
Complete solutions of quartic Thue and index
form equations ∗†

Maurice Mignotte
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Continuing the work of [8] we prove that the diophantine equation

fa(x, y) = x4 − ax3y − x2y2 + axy3 + y4 = 1

for |a| ≥ 3 has exactly 12 solutions except when |a| = 4 where it has
16 solutions.
If α = α(a) denotes one of the zeros of pa(x, 1) then for |a| ≥ 4 we
establish also all those γ ∈ ZZ[α] with ZZ[γ] = ZZ[α].
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1 Introduction

Let a ∈ ZZ and

fa(x, y) = x4 − ax3y − x2y2 + axy3 + y4 = x(x− y)(x + y)(x− ay) + y4

In a recent paper Pethö [8] proved that for 3 ≤ |a| ≤ 100 and |a| ≥
9.9× 1027 the Thue equation

fa(x, y) = 1(1)

only has the following trivial solutions±(x, y) = (0, 1), (1, 0), (1, 1), (1,−1), (a, 1), (1,−a)
except when |a| = 4, in which case it has the 4 further solutions

±(x, y) =

{
(8, 7), (7,−8) , if a = 4
(8,−7), (7, 8) , if a = −4

(2)

Combining this result with new ideas and an extensive computer search
we prove in this paper

Theorem 1 For |a| ≥ 3, Equation (1) has only trivial solutions except for
|a| = 4, when it has the four nontrivial solutions given by (2).

Several similar parametrized families of Thue equations have been studied
recently. Apart the result of Pethö [8] and the references he used, we mention
the papers of Mignotte and Tzanakis [6], Lee [4] and Thomas [9]. We also
refer the paper of Mignotte [5], where he proved that for n ≥ 4, n ∈ ZZ the
diophantine equation

x3 − (n− 1)x2y − (n + 2)xy2 − y3 = 1

only has the trivial solutions (x, y) = (1, 0), (0,−1), (−1, 1). This is the
first example where a parametrized Thue equation was completely solved.

We mention that the method of the proof of Theorem 1 is also applicable
to other parameterized families of diophantine equations. For more details
see the Remark in §4.

We are now giving two applications of Theorem 1. Let η and η′ be the
zeros of the polynomial x2 − ax + 1 and let

Rn =
ηn − η′n
η − η′
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for n ∈ ZZ. Combining Theorem 1 with the proof of Thereom 4 of [8] we
get

Theorem 2 Assume that |a| ≥ 3 and

4u2 + v2 = z2

with (u, v) = (Rn, Rn+1) or (Rn+1, Rn) and z ∈ ZZ. Then n = 0, 2 or − 3
except when |a| = 4, in which case (n, u, v) = (4, 56, 15), (−5,−56,−15).

To formulate the next results we need to introduce some notation.
Let a, b ∈ ZZ, a ≥ 0 and f(x) = fa,b(x) = x4 − ax3 − bx2 + ax + 1.
Denote α = α(a, b) one of the zeros of fa,b(x) and put ε = ε(a, b) = α− 1

α
.

Since α is a unit, ε is an algebraic integer. Let IK = IKa,b = Q(α(a, b)) and
O = Oa,b = ZZ[α(a, b)]. Then O is an order in IK. By ([8], Lemma 2.1) the
degree of IK over Q is 4 if and only if ε is a quadratic algebraic number, i.e.
a2 +4b−8 is not a square of an integer. In the sequel we assume [IK : Q] = 4.

We shall prove in Lemma 3.1 that 1, ε, α, αε is an integral basis of O. In
order to state our results it is more convenient to consider this basis as the
natural basis 1, α, α2, α3. We have

Theorem 3 Let a, b,∈ ZZ such that a2+4b−8 is not the square of an integer,
2a2 + 9b− 23, a2 + 5b− 16, 2a2 + 76− 11, a2 + 3b− 4 6= 0 and
b = 6 or a2 +4b−8 6 |b−6. Let γ = x1 +x2ε+x3α+x4αε such that ZZ[γ] = O.
Then there exist integers b1, b2 with (b1, b2) = 1, b1b2 = (2− b) and a solution
(u, v) ∈ ZZ2 of the Thue equation

b2
2v

4 − b2av3u + (b− 2)u2v2 + b1avu3 + b2
1u

4 = ±1(3)

such that (x2, x3, x4) = (b1u
2, b2v

2 − b1u
2 − auv, uv). The convers is also

true.

The elements γ, δ ∈ O are called equivalent, denoted by γ ∼ δ, if γ + δ
or γ − δ belongs to ZZ. It is clear that if γ ∼ δ then |DK/Q(γ)| = |DK/Q(δ)|
and they have the same index corresponding to O.

From Theorems 1 and 3 we deduce
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Theorem 4 Let b = 1, a ≥ 4. Then all the equivalence classes of O contain
an element
γ = y2α + y3α

2 + y4α
3 with

(y2, y3, y4) ∈ {(1, 0, 0), (1, a,−1), (a, a−1,−1), (a,−a−1, 1), (1, 0,−1), (1,−a(a2+1), a2)}

except when a = 4 in which case

(y2, y3, y4) ∈ {(1, 0, 0), (1, 4,−1), (4, 3,−1), (4,−5, 1), (1, 0,−1), (1,−68, 16),

(209, 140,−49), (209,−352, 64)}.

Remark Oa,1 often is the maximal order of IKa,1. In the range 4 ≤
a ≤ 1000 we found 471 values for which this is true. For a = 4, 5 and 8 we
compared the result of Theorem 4 with the table of Gaál, Pethö and Pohst [2],
[3]. (For other values this is not possible because, either Oa,1 is not maximal
or the discriminant of IKa,1 is too large.) For a = 4 and 5 the results are the
same although they computed only the small solutions of the corresponding
index form equations. For a = 8 their method is not applicable because the
class number of the quadratic subfield (Q(

√
15)) of IK8,1, is not 1.

We want to thank Volker Müller from the Universität des Saarlandes for
his assistance in using PARI in library mode.

2 Preparations to the proof of Theorem 1

In §§2-4 we will use the notation (v, a1, a2, a3, δ3) of Pethö [8]. We refer to
the equations and statements of that paper by (P.n.m) and statement P.n.m
respectively. Since Theorem 1 was proved for a ≤ 100 in [8] we assume
a ≥ 100. Denote by α the largest and β the second largest real zeros of
p(x) = pa(x, 1) and put ε = α− 1

α
.

We first establish more exact estimates, than those which were proved in
[8].

Considering p(x) at the points 1 + 1
2a

, 1 + 1
a
, a− 2

a
, a− 1

a
and a one gets

a− 2

a
< ε < a− 1

a
< α < a,
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1 +
1

2a
< β < 1 +

1

a
< 1 +

1

ε
.(4)

Using the estimates above and the inequality

log 2

x
< log

(
1 +

1

x

)
<

1

x

which is true for any x > 1, it is easy to derive the following

log 2

2a
< log β <

1

a
,

log a− log 2

a2 − 1
< log α < log a,

log ε < log α− log 2

α2 − 1
,

log
α + 1

α− 1
<

2

a− 2
,

log 2a +
log 2

2a
< log

β + 1

β − 1
.

We also need an estimate for A, the regulator of ZZ[α].

A = log α log
β + 1

β − 1
− log β log

α + 1

α− 1
(5)

> log ε log
β + 1

β − 1
+

(log 2) log 2a

α2 − 1
− 2

a(a− 2)

> log ε log
β + 1

β − 1
.

Put K1 = a3− a1 and K2 = a1 + a3 + 2a2. Then by (P.5.16), (4), (5) and
by
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δ3 <
2

A
log

a + 1

a− 1
log β

we get

K1 < 2
log ε log β

A
v +

2

A
log

a + 1

a− 1
log β(6)

<
2v

a log β+1
β−1

(
1 +

2

a− 1

2

ε log2 ε

)

<
2v

(
1 + 1

a2

)

a log 2a + log 2
2

<
2v

a log 2a
.

Since in Lemma P.5.4 we found all solutions of (1) with a1 = a3, we may
assume K1 > 0, hence

v >
1

2
a log 2a,(7)

which is stronger than (P.5.18). We will use this estimate to find all type
I solutions.

For type II solutions we may assume by Lemma P.6.4 that K2 ≥ 2. Then
by (P.6.12) and (5) we have

1 ≤ K2 − 1 ≤ 2v
log ε log α+1

α−1

A
<

4v

(a− 2) log 2a
.(8)

Thus, in this case

v >
(a− 2) log 2a

4
(9)

which is an improvement on (P.6.15).
To prove Theorem 1 we shall use lower bounds for the following linear

forms in logarithms of algebraic numbers

|Λ1| =
∣∣∣∣∣log

αβ + 1

α− β
+ (K2 − 1) log β + K1 log

β + 1

β − 1

∣∣∣∣∣ < 3.1 ε−2v−1,(10)
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|Λ2| =
∣∣∣∣∣log

αβ + 1

α− β
+ (K2 − 1) log α + K1 log

α + 1

α− 1

∣∣∣∣∣ < 1.1 ε−2v,(11)

Λ3 = log


αβ + 1

α− β

(
β + 1

β − 1

)K1

 + (K2 − 1) log β

and

Λ4 = log

[
αβ + 1

α− β
αK2−1

]
+ K1 log

α + 1

α− 1
.

The upper bounds are exactly (P.5.17) and (P.6.14).
Now we estimate the absolute logarithmic height of the algebraic numbers

occuring in Λi, i = 1, .., 4.

h(α) = h(β) =
1

4
log |αβ| < log(a + 1)

4
,

h
(

α + 1

α− 1

)
= h

(
β + 1

β − 1

)
<

log 5a

4
,

h

(
αβ + 1

α− β

)
<

1

4
log(a2 − 4) +

1

4
log

a + 2

a− 1− 2
a

<
log(a + 3)

2
,

h


αβ + 1

α− β

(
β + 1

β − 1

)K1

 <

log(a + 3)

2
+

K1 log 5a

4
,(12)

h

(
αβ + 1

α− β
αK2−1

)
<

log(a + 3)

2
+

(K2 − 1) log(a + 1)

4
.(13)

The third of this set of inequations follows from the fact that αβ+1
α−β

is a
zero of the irreducible polynomial

x4 − 2a2 + 17

a2 − 4
x2 + 1.
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From (12), (6) and (7) as well as from (13), (8) and (9) we conclude

h


αβ + 1

α− β

(
β + 1

β − 1

)K1−1

 <

1.55 log(a + 3)

a log 2a
(14)

and

h

(
αβ + 1

α− β
αK2−1

)
<

3v log(a + 3)

(a− 2) log 2a
(15)

assuming a > 107.
Now we are able to apply Corollary 1.1 of Mignotte and Waldschmidt [7]

to Λ3 and Λ4. By using (10) and (14) we get

(2v + 1) log ε− log 3.1 < 250 84 1.55v log(a + 3)

a log 2a

log 5a

4
(7.5 + log K2)

2,

so that if a > 107 then

a < 250 83 1.71 (7.5 + log K2)
2.(16)

By Theorem P.1, K2 < 1028, hence we get

a < 1.2× 109(17)

for type I solutions.
Similarly using (11) and (15) we get for type II solutions

2v log ε− log 1.1 < 250 84 3v log(a + 3)

(a− 2) log 2a

log 5a

4
(7.5 + log K1)

2 ,

thus

a < 250 83 3.3 (7.5 + log K1)
2 .(18)

By Theorem P.1, K1 < 1028, hence by (17)

a < 2.2× 109 .(19)

Assuming that a > 102 we improve the estimates (P.5.19) for v using
Corollary 1.5 of Waldschmidt [10]. With his notation we set for both Λ1 and
Λ2
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n = 3, D = 8, g = 1,

log A1 = log(a+1)
4

, log A2 = log 5a
4

, log A3 = log(a+3)
2

,

A = A3, f = 1, E = 6, M = 4v+6
log(a+1)

,

Z0 = 7 + 3 log 3, G0 = log M and

U0 =
85(7 + 3 log 3)

log4 6

log(a + 1)

4

log 5a

4

log(a + 3)

2
log M

< 5.09× 105 log(a + 1) (log(4v + 6)− 1.529)) .

Remark that the correctness of M follows from (P.5.15), (P.5.16), (P.6.12)
and (P.6.13), because |K1|, |K2| ≤ 2v + 1.

The cited result of Waldschmidt implies

|Λ1|, |Λ2| ≥ exp(−2000 29 314U0).

By comparing the last inequality with (10) and (11) we get

2v log ε− log 1.1 < 2.49× 1018 log(a + 1)(log(4v + 6)− 1.529) ,

so that

2v < 2.5× 108(log(4 + 6v)− 1.529) + 0.03

and finally

|K1|, |K2| ≤ 2v + 1 ≤ 2× 1020(20)

follows immendiatelly for both type I and II solutions.
We insert the new upper estimate (20) into (16) and (18) and get the

final upper bound

a < 6.441× 108(21)

for type I solutions and

a < 1.125× 109(22)

for type II solutions.
To exclude non-trivial solutions from the remaining range we used com-

puter search, which is described in the next two sections.
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3 Diophantine approximation properties of non-

trivial solutions

The following lemmas are basic for the final computer search for non-trivial
solutions. By ‖x‖ we denote the distance of the real number x to the nearest
integer.

Lemma 1 Let 102 ≤ a ≤ 6.441× 108 (1.25× 109),

δ1 = log
αβ + 1

α− β
/ log β

(
log

αβ + 1

α− β
/ log

α + 1

α− 1

)
and

δ2 = log
β + 1

β − 1
/ log β

(
log α/ log

α + 1

α− 1

)
.

If there exists a convergent p
q

in the continued fraction expansion of δ2

such that

q ≤ 1050(23)

and

q‖qδ1‖ >
2.1× 1020

a log 2a

(
4.1× 1020

a log 2a

)
(24)

then (10) ((11)) cannot hold for K1, K2 ∈ ZZ with |K1|, |K2| ≤ 2v + 1
and K1 6= 0 (K2 6= 1).

Proof: Assume to the contrary that there exist K1, K2 ∈ ZZ with |K1|,
|K2| < 2v + 1 wich satisfy (10) and let p

q
be the convergent of δ2 with (23)

and (24). Then by (7), v > 1
2
a log 2a > 260, thus by (10)

|δ1 + K1δ2 + (K2 − 1)| < 10−1000 .

Multiplying this inequality by q we get

|qδ1 + K1(δ2q − p) + K1p + (K2 − 1)q| < 10−950,(25)

thus
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‖qδ1‖ ≤ 10−950 + |K1||qδ2 − p| < |K1|
q

+ 10−950.

Hence by (6) and (20)

q‖qδ1‖ ≤ 2 1020

a log 2a
+ 10−900 <

2.1 1020

a log 2a
.

This contradiction proves the lemma. 2

Since on a computer we cannot work with δ1 and δ2 but only with their
approximate values, we have to know how close this approximation has to
be.

Lemma 2 Let a < 6.441× 108 (1.25× 109) and δ1, δ2 as in Lemma 2.
Let δ̃1, δ̃2 ∈ Q such that

|δ1 − δ̃1|, |δ2 − δ̃2| < 10−50(26)

and let p
q

be a convergent of δ̃2 with

q < 1028 and q‖qδ̃1‖ >
3× 1020

a log 2a

(
5× 1020

a log 2a

)
.(27)

Then (10) ((11)) cannot hold for K1, K2 ∈ ZZ with |K1|, |K2| ≤ 2v + 1
and K1 6= 0 (K2 6= 1).

Proof: We start as in the proof of Lemma 1 up to equation (25) except
that now p

q
denotes a convergent of δ̃2.

From (25) we get

‖qδ̃1‖ ≤ 10−950 + |K1||qδ̃2 − p|+ q|δ1 − δ̃1|+ q|δ2 − δ̃2|,

hence

q‖qδ̃1‖ ≤ 2.1× 1020

a log 2a
+ 2× 106 <

2.2× 1020

a log 2a

and the lemma is proved. 2
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4 The computer search

For the evaluating of about 108, (2×108) equations we decided to use distrib-
uted computation. We wrote a program which for a = 101 to 108 (2×108)
executed the following steps

1. compute δ1 and δ2 with sufficient precision (50 digits were enough if
(24) holds for q < 1028)

2. compute the continued fraction expansion of δ2

3. compute the sequence {qn}n≥0 of the denominators of the convergents
of δ2

4. if 1017 < qn < 1028 and (24) holds then continue with the next value
for a
else remember a and try again later with higher precision

The necessary computer programs are implemented in C. They use the
library of the computer algebra-system PARI for the higher precision com-
putations. Our experiments showed that PARI in this case is 10 times faster
than MAPLE V. Furthermore we used the LiPS system [1] to distribute the
computations over a local network of SUN-Workstations (Sparc Stations).

First we did our search for a ∈ [100, 105] with 100 digits precision.
The remaining interval [105, 108] ([105, 2 108]) was divided into blocks

of length 105. These intervals were distributed by LiPS over 40 machines of
the local Ethernet of the Universität des Saarlandes. The programs on each
workstation did the search and collected the questionable cases.

Altogether the computations took

• 2748 h 21 min ≈ 144 days for type I

• 10185 h 55 min ≈ 424 days for type II (4× 108)

The given time is the summerized CPU-time over all workstations. The
real time was about 3 weeks.

For every 100 ≤ a ≤ 108 (2 × 108) we found a q with (27). This
completes the proof of Theorem 1.

Remark As we mentioned in the introduction, the method descibed
in §§2-4 is also applicable for the complete resolution of other parametrized
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families of diophantine equations. Of course, suppose that it is possible
for a parametrized family of diophantine equations to derive fintely many
inequalities of the form

0 < | log δ0(a) + K1 log δ1(a) + K2 log δ2(a)| < c1 exp(−c2K),

where K = max{|K1|, |K2|}. If we also can prove K > c3a log a, then we
get an upper bound B0 for K as described in [8]. This implies |a| < B1 with a
suitable B1. If moreover |K1| must be less than |K2| then using a convenient
theorem on linear forms in two logarithms in algebraic numbers we can , like
in §2, derive a much better bound B2 for |a|.

All the examples treated in [4], [6] and [8] fullfil the conditions above.
Obviously the Lemmas 1 and 2 do not depend on the special choice of δ1

and δ2. Finally if B2 is reasonable then one can perform the computer search
from this section.

5 The general index form equation of Oa,b

Let α, ε, IK and O be the same as in §1. Then

Lemma 3 1, ε, α, αε is an integral basis of O.

Proof: We have

ε = α− 1

α
= a + (1− b)α− aα2 + α3

and

αε = −1 + α2,

hence

(1, α, αε, ε)T =




1 0 0 0
0 1 0 0

−1 0 1 0
a 1− b −a 1


 (1, α, α2, α3)

which proves the assertion. 2
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Assume that [IK : Q] = 4. Then f(α) = 0 implies that − 1
α

is a zero of
f(x), cf Lemma P.2.1. Let β denote one of the zeros of f(x) which is different
from α and −1

α
. In the sequel we order the conjugates IK(i), i = 1, 2, 3, 4 of

IK such that α(1) = α, α(2) = − 1
α
, α(3) = β, α(4) = − 1

β
. This implies

ε(1) = ε(2) = ε and ε(3) = ε(4) = ε′ where ε′ denotes the conjugate of ε with
respect to the extension Q(ε)/Q.

We denote by Do the discriminant of the order O and by D(γ) = DIK/Q(γ)
the discriminant of the element γ ∈ IK.

Then

Do = (ε− ε′)4(α +
1

α
)2(β +

1

β
)2 = [a2 + 4(b− 2)]2((b + 2)2 + 4a2).(28)

For γ ∈ O let Iγ denote the index of γ in O. Then we have the well-known
identity

D(γ) = I2
γDo.(29)

In the next theorem we transform the index form equation corresponding to
O to a system of quadratic equations.

Theorem 5 Let γ = x1 + x2ε + x3α + x4αε ∈ O with index Iγ. Then there
exist integers I1, I2, V with the following properties

I1I2 = Iγ(30)

x2
3 + ax3x4 + (2− b)x2

4 = I1(31)

x2
2 + x2x3 + ax2x4 + (b− 2)x2

4 = V(32)

and

(a2 + 4b− 8)V 2 + (b− 6)I1V − I2
1 = I2.(33)

Proof: Put γi,j = γ(i) − γ(j) for 1 ≤ i, j ≤ 4. Then we can rewrite (29)
as

D1/2(γ) =
∏

1≤i<j≤4

γi,j = IγD
1/2
o .(34)
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Let IL = Q(α
β

+ β
α
), then since α

β
+ β

α
is a zero of the quadratic polynomial

x2− (b− 2)x− (a2 + 2b), we have [IL : Q] = 1 or 2. Moreover, and this is the
important fact, γ1,4γ2,3 is the conjugate of γ1,3γ2,4 with respect to IL. Using
this observation a straightforward computation shows that

D1/2(γ) = (α +
1

α
)(β +

1

β
)U [(ε− ε′)2V − (2− α

β
− β

α
)U ]×

[(ε− ε′)2V − (2 + αβ +
1

αβ
U)],

where

U = x2
3 + ax3x4 + (2− b)x2

4

V = x2
2 + x2x3 + ax2x4 + (b− 2)x2

4.

We can simplify further the form of D1/2(γ) and finally get

D1/2(γ) = (ε− ε′)2(α +
1

α
)(β +

1

β
)U [(ε− ε′)2V 2 + (b− 6)UV − U2].

Inserting this equality and (28) into (34) we get the identity

Iγ = U [(a2 + 4b− 8)V 2 + (b− 6)UV − U2].

As both factors on the right hand side are integers, setting U = I1 and
(a2 + 4b− 8)V 2 + (b− 6)UV − U2 = I2 we prove equation (30) - (33). 2

6 Proof of the theorems 3 and 4

Proof of Theorem 3: Since a2 + 4b − 8 is not a square, [IK : Q] = 4. It
is well known that for γ ∈ O the powers 1, γ, γ2, γ3 form a basis of O if and
only if |Iγ| = 1, thus we can use Theorem 5. Then |I1| = |I2| = 1 by (30).

Assume that (33) holds with V ∈ ZZ, I1, I2,∈ {1,−1}. We may
assume that I1 = 1, because if V ∈ ZZ is a solution of (33) for I1 = −1, then
−V ∈ ZZ is also a solution for I1 = 1.
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Let I2 = 1, then V |2, hence V ∈ {−2,−1, 1, 2}, but all values of a, b which
would satisfy (33) for V ∈ {−2,−1, 1, 2} are excluded in the assumptions of
the theorem.

Let I2 = −1. Then either V = 0 or (a2 + 4b− 8)V + (b− 6)I1 = 0.
The second alternative is excluded in the assumptions too, therefore V =

0.
Since V = 0 we can rewrite (32) as

x2(x2 + (x3 + ax4)) = (2− b)x2
4.(35)

On the other hand (31) implies that (x3 + ax4, (2 − b)x2
4) = 1, thus

(x2, x2 + (x3 + ax4)) = 1 holds too. Therefore there exist integers b1, b2, u, v
such that

(b1, b2) = (u, v) = 1,

b1b2 = 2− b

uv = x4

x2 = b1u
2

x2 + x3 + ax4 = b2v
2.

The last equation implies that

x3 = b2v
2 − b1u

2 − auv.

Inserting the formulas for x3 and x4 into (31) we get (3). Obviously the
convers holds. 2

Remark Let b1, b2,∈ ZZ with (b1, b2) = 1 and b1b2 = 2− b. Futhermore
let δ be a zero of the polynomial

b2
2v

4 − b2av3 − b1b2v
2 + b1av + b2

1.

Then one can see easily that Q(δ) is an extension of Q(ε). If Q(ε) is an
imaginary quadratic field, i.e. a2 +4(b−2) < 0 then (3) is very easy to solve,
since it can be transformed to an equation of form (31).

We now turn to the proof of Theorem 4.
Proof of Theorem 4: For b = 1 we have 2a2 + 9b − 23, a2 + 5b − 16,

2a2 + 7b− 11 and a2 + 3b− 4 6= 0 for any a ≥ 0. Furthermore a2 − 4 divides
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5 only if a = 3. Finally, for a ≥ 4, a2− 4 is not a square. Therefore all the
assumptions hold in this case.

We have b1 = b2 = ±1, hence we get two equations of form (3), namely

v4 − av3u− u2v2 + avu3 + u4 = ±1(36)

and

v4 + av3u− u2v2 − avu3 + u4 = ±1 .(37)

The pair (v, u) is a solution of (37) if and only if (−v, u) is a solution of
(36), hence it is sufficient to solve (36).

By Theorem 1 all the solutions of (36) are

(v, u) = (0,±1), (±1, 0), (±1,±1), (∓1,±1), (±a,±1), (±1,∓a)

except when a = 4 in which case we have four more solutions, namely
(±8,±7), (±7,∓8). For given b1, b2 the solution (v, u) ∈ ZZ2 of (3) gives the
same triple (x2, x3, x4) ∈ ZZ3 as (−v,−u). Furthermore, the triple corre-
sponding to −b1,−b2 and (−v, u) is −(x2, x3, x4), hence for a ≥ 5 and a = 4
we have 6 and 8 essentially different solutions. A straightforward computa-
tion shows that these are the triples given in the theorem. 2
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