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Variational separable expansion scheme for two-body Coulomb-scattering problems
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We present a separable expansion approximation method for Coulomb-like potentials which is based on
Schwinger variational principle and uses Coulomb-Sturmian functions as basis states. The new scheme pro-
vides faster convergence with respect to our formerly used nonvariational approach.
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Both variational approaches and separable expansion From among the separable approximation schemes of Ref.
schemes are extensively used in solving few-body problemg$1] let us start with the form of following from Eg. (1):
Some time ago Adhikari and Tomio presented an unified
treatment of separable expansion schemes based on t=1(v"'-go) 'L (4)
Schwinger variational principleisl]. They proposed various
approximation schemes for the transition operatsatisfy-
ing the Lippmann-Schwinger equation

Applying Eq. (2) we get

N
t=v+vg°, (1) t*zj | %) Dij {7, (5

wherev is the potential an@® is the free Green’s operator. with

It was found that using these schemes with appropriate . .

choice of expansion functions a rapid convergence could be (D9)ji :<771|U |77i>_<7/j|go| 7)- (6)

Sko)tt:ljn?: .CHoz\Ilz)?rYt?-rlyilig :)hcl)feﬁzgg_’ not a single word was deThe first term in Eq(6) can again be approximated as be-
At about the same time in a series of papeétka sepa- fore:

rable expansion scheme for Coulomb-like potentials was

proposed by one of us. The Coulomb interaction was kept in

the Green’s operator and only the short-range part of the N

potential was subject to the separable expansion. This ap- ~> (mil &) Cyrirl il i), (7

proach uses Coulomb-Sturmi@@9S functions as basis, al- i

lowing an exact analytical calculation of the matrix elements h

of the Coulomb Green’s operat@ee[2] and, recently|3]). where

Thereby only the short-range part of the interaction is ap- (C™ Y =(&0 vl ¢ @)

proximated and the correct Coulomb asymptotic properties t ! e

of all quantities are guaranteed. The method has also been as shown in Sec. IlI. of1] this expansion scheme can be

applied in three-body Faddeev calculations for bound-statgerived from the following variational form for thie
and low-energy scattering problems with Coulomb interac-

(milo ™ )= (m|1o 11| 5;)

tions[4] | (pltlp)=(plep )+ (P — (&5 1w = go)l €,
In this paper we generalize one of the separable expansion (9)
schemes proposed by Adhikari and Tomio for two-body
Coulomb-scattering problems. where
The expansion schemes in Rgf] are based on a finite
rankN approximation of the product of operators |§E,T))=v|p’>+vgolfé7)), (10
N ) =(plo+ (&7 gov. 11
AB&Cw% AlmD (&I, @ (& '[=(plv+(& 190 (12)

Equation(9) is a modified version of the original Schwinger
variational form for the operatdrand stationary with respect
to first-order variations ing!;’) and(£.7)| [5].

([)*1)].i =<§j||3| 7). ©) The scheme of Eq$5)—(8) can easily be generalized for

Coulomb-like potentials. A Coulomb-like potential in some

Here the set$z;) and|{;) are assumed to be complete setspartial wavel can be written in the form
of states in Hilbert space. N tends to infinity, Eq(2) be- c. s
comes an identity. vi=v-+u}, (12

where
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where v° is the pure Coulomb potential anef is short ~wheren=0,1,2 ..., Lﬁ'“ are the Laguerre polynomials
ranged. The Lippmann-Schwinger equation for theandbis a scaling parameter. They have an analogous simple
Coulomb-modified transition operatti® reads form also in momentum representation:
t|SC:U|S+ U|Sg|C(E)t|SC, (13) 2|+3/2|!(n+|+1)\/m
. 6 o1 , (pln;b)=
whereg;(E)=(E—h}—v®) ! is the Coulomb Green’s op- Vm(n+2l+1)!
erator andh is the free Hamiltonian. The solution of this I+1 2 12
equation can be given in a form analogous to &), % b(2bp) |+1( p —b (16)
(p2+b2)2|+2 n p2+b2 !

=1} *-g (E)] L, (14

where G denotes the Gegenbauer polynomials. Introducing
the notation(r|n;b)=(r|n;b)/r we can express the orthogo-
ﬂality and completeness of the CS functions as

and the whole procedure of Eq&)—(7) can be repeated.
Only the free Green's operator has to be replaced by th
Coulomb one.

As basis states we choose CS functions because they al-
low an exact analytical calculation of matrix elements of
g|C(E). In coordinate representation they have the form

(n;b|n"3B)= 8y 17)

and
1/2

I+1 _ 21+1 N o
(2br) " exp(=br)Ly (2br), 1= im Y [ABY(n:b|=lim S [n:b)(AB|, (18
(15) N—n=0 N—N=0

(rln:b)= (n+2l.+1)!

TABLE I. Convergence of the Coulomb-modified nuclear phase $§ftE) (in radians in the potential
of Eq. (26) at different energies with respect to tNenumber of basis states used in the separable expansion
schemes, Eqg24) and(22).

N E=0.1 MeV E=1 MeV E=10 MeV E=100 MeV
Eq.(24 Eq.(22 Eq.(24 Eq.(22 Eq.(249 Eq.(22 Eq.(24 Eq.(22

2 -0.100682 -0.151364 -0.624200 -0.797903 1.546662 1.453638 0.163942 0.253576
3 -0.115923 -0.122391 -0.685037 -0.710521 1.506720 1.479076 0.365679 0.351795
4 -0.120857 -0.120468 -0.706248 -0.705228 1.480305 1.477592 0.430684 0.403522
5 -0.118844 -0.119136 -0.701335 -0.701377 1.473793 1.477278 0.415215 0.402637
6 -0.118655 -0.119182 -0.699997 -0.701573 1.481240 1.479584 0.411720 0.404552
7 -0.119150 -0.119165 -0.701393 -0.701565 1.483505 1.480309 0.408933 0.407128
8 -0.119166 -0.119165 -0.701534 -0.701549 1.481915 1.480743 0.408615 0.407224
9 -0.119147 -0.119164 -0.701390 -0.701523 1.481590 1.480921 0.409217 0.407345
10 -0.119155 -0.119164 -0.701439 -0.701519 1.481230 1.480945 0.408458 0.407467
11 -0.119157 -0.119162 -0.701462 -0.701508 1.481028 1.480958 0.407939 0.407487
12 -0.119158 -0.119162 -0.701472 -0.701507 1.480981 1.480957 0.407830 0.407488
13 -0.119160 -0.119162 -0.701490 -0.701505 1.480959 1.480957 0.407694 0.407497
14 -0.119160 -0.119162 -0.701492 -0.701504 1.480958 1.480957 0.407585 0.407499
15 -0.119161 -0.119162 -0.701498 -0.701504 1.480959 1.480957 0.407557 0.407499
16 -0.119161 -0.119162 -0.701499 -0.701504 1.480959 1.480957 0.407535 0.407499
17 -0.119161 -0.119162 -0.701501 -0.701504 1.480959 1.480957 0.407511 0.407499
18 -0.119161 -0.119162 -0.701502 -0.701504 1.480959 1.480957 0.407506 0.407499
19 -0.119161 -0.119162 -0.701502 -0.701504 1.480958 1.480957 0.407506 0.407499
20 -0.119162 -0.119162 -0.701503 -0.701504 1.480957 1.480957 0.407500 0.407499
21 -0.119162 -0.119162 -0.701503 -0.701504 1.480957 1.480957 0.407499 0.407499
22 -0.119162 -0.119162 -0.701503 -0.701504 1.480957 1.480957 0.407501 0.407499
23 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.407499
24 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.407499
25 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.407499
26 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.407499
27 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.407499
28 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.407499
29 -0.119162 -0.119162 -0.701504 -0.701504 1.480957 1.480957 0.407499 0.407499
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respectively.
As |7 and|{;) we take CS bases with differebtpa-
rameters:

N
tlsC% E |ﬁ;\t)1>Dnn’<ﬁl\;t)—/l|i

n,n' =0

19

N

(Dil)n’n: 2

m,m’=0

_<”’§b1|9|c|”§b1>y

(n";b1|M;B5) Cpyy (M5 B3N by)
(20)

(Cil)m’m=<m’;b2|vls|m;b2>- (2D

While the matrix elements of the potential and the overlap ofith
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N
O-H

_l-exp{—[a(n—N-1)/(N+1)]%}
a 1—exp — a?)

(25

was used withw~5. This value of the arbitrary parameter
yielded the fastest convergence.

To show the relative power of these separable expansion
schemes we have calculated the Coulomb-modified nuclear
phase shiftsb\,sc at|=0 and at various energies forp-p
scattering. The short-range potential was taken in Malfliet-
Tjon form

vi=vo exp — Bol )/r +v exp(—Bar)/r, (26)

v,=—626.885 MeV, B,=155 fm, v,

CS functions should be calculated numerically either in con=1438.720 MeV, an@;=3.11 fm. In the method O_f Ea.
figuration or momentum space the matrix elements of thé24), the CS basis parameter=3 fm™* was used, while in
Coulomb Green's operator can be calculated analyticallghe expansion, Eq(22), b;=3.8 fm* andb,=2.5 fm !

[2,3].

were taken. It can be seen in Table | that in both approxima-

This scheme is essentially equivalent with a twofold sepation schemes it is possible to choose thearameters so that

rable expansion for potentiaf :

N

>

n,n’,mm’=0

X((m;byn";by)) Y

vi~ [n;D7)((n; by |M73B2)) ~ XM’ bolufm;b,)

n’;by. (22)

It is easy to verify that Eq$19)—(21) are the solutions of the
Lippmann-Schwinger equatiofl3), with this approximate
potential.

the expansions give almost equally fast convergence over the
whole spectrum and provide extremely accurate results. To
reach six-digit accuracy the method of E82) needs 10-13
basis states, while the method of E@4) needs 20-23
states. We have observed similar results over a wide range of
b parameters. It should be noted, however, that the method of
Eq. (22) is more complicated numerically, so the numerical
effectivity of both methods are more or less the same.

In this Brief Report we have combined two separable ex-
pansion methods. One based on Schwinger variational prin-

This scheme should be compared with the CS potentiatiple has been proposed by Adhikari and Tomio in R&f.

separable expansion scheme of REZs3] which is not sup-

The other approach proposed by Papp in RE#$.is not

ported by variational principle. It is based on the approxima-variational and it was designed for Coulomb-like potentials.

tion of the unit operator

1= lim > [myeoh(n],

N—}OOn=O

(23

with o factors possessing the properties,Jim a,’:‘=0 and
lIMy_ o aw= 1. Now, the approximation takes the form

N

o191~ 3 [ad(nlosin’yol (7]
n,n' =0

(29)

For o\ the form

This new scheme is a variational separable expansion
method and is applicable for Coulomb-like potentials. It con-
verges considerably faster in terms of basis states than the
nonvariational method of Eq24). This property could be
useful in three-body calculations where the rank of the ex-
pansion is of crucial importance. The method of Exfl) has
been generalized for solving Faddeev-type integral equations
of three-body Coulombic systems. Whether or not the
method of Eq.(22) can be extended in this direction is still
an open question.
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