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We solve completely Thue equations in function fields over arbitrary finite fields. In the functidh
field case such equations were formerly only solved over algebraically closed fields (of charaéfer-
istic zero and positive characteristic). Our method can be applied to similar types of Diophantfe

equations, as well.
0 2005 Published by Elsevier Inc.
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1. Introduction

35
Classical Diophantine equations like Thue equation (cf. Thue [10]) are traditionajly

26
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33
34

solved over the rings of rational integers or over the ring of integers of a number figld
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(cf. Baker [1]). Several authors considered the analogous problem over function fields:
more exactly over the ring of integers of a function field ovealyebraically closed field 2
see, e.g., [6,8], both in case the ground field is of zero or positive characteristic. These
results have also common generalizations (cfoi@y5]). 4
Our purpose is now to investigate this problem in function fields over arbifraitg 5
fields It is well known that Diophantine equations over finite fields play an important rote

in cryptography, cf. Niederreiter and Xing [7]. 7
Also, from a practical point of view this case is much more straightforward than the
case of algebraically closed ground fields (which mostly occur in theory only). s

As it will turn out, also in this case the unit equation plays a crucial role and the $6-
lutions can be computed easily. However, for constructing the appropriate function fieléls,
performing calculations in them, determining heights, etc. we intensively use the comptiter
algebra package KASH [2]. 13

14
15
16

2. Global function fields

17

18
In the following we shall strongly rely on the argument used by Mason [6] for functigg
fields over algebraically closed fields. We show how his ideas can be transferred to,gpur
situation. A general description of properties of function fields (also over finite fields) can
be found in the book of Stichtenoth [9]. 2
We introduce some notations= F, denotes a finite field wity = p? elements. The ,,
rational function field ok is k(¢) as usual, an& is a finite extension of(¢) of degreerg 5,
and genusgo. The integral closure of[s] in K is denoted byg. We assume thak 5
is separably generated ovif) by an element belonging toogx and thatk is the full 4

constant field oK . Any elementf € K has a unique presentation 27
28

no ) 29

f=Y hiy™h b €k@). 30

i=1 31

32

Conjugates of elements (fields) are denoted by upper case indices.ALet 33
(Y Y1<i j<n € K™ have determinanD. We note thatD is the discriminant ofy. 34

It is nonzero since& is separably generated. We obtain the system of linear equations:35
36
(FD, . D)= (ha, ... k) A, 7
38
39
Hence, they; are rational functions in thg(), (y())i=1, 40
The set of all (exponentiallaluationsof K is denoted by, the subset of infinite val- 41
uations byV.,. By abuse of notation we do not distinguish between places and valuations.
For example, we write degfor the degree of the divisor belonging to the valuation V. 43
For a nonzero element e K we denote by( f) the value off atv. For integral elements 44
this is the highest power of the divisor belongingtthat divides the diviso(f), and this 45



© 0 N o g A W N P

A B B B B B WOW W W W W W W WWNNNDNDNDNDNDNDNDN PR R R R R R R R R
a A W N P O © © N O O & W N P O © © N O O & W N P O © 0 N O 0 b W N B O

50022-314X(05)00211-8/FLA AID:3277 Vol...‘(q-n [DTD5] P.3 (1-17)
YINTH:m1 v 1.50 Prn:17/11/2005; 9:56 hth3277 by:Vita p. 3

I. Gadl, M. Pohst / Journal of Number Theosye (eeee) eeo—see 3

concept is extended to rational elements in the usual way. For the normalized valuations

vy (f) = v(f) - deguv theproduct formulaholds: 2
3
4
D on()=0 VfeK\{0} :
veV 6
Theheightof a nonzero element of K is defined to be ;
9
H(f):=Y_ maxq0,vy(f)}. 10
veV 11
12
Because of the product formula this is tantamount to 13
14
. 15
H(f)=—-_ min{0,vn(f)]} .
veV

which then holds for all elements &f including 0.

3. Unit equations 22

Let Vp be a finite subset oF. Then the nonzero elementse K satisfyingv(y) =0 24
for all v ¢ Vp form a multiplicative group ink. These elements are callég-units For 25

Vo = Vi the Vp-units are just the units of the ring . 26
The resolution of Thue equations (as well as several other types of classical Diophartine

equations) is usually reduced to equations of the form 28

29

30

yityv2+ys=0 @

. . 32

where they; are Vp-units for a suitable sefp. a3

The crucial inequality of Mason on the above equation becomes in our case: ”

35
Lemma 3.1. Let Vp be a finite subset df and lety; (1 <i < 3) be Vp-units satisfyind1). ss

Then either% isin K? or its height is bounded 37
38

39

H(ﬂ) <2g—2+ ) degu. (2) 40

V3 eV a

42
Proof. The proofis along the lines of the proof of Lemma 2 in [6] (see [6, p. 14]). Since 4
our case the field of constaritds not algebraically closed we encounter a few additiona#
difficulties which we will point out in what follows. 45
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We may assume thgt:= y1/y3 and thereforen/y3 = — f — 1 do not belong td. Let
Vi:={veV:u(f) <0}, Vo:={veV:u(f) >0},
V3= {ve V. v(f):O/\v(f+l)>O}.

These are disjoint subsets of the gt Then we have

H(f)= ) (—v(f)degu= ) v(f)degu= ) v(f +1)degu.

veVy veVo veVs

This is true because of (1+ f) + (— f), the product formula, and the propettyf) < 0
< v(1+ f) < 0. If z denotes a prime element for the valuatioa V then the differential

© 00 N o g b~ W N P

=
o

1

PP

1df satisfiesv(1df) = v(df/dz) (see [9, Chapter IV]). Iff is not apth power then the '

divisor 1df is canonical, i.e., dgd.df) = 2g — 2, since the field of constants is complete )

(see [9, Chapter 1.5]). This yields

2¢—2=) v(df)degu= Y v(dfydegv= > v(df)degv

veV veVp veViUVoUV3

> Y (v(f)—1)degv+ Y (v(d+ f) — 1) deg

veViUVo veVs

=—H(f)+H(f)— ) degu+H(f)— ) deg

veViUVs veVs

>H(f)— Y  degu=H(f)— ) degy

veV1UVoUV3 veVp
whence the assertion follows.O
Taking® = —y1/v3, ¥ = —y2/y3 EQ. (1) gives thaunit equation in two variables

®+w=1 3)

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

where®, ¥ are Vp-units. Because of characterisjicthe number of solutions of such a34

unit equation can be infinite.
For example, ifl/y is just the set of infinite valuations amd1 — n are both units obg

then alson®, (1 — n) is a solution of (3) for every exponert= p’. Hence, there exist

solutions of arbitrary large heights in this situation.
The subsequent lemma shows that for any finite sulgseff V, the group ofVp-units

of K contains only a finite number, sayof Vo-units; which are notp‘th powers and for

which also 1— 5 is a Vp-unit. We denote the set of these units{hy, ..., n}.

Lemma 3.2. Let Vg be a finite subset of . Assume that &p-unit @ in K is a solution

35
36
37
38
39
40
41
42
43

of (3). If @ is not ap’th power ofy; (1<i <s, £ € Z=%) then® belongs to a finite subset 44

of K which can be calculated.

45
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For the proof we refer to [6, Lemma 11, p. 98]. The proof starts by assumingtisat
not apth power inK and therefore also provides the means to calculate;the

1
2
3
4
4. Application to Thue equations °
6
4.1. Preliminaries ;

9

We want to apply these results to (relative) Thue equations Kvéiet

n
F(X.Y):=) A X" 'Y €ok[X.Y]

i=0 14

be a binary homogeneous form of degree at least 3. Without loss of generality (cf.ii4,
p. 20]) we can assume thatis monic inX,i.e.,Ap = 1. The polynomialF (X, 1) € ox[X] 17
is required to be separable and irreducible. Then for arbitragyox the equation 18
19
F(x,y)=m inx,y€og 20
21

is called aThue equatiorfover K ). Denote by a zero of F(x, 1) in K, let L = K («) and 22

oy the integral closure of[¢] in L. Assume thak is the full constant field of., too. If
X,y € ok is a solution of the Thue equation then

23
24
25
26
F(x,y)=Nr/k(x —ay) =m. 4)

28

Denote byy) (j =1,...,n) the conjugates of any € L over K. Assume that 29
(x,y) € of( is a solution of (4). The = x — ay is of normm, that isg can be repre- 30
sented in the form 31
32

B=x—ay=p-1 G F
34

35
wheren is a unitinL andu is an element of a finite sétof non-associated elementsiof

of normm over K. For the solution of the corresponding norm equation we use the usilal
methods from algebraic number theory, i.e., calculate suitshigits [3]. Those, together .,
with Dirichlet’s unit theorem (cf., e.g., [11]), can be easily transfered to the function fiejd
case, too. 0
Denote byns, ..., n, a set of fundamental units ih (that can be calculated by the ,;
computer algebra system KASH [2]). Settinid = (no), there are integer exponents,,
ap, a1, . . ., a, such that 3

44
ﬁ:x—ayzﬂ.ngo.nil...n?r_ (6) 45
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For fixed distinct, j, k (with 1 <i, j, k <n)setL;x = L(a,a), a®) with genusg. 1
Denote byVp a finite set of valuations aof;j; containing the infinite valuations and suchz

that 3
4

v(a(i) - a(j)) =0, v(oe(j) - a(k)) =0, v(oz(k) - a(i)) =0 ifvgWy 5

6

and 7
v(n?) =0, v(u¥) =0, v(u®)=0 ifvé Vo 9

10

Siegel’s identity (holding trivially for any solution, see [4, Chapter 3]) gives 1
12

(@® — )0 4 (@) — @ ®) ) 4 (@B — ¢@)g0) =0, @ 1w

14

By the fundamental Lemma 3.1 15
16

@) — a®)g® -

bk = @ — q)g® 18

19
is either of bounded height or is containedlifjk. In the following the height function is 20
applied always irL; j. 21
22
4.2. Effective upper bounds for the solutions of Thue equations 23
24
In case Eq. (4) has only finitely many solutions we derive an upper bound for tae
heights of the solutions. If the equation has only finitely many solutions, then there nuast
bei, j, k such thatr;x is not apth power inL;;x. We keep the above notation and set?
A=maxH @D, HaY), H@a®)). 28
29
Theorem 4.1. If 7;j; is not apth power, then Eq(4) has only finitely many solutions and so

for all solutions(x, y) we have 31
32
1
max(H (x), H(y)) S11A+ =H(p) +4g —4+2 ) deg. 3
n veVp 3
35
36
Proof. Applying Lemma 3.1 we get 87
38
H(tijp) <28 -2+ Z degu = c1. %9
veVp 40
41
This implies 42

43

B x—aWy) aD—a\ _ a4
H P =H r—a®y S H(wijr) +H T —o® <c1+4A=co. 45
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43

Using an argument of Mason [6, Chapter 11.1] fog£ O we have

x  a®p®) gk _ o0
y /gl _1

whence

X

H(—) < 2A + 2.

y

By
Vs

HZ:l(f —a®)

we derive

X

nH@)<HUU+n(H<y>+A>

whence the assertion follows fer The bound forc can be obtained similarly. O

4.3. An algorithm for calculating the solutions of Thue equations

We now turn to finding the solutions of Eq. (4).

© 00 N o g b~ W N P

R A T s
N o o W N B O

18
19
20
21
22
23
24

Casel. Consider first the case wheyj, is of bounded height. Similarly as in the proof ofiz

Theorem 4.1 we obtain

x —aly o — g o — g
H| ——— |<H@) +H| ——5 | <at+H|——%
20 —a®

o) —a®

x—a®y p® ngk) Uﬁk)

whence using (8) we obtain

(i) \ 1 @\ k)
(i) () ) eli) o
n1 nr H

This means for any infinite valuatianof L;;; we have

n(i) U(i)
ai-v L +...+ar.v ar <63~
(k) (k)
n1 Nr

x—a®y

By (6) we have

) —¢ (8

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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Note that by interchangingandk we get the same expression on the left-hand side with

opposite sign: for this reason the inequalities are also valid with absolute values:

(&) (@)
al.v(%) ++arv<%>
M1 Nr

<cs. 9)

2
3
4
5
6
7

Note that the units in the above formula have zero values at finite valuations. Thegin-
equalities of type (9) (obtained for different choicesi of) can be used to determine all .

possible values of the exponents . .., a,.
For any possible exponent vectay, ..., a, we can determing = n‘l” i in (5).
Then the system of equations

x—aDy= .0 g@y @ @

can be used to determine the corresponding.
Casell. Ifin (7) we have

(@) — g®)g®

14
@® — )@ © L

Tijk = ijk®
then using (5) we obtain

() —(x(k))u(i) ﬂ <17
(@@ —ap®  nE ijk:

Here the last term is a unit ih;;; hence for any finite valuation of L;

) (@) — g®),
@® —a@)p®

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

32
must be divisible byp. This usually does not hold and there is no Case Il solution. Otheg-
wise, 7 is a pth power, sayt; j; = wi’;k, we replacer;j; by wi’;k and repeat the argument. ,,

35

Remark. In the above calculations several elements (e§),— (/) are contained in 3
subfields of typel;; = K («@, /) of L; . Since for elements id;; the values at any 37
valuation ofL;;; can be easily calculated from the values of the corresponding valuaticns

of L;;, hence in fact almost all calculations can be performed in the subfigjdehich
are much easier to deal with, especially for large degtees

5. Examples

Example 1. In the first example we do not need to apply the fundamental lemma.

39
40
41
42
43
44
45
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Letk =TFs, let K = k(¢), leta be a root of
v+ +1=0
and letL = K («). Consider the Thue equation
Npjkion(x —ay)=1 inx,yek[t]. (20)
Denote bye™D, @, «® the conjugates af. Using symmetric polynomials we have
0@ = gD _ 4@
and substituting it intae Yo + a@a® + ¢ =0 we obtain
(a<2>)2 +aWe@ 4 (a<1))2 -0
whence

4o + o0 /3

a® = —;‘ =3(4a® £ aDV2). (11)

Observe that/2 is contained iff,s, a quadratic extension &, hence in this case
M =L(@®,a®,a®) =Fas) (@),

Denote byw a generating element of the multiplicative grdiiy of 25 with

2=w6, 3=w18, 4=yl2
By (11) we have
a@ = 16D 5@ 8, M)
Siegel’s identity gets the form
ws(x — a(l)y) + (x — a(z)y) + wle(x — a(s)y) =0. (12)

© 00 N o g b~ W N P
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38

In our caseM has one infinite valuation. In the above equation all terms are units ha¥-
ing zero values at all finite valuations. By the product formula their value at the infinffe

valuation is also 0, hence they are contained in the constanifeld
Equation (12) leads to the unit equation

x—a®By o ox—a@y _1
x—a®y x—a®y

41
42
43
44
45
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which can be written in the form

e1+e2=1 ingp,er¢€ F;S' (13)
If &1, &2 are solutions of this equation, then

@ (2

x—ay= £1w4(x — oc(?’)y), x—aYy= szwzo(x — a(3)y), (24)

hence (10) gets the form
8182(x — oz(‘q‘)y)3 =1 (15)

whence for the solutions,, &2 of (13) the ¥ (s1£2) must be a cube i,
We determined all such solutions, &, of (13), calculated the corresponding- «®y

© 00 N o g b~ W N P

P e
w N B O

14

from (15) and determined, y from the system of linear equations (14). We found, that th’é

only integer solutionis =1,y =0.
Example 2. Letk =11, K = k(¢), leta be a root of
y3 —ty+ 2=0
and letL = K («). Consider the Thue equation
Npjkion(x —ay)=1 inx,yek[t]. (16)

Denote bye ™, «@, «® the conjugates af. Using symmetric polynomials we have

a® = _q® _ 4@

— —

and substituting it inteePa® + a@a® + oD@ = —r we obtain
( 232, ., @2 MDY2 _, _
o )+a o +(a ) —t=0
whence

oD 4+ /32 1 45
CY(Z): il 2(0[ ) + . (17)

The minimal polynomial of the square root is
28+ 5124 + 9222 + 515 4+ 713,
The function fieldM = F11(1)(z) containse™®, «@ o, By

2= -3V’ + &

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
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we have
(@) = 44
3
whence

6

1 3 2.2 4
Ol()=t—4(4t +6t 7541z )
Further we obtain

o2+ g —aP -z
2 2
Forany 1<i < 3letj =i+1(mod 3,k =i+2 (mod 3 (taking 3 in case of 0 remainder)
and let

yi = (@9 —a®)(x —ay).
Then Siegel’s identity gets the form
Yi+v2+y3=0. (18)

The fieldM has genus 1. It has three infinite valuations, all of degree 2xFhe/®y are
units, having nonzero values only at the infinite valuations. e — «) /(a® — o))
have nonzero values all together for 6 finite valuations, all having degrees 1 or 2, the su
the degrees is 9. Denote by the set of these 6 finite and the three infinite valuation® of

© 00 N o g b~ W N P

P e
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14
15
16
17
18
19
20
21
22

26

Then by the fundamental Lemma 3yl/y; is either of bounded height, or is contained,,

in M11,

Casel. Assume

H(ﬂ) <2.1-2+15=15
V3
This implies
_y® W _ 4@
x—aWy a o .
H(w) S1oF ”<m> =17 (19)

In our caseX has unit rank 1. The fundamental unit is

e=3t+ 1+ 3a.

NG)
()

The values

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
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(at infinite valuations) are-3. Hence by (19) and (9) we have
x—ay=p- &%
with a root of unityu in k, where
3. |lal <17
hence
la] <5.

The possible values afwere tested and we found only the solutioa- 1,y =0fora =0
andx =3r+1,y=8fora=1.

Casell.To exclude% e M1 we consider

y_ a®—a® x_aby

v a®—a@ x—aqBy

The second term on the right-hand side is a unit, hence

0@ _g®
N\ o@ — 4@

should be divisible by 11 at all finite valuationsThis is not satisfied, however. (Similarly

for y1/y» andyz/y3.)

Example 3. Letk =3, K = k(t), leta be a root of
Y34+ (P +2)y* + (22 +2)y+2=0
and letL = K («). Consider the Thue equation
Npjkoy(x —ay) =1 inx,yek[t]. (20)
Denote by, «@, o® the conjugates af. Using symmetric polynomials we have
a®=_2_2_o0_,@
and substituting it intae Vo ® + ¢@a® 4+ oD@ = 2¢2 4+ 2 we obtain

(@@)? +a@(@® +124+2) + (D) +aD (2 +2) + 22 +2=0
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whence

o —@V 42422 /aD2+2)+14+22+2
o = .
2

(21)
The minimal polynomial of the square root is
LA P+ ) 2B+ 20 22 ) 28 2t 1P 2
The function fieldM = F3()(z) containsa®, «@, «® . By
2=a®(1242) +* 42242
we have

(l)_ZZ—[4—2t2—2

o =
1242
Further we obtain
1 2 1 2
a(z):—a()—t — 24z a(3)=—a()—t —2—z'
2 ’ 2

© 00 N o g b~ W N P
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22

Forany 1<i < 3letj =i+1(mod 3, k =i+ 2 (mod 3 (taking 3 in case of 0 remainder) »3

and let
yi = (a9 —a®) (x — ay).
Then Siegel’s identity gets the form
yi+y2+y3=0. (22)

The field M has genus 7. It has six infinite valuations, all of degree 1. Thex)y are
units, having nonzero values only at the infinite valuations. e — «) /(a® — o))

have nonzero values all together for six finite valuations, all having degrees 4. Derigte by,

24
25
26
27
28
29
30

1
2
33
4

the set of these six finite and the six infinite valuations\bf Then by the fundamental

Lemma 3.1y, /y; is either of bounded height, or is containedVify.

Casel. Assume

H<ﬁ> <2.7-2+424=42
V3

This implies

—a® @D _ @
x—aPy o o .

36
37
38
39
40
41
42
43
44
45
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In this caseX has unit rank 2. The fundamental units are

e1=1+2%0+20%,  ex=12+1+4 (2% + 1)a + 202

N0
v g(_k)

(at infinite valuations) by (23) and (9) become

Considering the values of

x—oy=p- et e’
with a root of unityu in k, where
la1 + 2a2| < 24, a1 — az| < 24,
whence
[Ba1| < a1+ 2az| + |ag — az| < 48,
that is|a;| < 16. Searching over the set
—16< a1 <16, a1 —24<azx<a1+24

we found the following solutions

) =(L22+1), (0,2, (LD, (1.0), (22 +222+1), (r*+22+1,27+1).

Casell. To exclude% € M3 we consider

n_ a®—a® x_aoWy

y3 o@D —a@ x—aqBy

The second term on the right-hand side is a unit, hence

a®@ _ 4O
o[ X
a® _ @

should be divisible by 3 at all finite valuatioms This is not satisfied, however. (Similarly

for y1/y2 andyz/ys.)

Example 4. Let k = Fs, K = k(z). For simplicity takeA =12+ 1+ 1; B=1*— 1. Leta

be a root of

v —2B%y? + A+ B%=0,
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that isae =B+ +/—A, and letL = K («). This function fieldL obviously hasN =
K (+/—A) as a subfield. Consider the Thue equation

Npjkoy(x —ay) =1 inx,y eklr]. (24)

Denote byx") the conjugates af (i =1,...,4).

If we let
a® =B+ v=A. a®@=—B+V=A o

then byaPa@ = /A + B2. The elemen = P + «@Da@ generates a function field ;,
M of degree 8 oveK containing all conjugates ai. The element is defined by the 5

© 00 N o g b~ W N P

polynomial 14
15

22+ (—4B — 4A — 4B?):° + (4BA + 4B> + 6B + 2A + 6A? + 6B* + 124 B%)7* 16
2 4 2 2 5 4 2p2 3 v

+ (—4BA + 12A° — 12B*A + 16AB“ + 4BA” + 4B> + 4B* — 12A°B* — 4A 18
—4B% 1 8B%A — 4B%)7? 19

20

+(6B*A% + B* — 4B° + 6B° + 2A% + A% + 2AB* + 4B°A — 4B" — 8B3A 21
+14B%A + A* 1 4A%B2 + 10A2B% — ABA? — 12B5A — 4BA® — 1242B% 1 B?)

=B (B a2+ 1) (110 2000+ 2% 4+ 208 2% 4 218 4 32 24

25

20+ A) 2+ (124 320+ 318 BT 210 14 18 412 4 1 4 410 %

+ 0428 4t 41O 2t A 4 42 4+ 2) 72
+ (t32+3l28+4l26+4t25+l‘24+4l‘22+4l21+2t19+2118~|—l‘17+3l15 29
+ 2t B 12 21 1 300+ 48 4 20 30+ 4 200 2% 1 4r),

By

b—a— VAT @5)

we get 37
B2 —2Ba+a®— A — B> 39

One of the roots of this equation satisfies the quartic defining polynomial giving 41
the embedding o&? into M. The other conjugate can be obtained by (25), the last twe
conjugates are the negatives of these ones. 43

The field K has unit rank 3, we embed all conjugates of the fundamental unitddnto 44
(These units are far too complicated to include explicitly here.) Let 45
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2 3 1
yi= (oz( ) _ o ))(x —af )y),
3 1 2
Yo = (a( ) _ o ))(x —af )y),
1 2 3
y3= (a( ) _ af ))(x —af )y),
then we have
yi+y2+ys=0. (26)

The field M has genus 13. It has eight infinite valuations, all of degrees 1xThe"y
are units, having nonzero values only at the infinite valuations. The quotients

oD _ 4@ 0@ _o® 0@ _ o@
o@D _a®’ «@ _ gD’ «® _a®

© 00 N o g b~ W N P
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14

15
have nonzero values all together at four finite valuations, two of them being of degreg,
the other two of degree 6. Denote by the set of the eight infinite and these four finite .
valuations. Then by the fundamental Lemma .1y, is either of bounded height, or is

contained inM>.

Casel. Assume

H(ﬂ> <2.13—2+(8+12+8) =52

V3
This implies
x—a®y a® _ 4@
H(x—_ a<3)y) <52+ H<—a(2> _a(3)> =65. (27)

As we mentioned above& has unit rank 3. We denote by, ¢2, ¢3 the fundamental units.

Considering the values of

()

vl 2

e®

(at infinite valuations) foh =1, 2, 3, by (27) and (9) we become
x—oy=p-e1t 65763

with a root of unityu in £ where among others the exponents satisfy

|50a1 + 6a2 + 54az| < 65,
|51ay + 5az + 54az| < 65,
|49a1 + 3ap + 54az| < 65.

19
20
21
22
23
24
25
26
27
28
29
30
31
32
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There are about 8000 solutiorig, az, az) of the above system of linear inequalities.1

Testing all possible exponent vectors we found that Eq. (24) has only the trivial salu-
tions (x, y) = (1,0), (2,0), (3,0), (4, 0) (these yield in fact the multiplies of — oy for 3

x =1, y = 0 with roots of unity ink). 4
5
Casell. To exclude% € M® we consider 6
7
n a@—a® x gy 8
s a®_a®@ x_a®y o
10
The second term on the right-hand side is a unit, hence n
12
a® _q® 13
o ——— =
(a(l) — a(z)) 14
15
should be divisible by 5 at all finite valuatioms This is not satisfied, however. (Similarly 16
for y1/y2 andyz/ys.) 17

18
Computational experiences. All computations used in the examples were performed by
using the computer algebra system KASH [2], running on 1 GHz PC-s. The calculatiens

took just some seconds with the exception of the test of about 8000 possible exponent

vectors in Example 4 which took about 90 minutes. 22
23
24
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