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1. Introduction 

Digital soil mapping (DSM) is important in sustainable land 

management, land use planning, and precision agriculture. The 

process of DSM involves providing soil observations and 

environmental covariates, using statistical and mathematical 

techniques to capture their relationship, and producing spatial 

and/or temporal predictions. The main framework of DSM is 

based on the concept of fundamental soil development theory, 

and there has been an expansion in the development of DSM 

techniques at different scales. Machine learning (ML) algorithms 

and geostatistics are common ways of predicting soil properties 

and delivering spatial information on soils. The accuracy of 

predictive models is crucial for informing policy-making 

decisions, but selecting an appropriate approach and identifying 

the best model can be challenging. Different ML techniques, such 

as decision trees, random forest, artificial neural networks, and 

support vector machines, can be used for regression or 

classification purposes. To conduct DSM, soil samples are used 

to train the model, while environmental covariates serve as 

predictors to calibrate the model. These covariates are essential in 

explaining the soil-forming factors and other physical and 

chemical processes that contribute to the spatial variation of soil 

properties. DSM has some knowledge gaps and issues, such as 

data availability and quality, multivariate mapping, and 

uncertainty analysis. Researchers are working on innovative 

methods to address these gaps and improve accuracy. The 



3 

dissertation focuses on extrapolation and joint spatial modeling 

issues of soil properties.  

Firstly, soil mapping is limited by the lack of soil observations in 

many areas. Spatial extrapolation, which transfers a model to a 

new geographic location from a donor area, can be used to predict 

soil properties in areas without observations (recipient), but it 

requires the similarity of soil-forming factors between the two 

areas. Secondly, soil data is complex and ever-changing, making 

modeling difficult. Multivariate geostatistics is a widely used 

approach that considers the joint spatial variability of variables 

and explicitly takes into account spatial interdependence. 

Combining geostatistics with ML algorithms can improve soil 

property predictions and modeling of uncertainty.  

 

2. Aim and objectives of the study 

The objectives of my doctoral research are: 

1. Predict and map the spatial distribution of soil properties 

in two small-scale areas which are different from 

physiographic conditions. 

2. Evaluate the potential and efficiency of different 

techniques in spatial predictions of soil properties. Also, 

select the best model with the highest accuracy and least 

error to extrapolate over the larger areas. 

3. Assess the possibility of extrapolation by Area of 

Applicability (AOA) method and validate the results by 

samples taken from large areas. 
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4. Estimate the similarity between two areas by different 

methods and if there is an agreement between these 

methods. 

5. Explore the possibility of predicting over an unknown 

area by available dataset. 

6. Predicting and mapping SAS indicators by applying 

ensemble machine learning. 

7. Jointly modeling the prediction results with multivariate 

geostatistical techniques. 

 

In my research, I conducted three case studies to achieve my 

objectives. The first case study involved comparing various ML 

models for predicting soil properties in small-scale areas, with 

extrapolation techniques applied to larger areas (Objectives 1-3). 

The second case study focused on determining the potential for 

extrapolation between areas based on similarity of soil-forming 

factors (Objectives 4 and 5). The third case study aimed to 

identify high salinity locations in arable land using joint spatial 

modeling of salt-affected soils (SAS) indicators (Objectives 6 and 

7). 

 

3. Materials and Methods  

In case study one, the sampling design was implemented using 

the conditioned Latin Hypercube sampling (cLHS) method to 

select thirty surface samples from each of the four study areas in 

Hungary; Látókép, Westsik, Hajdúhát, and Nyírség (Figure 1). 

Environmental covariates such as Landsat images and DEM 

derivatives were used as inputs for cLHS to cover the spatial 
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variation of soil properties efficiently. Bulk density, soil organic 

carbon (SOC), pH, electrical conductivity (EC), and carbonate 

content were measured in the laboratory. 

For Látókép and Westsik, three models were trained using 

Random Forest (RF), Artificial neural network (ANN), and 

Support Vector Machine (SVM), and were compared with 

Multiple linear regression (MLR), as a benchmark technique to 

compare with other algorithms. The best model was selected and 

fine-tuned. The trained model for Látókép was then applied to 

extrapolate over Hajdúhát, and the trained model for Westsik was 

applied to extrapolate over Nyírség. The Area of Applicability 

(AOA) was also applied over these areas. To validate the 

predictions for Hajdúhát and Nyírség, samples were taken from 

these areas and compared with the model predictions. 
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Figure 1. Study areas for case study one. The first figure is the 

location of microregions in Hungary which are shown on the 

Digital Elevation Model (DEM). Squares are the location of 

Látókép inside Hajdúhát microregion, and Westsik inside Nyírség  

microregion. The second figure is Látókép and Westsik shown on 

DEM. 

 

In case study two, the data for four countries of Africa including 

Ethiopia, Kenya, Burkina Faso, and Nigeria (Figure 2) were 

extracted from the ISRIC Africa Soil Profiles (AfSP) database 

which is publicly available. The soil properties of interest for this 

case study were: soil organic carbon, clay content and pH. First, 

I trained the RF model for each country and each property with 

default hyperparameters values, and predicted that country and 

the other three countries each time. Therefore, I had 12 scenarios. 

I identified the similarities between countries by using four 
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different methods including similarity in soil types, homosoil 

approach, dissimilarity index by AOA and quantile regression 

forest (QRF) prediction interval width. I validated the prediction 

points by observation in each country.   

Homosoil is a method to extrapolate soil information from similar 

areas where soil data is scarce. The method uses Gower's 

similarity index to compare environmental covariates between 

two areas, with higher values indicating greater similarity. The 

index is calculated in three hierarchical steps, selecting areas with 

similar climate conditions, lithological classes, and topography. 

AOA is a methodology that quantifies the differences in 

environmental covariates between donor and recipient areas and 

determines the extendable areas where a trained model can be 

employed based on the dissimilarity index. Its application helps 

to determine the area for which the model can be expected to 

make predictions with an error comparable to the model 

performance. QRF can calculate all quantiles of the prediction 

distribution, allowing for the quantification of prediction 

uncertainty at all prediction locations. Prediction interval width 

can be calculated from the difference between lower and upper 

quantiles of estimations. The width of prediction intervals is 

expected to be wider in areas with higher uncertainty due to 

extrapolation.  
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Figure 2. Study areas for case study two. Ethiopia, Kenya, 

Nigeria and Burkina Faso shown on DEM. 

 

In case study three: This study collected 85 soil samples from a 

regular grid area near Dunavecse, Hungary (Figure 3), using soil 

tubes to a depth of 1m, but only analyzed the topsoil up to 30cm. 

Samples were taken to the laboratory to measure SAS indicators, 

including pH, EC, and SAR, and were carried out by colleagues 

of the Institute for Soil Sciences. An ensemble modeling 

approach was used with five individual models including RF, 

SVM, ANN, Extreme Gradient Boosting (XGBoost) and 

Generalized Linear Models with Lasso or Elastic Net 

Regularization (GLM). I applied the SuperLearner method to 

stack all single learners. Regression co-kriging was performed on 

the stochastic residuals obtained from the ML model. Afterwards, 

the variograms and cross-variograms from the residuals were 

calculated, and a linear model of coregionalization (LMC) was 



9 

fitted. The prediction uncertainty was quantified by compiling a 

90% prediction interval for each SAS indicator.The accuracy of 

spatial predictions and estimation of uncertainties were evaluated 

using 10-fold cross-validation. 

 

 
Figure 3. Study area for case study three. A plot near Dunavecse 

shown on Digital Elevation Model (DEM) and sampling points. 

 

4. New Scientific Results (Theses) 

1. The spatial distribution of soil properties in each area can be 

influenced by various environmental factors, which are 

related to the relationship between soil properties and 

environmental covariates in that specific area. In both 

Látókép and Westsik, geology and climate indices are 

constant. Therefore, topographic indices were found to be the 

major factor affecting the spatial distribution of soil properties 
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in Látókép, while NDVI was the most influential explanatory 

variable in Westsik, indicating that vegetation cover is the 

primary factor affecting soil spatial variation in the latter.  

2. Each model has strengths and weaknesses in predicting soil 

properties, depending on soil-forming factors and 

local/regional conditions. My research found that despite 

limited observations, RF outperformed MLR, SVM, and NN 

in both study areas, with an R2 coefficient of 80%. RF handles 

outliers, unbalanced data, and complex relationships well and 

is flexible in incorporating various covariates. SVM delivered 

acceptable results in predicting SOC and soil pH in Látókép 

and was more successful in the Westsik area, explaining 30-

40% of spatial variation. ANN performed worse than using 

the spatial average of data, probably due to limited 

observations in this study. Also, MLR failed due to the 

complicated interrelationships between variables. 

3. I calculated the AOA of the best predictive model, which is 

RF, for Látókép in order to determine the possible areas to 

extrapolate in Hajdúhát, and for Westsik in order to determine 

the possible areas to extrapolate in Nyírség, where the models 

could learn about relationships in Látókép and Westsik. The 

dissimilarity index calculated by AOA values for each soil 

property showed different ranges due to various relationships 

between the soil property of interest and predictors. Since the 

selection of important covariates used to train the model 

differed, the results of the AOA calculation also differed. The 

masked extrapolation maps of SOC stock and EC in Hajdúhát, 

as well as the BD map in Nyírség, revealed significant areas 
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that were outside the AOA, indicating that distinct soil-

forming factors are crucial in explaining how these soil 

properties vary spatially between the two regions. In 

summary, we found that predictions inside AOA have fewer 

errors and the values are closer to the error measurements of 

predictive models, while predictions outside should be 

considered invalid due to larger dissimilarity. New locations 

with different environmental properties may lead to 

inaccurate predictions. 

4. The degree of similarity in soil-forming factors between 

donor and recipient areas is important for extrapolating soil 

information, with more success in countries with 

heterogeneous conditions. Countries in the same region, such 

as Ethiopia with Kenya and Nigeria with Burkina Faso, have 

more similarities in terms of soil types and the homosoil 

approach. There was a correlation between spatial 

dissimilarity and uncertainty in predictions, with areas with 

significant environmental differences having higher 

uncertainty. Geographical proximity is also important for 

transferring the trained models to recipient areas, as indicated 

by similarities found between neighboring countries. Burkina 

Faso showed lower values compared to Ethiopia and Kenya 

in all measures of extrapolation, possibly due to significant 

environmental differences and geographic distance. 

5. Results showed poor performance when extrapolating to 

recipient countries, highlighting the risks of extrapolation due 

to complex soil-landscape interactions and difficulty in 

matching soil-forming factors. The poor performance of 
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spatial extrapolation may also be attributed to the selected 

model, RF, which may perform poorly in extrapolation when 

there are large areas without observations and new predictors 

have different characteristics from what the model has 

learned. In general, all these four measures of extrapolation 

(homosoil, soil type similarity, dissimilarity index by AOA, 

and QRF prediction interval width) can be useful to give us 

information beforehand how well the extrapolation might 

work. 

6. SuperLearner outperformed individual learners in predicting 

pH and SAR, while RF was the best-performing individual 

model among the five learners. This confirms the 

effectiveness of ensemble modeling in reducing noise and 

variance in predictions and preventing overfitting. 

Interestingly, RF outperformed SuperLearner in predicting 

EC. This could be due to factors such as limited covariates, 

artifacts in covariates, or insufficient sampling points, which 

can affect the relationship between EC and covariates. Soil 

EC is sensitive to modeling and mapping due to its rapid 

changes over time and space. 

7. Joint modeling of the spatial distribution of SAS indicators 

using multivariate geostatistics and ML methods was found 

to be crucial for accurately predicting their spatial distribution 

since it showed clearly that SAS indicators are spatially 

interdependent along the study area. The study demonstrated 

that spatial prediction uncertainty of SAS indicators is in line 

with spatial cross-correlation between the indicators, 

providing advantages for soil quality management and 
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precision agriculture. This approach has potential for future 

soil mapping and management efforts. 
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