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Variational separable expansion scheme for two-body Coulomb-scattering problems

J. Darai,1 B. Gyarmati,2 B. Kónya,2 and Z. Papp2,3

1Institute of Experimental Physics, University of Debrecen, Bem te´r 18/a, H-4026 Debrecen, Hungary
2Institute of Nuclear Research of the Hungarian Academy of Sciences, P.O. Box 51, H-4001 Debrecen, Hungary

3Department of Physics and Astronomy, California State University, Long Beach, California 90840
~Received 26 January 2001; published 4 April 2001!

We present a separable expansion approximation method for Coulomb-like potentials which is based on
Schwinger variational principle and uses Coulomb-Sturmian functions as basis states. The new scheme pro-
vides faster convergence with respect to our formerly used nonvariational approach.
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Both variational approaches and separable expan
schemes are extensively used in solving few-body proble
Some time ago Adhikari and Tomio presented an unifi
treatment of separable expansion schemes based
Schwinger variational principles@1#. They proposed various
approximation schemes for the transition operatort satisfy-
ing the Lippmann-Schwinger equation

t5v1vg0t, ~1!

wherev is the potential andg0 is the free Green’s operato
It was found that using these schemes with appropr
choice of expansion functions a rapid convergence could
obtained. However, in this paper, not a single word was
voted to Coulomb-like potentials.

At about the same time in a series of papers@2# a sepa-
rable expansion scheme for Coulomb-like potentials w
proposed by one of us. The Coulomb interaction was kep
the Green’s operator and only the short-range part of
potential was subject to the separable expansion. This
proach uses Coulomb-Sturmian~CS! functions as basis, al
lowing an exact analytical calculation of the matrix eleme
of the Coulomb Green’s operator~see@2# and, recently,@3#!.
Thereby only the short-range part of the interaction is
proximated and the correct Coulomb asymptotic proper
of all quantities are guaranteed. The method has also b
applied in three-body Faddeev calculations for bound-s
and low-energy scattering problems with Coulomb inter
tions @4#.

In this paper we generalize one of the separable expan
schemes proposed by Adhikari and Tomio for two-bo
Coulomb-scattering problems.

The expansion schemes in Ref.@1# are based on a finite
rank-N approximation of the product of operators

AB21C'(
i , j

N

Auh i&Di j ^z j uC, ~2!

where

~D21! j i 5^z j uBuh i&. ~3!

Here the setsuh i& and uz j& are assumed to be complete se
of states in Hilbert space. IfN tends to infinity, Eq.~2! be-
comes an identity.
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From among the separable approximation schemes of
@1# let us start with the form oft following from Eq. ~1!:

t51~v212g0!211. ~4!

Applying Eq. ~2! we get

t'(
i , j

N

uh i&Di j ^h j u, ~5!

with

~D21! j i 5^h j uv21uh i&2^h j ug0uh i&. ~6!

The first term in Eq.~6! can again be approximated as b
fore:

^h j uv21uh i&5^h j u1v211uh i&

' (
i 8, j 8

N

^h j uz j 8&Cj 8 i 8^z i 8uh i&, ~7!

where

~C21! i 8 j 85^z i 8uvuz j 8&. ~8!

As shown in Sec. III. of@1# this expansion scheme can b
derived from the following variational form for thet:

^putup8&5^pujp8
(1)&1^jp

(2)up8&2^jp
(2)u~v212g0!ujp8

(1)&,
~9!

where

ujp8
(1)&5vup8&1vg0ujp8

(1)&, ~10!

^jp
(2)u5^puv1^jp

(2)ug0v. ~11!

Equation~9! is a modified version of the original Schwinge
variational form for the operatort and stationary with respec
to first-order variations inujp8

(1)& and ^jp
(2)u @5#.

The scheme of Eqs.~5!–~8! can easily be generalized fo
Coulomb-like potentials. A Coulomb-like potential in som
partial wavel can be written in the form

v l5vC1v l
s , ~12!
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where vC is the pure Coulomb potential andv l
s is short

ranged. The Lippmann-Schwinger equation for t
Coulomb-modified transition operatortsC reads

t l
sC5v l

s1v l
sgl

C~E!t l
sC , ~13!

wheregl
C(E)5(E2hl

02vC)21 is the Coulomb Green’s op
erator andhl

0 is the free Hamiltonian. The solution of thi
equation can be given in a form analogous to Eq.~4!,

t l
sC51@~v l

s!212gl
C~E!#211, ~14!

and the whole procedure of Eqs.~5!–~7! can be repeated
Only the free Green’s operator has to be replaced by
Coulomb one.

As basis states we choose CS functions because the
low an exact analytical calculation of matrix elements
gl

C(E). In coordinate representation they have the form

^r un;b&5F n!

~n12l 11!! G
1/2

~2br ! l 11 exp~2br !Ln
2l 11~2br !,

~15!
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e
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where n50,1,2, . . . , Ln
2l 11 are the Laguerre polynomial

andb is a scaling parameter. They have an analogous sim
form also in momentum representation:

^pun;b&5
2l 13/2l ! ~n1 l 11!An!

Ap~n12l 11!!

3
b~2bp! l 11

~p21b2!2l 12
Gn

l 11S p22b2

p21b2D , ~16!

whereG denotes the Gegenbauer polynomials. Introduc
the notation̂ r un;b̃&5^r un;b&/r we can express the orthogo
nality and completeness of the CS functions as

^n;bun8;b̃&5dnn8 ~17!

and

15 lim
N→`

(
n50

N

un;b̃&^n;bu5 lim
N→`

(
n50

`

un;b&^n;b̃u, ~18!
sion

3576
1795
3522
2637
4552
7128
7224
7345
7467
7487
7488
7497
7499
7499
7499
7499
7499
7499
7499
7499
7499
7499
7499
7499
7499
7499
7499
7499
TABLE I. Convergence of the Coulomb-modified nuclear phase shiftd0
sC(E) ~in radians! in the potential

of Eq. ~26! at different energies with respect to theN number of basis states used in the separable expan
schemes, Eqs.~24! and ~22!.

N E50.1 MeV E51 MeV E510 MeV E5100 MeV
Eq. ~24! Eq. ~22! Eq. ~24! Eq. ~22! Eq. ~24! Eq. ~22! Eq. ~24! Eq. ~22!

2 -0.100682 -0.151364 -0.624200 -0.797903 1.546662 1.453638 0.163942 0.25
3 -0.115923 -0.122391 -0.685037 -0.710521 1.506720 1.479076 0.365679 0.35
4 -0.120857 -0.120468 -0.706248 -0.705228 1.480305 1.477592 0.430684 0.40
5 -0.118844 -0.119136 -0.701335 -0.701377 1.473793 1.477278 0.415215 0.40
6 -0.118655 -0.119182 -0.699997 -0.701573 1.481240 1.479584 0.411720 0.40
7 -0.119150 -0.119165 -0.701393 -0.701565 1.483505 1.480309 0.408933 0.40
8 -0.119166 -0.119165 -0.701534 -0.701549 1.481915 1.480743 0.408615 0.40
9 -0.119147 -0.119164 -0.701390 -0.701523 1.481590 1.480921 0.409217 0.40
10 -0.119155 -0.119164 -0.701439 -0.701519 1.481230 1.480945 0.408458 0.40
11 -0.119157 -0.119162 -0.701462 -0.701508 1.481028 1.480958 0.407939 0.40
12 -0.119158 -0.119162 -0.701472 -0.701507 1.480981 1.480957 0.407830 0.40
13 -0.119160 -0.119162 -0.701490 -0.701505 1.480959 1.480957 0.407694 0.40
14 -0.119160 -0.119162 -0.701492 -0.701504 1.480958 1.480957 0.407585 0.40
15 -0.119161 -0.119162 -0.701498 -0.701504 1.480959 1.480957 0.407557 0.40
16 -0.119161 -0.119162 -0.701499 -0.701504 1.480959 1.480957 0.407535 0.40
17 -0.119161 -0.119162 -0.701501 -0.701504 1.480959 1.480957 0.407511 0.40
18 -0.119161 -0.119162 -0.701502 -0.701504 1.480959 1.480957 0.407506 0.40
19 -0.119161 -0.119162 -0.701502 -0.701504 1.480958 1.480957 0.407506 0.40
20 -0.119162 -0.119162 -0.701503 -0.701504 1.480957 1.480957 0.407500 0.40
21 -0.119162 -0.119162 -0.701503 -0.701504 1.480957 1.480957 0.407499 0.40
22 -0.119162 -0.119162 -0.701503 -0.701504 1.480957 1.480957 0.407501 0.40
23 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.40
24 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.40
25 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.40
26 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.40
27 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.40
28 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.40
29 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.40
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respectively.
As uh i& and uz j& we take CS bases with differentb pa-

rameters:

t l
sC' (

n,n850

N

un;b1̃&Dnn8^n8;b1̃u, ~19!

~D21!n8n5 (
m,m850

N

^n8;b1um;b2̃&Cmm8^m8;b2̃un;b1&

2^n8;b1ugl
Cun;b1&, ~20!

~C21!m8m5^m8;b2uv l
sum;b2&. ~21!

While the matrix elements of the potential and the overlap
CS functions should be calculated numerically either in c
figuration or momentum space the matrix elements of
Coulomb Green’s operator can be calculated analytic
@2,3#.

This scheme is essentially equivalent with a twofold se
rable expansion for potentialv l

s :

v l
s' (

n,n8,m,m850

N

un;b1̃&~^n;b1um8;b2̃&!21^m8;b2uv l
sum;b2&

3~^m;b2̃un8;b1&!21^n8;b1̃u. ~22!

It is easy to verify that Eqs.~19!–~21! are the solutions of the
Lippmann-Schwinger equation~13!, with this approximate
potential.

This scheme should be compared with the CS poten
separable expansion scheme of Refs.@2,3# which is not sup-
ported by variational principle. It is based on the approxim
tion of the unit operator

15 lim
N→`

(
n50

N

uñ&sn
N^nu, ~23!

with s factors possessing the properties limn→` sn
N50 and

limN→` sn
N51. Now, the approximation takes the form

v l
s51v l

s1' (
n,n850

N

uñ&sn
N^nuvslun8&sn8

N ^n8̃u. ~24!

For sn
N the form
05700
f
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N5

12exp$2@a~n2N21!/~N11!#2%

12exp~2a2!
~25!

was used witha;5. This value of the arbitrary parametera
yielded the fastest convergence.

To show the relative power of these separable expan
schemes we have calculated the Coulomb-modified nuc
phase shiftsd l

sC at l 50 and at various energies for ap2p
scattering. The short-range potential was taken in Malfl
Tjon form

v l
s5v0 exp~2b0r !/r 1v1 exp~2b1r !/r , ~26!

with v052626.885 MeV, b051.55 fm, v1
51438.720 MeV, andb153.11 fm. In the method of Eq
~24!, the CS basis parameterb53 fm21 was used, while in
the expansion, Eq.~22!, b153.8 fm21 and b252.5 fm21

were taken. It can be seen in Table I that in both approxim
tion schemes it is possible to choose theb parameters so tha
the expansions give almost equally fast convergence ove
whole spectrum and provide extremely accurate results.
reach six-digit accuracy the method of Eq.~22! needs 10–13
basis states, while the method of Eq.~24! needs 20–23
states. We have observed similar results over a wide rang
b parameters. It should be noted, however, that the metho
Eq. ~22! is more complicated numerically, so the numeric
effectivity of both methods are more or less the same.

In this Brief Report we have combined two separable
pansion methods. One based on Schwinger variational p
ciple has been proposed by Adhikari and Tomio in Ref.@1#.
The other approach proposed by Papp in Refs.@2# is not
variational and it was designed for Coulomb-like potentia
This new scheme is a variational separable expans
method and is applicable for Coulomb-like potentials. It co
verges considerably faster in terms of basis states than
nonvariational method of Eq.~24!. This property could be
useful in three-body calculations where the rank of the
pansion is of crucial importance. The method of Eq.~24! has
been generalized for solving Faddeev-type integral equat
of three-body Coulombic systems. Whether or not t
method of Eq.~22! can be extended in this direction is st
an open question.
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