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Abstract
The mechanistic link between avian oxidative physiology and plumage coloration has 
attracted considerable attention in past decades. Hence, multiple proximal hypoth-
eses were proposed to explain how oxidative state might covary with the production 
of melanin and carotenoid pigments. Some hypotheses underscore that these pig-
ments (or their precursors, e.g., glutathione) have antioxidant capacities or function as 
molecules storing the toxic excess of intracellular compounds, while others highlight 
that these pigments can act as pro-oxidants under specific conditions. Most studies 
addressing these associations are at the intraspecific level, while phylogenetic com-
parative studies are still scarce, though needed to assess the generality of these as-
sociations. Here, we tested whether plumage and bare part coloration were related 
to oxidative physiology at an interspecific level by measuring five oxidative physiol-
ogy markers (three nonenzymatic antioxidants and two markers of lipid peroxidative 
damage) in 1387 individuals of 104 European bird species sampled during the breed-
ing season, and by scoring plumage eumelanin, pheomelanin, and carotenoid con-
tent for each sex and species. Only the plasma level of reactive oxygen metabolites 
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1  |  INTRODUC TION

The large variation in bird plumage coloration among individuals, 
populations, and species has attracted considerable attention from 
evolutionary biologists (Hill & McGraw,  2006). However, to bet-
ter understand how this great variety of plumage colors and pat-
terning evolved, it is essential to determine how these colors are 
produced and how they relate to the individuals' inner state (Hill 
& Johnson, 2012; McGraw et al., 2010; Weaver et al., 2017). In re-
cent years, there has been an upsurge of interest in the relationship 
between oxidative physiology and plumage coloration (e.g., Arai 
et al., 2017; Castiglione et al., 2020; Fernández-Eslava et al., 2021; 
Galván, Jorge, et al.,  2017; Henschen et al.,  2016; Rodríguez-
Martínez & Galván, 2020; Tomášek et al., 2016). Empirical and the-
oretical studies suggest that the balance between the production 
of pro-oxidant molecules (reactive oxygen species, ROS) and anti-
oxidant defenses can modulate the expression of pigment-based 
phenotypes, providing a mechanistic link between coloration, indi-
vidual condition, and health (Garratt & Brooks, 2012; Von Schantz 
et al., 1999). The two most widespread types of coloration in birds 
are based on melanin and carotenoid pigments. The synthesis of 
both pigment types is mechanistically connected with the antioxi-
dant machinery; therefore, melanin- and carotenoid-based plumage 
colors are expected to be associated to the organism's oxidative sta-
tus (Henschen et al., 2016; Metcalfe & Alonso-Alvarez, 2010).

Melanin pigments come in two types: eumelanin (conferring 
black and gray colors) and pheomelanin (conferring rufous, chestnut, 
and brown colors; Galván et al., 2011). Different mechanisms were 
suggested to explain the tight connection between the synthesis of 
both melanin pigment types and oxidative physiology. First, whether 
the production of melanins from their precursor dopaquinone takes 
the route toward eumelanin or pheomelanin depends on the amount 
of the amino acid cysteine or the cysteine-containing antioxidant 
glutathione (GSH), which act therefore as a master switch (Galván 
& Solano,  2015). High levels of GSH stimulate pheomelanogen-
esis, while low levels of GSH stimulate eumelanogenesis (Ducrest 
et al., 2008; Galván et al., 2012; Henschen et al., 2016; Meyskens 
et al., 1999). As the antioxidant system neutralizes ROS, the level of 

GSH decreases; hence, a more pheomelanic coloration might covary 
with increased oxidative stress because pheomelanogenesis might 
lead to diminished antioxidant capacity by depleting the GSH pool 
(Galván, Inácio, et al., 2017). A second hypothesis is that both plum-
age pheomelanin pigments and certain antioxidants such as uric acid 
may serve as deposits to eliminate the excess dietary amino acids 
such as cysteine, which can be harmful at high levels (Galván, 2017; 
Klasing, 1998). Third, ROS are produced during the synthesis of eu-
melanin, while no or only low amounts of ROS are produced during 
pheomelanin synthesis (Galván et al., 2014; Galván & Solano, 2015). 
Finally, melanogenesis is governed by pleiotropic genes (melanocor-
tin system), which also regulate the cellular antioxidant responses 
(Ducrest et al.,  2008; Galván & Alonso-Alvarez,  2009; Galván & 
Solano, 2015; San-Jose & Roulin, 2018).

Carotenoids produce yellow, orange, and red colors (McGraw, 
2006a), and unlike melanins, these pigments cannot be synthesized 
de novo by birds, but must be acquired directly from food (Costantini 
& Møller, 2008). Besides the coloration function, carotenoids are 
also hypothesized to act as antioxidants and/or immunostimulants 
(Lozano,  1994; Olson & Owens,  1998; Pérez-Rodríguez,  2009; 
Svensson & Wong,  2011; Vinkler & Albrecht,  2010; Von Schantz 
et al., 1999, but see Koch & Hill, 2018). Previous studies suggest 
that carotenoids are subject to a resource allocation trade-off as 
their investment into plumage coloration conflicts with their use 
in physiological processes (the “allocation trade-off hypothesis,” 
Lozano, 1994; Olson & Owens, 1998; Pérez-Rodríguez, 2009; Von 
Schantz et al.,  1999). Consequently, carotenoid coloration might 
be dependent on nutritional or health condition, while individuals 
having a balanced redox status are expected to be able to devote 
substantially more carotenoids to colorize their plumage or integ-
ument (Hill & Johnson, 2012; McGraw, 2006a; Møller et al., 2000; 
Peters et al., 2004). However, this hypothesis has been challenged 
over the last decade (Hõrak et al., 2010; Koch et al., 2018; Koch 
& Hill, 2018). First, the importance of carotenoids in the antioxi-
dant machinery has been questioned (Costantini & Møller,  2008; 
Simons et al.,  2012). Second, at high concentrations, the antiox-
idant activity of carotenoids might shift to pro-oxidant activity 
(Hartley & Kennedy, 2004; Huggins et al., 2010; Martin et al., 1999; 

was related to melanin coloration, being positively associated with eumelanin score 
and negatively with pheomelanin score. Thus, our results do not support the role 
of antioxidant glutathione in driving variation in melanin synthesis across species. 
Furthermore, the carotenoid scores of feathers and bare parts were unrelated to the 
measured oxidative physiology parameters, further suggesting that the marked differ-
ences in pigmentation across birds does not influence their oxidative state.
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Palozza, 1998; Palozza et al., 1995; Simons et al., 2014), complicating 
their potential antioxidant function.

All the above mechanisms suggest that melanin- and carotenoid-
based coloration are functionally linked to oxidative physiology: 
melanin production depends on antioxidants and entails the pro-
duction of harmful oxidative byproducts, and carotenoids can 
function both as antioxidants and pro-oxidants. The mechanistic 
link between pigmentation and oxidative physiology predicts that 
the evolution of species-specific pigmentation cannot be inde-
pendent of the evolution of species-specific oxidative physiology. 
Therefore, as case studies do not allow for generalization, we 
provide a comparative study based on a large number of species 
which markedly differ in their melanin and carotenoid coloration, 
and in concentration of oxidative physiology markers. Oxidative 
physiology coevolved with ecological and life-history attributes as 
part of a pace-of-life syndrome (e.g., Vágási et al., 2019), result-
ing in species-specific oxidative physiology (Vágási et al., 2016). 
As pigmentation-based traits are also subjected to a broad range 
of selective pressures, we expect that, on an interspecific level, 
the species-specific oxidative state may either facilitate or con-
strain the evolution of the overall plumage coloration or vice versa 
(Badyaev & Hill, 2000; Emaresi et al., 2014; Saino et al., 2013). 
Accordingly, we expect certain species-specific pigmentation phe-
notypes to evolve in parallel with evolutionary adjustments to the 
oxidative physiological system (e.g., up- or downregulation of par-
ticular antioxidants).

To explore whether variation in plumage coloration is associated 
with variation in redox physiology across species, we conducted a 
phylogenetic comparative study by measuring three nonenzymatic 
antioxidant markers (total antioxidant status, TAS; uric acid, UA; 
and total glutathione, tGSH) and two markers of lipid peroxidation 
(malondialdehyde, MDA; and reactive oxygen metabolites, ROM) 
from samples of 1387 individuals belonging to 104 European bird 
species. We also quantitatively scored the expression of carotenoid, 
eumelanic, and pheomelanic plumage coloration (Galván et al., 2011; 
Galván & Møller, 2011), and the carotenoid coloration of bare parts 
(beak and legs) for each sex of each species. We expected species 
with a higher proportion of eumelanic coloration and associated 
higher eumelanin-mediated ROS production either to evolve an in-
creased antioxidant capacity to preemptively avoid oxidative stress 
(Ducrest et al., 2008), or to deplete the antioxidant pool while neu-
tralizing ROS. Similarly, we expected species with a higher pheom-
elanin production either to show elevated levels of GSH, necessary 
to initiate and sustain pheomelanin production, coupled with an 
increased protection against oxidative stress as a by-product of el-
evated GSH levels, or to face higher levels of oxidative stress due 
to the depletion of the GSH pool caused by the trade-off of this 
antioxidant between plumage pigmentation and antioxidant defense 
(Galván et al., 2011). Likewise, carotenoids can act both as anti- and 
pro-oxidants, resulting in either lower or higher species-specific lev-
els of oxidative stress. Given the above-mentioned predictions, we 
aimed to explore whether a relationship between pigmentation type 
and oxidative status exists at all across the sampled species, as any 

direction of relationship would provide information on how these 
traits evolved.

2  |  METHODS

2.1  |  Oxidative physiology data collection

We combined the dataset including 544 individuals from 85 spe-
cies published in Vágási et al. (2016) with data on an additional 843 
individuals from 96 species collected by the same team between 
2016 and 2019. Thus, the final oxidative physiology dataset included 
1387 individuals belonging to 104 bird species sampled in Romania 
between 2011 and 2019. Details on the sampling protocol and bio-
chemical assays are provided in Vágási et al.  (2016). Briefly, adult 
individuals were captured and ringed during their breeding season, 
usually between late April and early July. Most species were cap-
tured at multiple locations and/or during multiple years and sam-
pling occasions. We assessed the sex of each individual belonging 
to sexually dimorphic species based on morphological characters, 
while most individuals of (apparently) monomorphic species were 
sexed using molecular methods (for a detailed description of the mo-
lecular sexing method see Vincze et al., 2022). We collected blood 
samples (range 30–300 μl, depending on body size) by brachial veni-
puncture into heparinized capillaries as fast as possible after the bird 
was captured (always within 15 min; mean = 9.87 min, SD = 5.37). 
Blood samples drawn from small-sized species usually only allowed 
creating a single aliquot, leading to the measurement of different 
redox state markers from different samples. Therefore, sample size 
varies across redox markers within species (see Vágási et al., 2016). 
All birds were released in good condition after sampling. The sam-
ples were kept in dark cooling boxes at around 4 °C for <10 h until 
centrifuged (for 5 min at 6200g) to separate the plasma and erythro-
cyte fractions. Plasma was partitioned into aliquots for each marker, 
and all aliquots and the erythrocytes were stored at −50 °C. All labo-
ratory assays were carried out following the same protocol (by LP, 
JP, and CIV). Detailed protocols for measuring the three antioxidant 
markers (TAS, UA, and tGSH) and the two lipid peroxidation markers 
(ROM and MDA) can be found in the Appendix S1. Briefly, we meas-
ured TAS as described by Erel (2004), with modifications described 
in Sepp et al. (2010): nonenzymatic antioxidants decolorize ABTS+ 
(2,2′-azino-bis[3-ethylbenzothiazoline-6-sulfonate]) proportionally 
with their concentrations in the samples, which can be measured 
spectrophotometrically at 660 nm, and compared to antioxidants of 
known concentrations (Trolox, Sigma 2881-3). We measured UA and 
tGSH concentrations spectrophotometrically with two commercial 
assay kits (uricase/peroxidase kit: Uric Acid liquicolor kit, Human, 
Wiesbaden, Germany; tGSH kit: Sigma-Aldrich, St. Louis, MO). 
MDA concentrations were measured by High Performance Liquid 
Chromatography (HPLC) on a HPLC SUPELCOSIL™ LC-18 column, 
while ROM levels were assessed spectrophotometrically by measur-
ing the absorbance of peroxy radicals in reaction with N,N-diethyl-
para-phenylenediamine. The five markers of oxidative state showed 
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low, but significant repeatability at the level of species (Table S1), 
which indicates that variances in these five markers are smaller 
within species than among species. Trapping by mist nets and blood 
sampling was performed as licensed by the Romanian Academy of 
Sciences (permit no. 2257) and in accordance with current animal 
welfare laws of Romania.

2.2  |  Coloration scoring protocol

We measured the proportion of the entire plumage colored by ca-
rotenoid, pheomelanin, and eumelanin pigments for males and fe-
males separately for each species by applying the method developed 
by Galván and Møller  (2011) and Galván et al.  (2011). For each of 
the three main pigments, we assigned scores ranging from 0 to 5 to 
estimate the proportion of plumage color they generated (0 = 0%, 
1 = 1–20%, 2 = 21–40%, 3 = 41–60%, 4 = 61–80%, 5 = 81–100%), 
based on the color plates available from the digital resource Birds 
of the World (Billerman et al., 2020; formerly Handbook of the Birds 
of the World Alive, del Hoyo et al., 2016). Pigmentation leads to dis-
tinctive plumage coloration with eumelanin responsible for the black 
and gray, pheomelanin for the chestnut and brown and carotenoids 
for the yellow, orange, and red colors (Galván et al., 2011; Galván & 
Møller, 2011; Hill & McGraw, 2006). Both pheomelanin and eumela-
nin pigments are often simultaneously deposited in feathers (Galván 
et al., 2011). However, many bird feathers have an overwhelming 
proportion of either pheomelanin or eumelanin (i.e., one of the two 
pigments consisting of >90%; Galván et al., 2011). Interpreting black 
and gray colors as mostly generated by eumelanin, and brown or 
chestnut colors as mostly generated by pheomelanin, has therefore 
been considered adequate to roughly score plumage pigmentation 
for large-scale comparative purposes (Galván et al., 2011; Galván 
& Møller,  2011). The deposition of several pigments in the same 
feathers (e.g., carotenoids and pheomelanin or carotenoids and eu-
melanin) can result in green coloration, therefore we excluded nine 
species from our initial dataset. Besides carotenoid and melanin pig-
ments, other rare pigments (e.g., porphyrins, psittacofulvins, pter-
ins, flavins, and other, undescribed pigments) can also contribute to 
plumage coloration (McGraw, 2006b). Given that our database con-
tains only two species of Strigiformes (tawny owl Strix aluco and little 
owl Athene noctua) where porphyrins have been reported, these rare 
pigments are unlikely to distort our results. Although this coloration 
scoring method only provides a rough estimation of the plumage pig-
mentation, it is considered appropriate for comparative analyses due 
to the large across-species variation that ensures repeatability at the 
level of species (Galván et al., 2011; Galván & Møller, 2011; Owens & 
Hartley, 1998; Seddon et al., 2010).

All species were scored within a large-scale plumage pigmenta-
tion scoring endeavor comprising more than 7000 species, by one 
of two observers (SD or MG). To evaluate the consistency of the 
scoring, 216 randomly chosen species were scored by both observ-
ers. All three pigmentation scores were highly repeatable between 
the two observers (weighted Cohen's Kappa for ordinal variables, 

eumelanin: Kappa  =  0.824; pheomelanin: Kappa  =  0.833; carot-
enoid: Kappa = 0.914; all p < .001). The presence of carotenoids in 
the beak and legs was also assessed using the same plates by the 
same observers. Species received a score of 0 if carotenoids were 
absent, and a score of 1 if carotenoids were present in the beak (re-
peatability =  0.983 ± 0.002) or legs (repeatability =  0.797 ± 0.056; 
repeatability estimates and likelihood ratio test results obtained 
using the generalized linear mixed model and logit link-scale ap-
proximation with the rpt function for binary data in the R package 
“rptR,” Stoffel et al., 2017). Pigmentation scores are not independent 
of each other, as each of the three scores expresses the proportion 
of the plumage colored by a given pigment (e.g., if 80–100% of a 
bird plumage is colored by pheomelanin, then carotenoid/eumelanin 
score can only reach 0–20%). We thus conducted a principal com-
ponents analysis (PCA) to extract independent variables describing 
plumage pigmentation. The PCA was based on the proportion of the 
three pigments and simultaneously included data from the two sexes 
(i.e., including one datum per sex per species). Two components with 
eigenvalues >1 were extracted from the PCA on the pigmentation 
scores. The first component (PC1) explained 62.39% and the second 
(PC2) 32.38% of the total variance in pigmentation. The two melanin 
pigments loaded on PC1, with eumelanin having a positive (0.908) 
and pheomelanin a negative loading (−0.958). Carotenoid coloration 
only weakly loaded on the PC1 (0.358), but it was the only variable 
with a strong positive loading on the PC2 (0.930). Therefore, PC1 
is interpreted as the melanin-based coloration axis, and PC2 as the 
carotenoid-based coloration axis.

2.3  |  Confounding variables

We included body mass and diet as potentially confounding vari-
ables in the analyses (see below), as these were previously shown 
to affect the antioxidant status of wild animals (Cohen et al., 2009; 
Costantini, 2008; Olson & Owens, 2005; Tella et al., 2004; Vágási 
et al., 2019). Body mass data for each sex of each species was ex-
tracted from Storchová and Hořák  (2018), with minor modifica-
tions due to differences in mass between subspecies (changes are 
highlighted in the data frame indicated in the Data Accessibility 
Statement). Diet during the breeding season was also collected from 
Storchová and Hořák (2018) and categorized into a three-level fac-
tor coded as animal-based, plant-based, or omnivorous (i.e., both 
animal- and plant-based food present in the breeding diet).

2.4  |  Phylogenetic comparative analyses

To test for associations between oxidative physiology and pigmenta-
tion, we built phylogenetic linear mixed models (PLMMs) based on 
Markov chain Monte Carlo (MCMC) estimations, as implemented in 
the “MCMCglmm” package (Hadfield, 2010) in the R statistical and 
computing environment (v. 4.1.1; R Core Team,  2020). Individual 
levels of TAS, UA, MDA, and ROM values were square-root 
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transformed, while tGSH was log10-transformed to provide the best 
model fit for each, and were used as response variables in separate 
models, while coloration variables were used as explanatory vari-
ables. We chose this approach for several reasons. First, since we 
have individual-level data for oxidative markers, using individuals as 
the unit of analysis with the oxidative markers as response variables 
yields the most powerful way of maximizing information gain and 
not ignoring within-species variation (Garamszegi,  2014). Second, 
using oxidative markers as explanatory variables could lead to multi-
collinearity and thereby unreliable results (Graham, 2003). To assess 
the degree of multicollinearity, we constructed linear models with 
oxidative parameters used as response variables, and with PC1 and 
PC2 describing plumage pigmentation, presence of carotenoids in 
the beak and in the legs, diet, body mass (log10-transformed), and 
sex (as a three-level factor: female, male, or unknown) as explana-
tory variables (see R Markdown file in the Appendix S1). However, 
variation inflation factor (VIF) values for our models were <2, which 
suggests that multicollinearity could not distort our results. Third, 
the phylogenetic signal of all oxidative markers was low (Table S2), 
suggesting that the correlation between each marker and coloration 
can be tested equally well by taking either variable as response (as 
described in Appendix S3 of Liker et al., 2021). Note that the direc-
tion of cause–effect relationships may go both ways, that is, while 
oxidative physiology may constrain the evolution of coloration, se-
lection on coloration may also drive the evolution of oxidative physi-
ology, and PLMMs can only test for evolutionary correlations.

Each PLMM included the species' PC1 and PC2 describing 
plumage pigmentation, presence of carotenoids in the beak and in 
the legs, diet, body mass (log10-transformed), and sex as explana-
tory variables. In the model of TAS, UA was additionally included 
as covariate because UA has a large contribution to TAS (Cohen 
et al., 2008). Since for most species several individuals were sampled 
from several years, species identity and year were included in the 
models as random intercepts. In addition, we controlled for phyloge-
netic relationships among species by including phylogeny in the ran-
dom structure of the models. For this phylogenetic control we used 
a consensus tree, created by applying the consensus.edges function 
of the “phytools” R package (Revell, 2012) on 1000 phylogenies sam-
pled from the pseudo-posterior distribution available on www.birdt​
ree.org (Jetz et al., 2012). MCMC chains were run for 2,500,001 iter-
ations with a burn-in interval of 50,000. A total of 10,000 iterations 
were sampled (i.e., each 245th iteration) to estimate parameters for 
each model. Autocorrelation levels among sampled iterations were 
lower than the more conservative threshold level of 0.1, and we used 
graphic visualization of all posterior distributions to assess model 
convergence. We used Gaussian distributions and priors that equally 
partitioned the variance in each oxidative state marker (i.e., response 
variable) between the four random terms: phylogeny, species, year, 
and residual variance.

We tested the robustness of our results by re-analysis in three 
ways: (1) using a subset of data excluding species with irides-
cent plumage (eight species), (2) using a subset of data containing 
only species with a sample size of N ≥ 3, or (3) using an alternative 

phylogenetic tree (Cooney et al., 2017). Moreover, we performed 
further sensitivity analyses for the two response variables for which 
we had directional predictions (tGSH and ROM), by replacing PC1 
and PC2 with either raw eumelanin or raw pheomelanin scores and 
re-running all four models described above (i.e., two models on the 
full dataset with two different phylogenetic trees, and two models 
with subsets of data containing species without iridescent plumage 
and with a sample size of N ≥ 3).

3  |  RESULTS

Plumage and bare part pigmentation were not significantly associ-
ated with any of the tested markers of oxidative status, except for 
ROM levels (Table 1). Plasma ROM concentrations were positively 
associated with a more eumelanic and less pheomelanic coloration 
(i.e., higher PC1 values), but were not related to carotenoid colora-
tion (i.e., PC2 values). In models where PC1 was substituted with 
raw eumelanin and pheomelanin scores, species with proportionally 
higher eumelanic coloration exhibited marginally significantly higher 
ROM levels and species with more pheomelanic plumage exhibited 
marginally significantly lower ROM levels (Table 2). The relationship 
between ROM and PC1 or melanin scores was significantly strong 
and marginally nonsignificant, respectively, with an alternative phy-
logeny. This relationship weakened when species with iridescent 
plumage were excluded (marginally significant between ROM lev-
els and PC1, and nonsignificant between ROM and raw eumelanin 
or pheomelanin scores), and stronger for all three melanin variables 
when only species with N ≥ 3 individuals were included in the models 
(Tables S3–S9). All other relationships between coloration variables 
and oxidative markers remained nonsignificant in the sensitivity 
analyses (see Tables S3–S9).

Predictors other than coloration were significantly related to ox-
idative state markers as shown in Table 1. Species with a plant-based 
diet had lower MDA but higher tGSH levels than carnivorous spe-
cies. MDA and ROM decreased significantly with body mass, while 
tGSH levels were positively associated with body mass, similarly to 
previous results described in Vágási et al.  (2016, 2019). TAS levels 
were related only to UA levels. These results remained qualitatively 
unchanged in the sensitivity analyses (see Tables S3–S9).

4  |  DISCUSSION

Our study suggests that avian coloration and oxidative physiology 
are only weakly associated across species and thus evolved largely 
independently of each other. Melanin-based coloration was as-
sociated with a marker of oxidative stress as species with a higher 
proportion of eumelanic plumage (and lower proportion of pheome-
lanic plumage) had higher ROM levels. However, this relationship 
was marginally significant when the principal component axis of 
melanin-based coloration was substituted with raw eumelanin and 
pheomelanin scores, and these relationships were relatively weak, 

http://www.birdtree.org
http://www.birdtree.org
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particularly when the species with iridescent plumage (7.7% of the 
initial dataset, which also have a more eumelanic plumage) were ex-
cluded from the analyses. The extent of eumelanin coloration was 
associated neither with an increase in antioxidant defense levels, nor 
with the depletion of the antioxidant pool. Neither was the extent 
of pheomelanin coloration associated with reductions in the levels 
of glutathione across species. The extent of carotenoid coloration 
of the plumage and of bare parts was unrelated to markers of oxida-
tive physiology, in line with findings of recent intraspecific studies, 
which together align with the idea that carotenoids are not a key 
component of the antioxidant machinery (Hõrak et al., 2010; Koch 
et al., 2018; Koch & Hill, 2018).

The chemical pathway of pheomelanogenesis consumes cys-
teine that is free or provided by the most powerful intracellular 
nonenzymatic antioxidant, the cysteine-containing tripeptide gluta-
thione (Potterf et al., 1999). Intraspecific studies suggest that the 
production of pheomelanin may involve the depletion of cysteine 
via glutathione (e.g., Arai et al., 2017; Galván et al., 2015; Leclaire 
et al.,  2019; Rodríguez-Martínez & Galván,  2019; Schallreuter 
et al., 2008). However, our interspecific results do not support this 
hypothesis, as we found no relationship between glutathione levels 
(tGSH) and pheomelanin coloration expressed either as PC1 or as 
raw pheomelanin scores. This lack of association is unlikely to be 
due to small statistical power given the large sample size for gluta-
thione levels (1387 individuals of 104 species). This lack of associ-
ation might stem from the fact that we measured total glutathione 
levels, which contains the amount of both reduced and oxidized glu-
tathione (GSH and GSSG, respectively, see Appendix S1 of Vágási 
et al., 2016). The contribution of GSSG to the tGSH concentration 
is however negligible, suggesting that measuring tGSH is unlikely to 
bias our results. Indeed, in physiological conditions, the GSH:GSSG 
molar ratio is between 100:1 and 1000:1 (discussed in detail by 
Monostori et al., 2009), while the proportion of GSSG in erythro-
cytes represents less than 0.5% of the GSH concentration (Reinbold 
et al., 2014). For future studies, the GSH:GSSG ratio might still bring 
additional information regarding the availability of glutathione to act 
as an antioxidant (Galván et al., 2014). In conclusion, our results sug-
gest that the mechanisms linking pheomelanogenesis, glutathione, 
and cysteine may be more complex than a simple allocation trade-
off of cysteine between pheomelanin synthesis and GSH-mediated 
antioxidant defense.

A toxic excess in cysteine occurs when food cysteine content 
is higher than the amount needed for protein synthesis, exerting 
a negative influence on physiological pathways and growth, and 
causing metabolic acidosis and eggshell thinning (Galván,  2017; 
Klasing, 1998). Thus, species with a diet rich in cysteine might have 
evolved increased pheomelanin coloration to remove the surplus 
cysteine from the body and to deposit it into their feathers, which 
are dead structures (Galván,  2017; Galván et al.,  2012). Under 
this hypothesis, an interspecific relationship between the extent 
of pheomelanin coloration and glutathione levels is not expected. 
Importantly, however, excess dietary amino acids are also diverted 
to the synthesis of uric acid, the main product of protein breakdown 
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and excretion in birds (Klasing, 1998). In accordance with this hy-
pothesis, we found that species with a carnivorous diet exhibited on 
average higher uric acid levels. Our study also reveals that species 
with more pheomelanic pigments in their plumage do not circulate 
significantly higher levels of uric acid, suggesting that species poten-
tially suffering from excess cysteine might not use either the synthe-
sis of pheomelanin or an increased production of uric acid to limit 
cysteine toxicity. Although we found that species with a plant-based 
diet, which is low in both proteins and cysteine, exhibited higher 
tGSH levels (i.e., a larger amount of bound cysteine), future studies 
should investigate if species with increased pheomelanin plumage 
coloration also feed on a diet rich in cysteine.

The finding that species with a higher proportion of eumelanic 
coloration showed higher concentration of ROM across species sup-
ports the hypothesis put forward by García-Molina et al. (2005) and 
tested experimentally by Galván and Alonso-Alvarez (2008, 2009). 
According to this hypothesis, some ROS (e.g., H2O2, a principal com-
ponent of the ROM assay) promote eumelanin production in the 
early stages of melanogenesis. In these experiments performed on 
red-legged partridges Alectoris rufa and great tits Parus major, the ex-
pression of eumelanin-based plumage signals was enhanced by the 
α-melanocyte-stimulating hormone and by GSH inhibition (Galván 
& Alonso-Alvarez,  2008), externally induced oxidative stress, or 
the additive effect of these two manipulations (Galván & Alonso-
Alvarez, 2009). Plumage melanin pigmentation is at least partly at-
tributed to variation in melanocortin levels, and melanocortins have 
pleiotropic effects (Ducrest et al., 2008): α-MSH is known to inhibit 
GSH-peroxidase in keratinocyte and melanoma cell lines (Haycock 

et al., 2000). Therefore, by inhibiting the GSH-peroxidase, α-MSH 
could also contribute to elevated ROS levels. However, further 
studies are needed to ascertain the generality and mechanisms of 
the relationships between oxidative stress and melanin-based col-
oration, because the interspecific correlations we found between 
ROM and melanic colorations showed some degree of uncertainty 
(e.g., sensitivity to excluding species with iridescent coloration), 
and we detected no correlation between melanization and MDA, 
another marker of oxidative damage. The reasons for this hetero-
geneity would be best addressed by a combination of experimental 
work and cross-species comparisons, because comparative studies 
can neither assess causality, nor can they explicitly test for trade-
offs due to the “big house – big car” paradox (Reznick et al., 2000).

It is important to note that the samples we used to measure 
oxidative physiology were taken during the breeding season for all 
individuals, while coloration is developed during molt. Given that 
these two energetically demanding activities rarely overlap, the lack 
of association could originate from species-specific differences in 
the seasonal changes in oxidative physiology. However, if species-
specific life histories entail a certain species-specific redox state (as 
shown in Vágási et al., 2016, 2019), and this redox state constrains 
the evolution of coloration (or vice versa), within species differences 
in redox state due to seasonal changes should be smaller than the 
magnitude of differences detected across species. Future studies 
should explore the seasonal change in oxidative physiology across 
bird species and test for the potential associations between oxi-
dative stress markers during the molting season and the resulting 
plumage melanin pigmentation. Note that seasonal color change 

TA B L E  2 Results of Markov chain Monte Carlo (MCMC) phylogenetic linear mixed models showing a positive association between 
plumage eumelanin score and plasma reactive oxygen metabolites (ROM), and negative association between plumage pheomelanin score 
and plasma ROM. Model parameters (posterior mean with 95% credibility intervals, CrI) were estimated based on 10,000 iterations of each 
model. Fixed effects with pMCMC <.05 are highlighted in bold.

ROM in relation to eumelanin ROM in relation to pheomelanin

Post. Mean Lower CrI Upper CrI pMCMC Post. Mean Lower CrI Upper CrI pMCMC

Fixed terms

Intercept 1.656 1.194 2.098 <.001 1.735 1.266 2.193 <.001

Eumelanin 0.035 0.000 0.069 .051

Pheomelanin −0.028 −0.056 0.000 .052

Beak carotenoid −0.011 −0.183 0.160 .892 −0.007 −0.180 0.162 .935

Leg carotenoid 0.094 −0.116 0.304 .388 0.082 −0.127 0.292 .445

Body mass −0.238 −0.411 −0.064 .008 −0.203 −0.369 −0.030 .020

Diet (omnivore) 0.192 0.022 0.358 .026 0.176 0.011 0.345 .039

Diet (herbivore) 0.109 −0.089 0.296 .264 0.108 −0.094 0.291 .266

Sex (male) 0.001 −0.100 0.095 .993 0.007 −0.086 0.107 .882

Sex (unknown) 0.105 −0.035 0.236 .128 0.109 −0.025 0.247 .119

Random terms

Phylogeny 0.019 0.004 0.040 0.019 0.004 0.040

Species 0.010 0.003 0.019 0.010 0.003 0.019

Year 0.077 0.003 0.225 0.076 0.003 0.223
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cannot explain the lack of relationship between oxidative physiology 
and carotenoid-based coloration of bare parts, because the latter is 
not generated during the molting season.

Carotenoid-based traits are considered to honestly signal indi-
vidual quality, because carotenoids may be limited in nature and thus 
birds may face a trade-off when allocating carotenoids for pigmen-
tation and for building and maintaining immune and antioxidant de-
fenses (Olson & Owens, 2005; Simons et al., 2012, 2014; Svensson 
& Wong,  2011). However, a growing body of within-species ex-
perimental studies (e.g., Hõrak et al., 2010; Koch et al., 2018) and 
meta-analyses (Costantini & Møller, 2008; Simons et al., 2012) chal-
lenges the importance of carotenoids as antioxidants (reviewed by 
Hill, 2011; Koch & Hill, 2018) and suggests instead that carotenoid 
signal honesty is maintained through the cellular respiratory system 
(Johnson & Hill, 2013; Hill, 2014). Here, we found no association be-
tween the circulating antioxidant levels and plumage or integument 
carotenoid pigmentation on an interspecific level, which seems to 
support the idea that carotenoid-based traits are not tightly linked 
with antioxidative physiology. However, the correlative nature of in-
terspecific comparative studies did not allow us to directly test for 
the existence of the hypothesized allocation trade-off, and intraspe-
cific studies likely remain the key to further elucidate this question.

In conclusion, our study highlights that species-specific oxida-
tive physiology is largely unrelated to plumage pigmentation despite 
multiple predictions for a tight link between the antioxidants and 
pigment synthesis. Nevertheless, species with more eumelanic and 
less pheomelanic plumage may experience higher oxidative stress 
as measured by the concentration of reactive oxygen metabolites. 
Given the complexity of the pathways in which both melanin and 
carotenoid pigments interact with other physiological pathways, the 
nature of associations between coloration and physiology needs 
further correlative and experimental research to help us understand 
their co-evolution across the tree of life.
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