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Abstract
In recent years, ensemble weather forecasting has become a routine at all major
weather prediction centers. These forecasts are obtained from multiple runs
of numerical weather prediction models with different initial conditions or
model parametrizations. However, ensemble forecasts can often be underdis-
persive and also biased, so some kind of postprocessing is needed to account
for these deficiencies. One of the most popular state of the art statistical post-
processing techniques is the ensemble model output statistics (EMOS), which
provides a full predictive distribution of the studied weather quantity. We pro-
pose a novel EMOS model for calibrating wind speed ensemble forecasts, where
the predictive distribution is a generalized extreme value (GEV) distribution
left truncated at zero (TGEV). The truncation corrects the disadvantage of the
GEV distribution-based EMOS models of occasionally predicting negative wind
speed values, without affecting its favorable properties. The new model is tested
on four datasets of wind speed ensemble forecasts provided by three different
ensemble prediction systems, covering various geographical domains and time
periods. The forecast skill of the TGEV EMOS model is compared with the pre-
dictive performance of the truncated normal, log-normal and GEV methods and
the raw and climatological forecasts as well. The results verify the advantageous
properties of the novel TGEV EMOS approach.
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1 INTRODUCTION

Wind speed has become one of the most important weather quantities in our rapidly changing economy, hence precise
and reliable wind forecasting is of utmost importance in renewable energy production or in air pollution modeling (see
e.g., Tagle et al., 2020, the corresponding discussion and references therein). At the base of forecasting such—and many
other—weather variables lie the calculations of numerical weather prediction (NWP) models, which rely on the physical
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and chemical models of the atmosphere and the oceans. Accounting for the uncertainties of the process and the some-
times unreliable initial conditions it is customary to run multiple instances of the NWP models with its initial conditions
perturbed. The resulting system is called an ensemble of forecasts (Leith, 1974), and it provides the possibility of prob-
abilistic forecasting (Gneiting & Raftery, 2005), where together with the forecasts the corresponding information about
forecast uncertainty is also estimated. However, as has been observed with several operational ensemble prediction sys-
tems (EPSs), ensemble forecasts often suffer from systematic errors such as bias or lack of calibration, which problems
need to be accounted for (see e.g., Buizza et al., 2005). A popular approach is to use some form of statistical postprocessing
(Buizza, 2018).

In the last decades various statistical calibration methods have been developed for a wide range of weather quan-
tities including parametric models providing full predictive distributions (Gneiting et al., 2005; Raftery et al., 2005),
non-parametric approaches (see e.g., Bremnes, 2019; Friederichs & Hense, 2007) or most recently, machine learning tech-
niques (Rasp & Lerch, 2018; Taillardat & Mestre, 2020). This paper focuses on parametric postprocessing where one of
the most widely used methods is the ensemble model output statistics (EMOS) suggested by Gneiting et al. (2005). It
fits a single probability distribution to the ensemble forecast with its parameters depending on the ensemble members.
Different weather quantities require different probability laws as predictive distributions, moreover, the link functions
connecting the parameters of these distributions to the ensemble members might also differ. For example, a normal dis-
tribution provides a reasonable model for temperature and pressure (Gneiting et al., 2005), whereas for the nonnegative
and skew-distributed wind speed, according to Thorarinsdottir and Gneiting (2010), a truncated normal (TN) distribu-
tion makes a good choice. In order to provide a better fit to high wind speed values, Lerch and Thorarinsdottir (2013) and
Baran and Lerch (2015) suggest models based on generalized extreme value (GEV) and log-normal (LN) distributions,
respectively, and a regime-switching approach combining the advantages of these heavy tailed laws with those of the light
tailed TN model. More flexibility can be obtained by mixture EMOS models combining light and heavy tailed distribu-
tions, where the parameters and weights of a mixture of two forecast laws are estimated jointly (Baran & Lerch, 2016).
However, a general disadvantage of these latter approaches is the increased computation cost. A more general approach
to improving forecast skill is based on a two-step combination of predictive distributions from individual postprocessing
models. In the first step, individual EMOS models based on single parametric distributions are estimated, whereas in the
second step the forecast distributions are combined utilizing state of the art forecast combination techniques (see e.g.,
Baran & Lerch, 2018; Bassetti et al., 2018; Gneiting & Ranjan, 2013).

In the present work we concentrate on EMOS models based on a single parametric distribution. The case studies of
Lerch and Thorarinsdottir (2013) and Baran and Lerch (2015) revealed the superiority of the GEV EMOS model compared
with the competing TN and LN EMOS approaches, especially for high wind speeds. However, the GEV model has the
disadvantage of assigning positive probability to negative wind speed values. We propose a novel EMOS approach to
calibrating wind speed ensemble forecasts, where the predictive distribution is a left truncated GEV distribution with
cut-off at 0 (TGEV). On the basis of four case studies using wind speed forecasts of three different EPSs, the forecast
skill of the TGEV EMOS model is compared with the predictive performance of the TN, LN and GEV EMOS models, the
climatological forecasts and the raw ensemble as well.

The paper is organized as follows. Section 2 contains the detailed description of the four wind speed datasets.
In Section 3 the applied EMOS models, including the novel TGEV EMOS approach, are reviewed, and the meth-
ods of parameter estimation and model verification are given. The results of the four case studies are provided in
Section 4, followed by a concluding Section 5. Finally, details of calculations and some additional results are given in
Appendix.

2 DATA

In order to provide a fair comparison with the existing distribution-based EMOS models, first we consider the same
three datasets of ensemble forecasts and corresponding observations as in Baran and Lerch (2015) (and later studied in
Baran & Lerch, 2016, 2018), which differ in the observed wind quantity, in the forecast lead time and in the stochastic
properties of the ensemble. Each data set contains ensemble predictions for a single forecast horizon ranging from 24 to
48 h, hence we call them short-range forecasts. For these data we limit the description to a short summary and refer to
Baran and Lerch (2015) and the references therein for more details. Further, we compare the predictive performance of
the different EMOS models on a much larger database, providing ensemble forecasts with different lead times ranging
up to 360 h.
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2.1 Short-range ensemble forecasts

2.1.1 UWME forecasts

The eight members of the University of Washington mesoscale ensemble (UWME) are generated by separate runs of the
fifth generation Pennsylvania State University-National Center for Atmospheric Research mesoscale model (PSU-NCAR
MM5) with different initial conditions (Grell et al., 1995). The EPS domain covers the Pacific Northwest region of North
America with a 12-km grid and the dataset at hand contains 48-h ahead forecasts and the corresponding validating obser-
vations of the 10-m maximal wind speed (maximum of the hourly instantaneous wind speeds over the previous 12 h, given
in m/s, see e.g., Sloughter et al., 2010) for 152 stations in the Automated Surface Observing Network (National Weather
Service, 1998) in the U.S. states of Washington, Oregon, Idaho, California, and Nevada for calendar years 2007–2008. The
forecasts are initialized at 0000 UTC and the generation of the ensemble ensures that its members are clearly distinguish-
able. Our analysis is focused on calendar year 2008 with additional data from December 2007 used for model training.
Removing days and locations with missing data and stations where data are only available on a very few days results in
101 stations with a total of 27,481 individual forecast cases.

2.1.2 ALADIN-HUNEPS ensemble

The Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System
(ALADIN-HUNEPS) of the Hungarian Meteorological Service (HMS) covers a large part of continental Europe with a hor-
izontal resolution of 8 km. The forecasts are obtained by dynamical downscaling of the global ARPEGE1-based PEARP2

system of Metéo-France (Descamps et al., 2015; Horányi et al., 2006). The EPS provides one control member obtained
from the unperturbed analysis and 10 members calculated using perturbed initial conditions. These members are sta-
tistically indistinguishable and thus can be considered as exchangeable, which fact should be taken into account in the
formulation of post-processing models. We use ensembles of 42-h ahead forecasts (initialized at 1800 UTC) of the 10-m
instantaneous wind speed (in m/s) issued for 10 major cities in Hungary for the 1-year period April 1, 2012 to March
31, 2013, together with the corresponding validation observations. 6 days with missing forecasts and/or observations are
excluded from the analysis.

2.1.3 ECMWF ensemble forecasts for Germany

The operational EPS of the European Centre for Medium-Range Weather Forecasts (ECMWF) comprises 50 perturbed
(thus exchangeable) members and operates on a global 18-km grid (Leutbecher & Palmer, 2008; Molteni et al., 1996). First
we consider 24-h ahead ECMWF forecasts of 10-m daily maximum wind speed initialized at 0000 UTC for the period
between February 1, 2010 and April 30, 2011 along with corresponding verifying observations of 228 synoptic observation
(SYNOP) stations over Germany. This dataset is identical to the one studied in Lerch and Thorarinsdottir (2013) and in
Baran and Lerch (2015, 2016). Postprocessed forecasts are verified on the 1-year period between May 1, 2010 and April 30,
2011 containing 83,220 individual forecast cases, whereas forecast–observation pairs from April 2010 are used for training
purposes.

2.2 Global ECMWF forecasts with different forecast horizons

In order to compare the predictive performance of the various EMOS models for different prediction horizons, we also
investigate a global dataset of ECMWF ensemble forecasts of 10-m daily maximal wind speed with lead times from 1 day
up until 15 days initialized at 1200 UTC between January 1, 2014 and June 24, 2018, and validating SYNOP observations
for calendar years 2014–2018. Thus, one has observations and corresponding ensemble forecasts with 15 different lead
times for the period January 16, 2014 to June 25, 2018 with the exception of 2 days in between with missing forecast data.

1Action de Recherche Petite Echelle Grande Echelle
2Prévisino d’Ensemble ARPEGE
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For the sake of consistency our analysis is restricted to SYNOP stations with complete data, meaning 1059 stations in
Europe and Asia.

3 ENSEMBLE MODEL OUTPUT STATISTICS

As already mentioned in the Introduction, EMOS is a commonly used method of statistical postprocessing, which fits a
single probability distribution to the ensemble forecast with parameters depending on the ensemble members. In what
follows, let f 1, f 2, … , f K denote a wind speed ensemble forecast for a given location, time and lead time under the
assumption that the ensemble members are not exchangeable, so the individual members can be clearly distinguished
and tracked either based on the individual initial conditions, or as one can depict a systematic behaviour of each ensemble
member. Examples of EPSs with nonexchangeable members are the UWME introduced in Section 2.1.1 or the 30-member
Consortium for Small-scale Modelling EPS of the German Meteorological Service (Ben Bouallègue et al., 2013).

However, recently most operational EPSs incorporate ensembles where at least some members are generated using
perturbed initial conditions. Such groups of exchangeable forecasts appear, for example, in the ALADIN-HUNEPS ensem-
ble and in the operational ECMWF ensemble described in Sections 2.1.2 and 2.1.3, respectively, but one can also mention
multimodel EPSs such as the Grand Limited Area Model EPS ensemble (Iversen et al., 2011). In the following sections,
if we have M ensemble members divided into K exchangeable groups, where the kth group contains Mk ≥ 1 ensemble
members (

∑K
k=1 Mk = M), then notation f k will be used for the mean of the corresponding kth ensemble group. Further,

the overall ensemble mean and variance will be denoted by f and S2, respectively.

3.1 EMOS models for wind speed

To model wind speed a nonnegative and skewed distribution is required, such as Weibull (Justus et al., 1978) or gamma
(Garcia et al., 1998) laws. Gamma distribution also serves as underlying law in a Bayesian model averaging (Sloughter
et al., 2010) approach to parametric postprocessing of wind speed ensemble forecasts, whereas in EMOS modeling TN,
LN, and GEV distributions have been utilized so far. Note, that TN and LN EMOS models have already been implemented
in the ensembleMOS package of R (Yuen et al., 2018).

3.1.1 TN EMOS model

Starting with the fundamental work of Thorarinsdottir and Gneiting (2010), TN distribution became a popular base for
EMOS predictive distributions of wind speed (see e.g. Bremnes, 2019; Lerch & Baran, 2017). Denote by 0(𝜇, 𝜎2) the TN
distribution with location 𝜇, scale 𝜎 > 0, and lower truncation at 0, having probability density function (PDF)

g(x|𝜇, 𝜎) ∶= 1
𝜎
𝜑 ((x − 𝜇)∕𝜎)∕Φ(𝜇∕𝜎), if x ≥ 0,

and g(x|𝜇, 𝜎) ∶= 0, otherwise, where 𝜑 is the PDF, while Φ denotes the cumulative distribution function (CDF) of the
standard normal distribution. For the TN EMOS predictive distribution the location and scale are linked to the ensemble
members via equations

𝜇 = a0 + a1f1 + … + aKfK and 𝜎2 = b0 + b1S2. (3.1)

where a0 ∈ R and a1, … , aK , b0, b1 ≥ 0.
If the ensemble can be split into K groups of exchangeable members, then forecasts within a given group will share

the same location parameter (Gneiting, 2014; Wilks, 2018) resulting in link functions

𝜇 = a0 + a1f 1 + … + aKf K and 𝜎2 = b0 + b1S2. (3.2)

According to the optimum score estimation principle of Gneiting and Raftery (2007), model parameters a0, a1, … , aK
and b0, b1 are estimated by optimizing the mean value of a proper verification score over the training data, see Section 3.2.
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3.1.2 LN EMOS model

To address the modeling of large wind speeds Baran and Lerch (2015) propose an EMOS approach based on an LN distri-
bution. This distribution is more applicable for high wind speed values due to its heavier upper tail. The PDF of the LN
distribution  (𝜇, 𝜎) with parameters 𝜇 and 𝜎 > 0 is

h(x|𝜇, 𝜎) ∶= 1
x𝜎

𝜑
(
(log x − 𝜇)∕𝜎

)
, if x ≥ 0,

and h(x|𝜇, 𝜎) ∶= 0, otherwise, while the mean m and variance v are

m = e𝜇+𝜎2∕2 and v = e2𝜇+𝜎2
(

e𝜎2 − 1
)
,

respectively. Obviously, an LN distribution can also be parametrized by these latter two quantities via equations

𝜇 = log

(
m2√

v + m2

)
and 𝜎 =

√
log

(
1 + v

m2

)
,

and in the LN EMOS model of Baran and Lerch (2015) m and v are affine functions of the ensemble and the ensemble
variance, respectively, that is

m = 𝛼0 + 𝛼1f1 + … + 𝛼KfK and v = 𝛽0 + 𝛽1S2. (3.3)

To estimate mean parameters 𝛼0 ∈ R, 𝛼1, … , 𝛼K ≥ 0 and variance parameters 𝛽0, 𝛽1 ≥ 0, one can again use the
optimum score estimation principle and minimize an appropriate verification score over the training data.

In the case of existence of groups of exchangeable ensemble members, similar to (3.2), the equation for the mean in
(3.3) is replaced by

m = 𝛼0 + 𝛼1f 1 + … + 𝛼Kf K . (3.4)

3.1.3 GEV distribution-based EMOS models

As an alternative to the TN EMOS approach exhibiting good predictive performance for high wind speed values, one can
consider the EMOS model of Lerch and Thorarinsdottir (2013) based on a GEV distribution (𝜇, 𝜎, 𝜉) with location
𝜇, scale 𝜎 > 0 and shape 𝜉 defined by CDF

G(x|𝜇, 𝜎, 𝜉) ∶= ⎧⎪⎨⎪⎩
exp

(
−
[
1 + 𝜉( x−𝜇

𝜎
)
]−1∕𝜉

)
, if 𝜉 ≠ 0;

exp
(
−exp

(
− x−𝜇

𝜎

))
, if 𝜉 = 0,

(3.5)

for 1 + 𝜉( x−𝜇
𝜎
) > 0 and G(x|𝜇, 𝜎, 𝜉) ∶= 0, otherwise.

The model proposed by Lerch and Thorarinsdottir (2013) uses location and scale parameters

𝜇 = 𝛾0 + 𝛾1f1 + … + 𝛾KfK and 𝜎 = 𝜎0 + 𝜎1f , (3.6)

with 𝜎0, 𝜎1 ≥ 0, while the shape parameter 𝜉 does not depend on the ensemble members.
However, as argued in Lerch and Thorarinsdottir (2013) and in Baran and Lerch (2015), the GEV EMOS model has

the disadvantage of forecasting negative wind speed with a positive probability. As a solution we propose a novel EMOS
model where the predictive GEV distribution is truncated from below at 0. For x ≥ 0 the CDF of this truncated GEV
(TGEV) distribution  (𝜇, 𝜎, 𝜉) with location 𝜇, scale 𝜎 > 0 and shape 𝜉 equals

G0(x|𝜇, 𝜎, 𝜉) = {G(x|𝜇,𝜎,𝜉)−G(0|𝜇,𝜎,𝜉)
1−G(0|𝜇,𝜎,𝜉) , if G(0|𝜇, 𝜎, 𝜉) < 1;

1, if G(0|𝜇, 𝜎, 𝜉) = 1,
(3.7)
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whereas negative values are obviously excluded from the support set of the TGEV distribution. For 𝜉 < 1 (and
G(0|𝜇, 𝜎, 𝜉) < 1) the  (𝜇, 𝜎, 𝜉) distribution has a finite mean of

⎧⎪⎪⎨⎪⎪⎩
𝜇 + (Γ(1 − 𝜉) − 1) 𝜎

𝜉
, if 𝜉 > 0 and 𝜉𝜇 − 𝜎 > 0;

𝜇 − 𝜎

𝜉
+ 𝜎(Γ𝓁(1−𝜉,[1−𝜉𝜇∕𝜎]−1∕𝜉 ))∕𝜉

1−exp(−[1−𝜉𝜇∕𝜎]−1∕𝜉 )
, if 𝜉 ≠ 0 and 𝜉𝜇 − 𝜎 ≤ 0;

𝜇+𝜎(C−Ei(−exp[𝜇∕𝜎]))
1−exp(−exp[𝜇∕𝜎])

, if 𝜉 = 0,

(3.8)

where Γ and Γ𝓁 denote the gamma and the lower incomplete gamma function, respectively, defined as

Γ(a) = ∫
∞

0
ta−1e−tdt and Γ𝓁(a, x) = ∫

x

0
ta−1e−tdt,

and Ei(x) is the exponential integral

Ei(x) = ∫
x

−∞

et

t
dt = C + ln |x| + ∞∑

k=1

xk

k!k

with C being the Euler–Mascheroni constant. It is important to emphasize, that the case 𝜉 < 0 and 𝜉𝜇 − 𝜎 > 0 does
not appear in the formula (3.8), since in that case the PDF of (𝜇, 𝜎, 𝜉) is positive only on ] −∞, 𝜇 − 𝜎∕𝜉] ⊂ R−.
Further, as for 𝜉 > 0 and 𝜉𝜇 − 𝜎 > 0 the support of (𝜇, 𝜎, 𝜉) is [𝜇 − 𝜎∕𝜉,∞[⊂ R+, truncation does not change the
distribution and the means of (𝜇, 𝜎, 𝜉) and  (𝜇, 𝜎, 𝜉) distributions coincide. For the proof of the remaining
two cases of (3.8) see Appendix A.

The parameters of the TGEV EMOS model are also linked to the ensemble members according to (3.6), which is
replaced by

𝜇 = 𝛾0 + 𝛾1f 1 + … + 𝛾Kf K and 𝜎 = 𝜎0 + 𝜎1f , (3.9)

in the exchangeable case. Note that alternative expressions

𝜎 = 𝜎0 + 𝜎1S, 𝜎 =
√
𝜎0 + 𝜎1S2 and 𝜎 = 𝜎0 + 𝜎1MD,

of the scale have also been tested, where

MD ∶= 1
K2

K∑
k,𝓁=1

|fk − f𝓁| ,
is the ensemble mean absolute difference (see e.g., Baran et al., 2020; Scheuerer, 2014). However, in our case studies TGEV
EMOS models with link functions (3.6) and (3.9) show the best predictive performance.

3.2 Training data selection and verification scores

As mentioned before, estimates of the unknown parameters of the EMOS models described in Sections 3.1.1–3.1.3 can
be obtained with the help of the optimum score estimation principle of Gneiting and Raftery (2007), that is by opti-
mizing a proper scoring rule over an appropriately chosen training dataset. Here we consider the standard approach
in EMOS modeling and use rolling training periods. This means that model parameters for a given date are obtained
using ensemble forecasts and corresponding validating observations for the preceding n calendar days. Given a
training period length, there are two traditional approaches to spatial selection of training data (Thorarinsdottir & Gneit-
ing, 2010). The global (or regional) approach uses ensemble forecasts and validating observations from all available
stations during the rolling training period resulting in a single set of parameters for the whole ensemble domain. By
contrast, the local estimation produces distinct parameter estimates for different stations by using only the training
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data of the given station. Local models typically result in better predictive performance compared with regional models
(see e.g., Thorarinsdottir & Gneiting, 2010); however, require significantly longer training periods to avoid numeri-
cal stability issues (Lerch & Baran, 2017). In the case studies of Section 4 examples of both estimation techniques are
shown.

In atmospheric sciences the most popular scoring rules are the logarithmic score (LogS; Good, 1952) and the contin-
uous ranked probability score (CRPS; see e.g., Wilks, 2011). The former is the negative logarithm of the predictive PDF
evaluated at the verifying observation, whereas for a (predictive) CDF F and real value (verifying observation) x the
latter is defined as

CRPS(F, x) ∶= ∫
∞

−∞

[
F(y) − I{y≥x}

]2dy = E|X − x| − 1
2

E|X − X ′|, (3.10)

where X and X′ are independent random variables distributed according to F and having a finite first moment, while IH
denotes the indicator function of a set H. Note that both LogS and CRPS are negative-oriented scores, that is, the smaller
the better. Further, the optimization with respect to the logarithmic score results in the maximum likelihood (ML) esti-
mation of the parameters, while the second expression in (3.10) implies that the CRPS can be expressed in the same unit
as the observation. For all wind speed models of Sections 3.1.1–3.1.3 the CRPS can be expressed in closed form allowing
efficient optimization procedures; for TN, LN and GEV laws we refer to Thorarinsdottir and Gneiting (2010), Baran and
Lerch (2015), and Friederichs and Thorarinsdottir (2012), respectively. The CRPS of a TGEV distribution  (𝜇, 𝜎, 𝜉)
with CDF G0(x) derived from a GEV CDF G(x) equals

CRPS(G0, x) = (2G0(x) − 1)
(

x − 𝜇 + 𝜎

𝜉

)
+ 𝜎

𝜉(1 − G(0))2

[
−2𝜉Γ𝓁 (1 − 𝜉,−2 ln G(0))

+ 2G(0)Γ𝓁 (1 − 𝜉,−ln G(0)) + 2 (1 − G(0)) Γ𝓁 (1 − 𝜉,−ln G(x))] , (3.11)

for 𝜉 ≠ 0, whereas for 𝜉 = 0 we have

CRPS(G0, x) = (x − 𝜇) (2G0(x) − 1) + 𝜎

(1 − G(0))2

×
(

C −ln 2 + Ei (2 ln G(0)) + (G(0))2 ln [−ln G(0)] − 2G(0)Ei (ln G(0))
)

+ 2𝜎
1 − G(0)

[G(x) ln [−ln G(x)] − Ei (ln G(x))] . (3.12)

For the proof of (3.11) and (3.12) see Appendix B.
In order to compare the predictive performance of the EMOS models for high wind speed values we also consider the

threshold-weighted continuous ranked probability score (twCRPS; Gneiting & Ranjan, 2011)

twCRPS(F, x) ∶= ∫
∞

−∞

[
F(y) − I{y≥x}

]2
𝜔(y)dy, (3.13)

where 𝜔(y) ≥ 0 is a weight function. Setting 𝜔(y) ≡ 1 results in the traditional CRPS (3.10), whereas with the help
of 𝜔(y) = I{y≥r} one can address wind speeds above a given threshold r. Note that in the case studies of Section 4
the thresholds correspond approximately to the 90th, 95th and 98th percentiles of the wind speed observations of all
considered stations.

The improvement in terms of CRPS and twCRPS for a forecast F with respect to a reference forecast Fref can be
quantified using the continuous ranked probability skill score (CRPSS; see e.g., Gneiting & Raftery, 2007; Murphy, 1973)
and the threshold-weighted continuous ranked probability skill score (twCRPSS; Lerch & Thorarinsdottir, 2013)

CRPSS ∶= 1 − CRPS
CRPSref

and twCRPSS ∶= 1 − twCRPS
twCRPSref

,

respectively, where CRPS, twCRPS and CRPSref, twCRPSref denote the mean score values corresponding to F and Fref
over the verification data. Skill scores are obviously positively oriented, that is larger skill scores mean better predictive
performance.
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Point forecasts such as EMOS and ensemble medians and means can be evaluated using the mean absolute errors
(MAEs) and the root mean squared errors (RMSEs), where the former is optimal for the median, whereas the latter is
optimal for the mean forecasts (Gneiting, 2011).

The uncertainty in the verification scores is assessed with the help of confidence intervals for mean score values and
skill scores. These intervals are calculated from 2,000 block bootstrap samples, which are obtained using the stationary
bootstrap scheme with mean block length computed according to Politis and Romano (1994).

Simple and widely used tools of graphically assessing the calibration of probabilistic forecasts are the verification
rank histogram (or Talagrand diagram) of ensemble predictions and its continuous counterpart, the probability integral
transform (PIT) histogram. The verification rank is the rank of the verifying observation with respect to the corresponding
ensemble forecast (see e.g., Wilks, 2011, section 8.7.2), whereas the PIT is the value of the predictive CDF evaluated at
the verifying observation (Dawid, 1984; Raftery et al., 2005). In the case of a properly calibrated K-member ensemble the
verification ranks follow a uniform distribution on {1, 2, … , K + 1}, while PIT values of calibrated predictive distributions
are uniformly distributed on the [0, 1] interval.

Finally, calibration and sharpness of a predictive distribution can also be investigated by examining the coverage and
average width of the (1 − 𝛼)100%, 𝛼 ∈]0, 1[, central prediction interval, respectively. Here the coverage is the proportion
of the validating observations located between the lower and upper 𝛼∕2 quantiles of the predictive CDF, and level 𝛼

should be chosen to match the nominal coverage of the raw ensemble, that is (K − 1)/(K + 1)100%, where again, K is
the ensemble size. As the coverage of a calibrated predictive distribution should be around (1 − 𝛼)100%, such a choice
of 𝛼 allows a direct comparison with the ensemble coverage.

4 RESULTS

The forecast skill of the novel TGEV EMOS model proposed in Section 3.1.3 is tested both on short-range (24–48 h) wind
speed forecasts of the eight-member UWME, of the 11-member ALADIN-HUNEPS ensemble, and of the 50-member
ECMWF ensemble, and on more recent global surface wind forecasts of the operational EPS of the ECMWF with lead
times 1,2, … ,15 days, for more details see Section 2. As reference models we consider the TN, LN and GEV EMOS
approaches described in Sections 3.1.1–3.1.3, respectively, and the raw ensemble and climatological forecasts (observa-
tions of the training period are considered as an ensemble) as well. For the sake of brevity here we report only the main
results, further details can be found in Appendices C and D.

4.1 Implementation details

In the case studies presented here the estimates of TN and LN EMOS model parameters minimize the mean
CRPS of forecast-observation pairs over the training data. Objective functions are optimized using the popular
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm (see e.g., Press et al., 2007, section 10.9). However, for the more
complex GEV and TGEV models the estimation methods used in the case studies of Sections 4.2 and 4.3 differ. For
the short-range forecasts of Section 4.2 we follow the suggestions of Lerch and Thorarinsdottir (2013) and calculate the
ML estimates of the GEV parameters, whereas for the TGEV model we consider the box constrained version of BFGS
(L-BFGS-B; Byrd et al., 1995) and keep the shape parameter 𝜉 in the interval ]−0.278, 1/3[ to ensure a finite mean and a
positive skewness. Note that the ML estimates of the shape of the GEV model also remain in this interval. For the global
ECMWF forecasts of Section 4.2 both GEV and TGEV parameters are estimated by minimizing the mean CRPS of the
training data with the help of a BFGS algorithm, where the constrains on scale and shape parameters are forced using
appropriate transformations. All optimization tasks are performed using the optim function of R allowing at most 200
iteration steps. In the case of TN and LN models starting parameters of location/mean are computed with a linear regres-
sion of the observations on the corresponding forecasts, whereas the starting points for the scale parameters are fixed. In
the case of GEV and TGEV models all iterations are started from fixed initial points.

4.2 Short-range ensemble forecasts

The case studies of this section are based on those three wind speed data sets that have already been investigated in
Baran and Lerch (2015, 2016). We use the same training and verification data for the TGEV modeling (global training
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F I G U R E 1 Verification rank histograms. (a) University of Washington mesoscale ensemble for the calendar year 2008; (b) Aire Limitée
Adaptation dynamique Développement International-Hungary Ensemble Prediction System ensemble for the period April 1, 2012 to March
31, 2013; (c) European Centre for Medium-Range Weather Forecasts ensemble for the period May 1, 2010 to April 30, 2011

T A B L E 1 Mean continuous ranked probability score (CRPS) and mean absolute error (MAE) of median
forecasts together with 95% confidence intervals, root mean squared error (RMSE) of mean forecasts and coverage
and average width of 77.78% central prediction intervals for the University of Washington mesoscale ensemble.
Mean and maximal probability of predicting negative wind speed by the generalized extreme value (GEV) model:
0.05% and 4%

CRPS MAE RMSE Cover. Av. w.

Forecast (m/s) (m/s) (m/s) (%) (m/s)

Truncated normal 1.114 (1.052,1.188) 1.550 (1.466,1.655) 2.048 78.65 4.67

Log-normal 1.114 (1.052,1.188) 1.554 (1.465,1.658) 2.052 77.29 4.69

GEV 1.100 (1.041,1.174) 1.554 (1.463,1.656) 2.047 77.20 4.69

Truncated GEV 1.099 (1.038,1.173) 1.551 (1.464,1.656) 2.046 76.69 4.62

Ensemble 1.353 (1.274,1.460) 1.655 (1.554,1.775) 2.169 45.24 2.53

Climatology 1.412 (1.291,1.539) 1.987 (1.820,2.170) 2.629 81.10 5.90

with matching training period lengths) as in the earlier works, allowing a direct comparison with the performance of the
previously investigated TN, LN and GEV EMOS models.

4.2.1 EMOS models for the UWME

As one can observe on Figure 1(a), the verification rank histogram of the eight-member UWME wind speed forecasts for
calendar year 2008 is highly U-shaped, indicating a strongly underdispersive character. The ensemble range contains the
validating observation in only 45.24% of cases, which is far below the nominal coverage of 77.78%, calling for some form
of calibration.

As the eight members of the UWME are nonexchangeable, for postprocessing we make use of TN and LN EMOS
models (3.1) and (3.3), respectively, and GEV and TGEV EMOS with parametrization (3.6), where K = 8. Ensemble
forecasts for calendar year 2008 are calibrated using a 30-day training period, which training period length is a result of a
detailed preliminary analysis, see Baran and Lerch (2015).

In Table 1 a summary of verification scores and coverage and average width of nominal 77.78% central prediction
intervals are given for the competing EMOS models and the raw and climatological UWME forecasts (27,481 forecast
cases), whereas Table 2 reports the mean twCRPS values corresponding to various thresholds. Climatological forecasts
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T A B L E 2 Mean threshold-weighted continuous ranked probability score (twCRPS) for various thresholds r
together with 95% confidence intervals for the University of Washington mesoscale ensemble

twCRPS (m/s)

Forecast r = 9 r = 10.5 r = 14

Truncated normal 0.150 (0.116,0.189) 0.074 (0.054,0.099) 0.010 (0.005,0.016)

Log-normal 0.149 (0.115,0.186) 0.073 (0.053,0.098) 0.010 (0.005,0.017)

Generalized extreme value (GEV) 0.145 (0.112,0.183) 0.072 (0.052,0.095) 0.010 (0.005,0.018)

Truncated GEV 0.145 (0.112,0.180) 0.072 (0.052,0.096) 0.010 (0.005,0.017)

Ensemble 0.175 (0.134,0.226) 0.085 (0.061,0.115) 0.011 (0.005,0.019)

Climatology 0.173 (0.132,0.220) 0.081 (0.058,0.111) 0.010 (0.005,0.017)
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F I G U R E 2 Probability integral transform histograms of the ensemble model output statistics-calibrated University of Washington
mesoscale ensemble forecasts

underperform the raw ensemble in terms of mean CRPS, MAE, and RMSE, but have better skill on the tails which is
quantified in lower mean twCRPS values. As mentioned before, the underdispersive character of the raw forecasts leads
to poor coverage and very sharp central prediction intervals, whereas the climatological prediction intervals are much
wider resulting in a far better coverage. EMOS postprocessing improves the calibration and forecast skill of the raw ensem-
ble by a wide margin as all EMOS scores but the mean twCRPS corresponding to most extreme wind speeds are much
lower than the corresponding scores of raw and climatological forecasts. The advantage in terms of the mean CRPS is sig-
nificant. The coverage of each calibrated forecast is very close to the nominal value; however, one should also note that
these central prediction intervals are less sharp than the intervals calculated from the raw ensemble. From the compet-
ing EMOS approaches, the novel TGEV model results in the lowest mean CRPS, RMSE, and twCRPS values (which are
either identical with or very close to the corresponding GEV EMOS scores), whereas in terms of MAE it is slightly outper-
formed by the TN EMOS method. Further, the TGEV model leads to the sharpest central prediction intervals, which is
naturally connected with a slight decrease in coverage. For a deeper analysis of the tail behaviour of the different EMOS
approaches we refer to Figure C1(a) of Appendix C showing the twCRPSS with respect to the TN EMOS as function of the
threshold.

Finally, compared with the verification rank histogram of the raw UWME forecasts (Figure 1(a)), the PIT histograms
of the different EMOS models displayed in Figure 2 are much closer to the desired uniform distribution, indicating an
improved calibration. TN and LN EMOS result in slightly biased and hump-shaped histograms, whereas the histograms
of GEV and TGEV approaches are almost perfectly flat. These shapes are nicely in line with the corresponding CRPS
values of Table 1.

Based on the above results one can conclude that in the case of the UWME forecasts, from the competing EMOS
approaches the novel TGEV model shows the best forecast skill, closely followed by the GEV EMOS. This conclusion is
also supported by the results of Appendix D, where the calibration of the investigated EMOS models at different forecast
levels is addressed. However, in connection with the GEV model one should not forget about the positive probability of
predicting negative wind speed values. For the UWME forecasts at hand the mean and maximum of these probabilities
are 0.05% and 4%, respectively (Baran & Lerch, 2015).
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T A B L E 3 Mean continuous ranked probability score (CRPS) and mean squared error (MAE) of median
forecasts together with 95% confidence intervals, root mean square error (RMSE) of mean forecasts and coverage
and average width of 83.33% central prediction intervals for the Aire Limitée Adaptation dynamique
Développement International-Hungary Ensemble Prediction System ensemble. Mean and maximal probability of
predicting negative wind speed by the generalized extreme value (GEV) model: 0.33% and 9.46%

CRPS MAE RMSE Cover. Av.w.

Forecast (m/s) (m/s) (m/s) % (m/s)

Truncated normal 0.738 (0.689,0.793) 1.037 (0.966,1.112) 1.357 83.59 3.53

Log-normal 0.741 (0.690,0.799) 1.038 (0.960,1.125) 1.362 80.44 3.57

GEV 0.737 (0.685,0.793) 1.041 (0.970,1.117) 1.355 81.21 3.54

Truncated GEV 0.736 (0.685,0.793) 1.037 (0.969,1.114) 1.356 82.13 3.53

Ensemble 0.803 (0.749,0.865) 1.069 (1.001,1.136) 1.373 68.22 2.88

Climatology 1.046 (0.944,1.149) 1.481 (1.333,1.627) 1.922 82.54 4.92

T A B L E 4 Mean threshold-weighted continuous ranked probability score (twCRPS) for various thresholds r
together with 95% confidence intervals for the Aire Limitée Adaptation dynamique Développement
International-Hungary Ensemble Prediction System ensemble

twCRPS (m/s)

Forecast r = 6 r = 7 r = 9

Truncated normal 0.102 (0.062,0.147) 0.054 (0.027,0.085) 0.012 (0.003,0.022)

Log-normal 0.102 (0.062,0.145) 0.054 (0.028,0.084) 0.011 (0.004,0.022)

Generalized extreme value (GEV) 0.098 (0.062,0.143) 0.052 (0.026,0.081) 0.011 (0.003,0.021)

Truncated GEV 0.099 (0.058,0.145) 0.052 (0.026,0.082) 0.011 (0.003,0.022)

Ensemble 0.112 (0.069,0.163) 0.059 (0.030,0.093) 0.013 (0.004,0.026)

Climatology 0.127 (0.076,0.190) 0.064 (0.031,0.102) 0.012 (0.003,0.023)

4.2.2 EMOS models for the ALADIN–HUNEPS ensemble

Compared with the UWME discussed in the previous section, the ALADIN-HUNEPS ensemble is better calibrated.
Although the verification rank histogram given in Figure 1(b) still shows overconfidence, resulting in large bins at the
sides, it is much closer to the uniform distribution than the one in Figure 1(a), and the ensemble coverage of 61.21% is
also closer to the nominal 83.33%.

The structure of the ALADIN-HUNEPS ensemble induces a natural division of the ensemble members into two
exchangeable groups: the first contains just the control member, while the second consists of the members obtained from
random perturbations of the initial conditions (M = 11, K = 2, M1 = 1, M2 = 10). Hence, calibration is performed using
EMOS models with distribution locations/means linked to the ensemble members via (3.2), (3.4), and (3.9).

The detailed data analysis of Baran et al. (2014) suggests a 43-day training period for EMOS postprocessing of
ALADIN-HUNEPS ensemble forecasts, leaving 315 calendar days (3, 150 forecast cases) between May 15, 2012 and March
31, 2013 for forecast verification.

Again, Table 3 showing the verification scores of different forecasts and the coverage and average width of nominal
83.33% central prediction intervals justifies the use of statistical post-processing. All EMOS models result in reasonably
sharp forecasts with coverage values close to the nominal one outperforming both the raw and climatological forecasts
in terms of all reported scores. The positive effect of statistical calibration can also be observed on mean twCRPS values
provided in Table 4; however, one should also be aware of the large uncertainty in the forecasts. Among the different
post-processing approaches, the TGEV EMOS yields the lowest mean CRPS and MAE and the sharpest central prediction
interval combined with a coverage that is the second closest to the nominal one. However, in terms of twCRPS addressing
the predictive performance at high wind speed values, GEV EMOS seems to show better forecast skill. This can also be
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F I G U R E 3 Probability integral transform histograms of the ensemble model output statistics-calibrated Aire Limitée Adaptation
dynamique Développement International-Hungary Ensemble Prediction System ensemble forecasts

observed in Figure C1(b) of Appendix C, where the twCRPSS values with respect to the TN EMOS are plotted as function
of the threshold. The GEV EMOS clearly outperforms the competitors; however, the situation is nuanced by the fact that
in the case of ALADIN-HUNEPS ensemble forecasts the maximal probability of predicting negative wind speed is 9.46%,
and the mean value of these probabilities is also 0.33%.

The improved calibration of postprocessed ALADIN-HUNEPS forecasts can also be observed on PIT histograms of
Figure 3, which are much closer to uniformity than the corresponding verification rank histogram, see Figure 1(b). Here
the TGEV model results in the flattest histogram, whereas the PIT histograms of TN, LN and GEV models are slightly
hump-shaped and biased. Hence, keeping in mind also the results of Appendix D, one can conclude that in the case of
the ALADIN-HUNEPS ensemble forecasts, from the presented four EMOS approaches the TGEV has the best overall
performance.

4.2.3 EMOS models for the ECMWF forecasts for Germany

From the three EPSs investigated in Section 4.2, the ECMWF ensemble exhibits the lack of calibration to the highest
extent. In most cases the ensemble forecasts either under-, or overestimate the validating observation, resulting in a
coverage of 43.40%, whereas the nominal coverage is 96.08%. The underdispersive character of the forecasts can also be
clearly observed on the corresponding verification rank histogram (see Figure 1(c)).

The 50 members of operational ECMWF EPS are regarded as exchangeable, so in the link functions (3.2), (3.4), and
(3.9) we have K = 1 and f 1 equals the ensemble mean. Following the suggestions of Baran and Lerch (2015), the param-
eters of the EMOS models for calibrating ECMWF ensemble forecast for the period May 1, 2010 to April 30, 2011 (83,220
forecast cases) are estimated globally using a rolling training period of length 20 days.

Similar to Sections 4.2.1 and 4.2.2, in Table 5 the mean CRPS, MAE, and RMSE of postprocessed, raw, and climato-
logical forecasts are reported together with the corresponding coverage and average width of 96.08% (nominal) central
prediction intervals, while Table 6 provides the mean twCRPS scores for three different thresholds. The picture we get
after examining these values is also similar to the previous cases: postprocessing results in improved predictive perfor-
mance and better calibration. The lowest CRPS, MAE, and twCRPS values belong to the TGEV EMOS model, which has
a fair coverage, but slightly less sharp than the TN and LN EMOS.

Although the mean twCRPS values and the corresponding 95% confidence intervals of GEV and TGEV models given
in Table 6 are almost identical, Figure C1(c) of Appendix C displaying again the twCRPSS with respect to TN EMOS
reveals the differences between the tail behavior of the two methods and indicates the superiority of the novel TGEV
EMOS approach. Note also that here the mean and maximal probabilities of predicting negative wind speed by the GEV
model are 0.01% and 5%, respectively.

Finally, the comparison of the PIT histograms of Figure 4 with the verification rank histogram of the raw ECMWF
ensemble (see Figure 1(c)) again shows that postprocessing substantially improves the calibration of forecasts. However,
one should also note that none of the competing EMOS methods results in uniformly distributed PIT values. For example
the GEV EMOS model is slightly overdispersive having heavy tails, which is fully in line with the wide nominal central
prediction intervals (see Table 5), whereas the tails of the TN EMOS model are slightly too light. TGEV and LN EMOS
PIT values show the smallest deviation from uniformity, hence, for the studied ECMWF forecasts again the TGEV EMOS
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T A B L E 5 Mean continuous ranked probability score (CRPS) and mean squared error (MAE) of median
forecasts together with 95% confidence intervals, root mean square error (RMSE) of mean forecasts and coverage
and average width of 96.08% central prediction intervals for the European Centre for Medium-Range Weather
Forecasts ensemble forecasts for Germany. Mean and maximal probability of predicting negative wind speed by
the generalized extreme value (GEV) model: 0.01% and 5%

CRPS MAE RMSE Cover. Av.w.

Forecast (m/s) (m/s) (m/s) % (m/s)

Truncated normal 1.045 (0.974,1.125) 1.388 (1.298,1.488) 2.148 92.19 6.39

Log-normal 1.037 (0.970,1.112) 1.386 (1.298,1.482) 2.138 93.16 6.91

GEV 1.034 (0.960,1.114) 1.388 (1.300,1.488) 2.134 94.84 8.22

Truncated GEV 1.031 (0.962,1.112) 1.385 (1.298,1.480) 2.135 92.89 7.37

Ensemble 1.263 (1.194,1.345) 1.441 (1.373,1.523) 2.232 45.00 1.80

Climatology 1.550 (1.406,1.700) 2.144 (1.948,2.340) 2.986 95.84 11.91

T A B L E 6 Mean threshold-weighted continuous ranked probability score (twCRPS) for various thresholds r
together with 95% confidence intervals for the European Centre for Medium-Range Weather Forecasts ensemble
forecasts for Germany

twCRPS (m/s)

Forecast r = 10 r = 12 r = 15

Truncated normal 0.200 (0.150,0.255) 0.110 (0.075,0.147) 0.042 (0.024,0.062)

Log-normal 0.198 (0.146,0.254) 0.109 (0.075,0.149) 0.042 (0.024,0.062)

Generalized extreme value (GEV) 0.195 (0.145,0.250) 0.106 (0.072,0.145) 0.041 (0.024,0.059)

Truncated GEV 0.194 (0.143,0.248) 0.106 (0.072,0.143) 0.041 (0.024,0.060)

Ensemble 0.211 (0.155,0.272) 0.113 (0.077,0.152) 0.043 (0.025,0.061)

Climatology 0.251 (0.182,0.326) 0.128 (0.087,0.172) 0.045 (0.026,0.066)
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F I G U R E 4 Probability integral transform histograms of the ensemble model output statistics-calibrated European Centre for
Medium-Range Weather Forecasts for Germany

model has the best overall performance. Note that this conclusion is rather in line with the corresponding results of
Appendix D.

4.3 EMOS models for the global ECMWF ensemble forecasts

The case studies of Section 4.3 verify the positive effect of EMOS post-processing on calibration of short-term wind speed
ensemble forecasts in general, and the superiority of the TGEV EMOS approach as well. However, as argued in the
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F I G U R E 5 Verification rank histograms of the global European Centre for Medium-Range Weather Forecasts ensemble forecasts for
the period January 16, 2014 to June 25, 2018
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F I G U R E 6 (a) Continuous ranked probability score (CRPS) of the raw, climatological, and calibrated European Centre for
Medium-Range Weather Forecasts global forecasts; (b) Continuous ranked probability skill score with respect to the truncated normal
ensemble model output statistics model together with 95% confidence intervals

discussion of Feldmann et al. (2019), the longer the lead time, the more training data is needed for postprocessing to
outperform the raw ensemble, and a similar conclusion can be derived from the results of Baran et al. (2020), too. This
motivates the case study presented in this section, where calibration of global ECMWF wind speed ensemble forecasts
with lead times 1, 2, … , 15 days covering a very long time period of almost four and a half years is considered.

As one can observe on the verification rank histograms of Figure 5, the global ECMWF forecasts are strongly U-shaped
for all lead times; however, the increase of the forecast horizon reduces underdispersion. This might be explained by the
increase of forecast uncertainty resulting in wider ensemble range and better coverage, which improves from 52.05% of
day 1 to 85.74% of day 15 (see also Figure 8).

For calibration we use the same EMOS model settings as in Section 4.2.3 considering a single group of exchangeable
ensemble members; however in this case the large ensemble domain does not allow global modeling. Thus, local estima-
tion with a rolling training period of 100 days is applied, which ensures a reasonably stable parameter estimation for all
investigated EMOS approaches and leaves the period May 10, 2014 to June 25, 2018 (1,508 calendar days after excluding
the 2 days with missing data) for validation purposes (1,596,972 individual forecast cases for each lead time).

In contrast to the case of ECMWF temperature forecasts investigated in Feldmann et al. (2019) or Baran et al. (2020),
in terms of the mean CRPS all considered EMOS models outperform the raw wind speed ensemble forecasts for all lead
times by a wide margin (see Figure 6(a)). Note that the nonmonotonic shape of the mean CRPS of the raw ensemble is a
result of representativeness error in the verification, which can be partially corrected by adding up observation uncertainty
to the ensemble spread (Ben Bouallègue, 2020). For shorter lead times EMOS models are also superior to climatology,
but the advantage is decreasing with the lead time and disappears after day 11. To make visible the differences between
the various EMOS approaches in terms of the mean CRPS, Figure 6(b) shows the CRPSS values with respect to the TN
EMOS model. LN EMOS exhibits the worst forecast skill but the disadvantage decreases with the increase of the forecast
horizon. GEV EMOS outperforms its competitors, followed by the TGEV EMOS, which has a significantly positive skill
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T A B L E 7 Mean and the 90th, 95th and 99th quantiles of probabilities (in %) of predicting negative wind
speed by the generalized extreme value model

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Mean 2.48 2.48 2.48 2.49 2.51 2.53 2.54 2.56 2.57 2.59 2.60 2.61 2.63 2.63 2.65

Q90 7.36 7.30 7.28 7.32 7.32 7.30 7.30 7.30 7.37 7.42 7.48 7.51 7.58 7.59 7.61

Q95 14.20 13.95 13.76 13.59 13.38 13.14 13.02 12.92 13.00 13.02 12.99 13.12 13.22 13.25 13.30

Q99 32.95 32.32 31.65 30.82 29.79 29.23 28.53 28.18 27.90 27.83 27.63 27.84 27.84 27.77 27.94
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F I G U R E 7 Difference in mean absolute error (a) and root mean square error (b) values from the reference truncated normal ensemble
model output statistics model together with 95% confidence intervals

score for almost all lead times. Similar conclusions can be drawn from Figure D1 of Appendix D showing the skill scores
separately for different forecast levels. However, for this global data set the problem of predicting negative wind speed
values by the GEV EMOS approach is far more pronounced than in the case studies of Section 4.2. According to Table 7,
the mean of these probabilities is around 2.5%, whereas the 99th quantiles range from 27.63% to 32.95%, which makes a
possible operational use problematic.

In Figure 7(a),(b) the differences in MAE and RMSE from the reference TN EMOS model are given (the smaller the
better). For short and very long lead times the TGEV EMOS results in the lowest MAE values, whereas between 4 and 10
days the GEV EMOS significantly outperforms its competitors. After day 11 the performance of the LN EMOS is similar
to that of the TGEV EMOS; however, the uncertainty of the former is much higher. A different ranking can be observed
in Figure 7(b), where the GEV EMOS results in the lowest score values, followed by the TGEV EMOS model, which for
medium lead times behaves very similarly to the LN EMOS.

As expected, climatological forecasts result in the best coverage (Figure 8(a)), closely followed by the GEV EMOS. The
coverage values of TGEV, TN, and LN EMOS approaches are slightly below 90% for all lead times and the corresponding
curves are rather flat and very close to each other. In terms of sharpness, Figure 8(b) shows a clear ranking of the competing
post-processing methods for all lead times. TN EMOS results in the narrowest central prediction intervals followed by
TGEV, GEV and LN EMOS models.

To compare the tail behavior of the competing EMOS models we consider the twCRPSS values with respect to the
TN EMOS approach for thresholds corresponding again to 90th, 95th, and 98th quantiles of the wind speed observations
(see Figure 9). The ranking of the different EMOS models is consistent for all three investigated thresholds; after day
3 TN EMOS results in the best forecast skill, whereas the LN EMOS approach, similar to Figure 6(b), is far behind its
competitors.

Finally, the PIT histograms of EMOS postprocessed forecasts for lead times 1, 5, 10, and 15 days plotted in Figure 10
again show the positive effect of postprocessing. They are much closer to uniformity than the verification rank histograms
of the raw ECMWF ensemble forecasts of Figure 5; moreover, the shapes of the presented PIT histograms are nicely in line
with the corresponding CRPS scores (Figure 6) and coverage and average widths of nominal central prediction intervals
(Figure 8). PIT histograms of the LN EMOS approach show the largest deviation from uniformity, whereas the histograms
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F I G U R E 8 Coverage (a) and average width (b) of nominal 96.08% central prediction intervals. In panel (a) the ideal coverage is
indicated by the horizontal dotted line
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F I G U R E 9 Threshold-weighted continuous ranked probability skill score values with respect to the truncated normal ensemble model
output statistics model for thresholds 6 m/s (a), 7 m/s (b) and 9 m/s (c) together with 95% confidence intervals

of the GEV model are almost perfectly flat with a slight underdispersion, especially for longer lead times. TGEV EMOS
also results in rather flat PIT histograms with slightly light lower tails for all lead times.

For the ECMWF data set at hand the GEV EMOS model shows the best overall predictive performance for all lead
times, followed by the TGEV EMOS. However, looking back again to the mean probabilities of predicting negative wind
speed by the GEV model given in Table 7, one should prefer the slightly less skillful novel TGEV EMOS approach.

5 CONCLUSIONS

For the purpose of calibrating wind speed ensemble forecasts we propose a novel EMOS approach based on a truncated
GEV distribution. The aim is to correct the deficiency of the efficient GEV EMOS method of Lerch and Thorarinsdot-
tir (2013) of occasionally predicting negative wind speed. The TGEV EMOS model is tested both on short-range (24–48
h) wind speed forecasts of three completely different EPSs (eight-member UWME, 11-member ALADIN–HUNEPS and
50-member ECMWF) covering different and relatively small geographical regions and on a much larger dataset of global
ECMWF forecasts for four and a half calendar years with lead times from 1 to 15 days. For model verification we use the
CRPS of the probabilistic forecasts, the MAE of the median and the RMSE of the mean forecasts, and we also analyze
the coverage and the average width of nominal central prediction intervals, which serve as measures of calibration and
sharpness, respectively. Further, the predictive performance at high wind speed values is assessed with the help of the
twCRPS for thresholds corresponding approximately to the 90th, 95th, and 98th percentiles of the observed wind speed.

The forecast skill of the TGEV EMOS model is compared to that of the TN, LN, and GEV EMOS approaches,
and the raw and climatological forecasts. According to the results of the presented four case studies, postprocess-
ing always improves the calibration of probabilistic and accuracy of point forecasts and all EMOS models outperform
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F I G U R E 10 Probability integral transform histograms of the ensemble model output statistics postprocessed European Centre for
Medium-Range Weather Forecasts global forecasts for days 1, 5, 10, and 15

both the raw ensemble and climatology. One can also observe that the TGEV EMOS approach has the best overall
performance—regarding the four presented methods—closely followed by the GEV EMOS model. However, for the lat-
ter, at least in the case study of Section 4.3, the mean probability of predicting negative wind speed values is around 2.5%
for all considered lead times.

In the present study our focus is restricted to univariate forecasts for a single location and lead time. However, most
practical applications (e.g., in the context of wind energy forecasting, see Pinson & Messner, 2018) require an accurate
modeling of spatial and temporal dependencies. Hence, multivariate extension of the proposed TGEV EMOS model in
order to provide spatially and temporally consistent calibrated wind speed forecasts might be an interesting direction of
future research. For a detailed overview of the possible approaches, see for example, Lerch et al. (2020).
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APPENDIX A. MEAN OF A TRUNCATED GEV DISTRIBUTION

To simplify the formulation of the results, similar to the notations of Section 3.2, in what follows we set aside the
indication of the parameters of the GEV and TGEV CDFs G and G0 defined by (3.5) and (3.7), respectively.

The present section is devoted to verification of the formula (3.8) for the TGEV mean in the nontrivial cases when G
and G0 differ. Let 𝜉 < 1 and 0<G(0)< 1. The PDF g0(x) of a  (𝜇, 𝜎, 𝜉) distribution defined by (3.7) equals

g0(x) =

⎧⎪⎪⎨⎪⎪⎩

[
1+𝜉( x−𝜇

𝜎
)
]−1∕𝜉−1

exp
(
−
[
1+𝜉( x−𝜇

𝜎
)
]−1∕𝜉

)
𝜎(1−G(0))

, if 𝜉 ≠ 0;

exp
(

x−𝜇
𝜎

)
exp

(
−exp

[
− x−𝜇

𝜎

])
𝜎(1−G(0))

, if 𝜉 = 0,

(A1)

for x ≥ 0 and x𝜉 ≥ 𝜇𝜉 − 𝜎, and g0(x)= 0 otherwise, where

G(0) =

{
exp(−[1 − 𝜉𝜇∕𝜎]−1∕𝜉), if 𝜉 ≠ 0,
exp(−exp[𝜇∕𝜎]), if 𝜉 = 0.

Let X be a TGEV random variable and assume 𝜉 ≠ 0 and 𝜉𝜇 − 𝜎 ≤ 0. If 𝜉 > 0, then the support of g0(x) is [0,∞[, so

EX = 1
𝜎(1 − G(0)) ∫

∞

0
x
[
1 + 𝜉

(x − 𝜇

𝜎

)]−1∕𝜉−1
exp

(
−
[
1 + 𝜉

(x − 𝜇

𝜎

)]−1∕𝜉
)

dx. (A2)

For 𝜉 < 0 the support of g0(x) changes to [0, 𝜇 − 𝜎∕𝜉], so the integral in (A2) should be taken over this particular
interval. However, in both cases the change of variables leads to

EX = 1
1 − G(0) ∫

(
1− 𝜉𝜇

𝜎

)−1∕𝜉

0

[
(t−𝜉 − 1)𝜎

𝜉
+ 𝜇

]
exp(−t)dt

= 𝜇 − 𝜎

𝜉
+

𝜎(Γ𝓁(1 − 𝜉, [1 − 𝜉𝜇∕𝜎]−1∕𝜉))∕𝜉
1 −exp(−[1 − 𝜉𝜇∕𝜎]−1∕𝜉)

.

Finally, let 𝜉 = 0. In this case

EX = 1
𝜎(1 − G(0)) ∫

∞

0
x exp

(x − 𝜇

𝜎

)
exp

(
−exp

[
−x − 𝜇

𝜎

])
dx,

where the change of variables with respect to t = exp
(
− x−𝜇

𝜎

)
results in

EX = 1
𝜎(1 − G(0))∫

exp(𝜇∕𝜎)

0
(𝜇 − 𝜎 ln t) exp(−t)dt =

𝜇 + 𝜎(C − Ei(−exp[𝜇∕𝜎]))
1 −exp(−exp[𝜇∕𝜎])

.

□

APPENDIX B. CRPS OF A TRUNCATED GEV DISTRIBUTION

Following the ideas of Friederichs and Thorarinsdottir (2012), the CRPS of a TGEV distribution is derived using
representation

CRPS(G0, x) = x (2G0(x) − 1) − 2∫
1

0
tG−1

0 (t)dt + 2∫
1

G0(x)
G−1

0 (t)dt, (B1)
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where G−1
0 denotes the quantile function corresponding to G0. Short calculation shows that for 0< y< 1

G−1
0 (y) =

{
𝜇 + 𝜎

𝜉

(
−1 + [−ln 𝜏(y)]−𝜉

)
, if 𝜉 ≠ 0,

𝜇 − 𝜎 (ln [−ln 𝜏(y)]) , if 𝜉 = 0,
where 𝜏(y) ∶= (1 − G(0)) y + G(0).

Assume first 𝜉 ≠ 0. Then the first integral of (B1) equals

2∫
1

0
tG−1

0 (t)dt = 𝜇 − 𝜎

𝜉
+ 2𝜎

𝜉 ∫
1

0
t[−ln 𝜏(t)]−𝜉dt = 𝜇 − 𝜎

𝜉
+ 2𝜎

𝜉 ∫
1

G(0)

𝜏 − G(0)
(1 − G(0))2 [−ln 𝜏]−𝜉d𝜏

= 𝜇 − 𝜎

𝜉
+ 2𝜎

𝜉

1
(1 − G(0))2

[
∫

1

G(0)
𝜏[−ln 𝜏]−𝜉d𝜏 − G(0)∫

1

G(0)
[−ln 𝜏]−𝜉d𝜏

]
.

Now, let Γu denote the upper incomplete gamma functions, defined as

Γu(a, x) = ∫
∞

x
ta−1e−tdt.

Using Γ(a) = Γ𝓁(a, x) + Γu(a, x), short calculations involving appropriate changes of variables show

∫
1

G(0)
𝜏[−ln 𝜏]−𝜉d𝜏 = 2𝜉−1 [Γ(1 − 𝜉) − Γu (1 − 𝜉,−2 ln G(0))] = 2𝜉−1Γ𝓁 (1 − 𝜉,−2 ln G(0)) ,

∫
1

G(0)
[−ln 𝜏]−𝜉d𝜏 = Γ(1 − 𝜉) − Γu (1 − 𝜉,−ln G(0)) = Γ𝓁 (1 − 𝜉,−ln G(0)) .

Hence,

2∫
1

0
tG−1

0 (t)dt = 𝜇 − 𝜎

𝜉
+ 𝜎

𝜉(1 − G(0))2

[
2𝜉Γ𝓁 (1 − 𝜉,−2 ln G(0)) − G(0)Γ𝓁 (1 − 𝜉,−ln G(0))

]
. (B2)

The second integral of (B1) can be evaluated in a similar way, resulting in

∫
1

G0(x)
G−1

0 (t)dt = (1 − G0(x))
(
𝜇 − 𝜎

𝜉

)
+ 𝜎

𝜉(1 − G(0))
Γ𝓁 (1 − 𝜉,−ln G(x))) . (B3)

Finally, the combination of Equations (B1), (B2), and (B3) gives

CRPS(G0, x) = (2G0(x) − 1)
(

x − 𝜇 + 𝜎

𝜉

)
+ 𝜎

𝜉(1 − G(0))2

[
−2𝜉Γ𝓁 (1 − 𝜉,−2 ln G(0))

+2G(0)Γ𝓁 (1 − 𝜉,−ln G(0)) + 2 (1 − G(0)) Γ𝓁 (1 − 𝜉,−ln G(x))] .

Now, let 𝜉 = 0. In this case for the integrals in (B1) we have

2∫
1

0
tG−1

0 (t)dt = 𝜇 − 2𝜎 ∫
1

0
t ln [−ln 𝜏(t)] dt = 𝜇 − 2𝜎 ∫

1

G(0)

𝜏 − G(0)
(1 − G(0))2 ln[−ln 𝜏]d𝜏

= 𝜇 − 2𝜎
(1 − G(0))2

[
∫

1

G(0)
𝜏 ln[−ln 𝜏]d𝜏 − G(0)∫

1

G(0)
ln[−ln 𝜏]d𝜏

]
,

∫
1

G0(x)
G−1

0 (t)dt = 𝜇 (1 − G0(x)) − 𝜎 ∫
1

G0(x)
ln [−ln 𝜏(t)] dt

= 𝜇 (1 − G0(x)) −
𝜎

1 − G(0) ∫
1

G(x)
ln [−ln 𝜏] d𝜏.



22 of 24 BARAN et al.

Hence, keeping in mind that

∫ 𝜏 ln [−ln 𝜏] d𝜏 = 𝜏2

2
ln [−ln 𝜏] − 1

2
Ei(2 ln 𝜏)

]
and ∫ ln [−ln 𝜏] d𝜏 = 𝜏 ln [−ln 𝜏] − Ei(ln 𝜏)] ,

we obtain

CRPS(G0, x) = x(2G0(x) − 1) + 𝜇 − 2𝜇G0(x) +
2𝜎

(1 − G(0))2

{[
s2

2
ln [−ln s] − 1

2
Ei(2 ln s)

]s=1

s=G(0)

−G(0) [(s ln [−ln s] − Ei(ln s)]s=1
s=G(0) − (1 − G(0)) [s ln [−ln s] − Ei(ln s)]s=1

s=G(x)

}
.

Finally, since

s2 ln [−ln s] − Ei(2 ln s) − 2G(0) (s ln [−ln s] − Ei(ln s)) − 2 (1 − G(0)) (s ln [−ln s] − Ei(ln s))

= s2 ln [−ln s] − 2s ln [−ln s] − Ei(2 ln s) + 2Ei(ln s)

= C −ln 2 + (s − 1)2 ln [−ln s] +
∞∑

k=1

−(2 ln s)k + 2(ln s)k

k!k
→ C −ln 2 as s ↑ 1,

the CRPS of a TGEV distribution with 𝜉 = 0 equals

CRPS(G0, x) = (x − 𝜇) (2G0(x) − 1) + 𝜎

(1 − G(0))2

×
(

C −ln 2 + Ei (2 ln G(0)) + (G(0))2 ln [−ln G(0)] − 2G(0)Ei (ln G(0))
)

+ 2𝜎
1 − G(0)

[G(x) ln [−ln G(x)] − Ei (ln G(x))] .

□

APPENDIX C. DEPENDENCE OF twCRPS OF SHORT-RANGE FORECASTS ON THE
THRESHOLD

Beyond comparing the twCRPS values reported in Tables 2,4, and 6, one can get a deeper insight into the
tail behavior of the different EMOS approaches by examining Figure C1 showing the twCRPSS with respect to
the TN EMOS as function of the threshold. For the UWME forecasts (Figure C1(a)), GEV and TGEV mod-
els show very similar behavior and up to 13 m/s both approaches outperform the TN and LN EMOS meth-
ods. For lower threshold values TGEV EMOS results in the highest skill score, but after 8 m/s GEV shows
the best predictive performance. A similar ranking of the methods can be observed in Figure C1(b); however,
here the interval where the GEV and TGEV methods perform almost identically is much shorter. Finally, in
the case of the ECMWF ensemble the TGEV EMOS results in the highest skill score for all thresholds, see
Figure C1(c).

The difference between the first two cases and the third one in terms of the GEV and TGEV EMOS models might be
explained with the difference in the support of these distributions. In the case of UWME and ALADIN-HUNEPS forecasts,
the shape parameter 𝜉 is negative for all forecast cases. Hence, the supports of GEV and TGEV predictive distributions are
] −∞, 𝜇 − 𝜎∕𝜉] and [0, 𝜇 − 𝜎∕𝜉], respectively, moreover, the upper bounds of the GEV are in general higher than those of
the TGEV. In this way GEV can capture higher wind speeds, which results in better forecast skill in the upper tail. However,
for the ECMWF ensemble the shape parameter of GEV and TGEV distributions is positive in 99.18% and 92.88% of all
forecast cases, respectively, meaning that in these cases the supports of the predictive distributions are not bounded from
above.
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F I G U R E C1 Threshold-weighted continuous ranked probability skill score values with respect to the truncated normal ensemble
model output statistics model. (a) University of Washington mesoscale ensemble; (b) Aire Limitée Adaptation dynamique Développement
International-Hungary Ensemble Prediction System ensemble; (c) European Centre for Medium-Range Weather Forecasts ensemble

APPENDIX D. CALIBRATION AT DIFFERENT FORECAST LEVELS

To investigate calibration at different forecast levels, using the idea of Bremnes (2019), we group the forecast cases of
verification data according to whether the ensemble mean is low (less than the 10th percentile of the means for the given
lead time), medium (between 10 and 90 percentiles) or high (greater than the 90th percentile). As in terms of the mean
CRPS all calibrated forecasts outperform the raw ensemble by a wide margin in all of our case studies, here we focus on
the comparison of the competing EMOS approaches. Table D1 contains the CRPSS values with respect to the reference
TN EMOS model at different levels for the short-range forecasts of Section 4.2. Note that for low and high forecasts the
GEV and TGEV EMOS approaches outperform both the TN and LN EMOS models and the TGEV EMOS shows the best
overall performance.

T A B L E D1 Continuous ranked probability skill score values with respect to the truncate normal ensemble model output statistics
model for forecasts with low (less than the 10th percentile), medium (between 10 and 90 percentiles) or high (greater than the 90th
percentile) ensemble mean

UWME ALADIN-HUNEPS ECMWF

Forecast Low Medium High Low Medium High Low Medium High

LN 0.000 0.000 −0.000 −0.031 −0.004 0.003 0.013 0.008 0.006

GEV 0.035 0.008 0.025 0.005 −0.001 0.018 0.027 0.008 0.016

TGEV 0.034 0.008 0.028 0.008 −0.001 0.020 0.019 0.010 0.028

Abbreviations: ALADIN-HUNEPS, Aire Limitée Adaptation dynamique Développement International-Hungary Ensemble Prediction System; ECMWF,
European Centre for Medium-Range Weather Forecasts; GEV, generalized extreme value; TGEV, truncated GEV; UWME, University of Washington
mesoscale ensemble.
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F I G U R E D1 Continuous ranked probability skill score values with respect to the truncate normal ensemble model output statistics
model for forecasts with low (a), medium (b) or high (c) ensemble mean

A different behavior can be observed in Figure D1 showing the same skill score as function of the lead time for
the global ECMWF forecasts investigated in Section 4.3. Here the GEV EMOS is the overall winner; however, for high
wind speed forecasts the differences between the various EMOS approaches are rather small, especially for long forecast
horizons. Note also that for the medium and high groups the ranking of the models is consistent with Figure 6(b).


