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Abstract: Low intensity green light emitting diodes (LED) were shown to be an effective light source 

to induce the photopolymerization of an acrylate-based photocurable dental restorative resin mixture 

of bisphenol A glycerolate dimethacrylate (BisGMA), triethylene glycol dimethacrylate (TEGDMA), 

and diurethane dimethacrylate (UDMA), in combination with fluorinated diaryl titanocene (Irgacure 

784). Dental matrices were prepared by the LED light source at different intensities. The mechanical 

properties, such as Vickers microhardness, compressive strength, diametric tensile strength, flextural 

strength and E-modulus of the created samples were investigated. The kinetics of the 

photopolymerization was followed by Raman spectroscopy and conversion values were determined. 

It was found that despite its narrow emission range centered at a wavelength of 531 nm, the green 

LED light source is suitable for the preparation of dental matrices with good mechanical properties 

and high conversion values. 
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1. Introduction 

Photopolymerization [1] has become an essential tool in three-dimensional (3D) printing [2], 

photolithography [3], in the construction of polymer electronics [4], optical materials [5], membranes 

[6], coatings, and in surface modifications. The most common photopolymerization monomers are 

cyclic or linear epoxides (cationic) and acrylate based monomers (radical) [1]. Acrylate-based 
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photopolymers are important materials for cardiovascular applications [7], for in vivo drug delivery 

[8], and for minimally invasive procedures. Dimethacrylate-based resins have many applications in 

restorative dentistry, being used as adhesives, pit-and-fissure sealants, and can be combined with 

silane-coated glass fillers to render the most widely used esthetic direct restorative material, and can 

be used as cementation agents and veneering materials [9–12]. Photopolymerization starts with 

exposure to a light source, the operation wavelength of which depends on the photoinitiator added. 

For the photopolymerization process to be effective, the spectral radiant power of the light curing unit 

must fall within the spectral range required to activate the photoinitiator present in the resin [13].  

Several types of light-curing units are available for photo-activation of photopolymerizable 

dental resins. The contemporary technologies include quartz-tungsten-halogen lights (QTH), plasma 

arc lights, high-intensity QTH lights, and light emitting diodes (LED). The most common 

photoinitiator in dental practice is camphorquinone (CQ) in combination with tertiary amines as 

coinitiators [14]. CQ has a relatively broad absorption in the ultraviolet (UV) region and an absorption 

band in the visible region with a maximum wavelength (λmax) of 468 nm [14,15]. Unfortunately, CQ 

has a low molar absorption coefficient in the visible region of the spectrum. Normally, UV light would 

be used in combination with CQ, but due to the risk of tissue burning, and carcinogenic and 

photoallergic effects, the application of irradiation below 400 nm is restricted in dental applications, 

and visible light is favoured [16].  

To overcome the relatively low initiation efficiencies, other high-performance visible 

photoinitiators have been developed for resins used in specialty applications, such as direct laser 

imaging, holography, or photopolymerization color printing [17]. Fluorinated diaryl titanocene 

(Irgacure 784) proved to be effective for initiating the polymerization of acrylate monomers under 

visible light exposure, having high photosensitivity and absorbing light in a large wavelength region 

of up to 550 nm, meaning it may be suitable for use in dental composites [18]. Another advantage of 

Irgacure 784 is that it is not reliaint on diffusion-controlled electron transfer reactions because it 

undergoes unimolecular decomposition [19]. However, the application of Irgacure 784 may have the 

disadvantage of residual color when used in excess, but this issue is also present in CQ/amine initiator 

systems [20] and could be overcome by optimizing the amount of initiator, or could be lowered by the 

application of fillers.  

The degree of conversion of the dental resin, which is the marker of polymerization efficiency, 

depends on the correlation between the spectral distribution of the light source and the absorption 

spectra of the photoinitiator [21]. Essentially, QTH light sources have been used for the 

photopolymerization of dental resins, but their application is energetically inefficient, and their 

effective lifetime is limited by degradation [22]. On the other hand, LEDs have many intrinsic 
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advantages making them ideally suited for the photopolymerization of oral biomaterials. Their first 

major advantage for photo-polymerization is their high energy efficiency in terms of energy required 

for a cure cycle. LEDs have high durability, meaning a long lifetime with little degradation of light 

output. The second major advantage is that their typical spectral line width is 5–20 nm. So, as the 

photoinitiators present in oral biomaterials have light absorption spectra with distinct maxima, 

effective and rapid photopolymerization could result if the wavelength of the LED was chosen in this 

range [21].  

While the photocuring of dimethacrylate-based dental resins in combination with Irgacure 784 

and LED light source has many advantages, similar to other free radical polymerizations, it may be 

strongly inhibited by free-radical scavengers such as oxygen. However, the inhibition effect of oxygen 

was studied in detail by Gauthier et al. for bisphenol A glycerolate dimethacrylate:triethylene glycol 

dimethacrylate (Bis-GMA:TEGDMA)-based dental composites.[23] They showed that with the proper 

selection of the monomer viscosity and polymerization temperature, oxygen inhibition only occurs in 

the surface layer, to a depth of about 20 μm, and below that, approximately 90% conversion could be 

reached.  

To the best of our knowledge, no studies have been published on the preparation of dental 

acrylate resins using Irgacure 784 as a photoinitiator in combination with a green LED light source. 

Herein, we report on our investigation into the effect of a LED light-curing unit on the mechanical 

properties and conversion rates of acrylate-based experimental resin containing Irgacure 784 

photoinitiator.  

2. Experimental Materials and Methods 

2.1. Preparation of Experimental Resin Matrix  

The photocurable resin matrix was a mixture of Bisphenol A glycerolate dimethacrylate 

(BisGMA), triethylene glycol dimethacrylate (TEGDMA) (Sigma–Aldrich Co., St. Louis, MO, U.S.) and 

diurethane dimethacrylate (UDMA) (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) monomers 

in a 21.4:25.4:53.3 weight ratio, respectively, containing 2 % (m/m) Irgacure 784 (BASF Hungary Ltd.) 

as a photoinitiator. Dimethylformamide (DMF, high performance liquid chromatography (HPLC) 

grade) was obtained from Sigma-Aldrich. The materials were used without further purification.  

2.2. Photopolymerization of the Samples  

To exclude oxygen, the photocuring process was performed under laminate conditions. The 

experimental resin was inserted into a Teflon mold and the top surface was flattened by a polyester 
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strip (to seal the surface from oxygen) as is shown in Figure 1 (right). Light activation was performed 

for 30 s with the LED at light intensities of 0.7, 1.0, 1.2, 1.4, 2.0, 4.0, and 6.0 mW/cm2. The 

photopolymerizations were done in a dark room, without any backlights. The specimen disks were 2 

mm thick and 10 mm in diameter. 

2.3. Light-Curing Unit Description 

In our experiments, we used a light-emitting diode light source (LED) (Megaled, 3 W green power 

LED, Hungary) unit in order to polymerize the experimental resin matrix. The emission range of the 

LED light source is centered at a wavelength of 531 nm. The full width at the half maximum is 32 nm, 

while the half width at the half maximum is 16 nm for our LED light source. The size of the irradiated 

region was 3 x 3 cm. Therefore, the samples were irradiated through a cuboid, a tube with both sides 

open, which was covered inside with a highly reflective coating to make the irradiation spot more 

homogenous. The optical spectrum of the light source was measured with a fiber optical 

spectrophotometer (Ocean Optics, USB650, U.S.). The intensity of the light source was measured by a 

power meter setup (ThorLabs, PM100, U.S.). In addition, the spectral irradiance distribution of the 

light source was detected with a spectroradiometer (EKO Instruments, LS-100, Japan). The UV-vis 

spectra of the photoinitiator in toluene were recorded on an Agilent Cary 60 spectrophotometer 

(Agilent, Santa Clara, CA, U.S.) in a quartz cuvette with a 1.00-cm optical length. A 3.00 cm3 solution 

was prepared from the sample.  

2.4. Resin Density, Extraction, and Water Swelling Experiments 

The densities of the cured samples were determined in a pycnometer at 25 °C, using water as 

the medium. For the swelling studies, three of the samples at different light intensities, 0.7, 1.0, 1.2, 1.4, 

2.0, 4.0, and 6.0 mW/cm2, were placed in excess deionized water and were allowed to reach 

equilibrium at ambient temperature for a week. The surfaces of the wet disks were cautiously wiped 

dry and their weights were measured immediately. After 24 h, the cured samples were extracted with 

DMF in a Soxhlet-type extractor overnight. The extracted samples were dried in vacuum at 50 °C for 2 

days and their weight was measured.  

2.5. Characterization of Polymerization Kinetics of Experimental Resin with Raman Spectroscopy at Different 

Light Intensities 

The Raman spectra were recorded with a system incorporating a waveguide 

spectrophotometer (Ocean Optics QE 6500, U.S.), and the light source was a CW laser operating at 785 

nm. As this wavelength is out of the absorption range of the photoinitiator, the laser light did not 
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affect the photopolymerization process. The monomer was irradiated in a polystyrene cuvette and the 

spectra were taken before and after polymerization (Figure 1).  

 

 

Figure 1. Experimental layout for Raman spectroscopy (left) and the laminated Teflon mold used for preparing 

the resins (right). 

In addition, in situ investigation of the Raman spectra was completed; the spectra were 

recorded during the illumination every second. This measurement setting allows the calculating and 

establishing of the kinetics at different types of irradiation. With these measurements, the chosen light 

intensities varied between 0.7 and 10.0 mW/cm2. The laser was focused to the center of the cuvette, so 

the spectral information was collected from the volume and not from the surface. The polymerization 

time was chosen as 250 s to allow for the front of the polymerization to the Raman source. The images, 

which display changes in composition and Degree of Conversion (α), were generated with OriginPro 

8.0TM software.  

2.6. Preliminary Vickers Microhardness Measurements 

The specimens were prepared as described in Section 2.2 and were stored at room 

temperature for 24 h before testing. At each light intensity, three samples were prepared (n = 3) and 
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five microhardness indentations were made per specimen. Vickers microhardness measurements were 

made with a 100-g load for 20 seconds in a micro-hardness testing machine (Buehler Vickers 

Microhardness, Micromet 5103, U.S.). In this preliminary investigation, our aim was to choose the 

optimal light intensity for polymerization of the samples, where the Vickers micro-hardness data 

showed the best results. The subsequent mechanical measurements were performed at the chosen 

light intensity. 

2.7. Diametral Tensile Strength Measurements 

The uncured resin was placed in a Teflon mold and the samples were covered with a thin 

polyester foil. The polymerization of the samples was performed at a light intensity of 1.4 mW/cm2 of 

the LED light source for 30 s. The size of the specimens was 3 mm thick and 6 mm in diameter. The 

diametral tensile stress (DTS) of the experimental resin was determined by a mechanical testing device 

(INSTRON 5544, U.S.) equipped with 2-kN load cell at a crosshead speed of 1 mm/min. DTS was 

calculated from the maximum compression load (F) at the specimen fracture in a diametric position, 

with the following equation: DTS = 2F/(πhd), where h is the height of the specimen; d is the diameter 

of the specimens, and π is a constant at 3.14. 

2.8. Flexural Strength Measurements 

The flexural strength of the experimental resin samples was investigated with a mechanical 

testing device (INSTRON 5544, U.S.) equipped with 100-N load cell at a crosshead speed of 1 mm/min. 

The span distance was 18 mm. The three-point flexural strength tests were implemented on prismatic 

specimens. The samples were photopolymerized with the LED light source at 1.4 mW/cm2 power 

density for 30 s in a Teflon mold. The cross-section size of the specimens was 2 mm x 2 mm, and 25 

mm in length. In average, 14 specimens were prepared and stored at room temperature for 24 h before 

testing. The flexural stress and modulus (modulus of elasticity) data were calculated by MSZ EN ISO 

178. 

2.9. Compressive Strength Measurements  

Compressive strength tests were performed with a mechanical testing analyzer (INSTRON 

8874, High Wycombe, U.K.) equipped with 25-kN load cell. Fifteen cylindrical samples (n = 15) were 

created. The resin was inserted in a single increment into a Teflon mold, and the top surface was 

flattened by means of a polyester strip. For the sample preparation, the light activation was performed 
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for 30 s at 1.4 mW/cm2. The size of the specimens was 6 mm in height by 3 mm in diameter. The 

crosshead speed was 1 mm/min. The compressive data were calculated by MSZ EN ISO 604:2003. 

3. Results and Discussion 

3.1. Monomers and Light Source 

 Our resin contained a monomer mixture of BisGMA, TEGDMA, and UDMA 

(Figure 2) in a 21.4:25.4:53.3 weight ratio. Asmussen and Peutzfeldt [24] examined the influence of 

these monomers on the mechanical properties of experimental resin composites. They stated that for 

the designed mechanical properties of dental composite resins, it is best to apply monomers in this 

optimal ratio for that purpose. The aromatic monomer BisGMA is rigid compared to TEGDMA and 

UDMA. The urethane linkage in UDMA, the favorable stereochemistry, and the long chain in 

TEGDMA provide flexibility to these molecules. The application of more flexible monomers is 

expected to increase the conversion of polymerization.  

 

Figure 2. The chemical structure of the photoinitiator and acrylate monomers used in this study 
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The photoinitiator used was Irgacure 784, mixed to the matrix in 2% (m/m). In addition to the 

copolymer composition, the photoinitiator also influences the physical properties of the resins. Sabol 

et al. studied Irgacure 784 in an epoxy photopolymer and assumed that two absorptive photoproducts 

are generated during photoinitiation [25]. This photoinitiator does not require an electron donor to 

produce free radicals so is suitable for the substitution of CQ in dental photopolymer systems. 

Irgacure 784 absorbs at the green exposing wavelength (λ) of 532 nm. The absorption of light quanta 

by Irgacure 784 causes reversible isomerization, resulting an intermediary isomer with different 

absorption spectra, that can either relax and return to the original state, or cause photocleavage, 

resulting in a stable acryl compound, and an unstable titanocene diradical, that can react with a 

reducing agent to form a stable transparent final product. Another possible method of forming a final 

stable product is the reaction of the isomer with a reactive component of the resin matrix [25]. 

       Since we used a green LED light source to initiate the photopolymerization process, knowing the 

characteristics of the lamp and sensitivity of the initiator in the green region of visible light is 

important. The transmittance spectrum of the LED lamp and the absorption spectrum of Irgacure 784, 

recorded in toluene, are presented in Figure 3. 

 

Figure 3. Ultraviolet-visible (Uv-vis) absorption spectrum of Irgacure 784 photoinitiator in toluene 

(left) and spectral irradiance distribution of the green LED light source. 
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From Figure 3, the LED light source emits in a relatively narrow range (490–590 nm), which 

can be assigned to the green region of visible light. The peak of emission was found to be at 531 nm, 

while the full width of the half maximum is 32 nm. Irgacure 784 has high absorption below 500 nm, 

which drops rapidly above this wavelength and is practically transparent above 550 nm. However, the 

molar extinction coefficient is still approximately ε 90 M-1cm-1 at the emission maximum of the light 

source; therefore, we concluded that Irgacure 784 can be effectively used in combination with a green 

LED light source. 

3.2 Kinetic Investigation of the Photopolymerization 

To gain insight into the photopolymerization process of our dental resin, kinetic 

measurements were performed. However, the chain polymerization of acrylate monomers during 

photopolymerization may involve very complex reactions; therefore, it is only possible to work with 

simplified models. The reaction rate (dα/dt) of a theoretical radical chain polymerization is usually 

given by Equation (1): 
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where α is the degree of conversion, Ia is the intensity of absorbed light in moles of light quanta per 

liter-second, Q is the quantum yield of initiation, and kp and kt are the rate constants for propagation 

and termination, respectively. Equation (1) is only valid if we assume steady-state conditions. 

However, during propagation, the reaction kinetics are affected by autoacceleration, which is a 

consequence of altered diffusion. Since Equation (1) is no longer applicable, the rate of reaction must 

be rewritten as a function of the radical concentration, [R]: 
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Unfortunately, Equation (2) does not consider that the glass transition temperature (Tg) of the 

restorative material must be higher than the maximum temperature that can be reached in the oral 

cavity, in order to prevent failures of the restorations due to thermal fatigue. As the photocuring 

progresses, the Tg of the network formed also increases, and the initially viscous liquid monomer 

mixture becomes a glassy solid. In this glassy network, the mobility of the monomers and radicals is 
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greatly reduced, and due to this vitrification effect, the reaction becomes diffusion controlled and the 

termination step of the polymerization is governed by the strong decrease in the molecular mobility. 

Maffezzoli et al. [26] proposed a simple expression, capable of describing the overall kinetic process by 

modelling the kinetic behavior of acrylates during photocuring conditions, using a simple pseudo-

autocatalytic expression. According to Maffezzoli, Equation (2) can be transformed to include the two 

effects of diffusion, autoacceleration and vitrification, as presented in Equation (3): 
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where ooappapp Ikk ,  is the apparent rate constant of the polymerization, Io is the initial light 

intensity, m and n are the fitting parameters, and α∞ represents the maximum degree of conversion. 

Notably, according to Equation (3), the reaction rate converges to zero as the degree of conversion (α) 

approaches α∞. 

Raman spectroscopy is an appropriate technique to determine the degree of conversion (α) 

[27] for Equation (3). Measurements were obtained before and after 150 s of irradiation, and the results 

are presented in the spectral range of 500– to 2000 cm-1 in Figure 4.  

 

Figure 4. Representative Raman spectrum before and after irradiation with a LED light source. 

The vinyl double bonds (C=C) and aromatic ring quadrant stretching vibration (Ph), which 

were used to calculate the conversion [27,28], are observed at 1639 and 1610 cm-1, respectively, as 

indicated by the arrows. The highest intensity of the band, at 1639 cm-1, was observed for the samples 

before irradiation. The monomer has the largest number of C=C bonds before polymerization. The 



11 

 

intensity of the C=C band decreased upon irradiation due to the consumption of the double bonds in 

the polymerization reaction, whereas the intensity of the Ph band remained constant during the 

irradiation. The conversion (α) was calculated using the two-frequency technique, as a ratio between 

aliphatic C=C, at 1637 cm-1 - IC=C, and aromatic, at 1610 cm-1 - – IPh, carbon double bonds peaks based on 

Equation (4):  
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Conversion data were calculated based on Equation (4) from the Raman spectra recorded every 

second for 250 s in total, at light intensities between 0.7 and 10.0 mW/cm2. The measured reaction rates 

along with the calculated ones, per Equation (3), were plotted as a function of the light intensity as 

shown in Figure 5. 

 

Figure 5. The reaction rates (d/dt) as a function of light intensity (Io). The solid line represents the fitted curve 

based on Equation (3).  

From Figure 5, the experimental points can be well fitted using Equation (3). The x variable 

has a power of 0.52, which agrees with the square root dependency (Io1/2) of the reaction rate upon the 
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light intensity. The applicability of the model, describing the overall kinetic behavior, was tested by 

comparing the theoretical conversion data with the experimental data. According to Figure 6, the 

conversion of photo curing shows a significant light intensity dependence.  

 

Figure 6. Comparison between the degree of conversion measured by Raman spectroscopy and that of calculated 

based on Equation (3) at different light intensities. 

 

Using a low value of 1.4 mW/cm2, only 50% conversion was obtained, taking more than 200 s 

to reach the final value. However, little difference was observed between an Io of 6 and 10 mW/cm2, 

where a conversion of more than 70% was achieved after 150 s. For dental applications, higher light 

intensities are favorable, however these values fall well below those previously reported for CQ [16]. 

3.3. Resin Density, Water Swelling Experiments, and Physical Properties of the Cured Resins 

An increase in density is a good indicator of resin formation because the crosslinked 3D 

structure is more compact than the mixture of the unreacted monomers, as with acrylate 

polymerization. The density of the monomer mixture and that of the cured samples were measured in 

a pycnometer, relative to water. The density increased from 1.121±0.001 g/cm3 in the monomer 

mixture to between 1.16 to 1.18 g/cm3 (the error was less than 2.5% in each case), as seen in Figure 7.  
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Figure 7. Densities and water uptake of the photocured resins irradiated at different intensities after an 

irradiation time of 30 seconds. 

The resin densities did not show any significant variation, indicating similar structural 

properties and conversion of the monomers. For practical applicability, swelling experiments were 

performed in deionized water for seven days at ambient temperature. The samples did not uptake 

water, with a mass increase of about 1% in each case, which is favorable for in vivo applications. The 

cured samples were extracted in DMF to determine the conversion of the monomers. In each case, the 

weight loss was approximately 9–10%, indicating a conversion close to 90%, even with a light intensity 

as low as 1 mW/cm2. This result shows that Irgacure 784 can be considered effective when combined 

with the narrow-emission green LED.  

Another important factor to consider for practical applications is the surface hardness of the 

material. Therefore, the Vickers microhardness of the resins were measured after 24 h and after one 

week. The results are presented in Figure 8. It is important to measure the hardness of the samples at 

two different times to account for the effect of post curing. That is, while most of the polymerization 

reaction occurs during the first minutes after irradiation; however a significant portion of reaction 

may take place after curing [29]. 
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Figure 8. Vickers microhardness values for the samples cured by a LED light source at different intensities, with 

an irradiation time of 30 seconds, after storage for 24 hours and one week. 

Based on Figure 8, the Vickers hardness versus light intensity does not show any significant 

variation. Good hardness data were measured even near a light intensity of 1 mW/cm2. Notably, the 

increase in hardness after one-week storage is not significant, indicating high conversion at each 

intensity, which aligns well with the extraction results. Unfortunately, above an irradiation intensity 

of 6 mW/cm2, the surface properties of the samples rapidly deteriorated and became gel-like, making 

the hardness measurements unreliable. This phenomenon may be accounted for by the large amount 

of Irgacure 784 photoinitiator (2% m/m) in the system. Although in the literature, 2 % (m/m) values 

can be found for both CQ and Irgacure 784 [30,31], the latter is much more effective. Therefore, for 

further experiments, a 1.4 mW/cm2 power density was used for the LED light source. At first glance, 

the maximum Vickers hardness of this resin, 20–25 kgf/mm2, falls below that of the sound dentin, at 40 

to 60 kgf/mm2. However, the physical properties of dental filling materials differ in many aspects, 

such as type and amount of filler, type and amount of initiators, and salinization of the filler particles. 

These effects may be more determinative than the nature of the copolymer matrix. In this study, we 

only focused on the properties of the pure resin.  
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Hardness is not the only property affecting the practical applicability of dental restorative 

materials. Mechanical properties are a function of the Degree of Conversion and the 3D structure of 

the polymer network. As shown by Asmussen et al. [24], the diametral tensile strength, flexural 

strength, and modulus of the elasticity are also influenced by monomer composition. During sample 

preparation, we used the optimal composition [24] of BisGMA:TEGDMA:UDMA in a weight ratio of 

21.4:25.4:53.3, and only one light intensity setting at 1.4 mW/cm2, where the Vickers hardness value 

was found to be near the maximum. The measured mechanical properties are shown in Table 1. In 

addition, hypothesis tests, including independent sample t-tests and the non-parametric Mann-

Whitney tests, were run. 

Table 1. Mechanical properties of the photo-cured resins at 1.4 mW/cm2 light intensity, with an irradiation time of 

30 seconds. The sample size is denoted by n. We used IBM SPSS Statistics Version 22 for all statistical calculations. 

 
E-Modulus 

(MPa)  

Flexural 

Strength (MPa) 

Compressive Strength 

(MPa) 

Diametric Tensile 

Strength (MPa) 

No. of samples 10 10 15 8 

Mean Value 876.4 61.7 348.8 46.1 

Minimum Value 771.7 55.5 316.7 33.1 

Maximum Value 979.6 70.7 376 64.4 

Std. Deviation 63.0 4.4 16.1 11.0 

 

Commercial dental composite restoratives have a flextural strength in the range of 60 to 180 

MPa [32,33]. Our data falls within this range and is in good agreement with our previously reported 

values obtained for Bis-GMA-based resins, using CQ as initiator [34]. The E-modulus of about 0.9 GPa 

was found to be a bit lower than previously reported for similar compositions [24,35]. However, this is 

the pure resin and for practical applications, the E-modulus can be significantly enhanced by the 

addition of filler materials [35]. Compressive strength has a particularly important role in the 

mastication process, since most of the masticatory forces are of compressive nature. The compressive 

strenghth values of our copolymer matrix are, at around 300 Mpa, in the order of those published by 

Galvao et al. [36]. The high diametral tensile strength values may be attributed to the high degree of 

conversion of the methacrylate double bonds [37]. However, the diametral tensile test is only suitable 

for truly brittle materials. Materials that plastically deform would produce erroneous DTS values [38] 

Without filler, our matrix may not be truly better and this could explain the high standard deviation 

values obtained during this measurement, whereas the other mechanical measuremennts resulted in 

errors less than 10%. 

4. Discussion 
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The applicability of a narrow-emission green LED light source, in combination with Irgacure 

784 during the photocuring of an acrylate-based dental resin, was studied. The resin contained a 

monomer mixture of BisGMA, TEGDMA, and UDMA in a previously reported 21.4:25.4:53.3 weight 

ratio for the best mechanical properties, and 2% m/m Irgacure 784 was used. Our LED light source 

emits in a relatively narrow range of 490 to 590 nm, with a peak emission at 531 nm. In this range, 

Irgacure 784 still has a molar extinction coefficient of approximately ε 90 M-1cm-1 making it effective in 

combination with the green LED light source. The photopolymerization was performed at different 

light intensities ranging from 0.8 to 10 mW/cm2, and was followed by Raman spectroscopy in a 

polystyrene cuvette. The conversion (α) was calculated using the two-frequency technique, as a ratio 

between aliphatic C=C and aromatic carbon double bond peaks. To handle the complex processes of 

photocuring for kinetic investigations, we used a modified version of Maffezzoli’s equation, which is 

capable of describing the overall kinetic process by modelling the kinetic behavior of acrylates during 

photocuring conditions, using a simple pseudo-autocatalytic expression. By including 

autoacceleration and vitrification in the expression, we obtained very good agreement between the 

experimental and calculated kinetic values. The maximum conversion values were found to be about 

70–80% after 150 s irradiation time at light intensities of 6–10 mW/cm2.  

For physical and mechanical investigations, specimen disks with dimensions of 2 mm by 10 

mm were prepared using the same light intensities as used in the kinetic investigations. The density of 

the cured resins was found to increase compared to that of the monomers, and was found to be nearly 

constant (ρ~1.17–1.19 g/cm3) with light intensity. Extraction with DMF revealed a weight loss of less 

than 10% for each sample, indicating approximately 90% conversion for these thin disks even at a light 

intensity of about 1mW/cm2. The cured resins did not swell in water, took up less than 1% water in a 

week, and therefore may be suitable for dental applications.  

Good Vickers microhardness values of 20–25 kgf/mm2 were obtained, even at low light 

intensities. This intensity value is more than one magnitude lower than those used in dental practice. 

However, at light intensities over 6 mW/cm2, the hardness values deteriorated rapidly potentially due 

to the high concentration of Irgacure 784, and the thin disk samples. The compressive strength and 

diametric tensile strength of the resins, cured at 1.4 mW/cm2 light intensity, were in the range of 300 

MPa and 30 MPa, in good agreement with those of practically-applied dental restorative composites. 

The flextural strength was found to be about 60 MPa and the E-modulus was approximately 0.9 GPa. 

 

Acknowledgments: This work was financially supported by the grants K-116465 given by NFKI (National 

Research, Development and Innovation Office, Hungary), GINOP-2.3.2.-15-2016-00011, GINOP-2.3.2.-15-2016-



17 

 

00022, GINOP-2.3.2-15-2016-00041. The work/publication is supported by the EFOP-3.6.1-16-2016-00022 

project. The project is co-financed by the European Union and the European Social Fund. Furthermore, this 

paper was also supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences 

(Miklós Nagy).  

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

[1] Tehfe, M.A.; Louradour, F.; Lalevée, J.; and Fouassier, J.P. (2013) Photopolymerization Reactions: 

On the Way to a Green and Sustainable Chemistry, Appl Sci 3:490–514. 

[2] Gross, B.C.; Erkal, J.L.; Lockwood, S.Y.; Chen, C.; and Spence, D.M. (2014) Evaluation of 3D 

Printing and Its Potential Impact on Biotechnology and the Chemical Sciences, Anal Chem 

86:3240–3253. 

[3] Gather, M.C.; Köhnen, A.; Falcou, A.; Becker, H.; and Meerholz, K. (2007) Solution-Processed Full-

Color Polymer Organic Light-Emitting Diode Displays Fabricated by Direct Photolithography, 

Adv Funct Mater 17:191–200. 

[4] Suhir, E.; Lee, Y.C.; and Wong, C.P. (2007) Micro- and Opto-Electronic Materials and Structures: 

Physics, Mechanics, Design, Reliability, Packaging. Springer, New York. 

[5] Trout, T.J.; Schmieg, J.J.; Gambogi, W.J.; and Weber, A.M. (1998) Optical Photopolymers: Design 

and Applications, Adv Mater 10:1219–1224. 

[6] Bian, H.; Yang, J.; Zhang, N.; Wang, Q.; Liang, Y.; and Dong, D. (2016) Ultrathin free-standing 

polymer membranes with chemically responsive luminescence via consecutive 

photopolymerizations, Polym Chem 7:1191-1196. 

[7] Baudis, S.; Nehl, F.; Ligon, S.C.; Nigisch, A.; Bergmeister, H.; Bernhard, D.; Stampfl, J.; and Liska, R. 

(2011) Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for 

vascular tissue engineering, Biomed Mater 6:055003 

[8] Bruno, P.; Malucelli, G.; Tylkowski, B.; Ferrec, J.; and Giamberini, M. (2013) Acrylic microspheres 

as drug-delivery systems: synthesis through in situ microemulsion photoinduced polymerization 

and characterization, Polym Int 62:304–309. 

[ 9 ]  Coelho-de-Souzaa, F.H.; Gonçalves, D.S.; Sales, M.P.; Erhardta, M.C.G.; Corrêac, M.B.; Opdamd, 

N.J.M.; and Demarcoc, F.F. (2015) Direct anterior composite veneers in vital and non-vital teeth: a 

retrospective clinical evaluation, J Dent 11:1330-1336. 

[ 1 0 ] Erdemir, U.; Sancakli, H.S.; Yaman, B.C.; Ozel, S.; Yucel, T.; and Yıldız, E. (2014) Clinical 

comparison of a flowable composite and fissure sealant: A 24-month split-mouth, randomized, 

and controlled study, J Dent 42:149-157. 

http://pubs.acs.org/author/Gross%2C+Bethany+C
http://pubs.acs.org/author/Erkal%2C+Jayda+L
http://pubs.acs.org/author/Lockwood%2C+Sarah+Y
http://pubs.acs.org/author/Chen%2C+Chengpeng
http://pubs.acs.org/author/Spence%2C+Dana+M
http://onlinelibrary.wiley.com/doi/10.1002/adfm.200600651/full#fn1
https://play.google.com/store/books/author?id=Ephraim+Suhir
https://play.google.com/store/books/author?id=Y.C.+Lee
https://play.google.com/store/books/author?id=C.P.+Wong
http://pubs.rsc.org/en/results?searchtext=Author%3AHang%20Bian
http://pubs.rsc.org/en/results?searchtext=Author%3AJiming%20Yang
http://pubs.rsc.org/en/results?searchtext=Author%3ANing%20Zhang
http://pubs.rsc.org/en/results?searchtext=Author%3AQiliao%20Wang
http://pubs.rsc.org/en/results?searchtext=Author%3AYongjiu%20Liang
http://pubs.rsc.org/en/results?searchtext=Author%3ADewen%20Dong


18 

 

[ 1 1 ] Landuyta, K.L.V.; Snauwaertb, J.; Muncka, J.D.; Peumansa, M.; Yoshidac, Y.; Poitevina, A.; 

Coutinhoa, E.; Suzukic, K.; Lambrechtsa, P.; and Meerbeeka, B.V. (2007) Systematic review of the 

chemical composition of contemporary dental adhesives, Biomat 28:3757–3785. 

[ 1 2 ]  Li, Z.C.; and White, S.N. (1999) Mechanical properties of dental luting cements, J Prosthet Dent 

81:597-609. 

[ 1 3 ]  Price, R.B.; Ferracane, J.L.; and Shortall, A.C. (2015) Light-Curing Units: A review of What We 

Need to Know, J Dent Res 94:1179-1186. 

[14] Cook, W.D. (1992) Photopolymerization kinetics of dimethacrylates using the camphorquinone 

amine initiator system, Polymer 33:600–609. 

[15] Kucybala, Z.; Pietrzak, M.; and Paczkowski, J. (1996) Kinetic studies of a new photoinitiator 

hybrid system based on camphorquinone-N-phenylglicyne derivatives for laser polymerization 

of dental restorative and stereolithographic(3D) formulations, Polymer, 37:4585-4591. 

[16] Kamoun, E.A.; and Menzel, H. (2010) Crosslinking Behavior of Dextran Modified with 

Hydroxyethyl Methacrylate upon Irradiation with Visible Light—Effect of Concentration, 

Coinitiator Type, and Solvent, J Appl Polym Sci 117:3128–3138. 

[17] Di, Z.; and Yoshihiro, I. (2014) Visible light-curable polymers for biomedical application, Sci China 

Chem 57:510-521. 

[18] Decker, C. (1996) Photoinitiated crosslinking polymerisation, Prog Polym Sci 21:593-650. 

[19] Kitano, H.; Ramachandran, K.; Bowden, N.B.; and Scranton, A.B. (2013), Unexpected visible-light-

induced free radical photopolymerization at low light intensity and high viscosity using a 

titanocene photoinitiator, J Appl Polym Sci 128:611–618. 

[20] Shin, D.H.; and Rawls, H.R. (2009) Degree of conversion and color stability of the light curing 

resin with new photoinitiator systems, Dent Mater 25:1030-1038. 

[21] Jandt, K.D.; and Mills, R.W. (2013) A brief history of LED photopolymerization, Dent Mater 

29:605-617. 

[22] Dunn, W.J.; and Bush, A.C. (2002) A comparison of polymerization by light-emitting diode and 

halogen-based light-curing units, JADA 133:335-341. 

[23] Gauthier, M.A.; Stangel, I.; Ellis, T.H.; and Zhu, X.X. (2005) Oxygen Inhibition in Dental Resins, J 

Dent Res 84:725-729. 

[24] Asmussen, E.; and Peutzfeldt, A. (1998) Influence of UEDMA, BisGMA and TEGDMA on selected 

mechanical properties of experimental resin composite, Dent Mater 14:51-56. 

[25] Sabol, D.; Gleeson, M.R.; Liu, S.; and Sheridan, J.T. (2010) Photoinitiation study of Irgacure 784 in 

an epoxy resin photopolymer, J Appl Phys 107:053113. 



19 

 

[26] Maffezzolia, A.; and Terzib, R. (1998) Effect of irradiation intensity on the isothermal 

photopolymerization kinetics of acrylic resins for stereolithography, Thermochim Acta 321:111-

121. 

[27] Gauthier, M.A., Stangel, I.; Ellisa, T.H.; and Zhu, X.X. (2005) A new method for quantifying the 

intensity of the C=C band of dimethacrylate dental monomers in their FTIR and Raman spectra, 

Biomaterials 26:6440–6448. 

[28] Okulus, Z.; Buchwald, T.; Szybowicz, M.; and Voelkel, A. (2014) Study of a new resin-based 

composites containing hydroxyapatite filler using Raman and infrared spectroscopy, Mater Chem 

Phys 145:304-312. 

[29] Matej, P.; Ozren, G.; Danijela, M.; Eva, K.; Zrinka, Tarle. (2014) Effect of temperature on post-

cure polymerization of bulk-fill composites, J Dent 42:1255-1260 

[30] Guimarães, T.; Schneider, L.F.; Braga, R.R.; and Pfeifer, C.S. (2014) Mapping camphorquinone 

consumption, conversion and mechanical properties in methacrylates with systematically varied 

CQ/amine compositions, Dent Mater 30:1274–1279. 

[31] Chang, Y.M.; Yoon, S.C.; and Han, M. (2007) Photopolymerization of aromatic acrylate containing 

phosphine oxide backbone and its application to holographic recording, Opt Mater 30:662–668. 

[32] Chung, S.M.; Yap, A.U.; Chandra, S.P.; and Lim, C.T. (2004) Flexural strength of dental composite 

restoratives: comparison of biaxial and three-point bending test, J Biomed Mater Res B Appl 

Biomater 71:278-283. 

[33] dos Santos, S.G.; Moysés, M.R.; Alcântara, C.E.P.; Ribeiro, J.C.R.; and Ribeiro, J.G.R. (2012) 

Flexural strength of a composite resin light cured with different exposure modes and immersed 

in ethanol or distilled water media, J Conserv Dent 15:333–336. 

[34] Szaloki, M.; Gall, J.; Bukovinszki, K.; Borbely, J.; and Hegedus, C. (2013). Synthesis and 

characterization of cross-linked polymeric nanoparticles and their composites for reinforcement 

of photocurable dental resin, React Funct Polym 73:465-473.  

[35] Zhang, H.; and Darvell, B.W. (2012) Mechanical properties of hydroxyapatite whisker-reinforced 

bis-GMA-based resin composites, Dent Mater 28:824-830. 

[36] Galvão, M.R.; Caldas, S.G.F.R.; Calabrez-Filho, S.; Campos, E.A.; Bagnato, V.S.; Rastelli, A.N.S.; 

and Andrade, M.F. (2013) Compressive strength of dental composites photo-activated with 

different light tips, Laser Phys 23:045604. 

[37] Asmussen, E.; and Jorgensen, K.D. (1982), Fatigue strength of some resinous materials, Eur J Oral 

Sci 90:76–79. 

https://www.sciencedirect.com/science/journal/03005712
https://www.ncbi.nlm.nih.gov/pubmed/15386492
https://www.ncbi.nlm.nih.gov/pubmed/15386492
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3482745/


20 

 

[38] Penn, R.W.; Craig, R.G.; and Tesk, J.A. (1987) Diametral tensile strength and dental composites, 

Dent Mater 3:46-48. 

javascript:void(0);
javascript:void(0);
javascript:void(0);

