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Abstract. In this paper, we provide a complete analysis of second-order admissible variations to
inequality type constraints that are given in terms of lower semicontinuous set-valued functions whose
images are closed convex sets with nonempty interior. As an application, we consider optimization
problems where such constraints are present and we deduce second-order necessary conditions for
optimality.
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1. Introduction. Consider the following optimization problem:

(P) Minimize f(z) subject to G(z) ∈ Q, H(z) = 0,

where f : D → R, G : D → X, H : D → Y , X, Y , Z are Banach spaces, D ⊂ Z is
nonempty and open, and Q ⊂ X is a closed convex set with nonempty interior.

The prototype of such problems arises, for instance, in optimal control theory
with state constraints in the inclusion form x(t) ∈ Q(t) (∀t ∈ T ), where Q(·) is a
lower semicontinuous set-valued map with closed convex nonempty interior images.

Better understanding of optimality conditions is an ongoing research program for
several researchers. This question is of great value in theory and in applications. As
is widely known, such conditions must always be given in terms of the original data
of the problem and, in the context of necessity, are expected to be as strong as they
can be.

In 1988, Kawasaki [6], [8] discovered, for the problem (P), where Q is a cone,
second-order necessary conditions that contain an extra term manifesting the presence
of infinitely many inequalities in the constraint G(z) ∈ Q. This phenomenon is known
as an “envelope-like effect.” Such a result was generalized by Cominetti in [2]. Both
results assumed a Mangasarian–Fromovitz-type condition and evoked in the extra
term the second-order tangent set:

T 2(x, d|Q) = lim inf
t→0+

Q− x− td

t2
.

In [11] the authors have generalized the previous results in [6], [8], and [2] to the
nondifferentiable case without assuming a Mangasarian–Fromowitz condition. How-
ever, instead of T 2(x, d|Q), they have used the second-order admissible variation set
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708 ZSOLT PÁLES AND VERA ZEIDAN

V (x, d|Q) whose elements are vectors v ∈ X satisfying the following condition: there
exists ε > 0 such that

x+ εd+ ε2(v + w) ∈ Q for all 0 < ε < ε, ||w|| < ε, w ∈ X.

That is,

V (x, d|Q) =
⋃
ε>0

⋂
ε<ε

||w||<ε

[
1

ε2
(Q− x− εd) + w

]
.

It follows directly from the definition that V (x, d|Q) is an open convex set. Moreover,
it is shown in [11] that

V (x, d|Q) = T 2(x, d|Q).

The results obtained in [11] are analogous to those obtained by Maruyama [9, Theorem
3.2], who uses a Neustadt derivative to handle the nonsmoothness of data.

In order to recall the first- and second-order necessary conditions for (P), obtained
in [11, Corollary 2], we need to introduce the following notation and notions.

A point ẑ ∈ D is called an admissible point for (P) if G(ẑ) ∈ Q and H(ẑ) = 0
hold.

A point ẑ ∈ D is called a regular point for (P) if
(R1) f is locally Lipschitz at ẑ;
(R2) G is strictly Fréchet differentiable at ẑ;
(R3) H is strictly Fréchet differentiable at ẑ and the range of the linear oper-

ator H ′(ẑ) is a closed subspace of Y .
If f is locally Lipschitz at ẑ, then the expression

fo(ẑ; d) := lim sup
(z,ε)→(ẑ,0+)

f(z + εd)− f(z)

ε

is finite and will be called Clarke’s generalized directional derivative. For properties,
see [1].

Let ẑ be an admissible regular point for (P) and d ∈ Z. A vector d ∈ Z is called
a critical direction at ẑ for (P) if

(C1) fo(ẑ; d) ≤ 0;
(C2) G′(ẑ)d ∈ cone(Q−G(ẑ)) =: T (G(ẑ)|Q);
(C3) H ′(ẑ)d = 0.

A vector d ∈ Z is called a regular direction at ẑ for (P) if the following hold.

(R4) foo(ẑ, d) := lim sup
ε→0+

2
f(ẑ + εd)− f(ẑ)− εfo(ẑ; d)

ε2
is finite.

(R5) The second-order directional derivatives

G′′(ẑ, d) := lim
ε→0+

2
G(ẑ + εd)−G(ẑ)− εG′(ẑ)d

ε2

and

H ′′(ẑ, d) := lim
ε→0+

2
H(ẑ + εd)−H(ẑ)− εH ′(ẑ)d

ε2

exist.
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(R6) The set of second-order admissible variations of Q at G(ẑ) in the direc-
tion G′(ẑ)d is not empty, i.e. V (G(ẑ), G′(ẑ)d|Q) 6= ∅.

Clearly, the zero vector is always a regular critical direction at ẑ for (P).
Now we are ready to state the result of [11, Corollary 2].
Theorem 1.1. Let ẑ be a regular solution of the above problem (P). Then, for

all regular critical directions d, there exist Lagrange multipliers λ ≥ 0, x∗ ∈ X∗,
and y∗ ∈ Y ∗ such that at least one of them is different from zero and the following
relations hold.

x∗ ∈ N(G(ẑ)|Q),(1.1)

λfo(ẑ; z) + 〈x∗, G′(ẑ)z〉+ 〈y∗, H ′(ẑ)z〉 ≥ 0 for z ∈ Z,(1.2)

and

λfoo(ẑ, d) + 〈x∗, G′′(ẑ, d)〉+ 〈y∗, H ′′(ẑ, d)〉 ≥ 2δ∗
(
x∗
∣∣V (G(ẑ), G′(ẑ)d|Q)

)
.(1.3)

(Here δ∗ stands for the support function [14].)
Results along the line of Theorem 1.1 were obtained by Ioffe [5] and Penot [13]

for the differentiable case and in the presence of a certain qualification condition. In
these works, the superior second-order tangent set is used, namely,

Q′′(x, d) := lim sup
t→0+

Q− x− td

t2
.

Clearly, Q′′(x, d) is larger than T 2(x, d|Q) = V (x, d|Q), but as noted in [7], this set
is more difficult to compute and hence is not as useful in the applications.

The relationship between V and T 2 shows that either of the two sets can be used
in Theorem 1.1. Two important questions naturally arise from Theorem 1.1.

(i) How can we check the nonemptiness of V (x, d|Q), since otherwise the second-
order optimality conditions would be satisfied trivially?

(ii) How do we evaluate the support function at V (x, d|Q) and hence V (x, d|Q)?
In order that V (x, d|Q) be nonempty, it is only necessary that Q have a nonempty

interior and that d belong to cone(Q−x) = T (x|Q), which is the tangent cone to Q at
x. If d ∈ cone(Q−x), then V (x, d|Q) is nonempty and V (x, d|Q) = cone(cone(intQ−
x)−d) (cf. [11, Theorem 4]). In this case the extra term in the second-order condition
(1.3) disappears. However, examples are provided by Kawasaki [6] in order to show
that the necessary conditions with extra term, that is, when d ∈ cone(Q− x), handle
situations that cannot be handled with previous results where d is taken from cone(Q−
x). Thus one has to also consider directions d ∈ T (x|Q) \ cone(Q − x). In this case
the description of V (x, d|Q) and its nonemptiness is far from being trivial.

The key role of the two questions stated above is also stressed by Kawasaki [7], to
which Penot [13] also refers the readers. In the same paper [7], Kawasaki was able to
answer these two questions pertaining to the set T 2(x, d|Q) for only the special case
when Q has the form

Q := C+(T ) := { x ∈ C(T,R) : x(t) ≥ 0 ∀t ∈ T },

where T is a compact metric space. These results, pertaining to the set V , were
generalized in [11, Theorem 3] by the authors for the nondifferentiable setting.
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In the following theorem we recall the results of Kawasaki [7, Theorem 2.1], [8,
Lemma 3.1].

Theorem 1.2. Let x ∈ C+(T ) and d ∈ cone(C+(T ) − x). Let T0 be the set of
t0 ∈ T satisfying the following property: there exists a sequence tn ∈ T such that

x(tn) > 0, tn → t0, and
d(tn)

x(tn)
→ −∞ as n→∞.(1.4)

Define the function E = Ex,d by

E(t) :=




sup

{
lim sup
n→∞

d(tn)2

4x(tn)
: (tn) satisfies (1.4)

}
if t ∈ T0,

0 if x(t) = d(t) = 0, t 6∈ T0,
−∞ otherwise.

Then
(a) T 2(x, d|Q) 6= ∅ if and only if Ex,d(t) < +∞ for all t ∈ T ;
(b) a function v ∈ C(T,R) belongs to T 2(x, d|C+(T )) if and only if Ex,d(t) ≤ v(t)

for all t ∈ T .
The function E defined in Theorem 1.2 can be expressed in another form; see

Remark 3.3 below.
Of much more interest is the case when Q is a subset of C(T,Rr) defined by

Q = { x(·) ∈ C(T,Rr) | x(t) ∈ Q(t) ∀t ∈ T },(1.5)

where Q(·) is a lower semicontinuous set-valued map whose images are closed, convex,
and have nonempty interior. The importance of this type of constraint stems from
control problems with state constraints. Indeed, it is stated by Loewen and Rockafellar
in [10]: “A satisfactory treatment of problems whose velocity constraint is described
intrinsically by a differential inclusion is one of the principal accomplishments of
nonsmooth analysis.”

For the important case, when Q is given by (1.5), the two questions (i) and (ii)
stated above are still open. In this case, the above question can be rephrased as
follows:

(*) Characterize the nonemptiness and the support functional of V (x, d|Q) in
terms of the images Q(t) and their support functionals δ∗(·|Q(t)).

Note that, by [12], the set Q defined by (1.5) is “C-convex” (see section 2) and thus
V (x, d|Q) is also “C-convex.” Therefore, V (x, d|Q) can be identified with a lower
semicontinuous set-valued function V (x, d|Q)(·) whose images are nonempty convex
open sets. In this case, by [15] and Theorem 2.1, δ∗(·|V (x, d|Q)) is expressed in terms
of δ∗(·|V (x, d|Q)(·)) and, by [12] and Corollary 2.3, the nonemptiness of V (x, d|Q) is
characterized by

δ∗
(
ξ|V (x, d|Q)(t)

)
> −∞ ∀ (t, ξ) ∈ T ×Rr.(1.6)

Furthermore, the correspondence V (x, d|Q) → q(·, ·) is bijective, where

q(t, ξ) := δ∗
(
ξ|V (x, d|Q)(t)

)
(1.7)

is jointly lower semicontinuous and sublinear in ξ. Therefore, the questions in (*) are
equivalent to finding for q(·, ·), defined in (1.7), an expression explicitly given in terms
of δ∗(·|Q(·)), x(·), and d(·). This task is far from trivial.
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The aim of this paper is to positively answer the open questions in (*) in such a
way that extends the result known for the case where Q = C+(T ). In section 2, we
review recent results on convex analysis developed in [12] and needed for the rest of the
paper. In section 3, we introduce a function σ(x, d|Q)(t, ξ) in terms of δ∗(ξ|Q(t)), x(·),
and d(·). This function turns out to be jointly lower semicontinuous and positively
homogeneous in ξ. In Theorem 3.2, we provide a characterization of V (x, d|Q) in
terms of coσ, which is the largest function below σ that is lower semicontinuous in
(t, ξ) and sublinear in ξ. In Theorem 3.5, we show that the nonemptiness of V (x, d|Q)
is equivalent to the boundedness below of either the values of σ(x, d|Q) or of the
values of coσ(x, d|Q). Combining these two theorems, we deduce that coσ(x, d|Q),
which is in terms of δ∗

(· |Q(·)), is the function q(·, ·), defined in (1.7). Therefore, a
thorough answer to (*) is obtained. Furthermore, we show in Corollary 3.9 that not
only V (x, d|Q), but also clV (x, d|Q) can be characterized in terms of coσ(x, d|Q). In
section 4, we show how our results extend the results known in the literature for the
special case when Q(t) is the cone of nonnegative numbers. Specifically, a comparison
with the relevant results of [6] and [7] is displayed. In section 5, we apply the results
of section 3 to an optimization problem, which was the initial motivation for those
results. There, Theorem 5.1 presents second-order optimality conditions in terms
of the new function coσ. At the end of this section, we also present an example
illustrating how the function coσ can be evaluated.

2. Preliminary results from convex analysis. Let T be a compact Hausdorff
space and Γ(T ) be the set of lower semicontinuous set-valued maps Q(·) from T to the
subsets of Rr such that Q(t) 6= ∅ is closed and convex for all t ∈ T . Consider Λ(T )
the set of jointly lower semicontinuous functions q : T ×Rr →] −∞,+∞] such that
q(t, ·) is sublinear on Rr for all t ∈ T . Set Σ(T ) to be the set of nonempty, closed,
and C-convex subsets Q of C(T,Rr), where the concept of C-convexity is defined as

λ(·)x(·) + (1− λ(·))y(·) ∈ Q

whenever x(·), y(·) ∈ Q, and λ(·) ∈ C(T, [0, 1]).
In [12] it is shown that to any Q(·) ∈ Γ(T ) there corresponds a function q(·, ·) ∈

Λ(T ) and a set Q ∈ Σ(T ) as follows:

q(t, ξ) := δ∗(ξ|Q(t)) on T ×Rr,(2.1)

where δ∗ is the support functional and

Q := { x(·) ∈ C(T,Rr) | x(t) ∈ Q(t) ∀t ∈ T }.(2.2)

Furthermore, the above correspondences between the three sets are bijective and their
inverses, respectively, are given by the following formulae:

Q(t) = { x ∈ Rr | q(t, ξ) ≥ 〈ξ, x〉 ∀ξ ∈ Rr }(2.3)

and

Q(t) = { x(t) | x(·) ∈ Q }.(2.4)

(Cf. [12, Theorems 4.1 and 4.2].)
Since Q defined by (2.2) is a convex subset of C(T,Rr), then its support functional

is defined by

δ∗(µ|Q) := sup

{ ∫
T

〈x(t), dµ(t)〉
∣∣∣∣ x(·) ∈ Q

}
,(2.5)



712 ZSOLT PÁLES AND VERA ZEIDAN

where µ is a Radon measure on T with values in Rr.
The following connections between the support functionals δ∗(·|Q) and δ∗(·|Q(t)),

the normal cones N(·|Q) and N(·|Q(t)), and the tangent cones T (·|Q) and T (·|Q(t))
are derived in [16] and [12].

Let µ ∈ (C(T,Rr))∗ be a vector-valued Radon measure on T with components
(µ1, . . . , µr). Then denote

|µ| := |µ1|+ · · ·+ |µr|,
where |µi| = µ+

i + µ−i , and µ+
i and µ−i are, respectively, the positive and negative

parts in the Jordan decomposition of the measure µi. It is clear that µ is absolutely
continuous with respect to the scalar measure |µ|. We denote by dµ

d|µ| (·) the Radon–

Nikodym derivative of µ with respect to |µ|.
Theorem 2.1 (see [12], [16]). Let Q(·) ∈ Γ(T ) and let Q be defined by (2.2).

Then, for µ ∈ (C(T,Rr))∗ and x(·) ∈ Q,
(i) δ∗(µ|Q) =

∫
T
δ∗( dµ

d|µ| (t)|Q(t))d|µ|(t),
(ii) µ ∈ N(x(·)|Q) iff dµ

d|µ| (t) ∈ N(x(t)|Q(t)) |µ|-a.e.,
(iii) for u(·) ∈ C(T,Rr),

u(·) ∈ T (x(·)|Q) iff u(t) ∈ T (x(t)|Q(t)) ∀t ∈ T.

Now consider the following subsets of Γ(T ), Λ(T ), and Σ(T ):

Γ0(T ) := { Q(·) ∈ Γ(T ) | intQ(t) 6= ∅ ∀t ∈ T },
Λ0(T ) := { q ∈ Λ(T ) | q(t, ξ) + q(t,−ξ) > 0 ∀ξ 6= 0,∀t ∈ T },
Σ0(T ) := { Q ∈ Σ(T ) | intQ 6= ∅ }.

The following result was developed in [12]. It states that the three subsets defined
above are also equivalent. Furthermore, the connections between the interiors of the
sets Q and Q(t) and the set

{ x ∈ Rr | q(t, ξ) > 〈ξ, x〉 ∀ξ 6= 0 }
are presented.

Theorem 2.2 (see [12, Theorems 4.1 and 4.2]). The sets Γ0(T ), Λ0(T ), and
Σ0(T ) are equivalent via the maps defined in (2.1) and (2.2). Furthermore, for Q(·) ∈
Γ0(T ), we have

intQ(t) = { x ∈ Rr | q(t, ξ) > 〈ξ, x〉 ∀ξ 6= 0 } ∀t ∈ T

and

intQ = { x(·) ∈ C(T,Rr) | x(t) ∈ intQ(t) ∀t ∈ T } 6= ∅,
where q and Q are defined in (2.1) and (2.2), respectively.

Using the results of Theorem 2.2, the relationship between nonempty open C-
convex subsets of C(T,Rr), lower semicontinuous set-valued maps with nonempty
open and convex images, and functionals in Λ0(T ) can also be established. Let

Γ0(T ) := {Q(·) : T → 2Rr | Q(·) is lsc and Q(t) 6= ∅ is open and convex ∀t ∈ T},

Σ0(T ) := { Q ⊂ C(T,Rr) | Q 6= ∅ is open and C-convex }.
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Corollary 2.3 (see [12, Corollary 4.4]). The set Γ0(T ) is equivalent to Λ0(T )
and Σ0(T ) via the correspondences defined by (2.1) and (2.2), respectively.

Remark 2.1. Let X be a Banach space and let Q ⊂ X be a convex set with
nonempty interior and x ∈ Q. Then a vector d ∈ X is called a first-order admissible
variation of Q at x if there exists ε > 0 such that

x+ ε(d+ w) ∈ Q for all 0 < ε < ε, ||w|| < ε, w ∈ X.

The set of first-order admissible variations is the Dubovitskii–Milyutin cone defined
in [3]. A thorough investigation of this cone is important in obtaining first-order
necessary conditions concerning inequality constraints (see [4]). It is also known (cf.
[4, Theorem 8.2]) that this cone is given by

{ λ(u− x) | u ∈ intQ, λ > 0 }.

It is easy to see that the closure of this set is equal to the cone T (x|Q). Thus the set
of first-order admissible variations can also be represented as the interior of T (x|Q).

Consider the case X = C(T,Rr) and Q given by (2.2) for Q(·) in Γ(T ). Thus,
by combining Theorems 2.1 and 2.2, we obtain that d(·) is an admissible first-order
variation with respect to the set Q at x(·) ∈ Q if and only if

d(t) ∈ intT (x(t)|Q(t)) for t ∈ T.

This represents a characterization of the set of first-order variations of Q in terms of
Q(·).

3. Second-order admissible variations. Let X be a Banach space and let
Q ⊂ X be a closed convex set. In addition, let x ∈ Q and d ∈ X. As defined in
section 1, a vector v ∈ X is called a second-order admissible variation of Q at x in
the direction d if there exists ε > 0 such that

x+ εd+ ε2(v + w) ∈ Q for all 0 < ε < ε, ||w|| < ε, w ∈ X.

In the sequel, set X = C(T,Rr), T = (T, ρ) to be a compact metric space, and
set Q : T → 2Rr

to be a lower semicontinuous set-valued function whose images are
closed and convex with nonempty interior. Define the set Q ⊂ C(T,Rr) by

Q = { x(·) ∈ C(T,Rr) | x(t) ∈ Q(t) }.(3.1)

Then intQ 6= ∅ by Theorem 2.2.
The main results of this paper are given in this section. We focus on characterizing

the set V (x, d|Q) in terms of the images Q(t) and their support functionals. As we
shall see this is obtained through the function σ.

Let x ∈ Q and d ∈ T (x|Q) be arbitrarily fixed continuous functions. In order to
describe V (x, d|Q), we have to introduce now the following notation.

Let

C(x, d|Q) := { (t, ξ) ∈ T ×Rr | ξ ∈ N(x(t)|Q(t)), 〈ξ, d(t)〉 = 0 }

and

C(x, d|Q)(t) := { ξ ∈ Rr | (t, ξ) ∈ C(x, d|Q) }.
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Lemma 3.1. The set-valued map C(x, d|Q)(·) is nonempty closed convex cone
valued ; furthermore, C(x, d|Q) is a closed set.

Proof. We have

C(x, d|Q)(t) = N(x(t)|Q(t)) ∩ {d(t)}⊥.(3.2)

Hence C(x, d|Q)(t) is a nonempty closed convex cone. It remains to prove only the
closedness of C(x, d|Q). Let tn → t0 and ξn ∈ C(x, d|Q)(tn) with ξn → ξ0 be arbitrary
sequences. Then, by (3.2),

〈ξn, x(tn)〉 = δ∗(ξn|Q(tn)) 〈ξn, d(tn)〉 = 0.

Using the lower semicontinuity of δ∗(·|Q(·)) (see [12, Lemma 3.3]) and upon taking
the liminf, we obtain

〈ξ0, x(t0)〉 ≥ δ∗(ξ0|Q(t0)) and 〈ξ0, d(t0)〉 = 0.

The first inequality can only be equality since x(t0) ∈ Q(t0) and 〈ξ0, x(t0)〉 ≤ δ∗(ξ0|Q(t0))
is always true. Thus ξ0 ∈ C(x, d|Q)(t0), from which the closedness of C(x, d|Q)
follows.

Let

S(x, d|Q) := { (t, ξ) ∈ T ×Rr | δ∗(ξ|Q(t)) > 〈ξ, x(t)〉 , 〈ξ, d(t)〉 > 0 },
and denote by S ′(x, d|Q) the set of accumulation points of S(x, d|Q); i.e.,

S ′(x, d|Q) = { (t, ξ) | ∃tn → t, ∃ξn → ξ with (tn, ξn) ∈ S(x, d|Q) ∀n }.
Then, obviously, S(x, d|Q) is an open subset of T ×Rr. Define

σ(x, d|Q)(t, ξ):=




lim inf
(s, ζ) → (t, ξ)

(s, ζ) ∈ S(x, d|Q)

E(x, d|Q)(s, ζ), if (t, ξ) ∈ C(x, d|Q) ∩ S ′(x, d|Q),

0 if (t, ξ) ∈ C(x, d|Q) \ S ′(x, d|Q),
+∞ otherwise,

(3.3)

where

E(x, d|Q)(t, ξ) :=
[〈ξ, d(t)〉]2

4[〈ξ, x(t)〉 − δ∗(ξ|Q(t))]
.(3.4)

Remark 3.1. First, note that the ratio E(x, d|Q)(t, ξ) is positively homogeneous
in ξ; therefore, the liminf in the definition of the function σ(x, d|Q) could be restricted
to those ζ with |ζ| = |ξ| if ξ 6= 0. Furthermore, C(x, d|Q)(t) and S(x, d|Q)(t), which
is defined similarly to C(x, d|Q)(t), are cones; thus it follows that σ(x, d|Q)(t, ·) is a
positively homogeneous function. As we shall see in Lemma 3.3 below, the function
σ(x, d|Q)(·, ·) is in fact lower semicontinuous on T × (Rr \ {0}).

Define the convex regularization of σ(x, d|Q)(t, ·) by

coσ(x, d|Q)(t, ξ) := inf

{ n∑
i=1

λiσ(x, d|Q)(t, ξi)

∣∣∣∣
ξ =

n∑
i=1

λiξi, ξi ∈ Rr, λi ∈ [0, 1],
n∑
i=1

λi = 1

}
.(3.5)
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Hence coσ is the largest convex function in ξ such that

coσ(x, d|Q)(t, ξ) ≤ σ(x, d|Q)(t, ξ) for t ∈ T, ξ ∈ Rr.

Consequently, coσ(x, d|Q)(t, ·) is sublinear for each fixed t ∈ T .
Now consider the lower semicontinuous regularization in (t, ξ) of coσ. It is denoted

by coσ and is defined as

coσ(x, d|Q)(t, ξ) := lim inf
(τ,ζ)→(t,ξ)

coσ(x, d|Q)(τ, ζ).(3.6)

Clearly, coσ is the largest lower semicontinuous function in (t, ξ) that is bounded
above by coσ. The result is that coσ(x, d|Q)(t, ·) is also sublinear. Therefore, coσ is
in Λ(T ).

The aim of this section is twofold:
(i) to establish a characterization of the set V (x, d|Q) in terms of the convex and

jointly lower semicontinuous function coσ(x, d|Q) (see Theorem 3.2);
(ii) to provide a full description of the nonemptiness of V (x, d|Q) in terms of the

function σ(x, d|Q) or coσ(x, d|Q) (see Theorem 3.5).
The combination of these results confirms that coσ is the function q in (1.7) corre-
sponding to the set-valued map V (x, d|Q)(·). Another consequence is that coσ is also
the function q in (2.1) corresponding to the set-valued map V (x, d|Q)(·), where

V (x, d|Q)(t) := { v(t) ∈ Rr | v(·) ∈ clV (x, d|Q) }(3.7)

(see Corollary 3.9).
Theorem 3.2. A function v : T → Rr belongs to V (x, d|Q) if and only if

〈ξ, v(t)〉 < coσ(x, d|Q)(t, ξ) for all t ∈ T, ξ ∈ (Rr \ {0}).(3.8)

The proof is based on the following two results. The first is a modification of the
key lemma from [11].

Lemma 3.3. Let T be a compact metric space and let a : T → [−∞,∞[ and
b, c : T → R be upper semicontinuous functions. Define σa,b : T → [−∞,∞] by

σa,b(u) :=




lim inf
τ → u

a(τ) < 0, b(τ) > 0

b2(τ)

4a(τ)
if u ∈ Ta=0, b=0 ∩ ∂(Ta<0, b>0),

0 if u ∈ Ta=0, b=0 \ ∂(Ta<0, b>0),
+∞ otherwise.

Then σa,b is a lower semicontinuous function and the set of points where σa,b < 0
is nowhere dense in T . Furthermore, the following statements are equivalent to each
other

(i)

a(u) ≤ 0 for all u ∈ T ,
b(u) ≤ 0 for all u ∈ Ta=0,
c(u) < σa,b(u) for all u ∈ T .

(ii) There exists δ > 0 such that, for all u0 ∈ T , for all sequences un ∈ T with
un → u0 and εn > 0 with εn → 0,

a(un) + εnb(un) + εn
2(c(u0) + δ) ≤ 0

holds for sufficiently large values of n ∈ N.
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If c is also continuous, then the following statement is also equivalent to (i) and (ii).
(iii) There exists ε > 0 such that, for all u ∈ T and for all ε < ε,

a(u) + εb(u) + ε2(c(u) + ε) ≤ 0.

Remark 3.2. The novelty in the formulation of this lemma versus the key lemma
in [11] resides in the fact that the functions a and σa,b may take the value −∞ and
+∞, respectively, and in the equivalence of the third condition (iii) with each of (i)
and (ii).

Remark 3.3. The function σa,b and the function E = Ex,d introduced in Theo-
rem 1.2 satisfy the following identity (if x, d are as in Theorem 1.2):

Ex,d = −σ−x,−d.

This relation can be checked immediately. Therefore, the use of the function E is also
possible if a, b are continuous functions.

Proof. The proof of the lower semicontinuity of σa,b and (i)⇐⇒(ii) is analogous
to that of the key lemma in [11].

(ii)⇒(iii). Assume that (iii) is not true. Then, for all ε = 1/n, there exists
un ∈ T , εn < 1/n such that

a(un) + εnb(un) + ε2n

(
c(un) +

1

n

)
> 0.

We may assume that un → u0, since T is compact. By the upper semicontinuity of
c, c(un) + 1/n ≤ c(u0) + δ for large n. Thus

a(un) + εnb(un) + ε2n (c(u0) + δ) > 0

for large n, which contradicts (ii).
(iii)⇒(ii). Let δ := ε/2 and un → u0, εn → 0 be arbitrary sequences. Then, by

(iii),

a(un) + εnb(un) + ε2n (c(un) + ε) ≤ 0

for εn < ε, that is, for large values of n. Since c is lower semicontinuous, c(un) >
c(u0)− δ if n is large enough. Thus c(un) + ε > c(u0) + δ and therefore

a(un) + εnb(un) + ε2n (c(u0) + δ) ≤ 0

for sufficiently large n.
The following result is the second key to prove Theorem 3.2. It is a characteriza-

tion of V (x, d|Q) in terms of σ. Hence it is a weaker result than Theorem 3.2.
Lemma 3.4. A continuous function v : T → Rr belongs to V (x, d|Q) if and only

if

〈ξ, v(t)〉 < σ(x, d|Q)(t, ξ) for all t ∈ T, ξ ∈ Rr \ {0}.

Proof. A function v : T → Rr belongs to V (x, d|Q) if and only if there exists
ε > 0 such that

x(t) + εd(t) + ε2(v(t) + w(t)) ∈ Q(t)
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for all t ∈ T , ε ≤ ε and continuous functions w : T → Rr with ||w|| ≤ ε. The set Q(t)
is closed and convex; therefore, p ∈ Q(t) holds if and only if 〈ξ, p〉 ≤ δ∗(ξ|Q(t)) for all
ξ ∈ Rr with |ξ| = 1. Applying this argument, we obtain that v ∈ V (x, d|Q) if and
only if

〈ξ, x(t)〉+ ε 〈ξ, d(t)〉+ ε2(〈ξ, v(t)〉+ ε) ≤ δ∗(ξ,Q(t))(3.9)

for all t ∈ T , ε ≤ ε and ξ with |ξ| = 1.
Take

T := T × { ξ ∈ Rr : |ξ| = 1 },(3.10)

a(t, ξ) := 〈ξ, x(t)〉 − δ∗(ξ|Q(t)),

b(t, ξ) := 〈ξ, d(t)〉 ,
c(t, ξ) := 〈ξ, v(t)〉 .

Then T is a compact metric space, and the functions a, b, c satisfy the conditions of
Lemma 3.3. One can also observe that

σ(x, d|Q)(t, ξ) = σa,b(t, ξ) for (t, ξ) ∈ T .

Therefore, by the equivalence of the statements (i) and (iii) of Lemma 3.3, v satisfies
(3.9) on the domain indicated if and only if

〈ξ, x(t)〉 − δ∗(ξ|Q(t)) ≤ 0 for (t, ξ) ∈ T ,

〈ξ, d(t)〉 ≤ 0 for (t, ξ) ∈ T such that 〈ξ, x(t)〉 = δ∗(ξ|Q(t)),

and

〈ξ, v(t)〉 < σ(x, d|Q)(t, ξ) for (t, ξ) ∈ T .(3.11)

The first inequality immediately follows from x(t) ∈ Q(t). The relation 〈ξ, x(t)〉 =
δ∗(ξ|Q(t)) is equivalent to ξ ∈ N(x(t)|Q(t)); therefore, the second inequality is equiv-
alent to d(t) ∈ T (x(t)|Q(t)) which by Theorem 2.1 is the same as d ∈ T (x|Q). Thus
v ∈ V (x, d|Q) if and only if (3.11) holds. Using the observation on the positive
homogeneity in Remark 3.1, we get the statement of this lemma.

Proof of Theorem 3.2 (Sufficiency). If v satisfies (3.8), then (3.5) and (3.6) yield
that v also satisfies the condition of Lemma 3.4; therefore, v ∈ V (x, d|Q).

Necessity. Assume that v ∈ V (x, d|Q). Since the set V (x, d|Q) is open, then
there exists δ > 0 such that v + δB ⊂ V (x, d|Q). Thus, by Lemma 3.4,

〈ξ, v(t)〉+ δ|ξ| < σ(x, d|Q)(t, ξ) for all t ∈ T, ξ ∈ (Rr \ {0}).(3.12)

By defining σ(x, d|Q)(t, 0) := 0, the domain of this inequality can be extended to the
set T ×Rr.

Let ξ1, . . . , ξn ∈ Rr and λ1, . . . , λn ∈ [0, 1] with λ1 + · · ·+λn = 1. Then it follows
from (3.12) that

〈 n∑
i=1

λiξi, v(t)

〉
+ δ

∣∣∣∣
n∑
i=1

λiξi

∣∣∣∣ ≤
n∑
i=1

λi
[〈ξi, v(t)〉+ δ|ξi|

] ≤
n∑
i=1

λiσ(x, d|Q)(t, ξi).
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Therefore,

〈ξ, v(t)〉+ δ|ξ| ≤ coσ(x, d|Q)(t, ξ)

= inf

{ n∑
i=1

λiσ(x, d|Q)(t, ξi)

∣∣∣∣ ξ =
n∑
i=1

λiξi, ξi ∈ Rr, λi ∈ [0, 1],
n∑
i=1

λi = 1

}
.

Now fix (t0, ξ0) and take the liminf with respect to (t, ξ) → (t0, ξ0) in the above
inequality. We get

〈ξ0, v(t0)〉+ δ|ξ0| ≤ lim inf
(t,ξ)→(t0,ξ0)

coσ(x, d|Q)(t, ξ) = coσ(x, d|Q)(t0, ξ0).

Since (t0, ξ0) is arbitrary, (3.8) follows at once.
The statement below is a characterization of the nonemptiness of V (x, d|Q).
Theorem 3.5. The following three statements are equivalent:
(i) V (x, d|Q) 6= ∅,
(ii) coσ(x, d|Q)(t, ξ) > −∞ for all (t, ξ) ∈ T ,
(iii) σ(x, d|Q)(t, ξ) > −∞ for all (t, ξ) ∈ T .
Proof. (i)=⇒(ii). If v ∈ V (x, d|Q), then by Theorem 3.2,

〈ξ, v(t)〉 < coσ(x, d|Q)(t, ξ) for all (t, ξ) ∈ T .
Hence coσ(x, d|Q)(t, ξ) > −∞.

The implication (ii)=⇒(iii) is obvious. The proof of (iii)=⇒(i) is split into three
steps.

Step 1. We prove the following lemma.
Lemma 3.6. If (iii) holds, then there exists K > 0 such that

−K|ξ| ≤ E(x, d|Q)(t, ξ)(3.13)

if (t, ξ) ∈ S(x, d|Q). (Here E(x, d|Q)(·, ·) is defined in (3.4).)
Proof. By contradiction assume that for all n ∈ N there exists (tn, ξn) ∈ S(x, d|Q)

with |ξn| = 1 so that

E(x, d|Q)(tn, ξn) < −n.
We can assume that tn → t0 and ξn → ξ0. Observe that the function E(x, d|Q)(·, ·)
is lower semicontinuous; therefore, we obtain

−∞ = lim inf
n→∞ E(x, d|Q)(tn, ξn) ≥ E(x, d|Q)(t0, ξ0).

That is, E(x, d|Q)(t0, ξ0) = −∞. Thus (t0, ξ0) 6∈ S(x, d|Q). The sequence (tn, ξn)
being in this set, (t0, ξ0) must belong to the boundary of S(x, d|Q). This means that
at least one of the equalities

δ∗(ξ0|Q(t0)) = 〈ξ0, x(t0)〉 , 〈ξ0, d(t0)〉 = 0

is valid. The relations

δ∗(ξ0|Q(t0)) = 〈ξ0, x(t0)〉 and 〈ξ0, d(t0)〉 > 0

are not possible because d(t0) is tangent to Q(t0) at x(t0). If

δ∗(ξ0|Q(t0)) > 〈ξ0, x(t0)〉 and 〈ξ0, d(t0)〉 = 0,
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then E(x, d|Q)(t0, ξ0) = 0, which is a contradiction. The last case is when

δ∗(ξ0|Q(t0)) = 〈ξ0, x(t0)〉 and 〈ξ0, d(t0)〉 = 0.

Then (t0, ξ0) ∈ C(x, d|Q). Therefore,

−∞ = lim inf
n→∞ E(x, d|Q)(tn, ξn) ≥ σ(x, d|Q)(t0, ξ0) > −∞,

which means a contradiction to (iii).
Step 2. We express the characterization obtained in Lemma 3.4 in a different

form.
Lemma 3.7. A function v : T → Rr belongs to V (x, d|Q) if and only if there

exists a positive number ε > 0 such that

〈ξ, v(t)〉 ≤




−ε|ξ|+ E(x, d|Q)(t, ξ)

if ε 〈ξ, d(t)〉 > 2[δ∗(ξ|Q(t))− 〈ξ, x(t)〉],
−ε|ξ|+ δ∗(ξ|Q(t))− 〈ξ, x(t)〉 − ε 〈ξ, d(t)〉

ε2

if ε 〈ξ, d(t)〉 ≤ 2[δ∗(ξ|Q(t))− 〈ξ, x(t)〉]
for all t ∈ T , ξ ∈ (Rr \ {0}).

Proof. As we have already proved in the proof of Lemma 3.4, v ∈ V (x, d|Q) holds
if and only if there exists ε > 0 such that (3.9) holds for all t ∈ T , ε ≤ ε, and ξ ∈ Rr

with |ξ| = 1. In other words, v ∈ V (x, d|Q) if and only if there exists ε > 0 such that

〈ξ, v(t)〉 ≤ −ε|ξ|+ inf
0<ε≤ε

δ∗(ξ|Q(t))− 〈ξ, x(t)〉 − ε 〈ξ, d(t)〉
ε2

for all t ∈ T and for all ξ 6= 0. Computing the infimum on the right-hand side, the
result follows immediately.

Step 3. The following lemma completes the proof of Theorem 3.5.
Lemma 3.8. If (iii) holds, then for any w ∈ intQ there exists ε so that

v =
w − x− εd

ε2
∈ V (x, d|Q).

Proof. Let w be in the interior of Q. Then there exists δ > 0 such that w+δB ⊂ Q
(where B stands for the unit ball of the space C(T,Rr)). Hence

〈ξ, w(t)〉+ δ|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ T, ξ ∈ Rr.

Let K be the constant whose existence was stated in Lemma 3.6. Choose ε > 0 so
that ε2(ε+K) ≤ δ. Thus we have

〈ξ, w(t)〉+ ε2(ε+K)|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ T, ξ ∈ Rr.

To complete the proof of this lemma, we are going to show that v satisfies the necessary
and sufficient condition of Lemma 3.7 with this ε.

Substituting v = (w − x− εd)/ε2 into this condition, it remains to prove that

〈ξ, w(t)〉 ≤




−ε3|ξ|+ ε2E(x, d|Q)(t, ξ) + 〈ξ, x(t)〉+ ε 〈ξ, d(t)〉
if ε 〈ξ, d(t)〉 > 2[δ∗(ξ|Q(t))− 〈ξ, x(t)〉],

−ε3|ξ|+ δ∗(ξ|Q(t))

if ε 〈ξ, d(t)〉 ≤ 2[δ∗(ξ|Q(t))− 〈ξ, x(t)〉]
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for all t ∈ T , ξ ∈ (Rr \ {0}).
By the choice of ε,

〈ξ, w(t)〉+ ε3|ξ| ≤ δ∗(ξ|Q(t)) for all t ∈ T, ξ ∈ Rr.

Therefore, it remains to show that the first inequality holds on the domain indicated.
If (t, ξ) belongs to that domain, then

ε 〈ξ, d(t)〉 > 2[δ∗(ξ|Q(t))− 〈ξ, x(t)〉] ≥ δ∗(ξ|Q(t))− 〈ξ, x(t)〉 .

The right-hand side of this inequality cannot be zero, otherwise 〈ξ, d(t)〉 = 0, which
gives a contradiction. Thus (t, ξ) ∈ S(x, d|Q) holds too. Therefore, by Lemma 3.6,
(3.13) is valid. Combining these inequalities, we obtain

〈ξ, w(t)〉 ≤ δ∗(ξ|Q(t))− ε2(ε+K)|ξ|
< ε 〈ξ, d(t)〉+ 〈ξ, x(t)〉 − ε3|ξ| − ε2K|ξ|
≤ ε 〈ξ, d(t)〉+ 〈ξ, x(t)〉 − ε3|ξ|+ ε2E(x, d|Q)(t, ξ)

for all (t, ξ) satisfying ε 〈ξ, d(t)〉 > 2[δ∗(ξ|Q(t)) − 〈ξ, x(t)〉]. Therefore, it holds that
v ∈ V (x, d|Q).

Thus the nonemptiness of V (x, d|Q) is also proved and the proof of Theorem 3.5
is complete.

Remark 3.4. When nonempty, the set V (x, d|Q) is in Σ0(T ). Thus Theo-
rems 3.2 and 3.5 and Corollary 2.3 yield that coσ is the function q(·, ·) defined by
(1.7). Therefore, when one of the equivalent statements of Theorem 3.5 holds, then
coσ belongs to Λ0(T ); that is, in addition to its lower semicontinuity and sublinearity
property, it also satisfies

coσ(x, d|Q)(t, ξ) + coσ(x, d|Q)(t,−ξ) > 0

for all t ∈ T and for all ξ ∈ Rr, ξ 6= 0.
The next result is a consequence of Theorems 3.2 and 3.5. It states that the func-

tion q(·, ·) = coσ(x, d|Q), which is in Λ0(T ), is the support functional corresponding
via the map (2.1) to the set-valued map V (x, d|Q)(·), where

V (x, d|Q)(t) := { v(t) | v(·) ∈ clV (x, d|Q) }.

Corollary 3.9. The inclusion v ∈ clV (x, d|Q) holds if and only if

〈ξ, v(t)〉 ≤ coσ(x, d|Q)(t, ξ) for all t ∈ T, ξ ∈ Rr.(3.14)

Proof. Let v ∈ clV (x, d|Q). Then there exists a sequence vn ∈ V (x, d|Q) such
that vn → v. Now, by Theorem 3.2,

〈ξ, vn(t)〉 < coσ(x, d|Q)(t, ξ) for all t ∈ T, ξ ∈ (Rr \ {0});(3.15)

therefore, by taking the limit n→∞, (3.14) follows.
Conversely, if v satisfies (3.14), then σ(x, d|Q)(t, ξ) > −∞ for all t ∈ T , ξ 6= 0.

Therefore, V (x, d|Q) is not empty by Theorem 3.5. Let v0 ∈ V (x, d|Q) and let
vn := (1− 1/n)v + (1/n)v0. Then vn → v and (3.15) holds (by adding the inequality
for v and v0 with the proper convex combination). Thus vn ∈ V (x, d|Q); whence
v ∈ clV (x, d|Q).
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In the following result, we describe how the support functional of V (x, d|Q) can
be evaluated in terms of coσ.

Theorem 3.10. Assume that condition (iii) of Theorem 3.5 holds and let µ ∈
M(T ) be a bounded vector-valued Borel measure on T . Then

δ∗
(
µ
∣∣V (x, d|Q)

)
=

∫
T

coσ(x, d|Q)

(
t,

dµ

d|µ| (t)
)
d|µ|(t),(3.16)

where dµ
d|µ| (·) is the Radon–Nikodym derivative of µ with respect to |µ|.

Proof. From the definition of the support functional δ∗, the result is that

δ∗
(
µ
∣∣V (x, d|Q)

)
= δ∗

(
µ
∣∣ clV (x, d|Q)

)
.

From Corollary 3.9 we have that

q(t, ξ) := coσ(x, d|Q)(t, ξ)

is the support functional on T ×Rr associated with clV (x, d|Q) via the map (2.1).
Thus, by Theorem 2.1, (3.16) follows.

4. Comparison with known results. In this section we specialize the state-
ments of Theorems 3.2, 3.5, and 3.10 to the setting when Q(·) is the set-valued map
defined by

Q(t) :=]−∞, 0], t ∈ T.

We show how the function co σ relates to the function E of Theorem 1.2 introduced
by Kawasaki. The set Q defined in (3.1) is now the set of all nonpositive-valued
continuous functions. Let x ∈ Q and d ∈ T (x|Q) be fixed. By Theorem 2.1, the
latter inclusion is equivalent to the following condition: d is a continuous function
satisfying

d(t) ≤ 0 if x(t) = 0 (t ∈ T ).

Lemma 4.1. Under the above assumptions,

coσ(x, d|Q)(t, ξ) =

{
ξσx,d(t) if t ∈ T, ξ > 0,
+∞ if t ∈ T, ξ < 0,

(4.1)

where σx,d is defined as σa,b in Lemma 3.3 with a = x and b = d.
Proof. Taking the definitions used in Lemma 3.4

a(t, ξ) := ξx(t)− δ∗(ξ|Q(t)),

b(t, ξ) := ξd(t),

we get that

σ(x, d|Q)(t, ξ) = σa,b(t, ξ) = |ξ|σx,d(t, sgn (ξ))

for t ∈ T and ξ 6= 0. Hence

σ(x, d|Q)(t, ξ) =

{
ξσx,d(t) if t ∈ T, ξ > 0,
+∞ if t ∈ T, ξ < 0.
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The function on the right-hand side of this equation is sublinear in ξ and lower semi-
continuous in (t, ξ) on T × (R \ {0}). Therefore, coσ(x, d|Q) = σ(x, d|Q) for t ∈ T
and ξ 6= 0.

Corollary 4.2. Let Q be the set of all nonpositive-valued continuous functions
on the compact metric space T , and let x ∈ Q and d ∈ T (x|Q). Then we have the
following assertions:

(i) V (x, d|Q) 6= ∅ if and only if σx,d(t) > −∞ for all t ∈ T ;
(ii) a continuous function v : T → R belongs to V (x, d|Q) if and only if v(t) <

σx,d(t) for all t ∈ T ;
(iii) a continuous function v : T → R belongs to clV (x, d|Q) if and only if v(t) ≤

σx,d(t) for all t ∈ T ;
(iv) if V (x, d|Q) 6= ∅ and µ ∈M(T ) is a nonnegative Borel measure on T , then

δ∗
(
µ
∣∣V (x, d|Q)

)
=

∫
T

σx,d(t)dµ(t).

Proof. Using Lemma 4.1, the statements directly follow from Theorem 3.5, The-
orem 3.2, Corollary 3.9, and Theorem 3.10, respectively.

Remark 4.1. The first and third statements of this corollary are equivalent to
that of Theorem 1.2 (which is the result of Kawasaki [7], [8], since clV (x, d|Q) =
T 2(x, d|Q) and σx,d can be replaced by −E−x,−d as we have noted in Remark 3.3.

Remark 4.2. If the set-valued map Q(·) is now defined by

Q(t) :=]−∞, 0]r ⊂ Rr,

then, for x = (x1, . . . , xr) ∈ Q, d = (d1, . . . , dr) ∈ T (x|Q), the results concerning the
set V (x, d|Q) follow from Corollary 4.2 and from the following easy-to-obtain formula

V (x, d|Q) = V (x1, d1|Q1)× · · · × V (xr, dr|Qr),

where Q1 = · · · = Qr is the set of nonpositive continuous functions.

5. Applications to optimization theory. In this section we make the follow-
ing specifications of the optimization problem (P) and Theorem 1.1. Let T be a
compact Hausdorff space and let X = C(T,Rr). Furthermore, let G : D → X and
Q ⊂ X be given by

G(z)(t) = g(t, z) and Q := { x(·) | x(t) ∈ Q(t) ∀t ∈ T },(5.1)

where g : T × D → Rr is a continuous function and Q : T → 2Rr

is a lower
semicontinuous set-valued map whose values are closed convex sets with nonempty
interiors. Then, by Theorem 2.2, the interior of Q is also nonempty. Thus (P) reduces
to the following problem:

(P∗) minimize f(z) subject to g(t, z) ∈ Q(t) (∀t ∈ T ), H(z) = 0.

The main focus of this section is to apply Theorem 1.1 to the problem (P∗) in such
a way that all of the hypotheses assumed and all the results obtained will be phrased
explicitly in terms of the data f , g, Q(·), and H. In particular, the interpretation of
the second-order necessary condition (1.3) is an important task.

– A point ẑ ∈ D is admissible for (P∗) if g(t, ẑ) ∈ Q(t) for all t ∈ T and
H(ẑ) = 0.
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– The regularity of ẑ means that the assumptions (R1) and (R3) are valid
and, in addition,

(R2∗) the map g(t, ·) is uniformly strictly Fréchet differentiable at ẑ for all
t ∈ T ; that is,

lim
z1,z2→ẑ

|g(t, z1)− g(t, z2)− g′(t, ẑ)(z1 − z2)|
||z1 − z2|| = 0

holds uniformly for t ∈ T .
Then with the definition (5.1) the map G is strictly Fréchet differentiable at ẑ;

therefore, (R2) holds too.
– A vector d is critical for (P∗) at an admissible regular point ẑ if (C1),

(C3) are valid; furthermore,
(C2∗) g′(t, ẑ)d ∈ T (g(t, ẑ)|Q(t)) for all t ∈ T .

This assumption, by Theorem 2.1, is equivalent to (C2).
– The vector d is a regular direction if (R4) holds,

(R5∗) the following second-order directional derivative exists for all t ∈ T :

g′′(t, ẑ, d) := lim
ε→0+

2
g(t, ẑ + εd)− g(t, ẑ)− εg′(t, ẑ)d

ε2
,

and the limit is uniform in t; furthermore, H satisfies the same assump-
tion as in (R5).

(R6∗) σ
(
g(·, ẑ), g′(·, ẑ)d(·)|Q(·))(t, ξ) > −∞ for t ∈ T, ξ ∈ Rr, where the func-

tion σ(x, d|Q(·)) = σ(x, d|Q) is defined in (3.3).
It is easy to see that (R5∗) yields that the map G defined in (5.1) satisfies the

condition (R5). The regularity assumption made in (R6∗) is also equivalent to (R6)
by Theorem 3.5.

After these considerations, the main result of the section is the following theorem.
Its proof employs the results derived in section 3.

Theorem 5.1. Let ẑ be a regular solution of the above problem (P∗). Then,
for all regular critical directions d, there exist Lagrange multipliers λ ≥ 0, a signed
vector-valued measure µ ∈ M(T,Rr), and y∗ ∈ Y ∗ such that at least one of them is
different from zero and the following relations hold:

dµ

d|µ| (t) ∈ N(g(t, ẑ)|Q(t)) for µ-a.e. t ∈ T,(5.2)

λfo(ẑ; z) +

∫
T

g′(t, ẑ)zdµ(t) + 〈y∗, H ′(ẑ)z〉 ≥ 0 for z ∈ Z,(5.3)

and

λfoo(ẑ, d) +

∫
T

g′′(t, ẑ, d)dµ(t) + 〈y∗, H ′′(ẑ, d)〉
(5.4)

≥ 2

∫
T

coσ
(
g(·, ẑ), g′(·, ẑ)d|Q)

(
t,

dµ

d|µ| (t)
)
d|µ|(t).

Proof. As we have already verified, the assumptions of Theorem 1.1 follow from
that of Theorem 5.1 if we define G and Q by (5.1). Thus it suffices to show that the
conclusions of Theorem 1.1 yield that of Theorem 5.1.
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The existence of the Lagrange multiplier x∗ ∈ X∗ = (C(T,Rr))∗ is equivalent
to the existence of the measure µ ∈ M(T,Rr) by Riesz’s representation theorem.
Applying Theorems 2.1 and 3.10, (5.2), (5.3), and (5.4) are equivalent to (1.1), (1.2),
and (1.3), respectively.

We consider now a special case of Theorem 5.1 when the compact metric space
consists of a single element:

(P∗∗) minimize f(z) subject to g(z) ∈ Q, H(z) = 0.

Here Q ⊂ Rr is a closed convex set with nonempty interior and g : D → Rr is
a continuous function on D. The assumptions (R2∗), (C2∗), (R5∗), and (R6∗) of
problem (P∗) have to be replaced by

(R2∗∗) The map g(·) is strictly Fréchet differentiable at ẑ;
(C2∗∗) g′(ẑ)d ∈ T (g(ẑ)|Q);
(R5∗∗) the following second-order directional derivative exists

g′′(ẑ, d) := lim
ε→0+

2
g(ẑ + εd)− g(ẑ)− εg′(ẑ)d

ε2
;

(R6∗∗) σ
(
g(ẑ), g′(ẑ)d|Q)

)
(ξ) > −∞ for ξ ∈ Rr.

Corollary 5.2. Let ẑ be a regular solution of the above problem (P∗∗). Then,
for all regular critical directions d, there exist Lagrange multipliers λ ≥ 0, a vector
µ ∈ Rr, and y∗ ∈ Y ∗ such that at least one of them is different from zero and the
following relations hold:

µ ∈ N(g(ẑ)|Q),(5.5)

λfo(ẑ; z) + µT g′(ẑ)z + 〈y∗, H ′(ẑ)z〉 ≥ 0 for z ∈ Z,(5.6)

and

λfoo(ẑ, d) + µT g′′(ẑ, d) + 〈y∗, H ′′(ẑ, d)〉 ≥ 2 coσ
(
g(ẑ), g′(ẑ)d|Q)(µ).(5.7)

Proof. Let T = {0} and g̃ : T × D → Rr be defined by g̃(t, z) := g(z), and
let Q̃(·) : T → 2Rr

be given by Q̃(t) = Q. Making these substitutions, problem
(P∗∗) reduces to (P∗), where g and Q(·) are replaced by g̃ and Q̃(·), respectively.
The assumptions indicated by ∗∗ yield the analogous ones marked by ∗. Thus the
conclusion of Theorem 5.1 is valid. Observe that, in this case, a vector-valued measure
on T can be identified with a single vector in Rr. Thus the conclusion of Theorem 5.1
reduces to that of Corollary 5.2.

We consider now another special case of Theorem 5.1, when Q(t) =] −∞, 0] for
all t ∈ T . That is we investigate the following problem:

(P∗∗∗) minimize f(z) subject to g(t, z) ≤ 0 (∀t ∈ T ) H(z) = 0.

Here g : T ×D → R is a continuous function. The assumptions (C2∗) and (R6∗) of
problem (P∗) have to be replaced by

(C2∗∗∗) g′(t, ẑ)d(t) ≤ 0 if g(t, ẑ) = 0;
(R6∗∗∗) σg(·,ẑ),g′(·,ẑ)d(·)(t) > −∞ for t ∈ T .



LOWER SEMICONTINUOUS SET-VALUED CONSTRAINTS 725

Corollary 5.3. Let ẑ be a regular solution of the above problem (P∗∗∗). Then,
for all regular critical directions d, there exist Lagrange multipliers λ ≥ 0, a nonneg-
ative (scalar-valued) measure µ ∈ M(T,R), and y∗ ∈ Y ∗ such that at least one of
them is different from zero and the following relations hold:

suppµ ⊂ { t ∈ T | g(t, ẑ) = 0 },(5.8)

λfo(ẑ; z) +

∫
T

g′(t, ẑ)zdµ(t) + 〈y∗, H ′(ẑ)z〉 ≥ 0 for z ∈ Z,(5.9)

and

λfoo(ẑ, d) +

∫
T

g′′(t, ẑ, d)dµ(t) + 〈y∗, H ′′(ẑ, d)〉 ≥ 2

∫
T

σg(·,ẑ),g′(·,ẑ)d(·)(t)dµ(t).

(5.10)

Proof. The equivalence of conditions (5.4) and (5.10) follows from Lemma 4.1
and Corollary 4.2. Condition (5.2) can be translated into the following form:

dµ

d|µ| (t)
{ ≥ 0 if g(t, ẑ) = 0,

= 0 if g(t, ẑ) < 0.

Therefore, µ is nonnegative valued and (5.8) holds.
To conclude this section, we present a numerical example illustrating how the

function σ can be explicitly calculated. The problem considered in the example can
be handled with classical results as well. Our intention is to demonstrate how our
results provide a new method for computing a second-order optimality criterion that
does not require the computation of the set of the second-order tangent variations.
Instead, we only need to calculate the function σ. For problems that cannot be
handled without using the envelope-effect theory, we refer the readers to the papers
of Kawasaki [6], [7], [8].

Example. Let Q be the closed unit disk in R2 and f(z1, z2) := −z2
2 − 2z1 for

(z1, z2) ∈ R2. We consider the following optimization problem: minimize f on Q.
As we shall see, the point ẑ = (1, 0) satisfies the first- and second-order necessary
conditions of Corollary 5.2. (Here we take the function g = id and the vector space
Y = {0} and H = 0.)

It is easy to see that ẑ is an admissible regular point for this problem. A vector
d = (d1, d2) is a critical direction if

f ′(ẑ)d ≤ 0 and d ∈ T (ẑ|Q),

that is, if d1 = 0. Therefore, d = (0, 1) is a (typical) critical direction. We show that
it is also regular. We have to check condition (R6∗∗). Observe that

C(ẑ, d|Q) = { (ξ1, ξ2) | ξ1 ≥ 0, ξ2 = 0 }

as it is defined in (3.2) (we simply omit t, T from the definitions, because they do
not play any role). On the other hand, if ξ = (ξ1, ξ2), then δ∗(ξ|Q) = |ξ|. Thus, for
S(ẑ, d|Q), we have

S(ẑ, d|Q) = { (ξ1, ξ2) | ξ2 > 0 }.
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Clearly, C(ẑ, d|Q) ⊂ S ′(ẑ, d|Q). Therefore, if ξ = (ξ1, 0) ∈ C(ẑ, d|Q), then

σ(ẑ, d|Q)(ξ) = lim inf
(ζ1,ζ2)→(ξ1,0)

ζ2>0

ζ2
2

4[ζ1 −
√
ζ2
1 + ζ2

2 ]

= lim inf
(ζ1,ζ2)→(ξ1,0)

ζ2>0

ζ2
2 (ζ1 +

√
ζ2
1 + ζ2

2 )

−4ζ2
2

=
−ξ1
2

> −∞,

and σ(ẑ, d|Q) = +∞ otherwise. We have checked that (R6∗∗) holds, too. Further-
more, we also see that σ(ẑ, d|Q) = coσ(ẑ, d|Q) in this case.

To complete this argument, we have to show that there exist λ ≥ 0 and µ =
(µ1, µ2) such that (5.5), (5.6), and (5.7) hold. It follows from (5.6) that µ2 = 0 and
µ1 ≥ 0. The inequality in (5.6) is satisfied if and only if

λ∂1f(ẑ) + µ1 = −2λ+ µ1 = 0 and λ∂2f(ẑ) = 0.

If λ were 0, then, by the first equation, µ1 = 0, which contradicts λ + |µ| 6= 0. Thus
we may assume that λ = 1. Then µ1 = 2. We have to check whether (5.5) is also
satisfied. For the right-hand side of (5.7) we have 2σ(ẑ, d|Q)(2, 0) = −2. On the other
hand,

foo(ẑ)(d) = dT f ′′(ẑ)d = ∂2
2f(ẑ) = −2,

which shows that (5.7) is satisfied by equality.
It is also easy to see that f attains minimum on Q at ẑ = (0, 1), because, for

|z| ≤ 1,

f(z) = −z2
2 − 2z1 ≥ −1 + z2

1 − 2z1 = (z1 − 1)2 − 2 ≥ −2 = f(1, 0).
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