It is probably less realistic, because an
interrupted customer may try to reestablish the call with higher probability in shorter time
intervals. In [2], the blocked new and dropped handoff calls are not distinguished, but the
involved random variables have general phase type distributions.

7.1 Quality of Service

In cellular networks, the most important quality of service measures are the following:

• the fresh call blocking probability (Pf), i. e. the fraction of new call requests in the
cell that cannot be served due to the lack of free channels, and

• the handoff call dropping probability (Ph), that is the average fraction of incoming
handoff calls that are terminated because of the lack of free channels.

67

The grade of service (GoS) is generally defined as the combination of these two proba-
bilities, for example as

GoS =
Pf + 10Ph

11
.

Because of the fact, that the handoff call dropping probability has more significant impact
on the grade of service, it is important to reduce it even at the expense of increased fresh call
blocking probability. In order to prioritize handoff calls, several channel allocation schemes
are utilized. One of the most popular policies is the guard channel scheme [21; 56; 41; 2],
where some channels are reserved for the calls that move across the cell boundary, that is if
there areg reserved channels in the cell, a new fresh call is only accepted if there are at least
g + 1 available channels. A handoff call is rejected only if all the channels in the cell are
occupied.

In Section 7.2, where the GSM system is modelled, this equation is used for calculating
the GoS.

7.2 Performance Analysis of GSM

In this section, an infinite-source retrial queueing model of GSM networks is discussed,
based upon the ones that were studied by [56; 41; 45; 2]. The blocked and dropped users are
treated separately, that is they redial with different probabilities and different rates, like in
[41], but the state space is reduced by maximizing the number of redialing customers with
appropriately large values (i. e. when the ignored probability mass can be neglected). In
[56; 45; 2], these two types of redialing customers were not distinguished. Furthermore, in
this model not only the active but also both types of redialing customers are let to depart to
other cells, what was not allowed in the previous works. This work can be considered as the
initial step towards the analysis of more complex third generation systems focusing on the
quality of service issues.

In the next subsections, the accurate description of the cellular model is given along
with the underlying Markov chain. It is shown how the model description can be translated
into the description language of MOSEL-2. The last part of this section is devoted to some
numerical examples, where the analytical results of the calculations are displayed graphically
to demonstrate the effect of the changing of various system parameters on the quality of
service measures and on the grade of service. These results were published in [J2].

7.2.1 Model Description

In this subsection the following cell model (illustrated by Figure 7.1) is considered in a
cellular mobile network.

In this cellular network model only one cell is treated. The cells are considered identical
and to have the same traffic parameters, so it is enough to investigate one cell, and the handoff
effect from the adjacent cells to this cell and from this cell to adjacent cells is described by
handoff processes. Instead of the frequently used single arrival stream model the fresh call
and handoff call arrivals are distinguished, what is gainful if we investigate complex call
handling policies.

68

We assume, that the number of channels in the cell isC, and the number of guard channels
is g, whereg < C.

The arrival process of the fresh calls is a Poisson process with rateλf . If the number of
the active users is smaller thanC − g, the incoming call starts to be served. Otherwise it is
blocked and it starts generation of a Poisson flow of repeated calls (redialing) with probability
Θ1 or leaves the system with probability1 − Θ1. A blocked customer repeats his call after
a random time which is exponentially distributed with mean1/νbl, and it can be served or
blocked again like the fresh calls. The call duration time is exponentially distributed with
mean1/µ.

The arrival process of the handoff calls is a Poisson process with rateλh. If the number of
active users is smaller thanC, the incoming call starts to be served. Otherwise it is dropped
(handoff failure) and it starts generation of a Poisson flow of repeated calls with probability
Θ2 or leaves the system with probability1 − Θ2. A dropped customer tries to repeat his
call after a random time which is exponentially distributed with mean1/νdr. If it is blocked
it continues redialing with probabilityΘ2. The call duration time for handoff calls is also
exponentially distributed with mean1/µ.

The active, redialing blocked and dropped customers leave the cell after an exponentially
distributed time with mean1/µa, 1/µb and1/µd, respectively.

The number of redialing users because of blocking and dropping is limited to an ap-
propriately large values ofNbl andNdr to make the state space finite in order to make the
calculations possible by the tools in the steady state.

1−Θ
1��

��
��

Θ
1

1−Θ
1

��
�	

�

Θ
2

1−Θ
2

� �
� �� �
� �� �

��
��
��1−Θ

2

λ
h

Θ
1

ν
bl

µ

λ

dr
ν

2
Θ

f

µ

µ
d

µ

b

a

Figure 7.1: Retrial queueing model of a cell

7.2.2 The Underlying Markov Chain

The state of the system can be described with a stochastic processX(t) =
(C(t); N(t); M(t)), whereC(t) is the number of active customers (i. e. the number of busy

69

channels),N(t) is the number of blocked new customers who are sending repeated calls and
M(t) is the number of dropped customers at handoff who are trying to redial at timet.

Because of the exponentiality of the involved random variables the describing process is
a Markov chain with a finite state spaceS = {0, ..., C} × {0, ..., Nbl} × {0, ..., Ndr}. Since
its state space is finite, the process is ergodic for all values of the rate of the arrival of new
and handoff calls, and we can investigate it in the steady state.

Because of the fact that the state space of(X(t), t ≥ 0) with sufficiently largeNbl and
Ndr is very large and the functioning of the system is complex, it is very difficult to calculate
the steady state probabilities. The tool MOSEL-2 is used to formulate the model and to
calculate these probabilities and the system measures.

We define the stationary probabilities:

P (i; j; k) = lim
t→∞

P (C(t) = i,N(t) = j, M(t) = k),

i = 0, ..., C, j = 0, ..., Nbl, k = 0, ..., Ndr.

Knowing the steady state probabilities the system performance and the quality of service
measures can be obtained as follows.

• Mean number of active customers

Nc =
C∑

i=0

Nbl∑

j=0

Ndr∑

k=0

iP (i, j, k).

• Mean number of sources of repeated calls because of the blocking of fresh calls

Nb =
C∑

i=0

Nbl∑

j=0

Ndr∑

k=0

jP (i, j, k).

• Mean number of sources of repeated calls because of the dropping of handoff calls

Nd =
C∑

i=0

Nbl∑

j=0

Ndr∑

k=0

kP (i, j, k).

• Fresh call blocking probability

Pf =
g∑

i=0

Nbl∑

j=0

Ndr∑

k=0

P (C − i, j, k).

• Handoff call dropping probability

Ph =
Nbl∑

j=0

Ndr∑

k=0

P (C, j, k).

70

7.2.3 Model Conversion to MOSEL-2

In this subsection we discuss the translation of the model into the language of the MOSEL-2
tool. The full MOSEL-2 program can be assembled from the following program parts among
the model description in the order of the part numbers.

The number of channels in the cell isC, which is denoted asN_CHSin the program, and
the number of guard channels isg, which is denoted asN_G_CHS.

In the first part of the MOSEL-2 description, we have to define some other system input
parameters too, these will be introduced at the appropriate program parts.

(1) CONST N_CHS := 15;
CONST N_G_CHS := 1;
CONST MAX_BL_USERS := 25;
CONST MAX_DR_USERS := 25;
CONST call_arrive := 1.5;
CONST call_retry_bl := 5;
CONST call_retry_dr := 6;
CONST call_duration := 0.05;
CONST handoff_arrive := 0.4;
CONST handoff_dep_ac := 1/3;
CONST handoff_dep_bl := 1/3;
CONST handoff_dep_dr := 1/3;
CONST p_retry_bl := 0.7;
CONST p_retry_dr := 0.9;

The state of the system is described by the number of active users, the number of blocked
users who redial after some random time, and the number of users whose calls are dropped
at handoff and who are redialing. It can be wrote down in MOSEL-2 as defining the nodes of
the system. The number of active users is denoted byactive_users. Its maximum value is the
number of channels, and it is 0 at the starting time. The number of redialing users because
of blocking and dropping is limited toMAX_BL_USERSandMAX_DR_USERS, which are
defined in (1).

(2) NODE active_users[N_CHS] := 0;
NODE redialing_users_bl[MAX_BL_USERS] := 0;
NODE redialing_users_dr[MAX_DR_USERS] := 0;

The arrival process of the fresh calls is a Poisson process with rateλf , that is denoted
in the program ascall_arrive, and defined in (1) like the other parameters. If the number
of active users is smaller thanC − g, the incoming call starts to be served. Otherwise it is
blocked and it starts generation of a Poisson flow of repeated calls (redialing) with probability
Θ1 (denoted byp_retry_bl) or leaves the system with probability1−Θ1.

(3) IF active_users< N_CHS-N_G_CHS
FROM EXTERN TO active_users
RATE call_arrive;

IF active_users>= N_CHS-N_G_CHS
FROM EXTERN RATE call_arrive THEN {

71

TO redialing_users_bl
WEIGHT p_retry_bl;

TO EXTERN WEIGHT 1 - p_retry_bl;
}

The blocked user redials can be handled similar to the fresh call arrivals. If a user is
blocked, he repeats his call after a random time which is exponentially distributed with mean
1/νbl. νbl is denoted ascall_retry_bl. It can be served or blocked as the fresh calls in the
previous part.

(4) IF active_users< N_CHS-N_G_CHS
FROM redialing_users_bl TO active_users
RATE call_retry_bl*redialing_users_bl;

IF active_users>= N_CHS-N_G_CHS
FROM redialing_users_bl
RATE call_retry_bl*redialing_users_bl THEN {
TO redialing_users_bl

WEIGHT p_retry_bl;
TO EXTERN WEIGHT 1 - p_retry_bl;

}

The call duration time is exponentially distributed with mean1/µ. µ is denoted as
call_duration.

(5) FROM active_users TO EXTERN
RATE call_duration*active_users;

The arrival process of the handoff calls is a Poisson process with rateλh. λh is denoted in
the program ashandoff_arrive. If the number of active users is smaller thanC, the incoming
call starts to be served. Otherwise it is dropped and it starts generation of a Poisson flow
of repeated calls with probabilityΘ2 (denoted byp_retry_dr) or leaves the system with
probability1−Θ2.

(6) IF active_users< N_CHS
FROM EXTERN TO active_users
RATE handoff_arrive;

IF active_users = N_CHS
FROM EXTERN RATE handoff_arrive THEN {
TO redialing_users_dr

WEIGHT p_retry_dr;
TO EXTERN WEIGHT 1 - p_retry_dr;

}

The dropped user redials can be handled like the blocked fresh call redials. The customer
repeats his call after a random time which is exponentially distributed with mean1/νdr.
νdr is denoted ascall_retry_dr. If it is blocked it continues retrying with probabilityΘ2

(p_retry_dr).

72

(7) IF active_users< N_CHS-N_G_CHS
FROM redialing_users_dr TO active_users
RATE call_retry_dr*redialing_users_dr;

IF active_users>= N_CHS-N_G_CHS
FROM redialing_users_dr
RATE call_retry_dr*redialing_users_dr THEN {
TO redialing_users_dr

WEIGHT p_retry_dr;
TO EXTERN WEIGHT 1 - p_retry_dr;

}

The active and redialing customers leave the cell after an exponentially distributed time
with parameterµa, µb and µd, denoted ashandoff_dep_ac, handoff_dep_bland hand-
off_dep_dr, respectively.

(8) FROM active_users TO EXTERN
RATE handoff_dep_ac*active_users;

FROM redialing_users_bl TO EXTERN
RATE handoff_dep_bl*redialing_users_bl;

FROM redialing_users_dr TO EXTERN
RATE handoff_dep_dr*redialing_users_dr;

After describing the system functioning, we can define the system measures we would like
to calculate, such as the mean number of active and redialing customers because of blocking
and handoff failure, the fresh call blocking and the handoff call dropping probabilities.

(9) PRINT mean_active_users = MEAN(active_users);
PRINT mn_redialing_users_bl = MEAN(redialing_users_bl);
PRINT mn_redialing_users_dr = MEAN(redialing_users_dr);
PRINT call_blocking_prob = PROB(active_users>= N_CHS-N_G_CHS);
PRINT handoff_call_dropping_prob = PROB(active_users = N_CHS);

Finally, we define two pictures that show the changing of the blocking and dropping
probabilities depending on the number of channels. If we useN_CHSas parameter, we have
to define it in (1) as follows:PARAMETER N_CHS := 6, 7, 8, 9, 10;

(10) PICTURE "Blocking probability vs N_CHS"
PARAMETER N_CHS
CURVE call_blocking_prob;

PICTURE "Dropping probability vs N_CHS"
PARAMETER N_CHS
CURVE handoff_call_dropping_prob;

7.2.4 Numerical Examples

In this subsection some sample numerical results are presented to illustrate graphically how
the quality of service measures depend on variable system parameters.

73

Comments

• In Figures 7.2 and 7.3 the fresh call blocking and handoff call dropping probabilities
are displayed versus the number of channels with and without user redials. The system
input parameters belonging to the curves without redials are the same as in [21], where
a similar model is studied without customer redials (g = 3, λf = 0.5, µ = 0.05,
µa = µb = µd = 1/3, λh = 0.4, νbl = νdr = 106, Θ1 = Θ2 = 10−6 and for the
other curveνbl = νdr = 6, Θ1 = 0.8, Θ2 = 0.9, furthermore the maximum number of
redialing customers is 25, respectively). These results are in agreement with theirs in
the exponential case.

• In Figures 7.4 and 7.5 the fresh call blocking and handoff call dropping probabilities
are displayed versus the mean handoff call arrival rate. The system input parameters
are the same as in Figures 7.2 and 7.3, except of thatC = 8, andλh is on thex axis,
like in [21].

The negative influence of the retrial phenomenon is shown in each figures, and we can
see that it increases as the handoff call arrival rate increases.

• In Figure 7.6 we can see the fresh call blocking probability, the handoff call dropping
probability and the grade of service as the mean fresh call arrival rate increases.
The following system input parameters were used:C = 7, g = 1, µ = 0.05,
µa = µb = µd = 1/3, λh = 0.4, νbl = 6, νdr = 7, Θ1 = 0.8 andΘ2 = 0.9.

• In Figure 7.7 the fresh call blocking and handoff call dropping probabilities and the
GoS are displayed versus the number of guard channels. We can see that a very few
number of guard channels can improve the grade of service significantly, but then only
a very small handoff call dropping advance can be achieved on the great expense of
fresh call blocking probability, and the GoS declines. The system input parameters are
the following: C = 15, λf = 3, µ = 0.05, µa = µb = µd = 1/3, λh = 0.4, νbl = 6,
νdr = 7, Θ1 = 0.8 andΘ2 = 0.9.

74

Figure 7.2: Fresh call blocking probability versus number of channels

Figure 7.3: Handoff call dropping probability versus number of channels

Figure 7.4: Fresh call blocking probability versus mean handoff call arrival rate

75

Figure 7.5: Handoff call dropping probability versus mean handoff call arrival rate

Figure 7.6: System measures versus mean fresh call arrival rate

Figure 7.7: System measures versus number of guard channels

76

Part III

Conclusions

77

In this dissertation the performance of different types of retrial queues was evaluated, and
a retrial queueing model was applied for the performance analysis of a cell based telecommu-
nication network. The efficient tool MOSEL was used, which made it much easier to analyze
these complex models.

In Part I, the performance of finite-source retrial queueing systems was investigated with
components subject to random breakdowns and repairs. A single-server queue was extended
and analyzed with non-reliable server and sources, and the non-reliable server case was gen-
eralized by heterogeneous sources, i.e. the sources were allowed to have different parameters.
Multiserver retrial queues were treated with non-reliable servers, and different service poli-
cies were compared. Finally, a reliable retrial queue was treated in random environment,
which also can be applied for the analysis of systems in which the components are subject
to random breakdowns. To the best know of the author, these finite-source retrial queueing
systems have not been investigated before in the literature.

In Part II, a truncated infinite-source retrial queue was applied for the performance evalu-
ation of the GSM system. This was based on previous works of others in this topic, and some
generalizations were made. It was described in details how this system can be modelled by
the help of the tool MOSEL-2, which makes the modelling and the further extensions much
easier. This model can be developed to a layered one, and the newest version of MOSEL-2
allows us to use other distributions than the exponential, which can be applied and analyzed,
too.

79

80

Summary

Performance evaluation plays an important role in the design, analysis and development of
practical systems, like computer and telecommunication systems and networks. Queueing
models are often used for the performance and reliability modelling of these systems, and
retrial queues are more and more frequently applied to certain types of them. The reason is
that the return of customers plays a special role in many of these systems as well as in other
practical applications, and it often has a non-neglectable negative effect on the performance
measures.

Another important characteristic of real-life systems is non-reliability, which also has a
negative influence on these measures, because most of the components of the systems are sub-
ject to random breakdowns and require repairs. Non-reliability has been extensively studied
for traditional queues with waiting lines, but only for infinite-source queues with returning
customers.

The dissertation consists of two parts. In Part I, some non-reliable finite-source retrial
models and a reliable retrial queue in random environment (which also can be applied in the
performance analysis of non-reliable systems) are analyzed. To the best know of the author,
these models have not been treated in the literature before. In Part II, a real-life system
is modelled using a retrial queueing model. A modelling way of the GSM system (Global
System for Mobile Communications) is treated with a modelling environment. This is based
on previous works of various authors and generalized with some model extensions.

Retrial Queues

Retrial queues (queueing systems with repeated attempts, or queues with returning cus-
tomers) are characterized by the following feature: a request finding all servers busy upon
arrival leaves the service area but after some (random) time repeats his demand. This feature
plays a special role in many computer and communication systems and networks as well as
in other practical applications. In case of many real-life systems, retrial queues can be ap-
plied in the performance modelling, for example in modelling local-area and cellular mobile
networks.

In Chapter 2, two types of retrial queues are introduced. The first one is a finite-source
retrial queue, on which the analysis is based in Part I. The second one is a truncated infinite
source queue with returning customers. An extension of this model is applied in Part II to
analyze the GSM system.

81

The Applied Modelling Tool

MOSEL (Modeling, Specification and Evaluation Language) is a modelling environment with
a high-level modelling language which allows us to describe complex real-world systems and
to calculate their system measures using other performance evaluation tools. The MOSEL
description can be translated automatically into the language of various performance tools
and then analyzed by the appropriate tools (at present SPNP – Stochastic Petri Net Package
and TimeNET are supported and suitable for the investigated models) to get these measures.

Because of the fact that the state space of the underlying Markov chains of the investi-
gated queueing models is very large and the functioning of the systems is complex, it is quite
difficult to calculate the steady state probabilities in the traditional way of solving the system
of steady-state equations. To simplify these calculations and to make our studies more usable
in practice, the tool MOSEL was used to formulate the models and to calculate the perfor-
mance measures. This tool has already been used, and it has proved its applicability for the
modelling of several computer and communication systems. The functioning and usage of
MOSEL is illustrated by Figure 1.

TimeNET

the MOSEL tool generates result and IGL files

description in MOSEL

MOSES SPNP PEPSY ...

translation

the system to be modelled

Figure 1: The modelling process in the MOSEL environment

In Part I, the original tool is used for the analysis of finite-source retrial queueing sys-
tems. Because of page limitations, only the simplest MOSEL description was included and
discussed.

In Part II, the GSM system is modelled with the revised modelling language, called
MOSEL-2, and detailed comments are provided about MOSEL-2 programming.

Analysis of Retrial Queueing Systems

The components of the real systems may be subject to random breakdowns so it is important
to investigate non-reliable queueing systems, as well as non-reliable retrial queues, because
of limited ability of repairs and heavy influence of the breakdowns on the performance mea-
sures.

82

• Analysis of Single-server Non-reliable Finite-source Retrial Queues
In Chapter 4, single-server non-reliable finite-source retrial queues are treated. The
purpose is to give the main stationary performance and reliability measures of the non-
reliable models, and to illustrate graphically the effect of changing various parameters
on them. Section 4.1 is devoted to the model described in the book of Falin and Tem-
pleton with server subject to breakdowns and repairs. In Section 4.2 this is extended
with non-reliable sources, and in Section 4.3 with reliable but heterogeneous sources.

• Analysis of Multiserver Non-reliable Finite-source Retrial Queues
In Chapter 5, a multiserver non-reliable finite-source retrial queue is investigated. Sec-
tion 5.1 is devoted to the extension of the model described in the book of Falin and
Templeton. The finite-source retrial queue is analyzed with non-reliable heteroge-
neous (asymmetric) servers, that is the servers have different parameters in service,
failure and repair rates. In Section 5.2 two service policies are compared in this model.

• Analysis of Retrial Queues in Random Environment
Chapter 6 deals with the performance analysis of a finite-source retrial queueing system
with heterogeneous sources operating in random environment, that is, the system pa-
rameters are subject to randomly occurring fluctuations. Besides, the queueing model
is applied for the analysis of non-reliable retrial models.

For an example analysis, see Figure 2, where we can see the difference between the
Fastest Free Server (referred to as ordered in the legend of the figure), Random and the
Averaged Random (where the service rate of the servers is the average of the rates of the
heterogeneous case) service policies in the mean response time depending on the primary
request generation rate. In the case of Random service disciplines, the requests are assigned
to the idle servers randomly. In the other case, the requests are assigned to the fastest available
free server. We can see that the difference between the two random case is not too significant,
but the Fastest Free Server case always has better response time, especially when more and
more requests arrive.

Figure 2: Mean response time versus primary request generation rate

83

Application of Retrial Queues in Modelling of Communication Networks

Queueing network models are widely used in the traffic modelling of cellular mobile sys-
tems, such as GSM (Global System for Mobile Communications), GPRS (General Packet
Radio Service) and UMTS (Universal Mobile Telecommunication System). Most of the pa-
pers consider queueing systems without retrials, but after the study of Tran-Gia and Mandjes
(1997), which demonstrated in the context of cellular systems that the retrial phenomenon
is not neglectable because of the significant negative influence on the system performance
measures, authors are more likely to take it into consideration.

In Section 7.2, an infinite-source retrial queueing model of GSM networks is discussed,
based upon the ones that were studied by others. The blocked and dropped users are treated
separately, that is they redial with different probabilities and different rates. The state space is
reduced by maximizing the number of redialing blocked and dropped customers with appro-
priately large values (i. e. when the ignored probability mass can be neglected). Furthermore,
in this model not only the active but also both types of redialing customers are let to depart
to other cells, what was not allowed in the previous works. This work can be considered
as the initial step towards the analysis of more complex third generation systems using the
MOSEL-2 tool.

The accurate description of the cellular model is given along with the underlying Markov
chain. It is shown how the model description can be translated into the description language
of MOSEL-2. Some numerical examples are treated, where the analytical results of the calcu-
lations are displayed graphically to demonstrate the effect of the changing of various system
parameters on the quality of service measures.

For an example, see Figure 3, where the fresh call blocking and handoff call dropping
probabilities and the GoS (Grade of Service) are displayed versus the number of guard
channels. In this figure, we can see how many guard channels can improve the grade of
service significantly, and then the other reserved channels can achieve only very small
handoff call dropping advance on the great expense of fresh call blocking probability, and
the GoS declines.

Figure 3: System measures versus number of guard channels

84

Összefoglaló

A teljesítményelemzés fontos szerepet játszik a gyakorlati rendszerek – mint például a tele-
kommunikációs hálózatok – tervezésében, elemzésében és fejlesztésében. Gyakran alkalmaz-
nak sorbanállási modelleket ezen rendszerek teljesítményének és megbízhatóságának vizs-
gálatában. Különböz̋o típusaiknál egyre gyakrabban használják a visszatéréses sorbanállási
rendszereket is. Ennek az oka az, hogy a visszatérő igények többüknél – akárcsak mint más
gyakorlati alkalmazásoknál – gyakran speciális szerepet játszanak, és nem elhanyagolható
negatív hatással vannak a teljesítményjellemzőkre.

A gyakorlati rendszerek egy másik fontos jellemzője a meghibásodhatóság, mely, mivel
a rendszerkomponensek többsége meghibásodhat és javítást igényel, szintén negatív hatással
van ezekre a jellemz̋okre. A nem megbízhatóság hatását alaposan tanulmányozták hagyomá-
nyos, várakozási sorral rendelkező sorbanállási rendszereknél, visszatérő igényekkel viszont
csak végtelen forrású modellek esetén.

A disszertáció két részből áll. Az I. részben néhány nem megbízható, véges forrású
visszatéréses sorbanállási rendszert vizsgálunk, valamint egy megbízható visszatéréses rend-
szert véletlen környezetben, ami szintén alkalmazható a nem megbízható modellek elemzésé-
ben. A szerz̋o legjobb tudása szerint ezeket a modelleket nem tárgyalták korábbi munkákban.
A II. részben egy valós rendszert vizsgálunk egy visszatérő igényeket tartalmazó sorbanál-
lási rendszer segítségével. Itt egy modellezési módot tekintünk át mások korábbi munkáira
alapozva a GSM rendszer (Global System for Mobile Communications) teljesítményelemzé-
sére.

Visszatéréses sorbanállási rendszerek

A visszatér̋o igényeket tartalmazó vagy visszatéréses sorbanállási rendszerek olyan rendsze-
rek, melyekben ha egy beérkező igény minden kiszolgálót foglaltnak talál, akkor elhagyja
a kiszolgálókat, majd egy (véletlen) idő eltelte után megismétli a kérést. Ez a tulajdonság
más gyakorlati alkalmazások mellett speciális szerepet játszik számos, napjainkban is hasz-
nált számítógép és kommunikációs rendszerben és hálózatban is. Így több valós rendszer
teljesítményelemzése esetén is – mint például a helyi és a celluláris mobil hálózatok – alkal-
mazhatóak a visszatéréses sorbanállási modellek.

A 2. fejezetben két különböző visszatéréses sorbanállási modellt tekintünk át. Az első
az a véges forrású visszatéréses sorbanállási rendszer, amelyen az I. részben lévő elemzé-
sek alapszanak. A második pedig egy végtelen forrású modell, melynek egy kiterjesztett
változatát alkalmazzuk a II. részben a GSM rendszer hatékonyság-vizsgálatára.

85

Az alkalmazott modellezési eszköz

A MOSEL (Modeling, Specification and Evaluation Language) egy olyan magasszintű nyelv-
vel rendelkez̋o modellezési környezet, mely lehetővé teszi valós, bonyolult rendszerek leírá-
sát, és ez alapján kiszámítja a keresett rendszerjellemzőket más hatékonyságvizsgálati esz-
közök felhasználásával. A MOSEL leírás automatikusan lefordítható a különböző eszközök
nyelvére (jelenleg az SPNP – Stochastic Petri Net Package és a TimeNET alkalmazható a
vizsgált modellek esetén), majd az adott eszközt felhasználva elemezhetjük a modellt és kap-
hatjuk meg a keresett rendszerjellemzőket.

Mivel a vizsgált sorbanállási modelleket leíró Markov-láncok állapottere nagyon nagy
és a rendszerek működése bonyolult, ezért a hagyományos módon, azaz az egyensúlyi
állapotegyenlet-rendszer megoldásával meglehetősen nehéz kiszámítani az egyensúlyi álla-
potvalószínűségeket. Hogy egyszerűsítsük ezeket a számításokat, továbbá a gyakorlatban
használhatóbbá tegyük az elemzéseket, a MOSEL eszközt használjuk a modellek leírására
és a teljesítményjellemzők kiszámítására, melyet már számos számítógép és kommunikációs
rendszer modellezésére használták, és bizonyította alkalmazhatóságát. A MOSEL működését
és használatát az itt látható ábra szemlélteti.

TimeNETMOSES SPNP PEPSY ...

a modellezni kívánt rendszer

a MOSEL eszköz eredmény és IGL fájlokat készít

fordítás

leírás MOSEL−ben

4. ábra. A modellezési folyamat a MOSEL környezetben

Az I. részben az eredeti eszközt használjuk véges forrású visszatéréses sorbanállási rend-
szerek elemzésére. Oldalszám korlátok miatt csak a legegyszerűbb MOSEL leírást tárgyaljuk.

A II. részben az átdolgozott modellezőnyelvet (MOSEL-2) alkalmazzuk – részletes ma-
gyarázatokkal a MOSEL-2 prgramozással kapcsolatban – a GSM rendszer modellezésére.

Visszaéréses sorbanállási rendszerek elemzése

Mivel a valós rendszerek komponensei általában meghibásodhatnak, ezért a korlátozott ja-
vítási lehet̋oségek, és a meghibásodásoknak a teljesítményjellemzőkre gyakorolt jelent̋os ha-
tása miatt fontos a nem megbízható sorbanállási rendszerek vizsgálata, így a nem megbízható
visszatéréses modelleké is.

86

• Egykiszolgálós, nem megbízható, véges forrású visszatéréses modellek elemzése
A 4. fejezetben egykiszolgálós, nem megbízható, véges forrású visszatéréses sorbanál-
lási rendszereket vizsgálunk. Célunk a nem megbízható modellek legfontosabb egyen-
súlyi megbízhatósági és teljesítményjellemzőinek megadása, valamint különböző pa-
ramétereknek az ezekre gyakorolt hatásának grafikus szemléltetése. A 4.1 alfejezetben
a Falin és Templeton könyvében leírt modellt vizsgájuk nem megbízható kiszolgáló-
val. A 4.2 alfejezetben ezt bővítjük nem megbízható, 4.3-ban pedig megbízható de
heterogén forrásokkal.

• Többkiszolgálós, nem megbízható, véges forrású visszatéréses modellek elemzése
A 5. fejezetben egy többkiszolgálós, nem megbízható, véges forrású visszatéréses sor-
banállási rendszert vizsgálunk. Az 5.1. alfejezetben a Falin és Templeton könyvében
leírt modellt általánosítjuk. Itt a véges forrású visszatéréses modellt heterogén (aszim-
metrikus) kiszolgálókkal – melyek különböző kiszolgálási, meghibásodási és javítási
paraméterekkel rendelkezhetnek – elemezzük. Az 5.2. alfejezetben két kiszolgálási
elvet hasonlítunk össze ennél a modellnél.

• Visszatéréses sorbanállási rendszerek véletlen környezetben
A 6. fejezet egy véletlen környezetben lévő, heterogén forrásokat tartalmazó vissza-
téréses modell teljesítményelemzésével foglalkozik, azaz egy olyan sorbanállási rend-
szerrel, melynek paraméterei egy háttérfolyamat alapján változhatnak. Emellett ezt a
modellt is alkalmazzuk nem megbízható visszatéréses rendszerek vizsgálatára.

Az 5. ábrán egy elemzési példa látható, ahol a leggyorsabb szabad kiszolgáló (Fastest
Free Server – FFS), a véletlen (Random) és az átlagolt véletlen (itt mindegyik kiszolgálási
intenzitás a heterogén eset intenzitásainak átlaga) kiszolgálási elvek esetén láthatjuk az át-
lagos válaszolási id̋ot az új igény érkezési intenzitás függvényében. A véletlen kiszolgálási
elvek esetén az igények véletlenszerűen kerülnek az egyes szabad kiszolgálókhoz. A másik
elv esetén viszont a beérkező igény a leggyorsabb szabad kiszolgálóhoz kerül. Látható, hogy
a különbség a két véletlen eset között nem jelentős, de a leggyorsabb szabad kiszolgálót vá-
lasztó elv mindig jobb átlagos válaszidővel rendelkezik, különösen mikor egyre több és több
igény érkezik.

5. ábra. Átlagos válaszolási idő az új igény érkezési intenzitás függvényében

87

Visszatéréses sorbanállási rendszerek alkalmazása kommunikációs hálózatok modelle-
zésében

A sorbanállási hálózati modelleket gyakran alkalmazzák a celluláris mobil rendszerek, mint
például a GSM (Global System for Mobile Communications), a GPRS (General Packet Radio
Service) és az UMTS (Universal Mobile Telecommunication System) teljesítményelemzésé-
ben. Els̋osorban a klasszikus, visszatérő igényeket nem tartalmazó sorbanállási modelleket
használják, de Tran-Gia és Mandjes (1997) cikke után egyre többen veszik figyelembe a
visszatér̋o igényeknek a teljesítményjellemzőkre gyakorolt hatását.

A 7.2. fejezetben a GSM hálózatoknak egy végtelen forrású sorbanállási modelljét tár-
gyaljuk korábbi munkák alapján. A modellben a blokkolt és megszakadt hívások miatti is-
métlődő kéréseket külön kezeljük, azaz a hívásismétlési valószínűségek és intenzitások kü-
lönböz̋oek lehetnek. Az állapotteret mindkét típus esetén az ismétlődő hívásokat generáló
felhasználók maximális számának megfelelően nagy értékekkel való korlátozásával redukál-
juk. A vizsgált modellben továbbá nem csak az aktív, hanem mindkét típusú sikertelen hívás
miatt újra próbálkozó felhasználó is távozhat másik cellába, ami a korábbi tanulmányokban
nem volt megengedve. Ez a munka tekinthető az els̋o lépésnek a bonyolultabb, harmadik
generációs rendszereknek a MOSEL-2 eszközzel történő vizsgálata felé.

A modellezés során megadjuk a cella alapú modell pontos leírását az azt leíró Markov-
lánccal együtt, majd megmutatjuk, hogyan fordítható le ez a MOSEL-2 leíró nyelvére. Át-
tekintünk néhány numerikus példát, ahol az analitikus eredményeket grafikusan ábrázolva
mutatjuk meg különböz̋o paraméterek változásának hatását a szolgáltatás minőségének jel-
lemz̋oire.

A 6. ábrán erre látható egy példa, ahol az új hívások blokkolásának és az átadottak
megszakadásának valószínűsége, valamint a GoS (Grade of Service) figyelhető meg a
fenntartott csatornák számának függvényében. Látható, hogy kis számú csatorna fenntartása
jelent̋osen javíthatja a szolgáltatás minőségi mértékét, de több ilyen csatorna esetén csak na-
gyon kis átadott hívásmegszakadásási valószínűség-csökkenés érhető el jelent̋os blokkolási
valószínűség-növekedés árán, és a GoS romlik.

6. ábra. Rendszerjellemzők a fenntartott csatornák számának függvényében

88

Bibliography

[1] Aissani A. and Artalejo J. R. On the single server retrial queue subject to breakdowns,
Queueing Systems Theory and Applications, Vol. 30 (1998), 309-321.

[2] Alfa A. S. and Li W. PCS networks with correlated arrival process and retrial phe-
nomenon,IEEE Transactions on Wireless Communications, Vol. 1 (2002) 630-637.

[3] Almási B. A Queueing Model for a Processor-Shared Multi-Terminal System Subject
to BreakdownsActa Cybernetica, Vol. 10 (1993) 273-282.

[4] Almási B. Response time for finite-source heterogeneous nonreliable queueing systems,
Computers and Mathematics with Applications, Vol. 31 (1996) 55-59.

[5] Almási B., Bolch G. and Sztrik J.Performability Modeling of Non-homogeneous Ter-
minal Systems Using MOSEL,5th International Workshop on Performnability Model-
ing of Computer and Communication Systems, Erlangen, Germany, 200115-16.

[6] Almási B., Bolch G., Sztrik J. Performability Modeling a Client-Server Communi-
cation System with Randomly Changing Parameter Using MOSEL.5th International
Workshop on Performability Modeling of Computer and Communication Systems, Er-
langen, Germany, 200137-41.

[7] Almási B., Bolch G., Sztrik J. Analysing Markov-modulated finite-source queueing
systems.Annales Univ. Sci. Budapest., Sect. Comp., Vol. 22 (2003) 22-33.

[8] Almási B., Bolch G. and Sztrik J.Heterogeneous finite-source retrial queues,Journal
of Mathematical Sciences, Vol. 121 (2004) 2590-2596.

[9] Almási B., Sztrik J. Optimization Problems on the Performance of a Non-Reliable
Terminal System,Computers and Mathematics with Applications, Vol. 38 (1999) 13-
21.

[10] Almási B., Roszik J. and Sztrik J. Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs,Mathematical and Computer Modelling, Vol.
42 (2005) 673-682.

[11] Artalejo J.R. New results in retrial queueing systems with breakdown of the servers,
Statistica Neerlandica, Vol. 48 (1994) 23-36.

[12] Artalejo J.R. Retrial queues with a finite number of sources,J. Korean Math. Soc., Vol.
35 (1998) 503-525.

89

[13] Artalejo J.R. Accessible bibliography on retrial queues,Math. Comput. Modeling, Vol.
30 (1999) 1-6.

[14] Artalejo, J.R. and Gomez-Corral, A. Information theoretic analysis for queueing sys-
tems with quasi-random input,Mathematical and Computer Modelling, Vol. 22 (1995)
65-76.

[15] Artalejo J.R., Rajagopalan V. and Sivasamy R.On finite Markovian queues with
repeated attemps,Investigacion Operativa, Vol. 9 (2000) 83-94.

[16] Begain K., Bolch G. and Herold H.Practical performance modeling, application of
the MOSEL language,Kluwer Academic Publisher, Boston, 2001.

[17] Begain K., Barner J., Bolch G., Zreikat A. I. The Performance and Reliability Mod-
elling Language MOSEL and its Application,International Journal of Simulation, Vol.
3 (2003) 66-80.

[18] Begain K., Bolch G., Telek M.Scalable Schemes for Call Admission and Handover in
Cellular Networks with Multiple Services,Wireless Personal Communications Journal,
Kluwer Academic Publisher, 1999.

[19] Beutel B. Integration of the Petri Net tool TimeNET into the MOSEL modelling en-
vironment,MS Thesis, Department of Computer Science, University of Erlangen, Ger-
many, 2003.

[20] Daigle J.N. Queueing theory for telecommunications, Addison-Wesley, Nwe York,
1992.

[21] Dharmaraja S., Trivedi K.S., Logothetis D. Performance modeling of wireless net-
works with generally distributed handoff interarrival times,Computer Communications,
Vol. 26 (2003) 1747-1755.

[22] Dragieva V.I. Single-line queue with finite source and repeated calls,Problems of In-
formation Transmission, Vol. 30 (1994) 283-289.

[23] Falin G.I. A survey of retrial queues,Queueing Systems, Vol. 7 (1990) 127-168.

[24] Falin G.I. A multiserver retrial queue with a finite number of sources of primary calls,
Mathematical and Computer Modelling, Vol. 30 (1999) 33-49.

[25] Falin G.I. and Artalejo J.R. A finite source retrial queue,European Journal of Oper-
ational Research, Vol. 108 (1998) 409-424.

[26] Falin G.I. and Gomez Corral A. On a bivariate Markov process arising in the theory
of single-server retrial queues,Statistica Neerlandica, Vol. 54 (2000) 67-78.

[27] Falin G.I. and Templeton J.G.C.Retrial queues, Chapman and Hall, London, 1997.

[28] Gaver D.P., Jacobs P.A., Latouche G.Finite birth-and-death models in randomly
changing environments,Advances in Applied Probability, Vol. 16 (1984) 715-731.

[29] Gomez Corral A. Analysis of a single-server retrial queue with quasi-random input and
nonpreemptive priority,Computers and Mathematics with Applications, Vol. 43 (2002)
767-782.

90

[30] Houck D.J. and Lai W.S. Traffic modelling and analysis of hybrid fibercoax systems,
Computer Networks and ISDN Systems, Vol. 30 (1998) 821-834.

[31] Jain R. The art of computer systems performance analysis, John Wiley and Sons, New
York, 1991.

[32] Janssens G.K.The quasi-random input queueing system with repeated attempts as a
model for collision-avoidance star local area network,IEEE Transactions on Commu-
nications, Vol. 45 (1997) 360-364.

[33] Kalmychkov A.I. and Medvedev G.A.Probability characteristics of Markov local-area
networks with random-access protocols,Automatic Control and Computer Science, Vol.
24 (1990) 38-45.

[34] Khomichkov I.I. Study of models of local networks with multiple-access protocols,
Automation and Remote Control, Vol. 54 (1993) 1801-1811.

[35] Kok A.G. Algorithmic methods for single server systems with repeated attemps,Statis-
tica Neerlandica, Vol. 38 (1984) 23-32.

[36] Kovalenko I.N., Kuznetsov N.Yu. and Pegg P.A.Mathematical theory of reliability of
time dependent systems with practical applications,John Wiley and Sons, Chichester,
1997.

[37] Kulkarni V. G. and Choi B. D. Retrial queues with server subject to breakdowns and
repairs,Queueing Systems Theory and Applications, Vol. 7 (1990) 191-208.

[38] Li Hui and Yang Tao A single server retrial queue with server vacations and a finite
number of input sources,European Journal of Operational Research, Vol. 85 (1995)
149-160.

[39] Li Y., Al-Begain K., Awan I. Performance Modelling of GSM/GPRS Mobile System
with MOSEL,4th PGNet, Liverpool, June 2003.245-250.

[40] Litjens R. and Boucherie R. J. Elastic calls in an integrated services network: the
greater the call size variability the better the QoS,Performance Evaluation, Vol. 52
(2003) 193-220.

[41] Marsan M. A., Carolis G. D., Leonardi E., Cigno R. L., Meo M. Efficient estima-
tion of call blocking probabilities in cellular mobile telephony networks with customer
retrials,IEEE Journal on Selected Areas in Communications, Vol. 19 (2001) 332-346.

[42] Mehmet-Ali M.K., Hayes J.F. and Elhakeem A.K. Traffic analysis of a local area
network with star topology,IEEE Transactions on Communications, Vol. 36 (1988)
703-712.

[43] Nobel R.D. and Tijms Henk C.Optimal control of a queueing system with heteroge-
neous servers and setup costs,IEEE Trans. Autom. Control, Vol. 45 (2000) 780-794.

[44] Ohmura H. and Takahashi Y. An analysis of repeated call model with a finite number
of sources,Electronics and Communications in Japan, Vol. 68 (1985) 112-121.

91

[45] Onur E., Delic H., Ersoy C. and Caglayan M. U.Measurement-based replanning of
cell capacities in GSM networks,Computer Networks, Vol. 39 (2002) 749-767.

[46] Ravichandran N. Stochastic methods in reliability theory,John Wiley and Sons, New
York, 1990.

[47] Roszik J. Homogeneous finite-source retrial queues with server and sources subject
to breakdowns and repairs,Annales Univ. Sci. Budapest., Sect. Comp., Vol. 23 (2004)
213-227.

[48] Roszik J., Almási B., Sztrik J.Multiserver retrial queues with finite number of hetero-
geneous sources,Proceedings of 6th International Conference on Applied Informatics,
Eger, Hungary, (2004) Vol. II, 19-26.

[49] Roszik J., Sztrik J. The effect of server’s breakdown on the performance of finite-
source retrial queueing systems,Proceedings of 6th International Conference on Ap-
plied Informatics, Eger, Hungary, (2004) Vol. II, 221-229.

[50] Roszik J., Sztrik J., Kim C.S. Retrial queues in the performance modeling of cellular
mobile networks using MOSEL,International Journal of Simulation: Systems, Science
& Technology, Vol. 6 (2005) 38-46.

[51] Stepanov S. N.The analysis of the model with finite number of sources and taking
into account the subscriber behaviour,Automation and Remote Control, Vol. 55 (1994)
100-113.

[52] Sztrik J., Almási B., Roszik J.Heterogeneous finite-source retrial queues with server
subject to breakdowns and repairs.Journal of Mathematical Sciences, Vol. 132 (2006)
677-685.

[53] Sztrik J. and Gál T. A recursive solution of a queueing model for a multi-terminal
system subject to breakdowns,Performance Evaluation, Vol. 11 (1990) 1-7.

[54] Sztrik J. and Pósafalvi A. On the heterogeneous machine interference with limited
server’s availability,European Journal of Operational Research, Vol. 28 (1987) 321-
328.

[55] Takagi H. Queueing Analysis, A Foundation of Performance Evaluation, Vol. 2., Finite
Systems, North-Holland, Amsterdam, 1993.

[56] Tran-Gia P. and Mandjes M. Modeling of customer retrial phenomenon in cellular
mobile networks,IEEE Journal of Selected Areas in Communications, Vol. 15 (1997)
1406-1414.

[57] Trivedi K. S. Probability and statistics with reliability, queueing and computer science
applications,Prentice-Hall, Englewood Cliffs, 1982.

[58] Wang J., Cao J. and Li Q. L. Reliability analysis of the retrial queue with server
breakdowns and repairs,Queueing Systems Theory and Applications, Vol. 38 (2001)
363-380.

92

[59] Wüchner P. Extending the interface between the modeling languages MOSEL and
CSPL by adding simulation constructs,Semester Thesis SA-I4-2003-06, Department
of Computer Science, University of Erlangen, Germany, 2003.

[60] Wüchner P. Performance modelling of mobile networks using MOSEL-2,M.S. Thesis,
Department of Computer Science, University of Erlangen, Germany, 2004.

[61] Zreikat A. I., Bolch G., Sztrik J. Performance Modeling of Non-homogeneous Unre-
liable Multi-Server Systems Using MOSEL,Computers and Mathematics with Appli-
cations, Vol. 46 (2003) 293-312.

93

94

Appendix A

Publications of the Author

International Journal Papers

[J1] Roszik J.Homogeneous finite-source retrial queues with server and sources sub-
ject to breakdowns and repairs,Annales Univ. Sci. Budapest., Sect. Comp., Vol.
23 (2004) 213-227.

[J2] Roszik J., Sztrik J., Kim C.S. Retrial queues in the performance modeling of
cellular mobile networks using MOSEL,International Journal of Simulation:
Systems, Science & Technology, Vol. 6 (2005) 38-46.

[J3] Almási B., Roszik J., Sztrik J. Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs,Mathematical and Computer Mod-
elling, Vol. 42 (2005) 673-682.

[J4] Sztrik J., Almási B., Roszik J. Heterogeneous finite-source retrial queues with
server subject to breakdowns and repairs,Journal of Mathematical Sciences, Vol.
132 (2006) 677-685.

[J5] Roszik J., Sztrik J.Performance analysis of finite-source retrial queues with non-
reliable heterogeneous servers,Journal of Mathematical Sciences(submitted for
publication)

[J6] Sztrik J., Roszik J. Finite-source retrial queueing systems with heterogeneous
non-reliable servers and different service policies,Journal of Mathematical Sci-
ences(submitted for publication)

[J7] Roszik J., Sztrik J., Virtamo J. Performance analysis of finite-source retrial
queues operating in random environments,International Journal of Operations
Research(to appear)

International Conference Papers

[C1] Roszik J., Almási B., Sztrik J. Multiserver retrial queues with finite number of
heterogeneous sources,Proceedings of 6th International Conference on Applied
Informatics, Eger, Hungary, (2004) Vol. II, 19-26.

[C2] Roszik J., Sztrik J. The effect of server’s breakdown on the performance of
finite-source retrial queueing systems,Proceedings of 6th International Confer-
ence on Applied Informatics, Eger, Hungary, (2004) Vol. II, 221-229.

95

[C3] Hyytiä E., Lassila P., Penttinen A., Roszik J.Traffic load in dense wireless
multihop network,Proceedings of The 2nd ACM International Workshop on Per-
formance Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-
WASUN ’05), Montreal, Quebec, Canada, (2005) 9-17.

Publications in Hungarian

[H1] Roszik J. Visszatéréses sorbanállási rendszerek a telekommunikációs hálóza-
tok modellezésében,Informatika a Felsőoktatásban 2005, Debrecen, Hungary,
(2005) 6 pages

[H2] Roszik J. Számítógép-hálózatok gyakorlati segédanyag,mobiDIÁK könyvtár,
Debrecen, Hungary, (2005) 43 pages

96

Appendix B

Conference Presentations

International

[IC1] Almási B., Roszik J., Sztrik J. Heterogeneous finite-source retrial queues with
server subject to breakdowns and repairs,XXIII International Seminar on Sta-
bility Problems for Stochastic Models, Pamplona, Spain (2003) (presented by J.
Sztrik)

[IC2] Almási B., Roszik J., Sztrik J. Homogeneous finite-source retrial queues with
server subject to breakdowns and repairs,5th EURO/INFORMS Joint Interna-
tional Meeting, Istanbul, Turkey (2003) (presented by J. Sztrik)

[IC3] Bolch G., Roszik J., Sztrik J. Heterogeneous finite-source retrial queues in
the analysis of communication systems with CSMA/CD protocols,International
Conference on Modern Mathematical Methods of Analysis and Optimization of
Telecommunication Networks, Gomel, Belarus (2003) (presented by J. Sztrik)

[IC4] Roszik J., Almási B., Sztrik J. Multiserver retrial queues with finite number of
heterogeneous sources,ICAI ’2004 - 6th International Conference on Applied
Informatics, Eger, Hungary (2004) (presented by J. Roszik)

[IC5] Roszik J., Sztrik J. The effect of server’s breakdown on the performance of
finite-source retrial queueing systems,ICAI ’2004 - 6th International Conference
on Applied Informatics, Eger, Hungary (2004) (presented by J. Sztrik)

[IC6] Roszik J., Sztrik J. Retrial queues for performance modelling and evaluation
of heterogeneous networks,HET-NETs ’04 - The Second International Working
Conference on the Performance Modelling and Evaluation of Heterogeneous Net-
works, Ilkley, West Yorkshire, U.K. (2004) (presented by J. Sztrik)

[IC7] Roszik J., Sztrik J.Performance analysis of finite-source retrial queues with non-
reliable heterogenous servers,XXIV International Seminar on Stability Problems
for Stochastic Models, Jurmala, Latvia (2004) (presented by J. Sztrik)

[IC8] Hyytiä E., Lassila P., Penttinen A., Roszik J.Traffic load in dense wireless
multihop network,The 2nd ACM International Workshop on Performance Eval-
uation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN ’05),
Montreal, Quebec, Canada (2005) (presented by E. Hyytiä)

97

Hungarian

[HC1] Roszik J.Nem-megbízható kiszolgálót és forrásokat tartalmazó visszatéréses sor-
banállási rendszerek teljesítményelemzése,XXVI. Operációkutatási Konferencia,
Győr, Hungary (2004) (presented by J. Roszik)

[HC2] Sztrik J., Roszik J. Véges forrású visszatéréses sorbanállási rendszerek külön-
böz̋o nem-megbízható kiszolgálókkal és kiszolgálási elvekkel,XXVI. Operá-
ciókutatási Konferencia, Győr, Hungary (2004) (presented by J. Sztrik)

[HC3] Roszik J. Visszatéréses sorbanállási rendszerek a telekommunikációs hálózatok
modellezésében,Informatika a Felsőoktatásban 2005, Debrecen, Hungary (2005)
(presented by J. Roszik)

98

Retrial Queues and their Application in Performance Modelling of Communication
Networks

Értekezés a doktori (PhD) fokozat megszerzése érdekében a
matematika- és számítástudományok tudományágban.

Írta: Roszik János okleveles programtervező matematikus

Készült a Debreceni Egyetem Matematika- és Számítástudományok doktori iskola
Informatikai rendszerek és hálózatok programja

keretében

Témavezet̋o: Dr. Sztrik János

A doktori szigorlati bizottság:

elnök: Dr. .

tagok: Dr. .

Dr. .

A doktori szigorlat id̋opontja 200...

Az értekezés bírálói:

Dr. .

Dr. .

Dr. .

A bírálóbizottság :

elnök: Dr. .

tagok: Dr. .

Dr. .

Dr. .

Dr. .

Az értekezés védésének időpontja: 200...

