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University Medical Schoole of Debrecen, Laboratory for Informatics
Nagyerdei krt. 98, H-4028 Debrecen, Hungary

and Michael Pohst ‡

Fachbereich 3 Mathematik, TU Berlin
Straße des 17.Juni 135, D–1000 Berlin 12, Germany

November 28, 2009

Abstract

In the present paper we describe a new algorithm to determine the
minimal index and all elements with minimal index in totally real bi-
quadratic fields with Galois group D8. The method is based on sieving
procedures and can be successfully applied in about 70 % of the cases. If
the method applicable, then it produces the results very fast, moreover
we can characterize the cases, when it is applicable. At the end of the
paper we include some tables, demonstrating our computations by using
this method.

We also consider the possibilities of applying the Baker–Davenport
reduction algorithm in our case. Further, we give an infinite family of
totally real quartic fields with Galois group D8 having minimal index 1.
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1 Introduction

Let K be a quartic number field with Galois group D8. All such fields
can be obtained in the form K = Q(

√
µ) with µ = (e + f

√
m)/2 (cf. [13]),

where e,m, f ∈ ZZ, m is square free, µ is totally positive and not a square
in the quadratic subfield L = Q(

√
m). Let g = h = 1 if m ≡ 1(mod 4)

and g = 0, h = 2 if m ≡ 2, 3(mod 4) so that setting ω = (g + h
√

m)/2 we
become an integral basis {1, ω} of L. We assume, that there exist a, b, c, d ∈ ZZ
such that taking ψ =

(
a + b

√
m + (c + d

√
m)
√

µ
)
/4 we obtain an integral basis

{1, ω, ψ, ωψ} of K. If L has class number one, then K has such an integral
basis, cf. [13]. We recall (cf. (2) of [4]) that the discriminant of K is

DK =
(
(ω − ω′)2(ψ1 − ψ3)(ψ2 − ψ4)

)2

where ω′ is the conjugate of ω ∈ L over Q and ψi(i = 1, . . . , 4) are the con-
jugates of ψ ∈ K over Q. Note that the conjugates of

√
µ ∈ K over Q are√

µ,
√

µ′,−√µ,−√µ′. with µ′ = (e− f
√

m)/2.

Denote by li(X) = li(X2, X3, X4) the conjugates of the linear form
l(X) = ωX2 + ψX3 + ωψX4 for 1 ≤ i, j ≤ 4. Then we obtain the six forms

l12(X) = (ω − ω′)X2+ (ψ1 − ψ2)X3 + (ωψ1 − ω′ψ2)X4

l23(X) = (ω′ − ω)X2+ (ψ2 − ψ3)X3 + (ω′ψ2 − ωψ3)X4

l34(X) = (ω − ω′)X2+ (ψ3 − ψ4)X3 + (ωψ3 − ω′ψ4)X4

l41(X) = (ω′ − ω)X2+ (ψ4 − ψ1)X3 + (ω′ψ4 − ωψ1)X4

l13(X) = (ψ1 − ψ3)(X3 + ωX4)
l24(X) = (ψ2 − ψ4)(X3 + ω′X4) .

The discriminant form

DK/Q(ωX2 + ψX3 + ωψX4) =
∏

1≤i,j≤4

lij(X)

can be rewritten as

DK/Q(ωX2 + ψX3 + ωψX4) = (I(X2, X3, X4))
2
DK

where I(X2, X3, X4) is a form of degree 6 with integer coefficients called the
index form corresponding to the basis {1, ω, ψ, ωψ} of K.

In a series of papers ([4],[5],[6]) we considered the problem of the resolution
of the index fom equation

I(x1, x2, x3) = J (x2, x3, x4 ∈ ZZ) (1)
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where J is a given non–zero integer. If J = ±1 the solutions give all power
integral bases of K. In case of biquadratic fields with Galois group D8 we
gave [4] a ”fast” algorithm to determine the ”small” solutions of (1). It means,
our algorithm determines the solutions with e.g. max(|x2|, |x3|, |x4|) < 1020

within some seconds. Methods for the complete resolution of (1) we could give
until now only in case of quartic fields with Galois group C4 ([5]) and V4 ([6]).
These methods produce all solutions of (1), however the computation time is
the matter of minutes rather then seconds.

The purpose of the present paper is to describe an algorithm, that in general
produces all solutions of (1) in quartic fields of Galois group D8, in a fast way.
The present method bases on certain sieving methods, and reduces the problem
of solving (1) to solving equations of type

Gn = x2 + D (2)

in n, x ∈ ZZ where Gn is a second order linear recurrence sequence and D is a
given integer. The presented method is applicable for determining all solution
of (1) only in about 70% of the cases. When it applies to (1), then it produces
the all solutions very fast (in some seconds), moreover we characterize those
cases when it can be applied successfully. The algorithm is suitable also for
determining the minimal index of K (that is to finding the J with minimal
absolute value for which (1) is solvable), and to determining all integers of K
with minimal index.

Taking the occassion, that in this paper we again consider quartic fields
with Galois group D8, our further purpose is to check some other possibilities
for the resolution of (1). A well known general method for the resolution of some
types of decomposable form equations, among others index form equations is
to reduce the equation to a unit equation in two variables and applying the
combination of Baker’s method and the Baker–Davenport reduction algorithm
to it. In Section 8 we show what kind of difficulties arise by an attempt to
applying this a method to our equation (1).

In Section 10 we present an infinite family of totally real quartic fields of
Galois group D8 with minimal index 1.

Finally, at the end of the paper we incude some numerical results, obtained
by the sieving algorithm described in Sections 2–7.
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2 From index form equations to linear
recurrences

In this Section we show, how can we reduce the index form equation (1)
to an equation of type (2), that is to searching for elements of type x2 + D in
second order linear recurrence sequences.

The proofs of the following two statements are essentially those of Proposi-
tion 1 and Theorem 1 of [4]. In the sequel α′ denotes the conjugate of α ∈ L
over Q.

Proposition 1 Let J ∈ ZZ \ {0}. x = (x1, x2, x3) ∈ ZZ3 is a solution of (1) if
and only if there exist j1, j2 ∈ ZZ such that j1j2 = J and

x2
3 + (w + w′)x3x4 + ww′x2

4 = j1 (3)

and
l12(x)l23(x)l34(x)l41(x) = j2(w − w′)2. (4)

Theorem 1 If the system of equations (3) and (4) has a solution x ∈ ZZ3, then
there exists a v ∈ ZZ such that

v2 = j2
1

e2 − f2m

4

(
c2 − d2m

4

)2

+ 4j2h
2m (5)

holds.

Now we prove:

Theorem 2 Assume that the system of equations (3) and (4) has a solution
x ∈ ZZ3. Let ε ≥ 1 be the fundamental unit of L and B be a maximal set of non-
associated elements of ZZL with norm j1. Then there exist β ∈ B; y, n, v ∈ ZZ; v
satisfying (5) such that

(e + f
√

m)(c + d
√

m)2β2ε2n + (e− f
√

m)(c− d
√

m)2β′2ε′2n

2
= my2 +8v. (6)

For m ≡ 2, 3 (mod 4) the coordinates x2, x3, x4 satisfy

x3 =
βεn + β′ε′n

2
, x4 =

βεn − β′ε′n

2
√

m
and x2 =

−2(bx3 + ax4) + y

8
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and for m ≡ 1 (mod 4)

x3 =
−w′βεn + wβ′ε′n√

m
, x4 =

βεn − β′ε′n√
m

and x2 =
−2bx3 − (a + b)x4 + y

4
.

Proof Assume that x ∈ ZZ3 is a solution of (1). Then there exist by
Proposition 1 and by Theorem 1 integers j1, j2, v ∈ ZZ for which (3), (4) and (5)
hold.

If m ≡ 2, 3 (mod 4) then (3) has the form

x2
3 −mx2

4 = j1.

Hence there exist β ∈ B, n ∈ ZZ with

x3 +
√

mx4 = βεn.

This implies that x3 and x4 are of the form given in the theorem.

Analogously, as we derived (20) of [4] we obtain

(mA3 + A4 + A34
√

m)β2ε2n + (mA3 + A4 −A34
√

m)β′2ε′2n

4m
=

= y2
1 + A0 − j1(mA3 −A4)

2m
. (7)

where (since we have g = 0, h = 2 in the actual case), the constants in (7) are

A3 = 4m(c2e + d2me + 2cdfm)
A4 = 4m2(c2e + d2me + 2cdfm) = mA3

A34 = 8m2(c2f + d2mf + 2cde)
A0 = 32mv.

Because of A4 = mA3, the third summand on the right side of (7) is 0, and
further

mA3 + A4 + A34

√
m = 8m2(e + f

√
m)(c + d

√
m)2.

Thus (7) can be written as

2m
[
(e + f

√
m)(c + d

√
m)2β2ε2n + (e− f

√
m)(c− d

√
m)2β′2ε′2n

]
= y2

1+32mv.

As in the actual case e and f are even and m is square-free, 2m divides y1, say
y1 = 2my. Dividing the last equation by 4m we get (6).

If m ≡ 1 (mod 4) then the proof is similar and is left to the reader. 2
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3 Some properties of recurrence sequences

Let P, Q ∈ ZZ such that P 2 + 4Q 6= 0 and denote by α, β the (distinct) zeros
of x2 − Px−Q. For n ∈ ZZ≥0 and in case |Q| = 1 even for n ∈ ZZ we set

Vn(P, Q) = αn + βn,

Un(P, Q) =
αn − βn

α− β
,

and

Wn(P,Q) =
{

Vn(P, Q) if P is odd
Vn(P,Q)/2 otherwise.

It is easy to see that for P even also Vn is even and for P odd the number Vn

is even if and only if n ≡ 0 (mod 3). The following properties are easily proved
for n, l ∈ ZZ≥0 (n, l ∈ ZZ, if |Q| = 1) :

2Un+l = UnVl + UlVn (8)
2Vn+l = VnVl + (α− β)2UnUl (9)

V2n = V 2
n − 2(−Q)n (10)

U2n = UnVn (11)
Vn | Vnm for all odd m. (12)

Lemma 1 Let |Q| = 1 and n = 2km ∈ ZZ with k ≥ 1. Additionally, if P is odd
let m 6≡ 0 (mod 3) and if Q = 1 let m be even. Then the congruences

Un+l ≡ −Ul (mod W2k−1m), (13)
Vn+l ≡ −Vl (mod W2k−1m) (14)

hold for all l ∈ ZZ.

Proof We only prove (13) because the proof of the other congruence is
similar. By (8),(11) and (10) we obtain

2Un+l = UnVl + UlVn ≡ UlVn (mod Vn/2)

≡ −2Ul(−Q)n/2 (mod Vn/2).

If Q = −1 or if Q = 1 and m is even we get

2Un+l ≡ −2Ul (mod Vn/2).

If P is even then Vn/2 is also even, otherwise (2, Vn/2) = 1 because 3/|m. Dividing
the last congruence by 2 we get (13). 2
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This lemma can be generalized to all second order linear recurrence se-
quences. If all terms of a sequence {Gn}∞n=0 satisfy the equation

Gn+2 = PGn+1 + QGn

then x2 − Px−Q is called the characteristic polynomial of {Gn}.

Theorem 3 Let {Gn} be a second order linear recurrence sequence of integers
with characteristic polynomial x2 − Px − Q, |Q| = 1. Let n, k and m be as in
Lemma 1. Then the congruence

Gn+l ≡ −Gl (mod W2k−1m) (15)

holds for every l ∈ ZZ.

Proof It is well known that

Gn =
aαn − bβn

α− β

for a = G1 − βG0, b = G1 − αG0 and n ∈ ZZ. Hence a short calculation yields

Gn = G1Un + QG0Un−1. (16)

Using (13) we get (15) immediately. 2

4 The first sieving procedure

In the sequel
( x
m

)
denotes the Jacobi symbol for x,m ∈ ZZ≥0,m > 0. For

an integer m fix a complete residue system mod m and let r(m) denote the
length of the minimal period of the sequence {Un mod m}. It follows from
(10) that if {Gn} denotes a recurrence sequence with the same characteristic
polynomial, as {Un} then the minimal period of {Gn mod m} divides r(m).
In this case Q is arbitrary.

The following lemma can be used very efficiently to prove that (2) is not
solvable or to localize its solutions in a few residue classes with respect to an
appropriate module. For a, b ∈ ZZ we denote the least common multiple of a
and b by [a, b].

Lemma 2 Let D ∈ ZZ, S = {p1, ..., pt} a set of prime numbers, R = [r(p1), ..., r(pt)]
and M = {m1, ...,ms} with 0 ≤ m1 < m2 < ... < ms < R. If there exists for
all m ∈M an i (1 ≤ i ≤ t) such that

(
Gm −D

pi

)
= −1 (17)

then all solution n, x ∈ ZZ of (2) satisfy n 6≡ m (mod R), for all m ∈M.
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Proof Assume that n, x ∈ ZZ is a solution of (1) with n (mod R) ∈M. We
have (

Gn −D
p

)
= 1 or 0 (18)

by (2) for all primes p.

On the other hand by assumption there exists a pi ∈ S satisfying (17).
Because of n ≡ m (mod R) and r(pi) divides R we have n ≡ m (mod r(pi)).
Thus Gn ≡ Gm (mod pi) and the equations (18) and (17) are contradictory. 2

The idea to use modular methods for the resolution of (2) goes back to
Wunderlich [15]. Its combination with an effective upper bound for the solutions
was applied by Pethő for determining all cubes [10] and fifth powers [11] in the
Fibonacci sequence. An ”intelligent“ implementation of those ideas is described
in Nemes [9].

5 The second sieving procedure.

The disadventage of the first sieving procedure is that if (2) has a solution
n, x ∈ ZZ then we are not able to localize it in its residue class mod R. Therefore
we need another method to prove that for all but one element of the mod R1

residue class containing n equation (2) is not solvable. Here R1 denotes another
module, which is (we hope) not much bigger as R.

Such a method was invented by Cohn [3] and applied also by Ribenboim [14].
In the next lemma we formulate the background of the algorithm. In the sequel
we assume that the recurrence sequences under consideration satisfy |Q| = 1.

Lemma 3 Let m,D ∈ ZZ, S = {p1, ..., pt} a set of prime numbers with pi >
3, 1 ≤ i ≤ t. Assume that there exist a, b1, ..., bt ∈ ZZ>0 such that there exist for
every α ≥ a integers β1, ..., βt ∈ ZZ such that 0 ≤ βi ≤ bi, i = 1, ..., t and

(
−Gm −D

W
2αpβ1

1 · · · pβt

t

)
= −1. (19)

Then (2) has at most one solution n, x ∈ ZZ with

n ≡ m (mod 2a+1pb1
1 · · · pbt

t ) (20)

and this is n = m.

Proof Let n, x ∈ ZZ be a solution of (2) satisfying (20) and such that n 6= m.
Then there exists a h ∈ ZZ such that n = m + 2a+1sh, where s = pb1

1 · · · pbt
t . Let

8



h = ±2ch1 with h1 odd. Then V2a+c+1s divides V2a+c+1sh1 because of (12) hence
W2a+c+1s divides W2a+c+1sh1 and Lemma 1 yields

Gn −D ≡ −Gm −D (mod W2a+cs).

Put α = a + c ≥ a. Then by assumption there exist β1, ..., βt ∈ ZZ with 0 ≤
βi ≤ bi, i = 1, ..., t satisfying (19). By (12) V

2αpβ1
1 · · · pβt

t
divides V2αpb1

1 · · · pbt
t

,

hence the last congruence implies

Gn −D ≡ −Gm −D (mod W
2αpβ1

1 · · · pβt

t
).

This and (19) make it impossible that n, x is a solution of (2). 2

How do we apply this lemma?

We can apply Jacobi’s reciprocity law almost automatically because for any
n ∈ ZZ not divisible by 3 we have

W4n(P, Q) ≡
{ −1 (mod 4) if P is odd

1 (mod 4) if P is even

The proof of this property is a simple application of (12). Choosing α ≥ 2 and
combining the last congruence with (19) we get

(
−Gm −D

W
2αpβ1

1 · · · pβt

t

)
= ±

(
W

2αpβ1
1 · · · pβt

t
Gm + D

)
,

where the sign on the right hand side depends only on the sign of Gm+D and on
the parity of P . To be able to apply Lemma 3 we have to analyze the sequence
Vn more carefully. This is done in the next Section.

6 Analysis of the second sieving procedure

For fixed t,M ∈ ZZ>0 define

v(t,M, n) ≡ Vt2n (mod M)

for every n ∈ ZZ, where we take the smallest non-negative residues (mod M).
It is obvious that the sequence {v(t,M, n)}∞n=0 is periodic. Let e(t,M) and
r(t,M) be the length of the minimal preperiod and of the minimal period of
{v(t,M, n)}∞n=0, respectively, normalized such that e(t,M) ≥ 1.

Lemma 4 Let t be odd and M > 1 then

r(t,M)|r(1,M) and e(t,M) ≤ e(1,M). (21)
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Proof We prove (21) by induction on t. It is obviously true for t = 1.
Assume that it is true for any u with 1 ≤ u < t. Put e = e(1,M) and r =
r(1,M). Then

v(u,M, e) ≡ v(u,M, r + e) (mod M) (22)

immediately follows by the induction hypothesis for all odd value of u, (1 ≤ u <
t). Further, to prove (21) for t, it is sufficient to prove (22) for u = t. For u = 1
equation (22) means

α2e

+ β2e ≡ α2e+r

+ β2e+r

(mod M). (23)

because of the definition of Vn. Taking the t-th power of (23), using the binomial
theorem and the identity

(
t
j

)
=

(
t

t−j

)
we get

(t−1)/2∑
j=0

(
t

j

) (
αj2e

β(t−j)2e

+ α(u−j)2e

βj2e
)

≡
(t−1)/2∑

j=0

(
t

j

) (
αj2e+r

β(t−j)2e+r

+ α(u−j)2e+r

βj2e+r
)

(mod M) (24)

We have j < t− j, αβ = −Q = ±1 and e ≥ 1, hence

αj2e

β(t−j)2e

= β(t−2j)2e

α(t−j)2e

βj2e

= α(t−2j)2e

.

Analogous identities hold if we replace e by e + r. Thus (24) implies

(t−1)/2∑

j=0

(
t

j

) (
V(t−2j)2e − V(t−2j)2e+r

) ≡ 0 (mod M).

As t− 2j < t for j > 0 and t− 2j is always odd, all the summands with j > 0
on the left hand side of the last congruence are 0 by the induction hypothesis.
The remaining congruence is exactly (22) with u = t, and the lemma is proved.
2

We can now characterize those values of n,D for which the result of Lemma 4
can be successfully applied. We remark that if m and D are fixed then −Gm−D
is a fixed integer, say M .

Theorem 4 Let |M | > 1 be an odd integer. If there exist integers m1,m2 such
that e(1,M) < m1,m2 ≤ e(1,M) + r(1,M) and

(
W2m1

M

)(
W2m2

M

)
= −1,

10



then for all k, ε such that e(1, M) < k ≤ e(1,M) + r(1,M) and ε ∈ {1,−1}
there exists a prime p > 3 satisfying

(
W2kp

M

)
= ε .

Proof Set e = e(1,M) and r = r(1,M) for abbrevation. Denote by R =
R(M) the minimal length of the period of the sequence {Vn mod M}∞n=−∞. We
remark that this sequence is purely periodic for all M because of |Q| = 1. Let
R = 2su, with an odd u. Starting, if necessary, with a longer preperiod than
the minimal one, we may assume without loss of generality that

(
W2m1

M

)
= ε,

e = m1 ≥ s and m1 ≤ k. By Dirichlet’s theorem on primes in arithmeti-
cal progressions there exists a prime p > 3 which satisfies the congruence
p2k ≡ 2m1 (mod R). This implies V2kp ≡ V2m1 (mod M) and as M is odd we
get W2kp ≡ W2m1 (mod M) from which the assertion of the theorem follows. 2

Combining the results of Theorem 2 and Lemma 4 we immediately get

Corollary 1 Let {Gn} be a recurrence sequence with |Q| = 1, D ∈ ZZ and take
M = Gm + D. Let {Vn} be the recurrence sequence defined by the zeros of the
characteristic polynomial of {Gn}. Assume that there exist integers m1, m2 such
that e(1,M) < m1,m2 ≤ e(1,M) + r(1,M) and

(
W2m1

M

)(
W2m2

M

)
= −1,

then there exist an integer a ≤ e(1,M) + r(1,M) + 1 and primes p1, . . . , pt > 3
such that (2) has at most one solution n, x ∈ ZZ with n ≡ m (mod 2ap1 · · · pt)
and this is n = m.

11



7 The algorithm

In this Section we describe a practical algorithm for the resolution of (1).

The first step is to apply the assertions of Section 1 in order to reduce (1)
to (2). In solving (2) we apply the two sieving procedures, called Sieve 1 and
Sieve 2 in the following.

Sieve 1 means the application of Lemma 2 of Section 4.

Sieve 2 is the following: Let m ∈ ZZ be an index, which survived Sieve 1,
i.e m ∈ [0, R− 1]\M. Let M be the square free part of Gm + D.

Compute the sequence
{(

v(1,M, n)
M

)}
. If it is ultimately constant then by

Theorem 4. we can not rule out the index m. Try in this case an other index.

If the test was successful, compute the sequences
{(

v(p,M, n)
M

)}r+e

n=0

for

p ∈ {1, 5, 7, ..} so until you find for any n ≥ e a p such that
(

v(p,M, n)
M

)
= ±1.

The right side one gets from Lemma 3. For given P, Q and small M one can
naturally precompute the suitable sieving moduls, that is the product of the
convenient primes.

The proposed method consists of three steps:

Step 1. Choose a modul R0, and find all solutions of (2) in n modulo
R0. For this purpose use Sieve 1 so that the absolute smallest representatives
of the surviving residue classes correspond to the actual solutions. Denote by
ni, i = 1, ..., t these representatives.

Step 2. Let 1 ≤ i ≤ t. By using Sieve 2 find, if possible, a number Ri =
2kipi1...pisi with the property that if n is a solution of (2) with n ≡ ni (mod Ri)
then n = ni.

Step 3. Prove for each i(1 ≤ i ≤ t) that if n is a solution of (2) then there
is a j(1 ≤ j ≤ t) with n ≡ nj (mod Ri). Here use again Sieve 1.

In Section 9 we are given an elaborated example for the application of the
algorithm. Moreover we present the results of a computation, where we applied
the algorithm for all totally real quartic fields with discriminant at most 106.
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8 An attempt for applying the
Baker–Davenport reduction method

In this section we demonstrate why is it very important to have such fast
methods, like the one described above, that computes all solutions but is not
always usable, or the one described in [4] that computes the ”small” solutions
(that is e.g. the solutions with absolute value < 1020) in any case.

In the following we report on the difficulties occurring by an attempt of ap-
plying Baker’s method combined with an analogue of the reduction algorithm
of Baker and Davenport [1] for the complete resolution of index form equations
in quartic fields with Galois group D8. The reduction of the equation to a unit
equation in two variables and the application of Baker’s method and a numer-
ical reduction algorithm due originally to Baker and Davenport is until today
the only general method for the complete resolution of some types of decom-
posable form equations. Unfortunately (as it is shown by our experiments) the
complexity of the computations involved grows about exponentially with the
unit rank of the splitting field of the equation. That is the reason why a similar
method was usable in the case of index form equations in cyclic quartic fields
[5], and why it can not be performed in our case within a reasonable time. For
the purposes of practical applications it is more worthy e.g. to build up an
extensive table of ”small” solutions then to waste some weeks of CPU time by
proving for a single example that there are really no ”large” solutions, only the
”small” ones that we have known after the first 10 seconds.

As example we take the totally real quartic field with Galois group D8 and
smallest discriminant, that is the field K = Q(

√
7 + 2

√
5) with discriminant

DK = 725. We set µ = 7 + 2
√

5, µ′ = 7 − 2
√

5. An integral basis of the
field is {1, ω, ψ, ωψ} with ω = (1 +

√
5)/2, ψ = (1 +

√
µ)/2. Observe that in

this case the coefficients of the linear forms lij(X) are divisible by the algebraic
integers γij = ψi − ψj . These satisfy |γ12γ23γ34γ41γ13γ24| =

√
DK and taking

l∗ij(X) = lij(X)/γij we can write the index form equation corresponding to the
above basis of the field in the form

∏

1≤i<j≤4

l∗ij(x2, x3, x4) = ±1 (x2, x3, x4 ∈ ZZ). (25)

In the following let x2, x3, x4 ∈ ZZ be a solution of (25). In order to obtain
a unit equation we use the identity

l12(x2, x3, x4) + l23(x2, x3, x4)− l13(x2, x3, x4) = 0

that is

γ12l
∗
12(x2, x3, x4) + γ23l

∗
23(x2, x3, x4)− γ13l

∗
13(x2, x3, x4) = 0 . (26)

13



By (25) the factors l∗ij(x2, x3, x4) (having algebraic integer coefficients) of
the index form equation must be units, however not in K but in the normal
closure of K that we shall denote in the following by F .

The field F has discriminant DF = 442050625 = 7252 · 292 and is generated
by a root ρ of the polynomial

f(x) = x8 − 6x7 + 2x6 + 32x5 − 33x4 − 38x3 + 55x2 − 13x− 1 .

An LLL reduced integral basis {θ1 = 1, θ2, . . . , θ8} in F can be obtained in the
form

θi =
1

ai9




8∑

j=1

aijρ
j−1


 (i = 1, . . . , 8)

where aij are the entries of the 8 · 9 matrix



1 0 0 0 0 0 0 0 1
−12 −11 6 70 −39 −18 14 −2 7
−9 109 22 −203 46 53 −21 2 21
24 −55 −40 −7 71 1 −21 4 21
−4 316 −509 28 225 −62 −14 4 21

5 235 −230 −392 354 67 −98 16 21
−32 15 114 −147 43 43 −28 4 21

1 21 9 −42 16 10 −7 1 3




Considering the conjugates of the elements in the integral basis one observes
that

θ2 =
−1 +

√
5

2
, θ4 =

1 +
√

µ

2
, θ5 =

1−√µ′

2
that is the coefficients occurring in equation (26) are easily expressed in terms
of the basis of F :

γ12 = ψ1 − ψ2 =
√

µ−√µ′

2
= −θ1 + θ4 + θ5

γ23 = ψ2 − ψ3 =
√

µ +
√

µ′

2
= θ4 − θ5

γ13 =
√

µ = −θ1 + 2θ4 .

The field F is totally real with unit rank 7. Its fundamental units are

ηi =
8∑

j=1

bijθj (i = 1, . . . , 7)

where bij are the entries of the 7 · 8 matrix

14






−1 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 −1 0 0
1 0 0 0 1 0 −1 0
0 1 0 0 −1 0 0 0
1 1 0 0 0 1 0 0
2 0 −1 −2 1 0 0 −1




We remark, that the integral basis and the fundamental units of F were com-
puted with the KANT system [16].

We can now return to our basic equation (26). Rewrite it in the form

γ12

γ13

l∗12(x2, x3, x4)
l∗13(x2, x3, x4)

+
γ23

γ13

l∗23(x2, x3, x4)
l∗13(x2, x3, x4)

= 1 . (27)

As we have already seen, all the l∗ij(x2, x3, x4) are units in F . Hence it holds
also for their quotiens, that is we can write

l∗12(x2, x3, x4)
l∗13(x2, x3, x4)

= ±
7∏

i=1

ηyi

i = ε1

and
l∗23(x2, x3, x4)
l∗13(x2, x3, x4)

= ±
7∏

i=1

ηzi
i = ε2

where yi, zi ∈ ZZ (i = 1, . . . , 7) and put Y = max1≤i≤7 |yi|, Z = max1≤i≤7 |zi| .
In the following we have to consider two cases according as Y ≥ Z or Z ≥ Y .
We assume here Y ≥ Z, the other case should be considered similarly. Further,
we set

α =
γ12

γ13
, β =

γ23

γ13
.

Then equation (27) obtains the form

αε1 + βε2 = 1 (28)

which is a unit equation over F .

At this point it is important to remark, that l∗13(x2, x3, x4) is a unit in the
quadratic subfield Q(

√
5) and hence if we determine ε1 and ε2, then using the

properties of the field and equation (25) it is easy the determine the values of
all the forms l∗ij(x2, x3, x4) and from those the values of x2, x3, x4.
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Denote by J the conjugate of ε2 for which |ε(J)
2 | is maximal. From the system

of equations

log |ε(j)2 | =
7∑

i=1

zi log |η(j)
i | (j = 1, . . . , 8)

we conclude, that
Z ≤ c1| log |ε(J)

2 ||
where c1 is the row–norm of the inverse matrix of a matrix obtained from the
matrix with log |η(i)

j | in the ith row and jth column, by omitting a row. (For
our example we obtained c1 = 2.098.) Taking into consideration, that ε2 is a
unit, from the avobe estimate we conclude, that there must be an s for which

log |ε(s)2 | ≤ −Z

7c1
. (29)

We have to consider in our computations all the eight possibilities for s. If Z is
not very small (the ”small” values can be tested directly) then from (28), (29)
and Y ≥ Z we obtain

Λ = | log |α(s)|+ y1 log |η(s)
1 |+ . . . + y7 log |η(s)

7 || ≤

≤ 2|α(s)ε
(s)
1 − 1| = 2|β(s)ε

(s)
2 | ≤ c2 exp

(−Z

7c1

)
≤ c2 exp

(−Y

7c1

)
(31)

where c2 = 2|β(s)|. (The values of c2 in cases s = 1, . . . , 8 were between 0.53
and 3.13). On the other hand by applying the estimate of [2] we obtain a lower
bound

exp(−c3(log Y + c4)) < Λ .

Comparing it with (31) we get an upper bound for YU for Y , which lays between
1075 and 1076 in the eight cases.

Divide inequality (31) by | log |η(s)
7 || to get

|y1ξ1 + . . . + y6ξ6 + y7 + ξ8| ≤ c2c
−X
5 (32)

with

ξi =
log |η(s)

i |
log |η(s)

7 |
(i = 1, . . . , 6), ξ8 =

log |α(s)|
log |η(s)

7 |
and c5 = exp(1/7c1). By using the following generalization of the Baker–
Davenport method it is possible to reduce the bound YU obtained for Y .

Lemma 5 (Pethő and Schulenberg [12]) Let Q1, Q2, Q3 be positive real numbers
with Q2 ≥ 1, Q1 > 2r−1((r−1)Q2+1), and let d1, d2 be given positive constants..
If q is an integer satisfying

1 ≤ q ≤ Q1Q3
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||qξi|| ≤ Q2(Q1Q3)−1/(r−1) (i = 1, . . . , r − 1)

and
||qξr+1|| ≥ ((r − 1)Q2 + 1)Q−1/(r−1)

1

then there is no solution y1, . . . , yr ∈ ZZ of the inequality

|y1ξ1 + . . . + yr−1ξr−1 + yr + ξr+1| ≤ d1d
−Y
2

with
log(Qr/(r−1)

1 Q3d1)
log d2

< Y ≤ Q
1/(r−1)
3

where ||.|| denotes the distance from the nearest integer and Y = max |yi|.

We would like to find out, how far were it possible to reduce YU by using the
lemma. For applying the Lemma we have to take r = 7, d1 = c2, d2 = c5. The
constant Q3 schould be chosen such that Q

1/(r−1)
3 = YU .The best reduction is

obtained if we choose Q1 and Q2 as small as possible. The Lemma allows to
take Q2 = 1 and Q1 = 2r−1((r−1)Q2 +1). If we could compute such a q and we
could repeat again and again the reduction step until the new bound does not
decrease any more, then we could reduce YU to YR which is the maximum of the
bounds obtained in the eight cases (the maximum of 704, 729, 666, 672, 690,
669, 699 and 756) that is YR = 756. These bounds (that can not be diminished
any further by this method) we could reach in five reduction steps. (A typical
sequence is 1075, 15375, 998, 757, 732, 729.) It would yield, that with the known
methods we had to test al least

27 · 7567 = 18066022141228700663808 ≈ 1.8 · 1022

possible vectors (y2, ..., y7). The amount of these possibilities is unfortunately
too much to test within a reasonable CPU time.
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9 Application of the sieve method

For comparison we apply the algorithm of Section 7. to the same problem
discussed in the last section. We adopt the notations from Sections 1–5.
The input data we need are: DK = 725,m = 5, a = 2, b = 0, c = 2, d = 0, g =
h = J = 1, e = 14 and f = 4. Equation (5) has four solutions: (j1, j2, v) =
(1,−1,±3) and (1, 1,±7). Thus we have to solve four equations of type (6) in
integers n, y1, which are

Gn = 5(7 + 2
√

5)

(
3 +

√
5

2

)n

+ 5(7− 2
√

5)

(
3−√5

2

)n

= y2
1 + 10v. (33)

The binary recursive sequence {Gn} is defined by the initial terms G0 = 70,
G1 = 55 and by the difference equation Gn+2 = 3Gn+1−Gn for n ≥ 0 or n < 0.
Considering (1) modulo the primes belonging to the set S = {3, 7, 11, 13, 29, 31,
41, 61, 71, 83, 167, 211, 241, 281, 421, 911, 1427} we realize by means of Lemma 2
that the solutions of (33) modulo 840 are as listed in table 1.

v m y1 y = 2y1/5
3 1 5 2
-3 4 25 10
-3 0 10 4
7 2 5 2
7 0 0 0
-7 -1 15 6

Table 1.

We apply now the second sieving procedure six times. We have P = 3, Q = −1

and Wk = Vk =

(
3 +

√
5

2

)k

+

(
3−√5

2

)k

. By the remark at the end of Section

5 we have Vk ≡ −1 (mod 4), if k is not divisible by 3.
Let m = 1, v = 3, D = 30, then −Gm −D = −85 = −5 · 17. Let k be an integer
which is not divisible by 3. Then we have

(−Gm −D

Vk

)
=

(−5 · 17
Vk

)
= −

(
Vk

5

) (
Vk

17

)
=

(
Vk

17

)
,

as
(

Vk

5

)
= −1 for all k. In table 2 we listed the values of

(
V2k

17

)
and

(
V5·2k

17

)

for k = 0, . . . , 4.
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k 0 1 2 3 4(
V2k

17

)
-1 -1 1 -1 -1

(
V5·2k

17

)
1 -1 -1 1 -1

Table 2.

The period length of both sequences is 3 and by means of Lemma 3 we get that
if n ≡ 1 (mod 20) then n = 1, hence there exist only one solution which is
congruent 1 modulo 840.
In five of the six cases similar computation leads to the same result. The new
period lengths are (v,m, NP ) = (−3, 4, 1540), (7, 2, 56), (7, 0, 16), (−7,−1, 20).
Unfortunatelly our method does not work in the last case, namely when m =
0, v = −3 and D = −30. We have now −Gm − D = −40 = −23 · 5 but as(−23 · 5

Vk

)
=

(
2
Vk

)
= 1 holds for all k ≥ 0, which are not divisible by 3, we

can not apply Lemma 3.
The above method was implemented in the computer algebra package MAPLE.
We tested the method for all totally real number fields of Galois group D8 with
discriminants less then 106, and such that their quadratic subfield has class
number one. We computed in each case the minimal index and if the method
worked all elements with minimal index. In the following table we displayed a
statistic of our computation. The numbers in the columns have the following
meaning:

DIK Range of discriminants.

2 Number of fields, i.e. the number of index form equations, in the above range.

3 Number of the resulting reccurrence equations of form (1).

4 Number of recurrence equations without solutions, i.e. for which sieve 1.
terminated successfull.

5 Number of equivalence classes including solutions of the recurrence equations,
detected by sieve 1.

6 Number of solutions of recurrence equations isolated by sieve 2.

7 Number of equivalence classes for which sieve 2. was not able to isolate the
solution.
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DIK 2 3 4 5 6 7

1–100000 379 1036 406 839 574 265
100001–200000 428 1223 590 792 568 224
200001–300000 449 1400 691 856 640 216
300001–400000 442 1404 709 825 610 215
400001–500000 451 1340 705 742 569 173
500001–600000 449 1490 806 799 617 182
600001–700000 431 1268 650 722 545 177
700001–800000 450 1436 767 778 615 163
800001–900000 447 1366 701 770 611 159
900001–1000000 453 1304 670 727 570 157

1–1000000 4379 13267 6595 7850 5919 1931

Table 3.
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10 An infinite family of fields with minimal
index 1

In this section we describe an infinite family of totally real biquadratic fields
with Galois group D8 and minimal index 1.

Theorem 5 There are infinitely many positive integers k, such that K =
√

2k +
√

2
is a totally real biquadratic field with minimal index 1.

Proof Let k ≥ 1 be integer, and set µ = 2k+
√

2. The norm of µ (in Q(
√

2)
) is

N(µ) = 2(2k2 − 1) .

Obviously, this norm is not divisible by 22. It follows from the assertions of
Nagel [8] that there are infinitely many positive integers k, such that 2k2 − 1
is not divisible by the square of any prime number. For all these values of k
the field Q(

√
µ) is biquadratic, because µ is square–free. We show, that for all

these values of k the field K = Q(
√

µ) has minimal index 1.

An integral basis of the field is {1,
√

2,
√

µ,
√

2
√

µ} (cf. [13]). Obviously,√
2 = (

√
µ)2 − 2k, hence for α =

√
µ the system {1, α, α2, α3} is a power

integral basis of K. 2

We remark, that the discriminant of the field K involved in Theorem 5 is
DK = 210(4k2 − 2). By Proposition 1 in the integral basis {1,

√
2,
√

µ,
√

2
√

µ}
the index form equation I(x2, x3, x4) = ±1 is equivalent with the system of
equations

x2
3 − 2x2

4 = ±1
8x4

2 − 8kx2
2x

2
3 − 16x2

2x3x4 − 16kx2
2x

2
4 + x4

3 + 8kx3
3x4 + 4x2

3x
2
4+

16k2x2
3x

2
4 + 16kx3x

3
4 + 4x4

4 = ±1

a solution of which is (x2, x3, x4) = (0, 1, 0), which yields the same result.

21



References

[1] A.Baker and H.Davenport, The equations 3x2 − 2 = y2 and 8x2 − 7 = z2,
Quart. J. Math. Oxford, 20 (1969), 129-137.

[2] J.Blass, A.M.W.Glass, D.K.Manski, D.B.Meronk and R.P.Steiner, Con-
stants for lower bounds for linear forms in logarithms of algebraic numbers
II., The homogeneous rational case, Acta Arith., 55, (1990), 15–22.

[3] J.H.E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39
(1964) 537–540.
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