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Abstract: The objectives of our study were to (a) evaluate the feasibility of using 3D printed phantoms
in magnetic resonance imaging (MR) in assessing the robustness and repeatability of radiomic
parameters and (b) to compare the results obtained from the 3D printed phantoms to metrics obtained
in biological phantoms. To this end, three different 3D phantoms were printed: a Hilbert cube
(5 × 5 × 5 cm3) and two cubic quick response (QR) code phantoms (a large phantom (large QR)
(5 × 5 × 4 cm3) and a small phantom (small QR) (4 × 4 × 3 cm3)). All 3D printed and biological
phantoms (kiwis, tomatoes, and onions) were scanned thrice on clinical 1.5 T and 3 T MR with 1 mm
and 2 mm isotropic resolution. Subsequent analyses included analyses of several radiomics indices
(RI), their repeatability and reliability were calculated using the coefficient of variation (CV), the
relative percentage difference (RPD), and the interclass coefficient (ICC) parameters. Additionally,
the readability of QR codes obtained from the MR images was examined with several mobile phones
and algorithms. The best repeatability (CV ≤ 10%) is reported for the acquisition protocols with
the highest spatial resolution. In general, the repeatability and reliability of RI were better in data
obtained at 1.5 T (CV = 1.9) than at 3 T (CV = 2.11). Furthermore, we report good agreements between
results obtained for the 3D phantoms and biological phantoms. Finally, analyses of the read-out rate
of the QR code revealed better texture analyses for images with a spatial resolution of 1 mm than
2 mm. In conclusion, 3D printing techniques offer a unique solution to create textures for analyzing
the reliability of radiomic data from MR scans.

Keywords: image processing; texture analysis; magnetic resonance imaging; phantom study;
radiomics; 3D printing

1. Introduction

Conventional analyses of cancerous lesions rely on invasive histological samples,
which have several limitations, including discomfort for the patient and potential problems
extracting the whole lesion for total-lesion heterogeneity analysis. Therefore, alternatives
to the invasive methods are desired. One possible solution is the non-invasive, in-vivo
radiomic assessment of images acquired in radiological and nuclear medicine settings [1–6].
The major strength in using radiomics as an alternative to histological sampling is the
multitude of imaging series, modalities, and follow-up acquisitions employed in the clinical
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assessment of patients. Radiomic assessments of the various imaging modalities may give
more personalized treatment regimes without requiring additional testing of the patients.

However, several challenges have been identified in the clinical translation of ra-
diomics which may affect their applicability in the clinical routine. First, the spatial
resolution of the diagnostic imaging modalities (spatial resolutions of 0.5–5 mm) are orders
of magnitude worse than the histological samples (spatial resolution of 10−4–10−3 mm).
Second, the choice of radiomic features may be affected by the diagnostic image modality
and their modality-specific reconstruction settings [7–11]. Third, image discretization and
normalization procedures may affect the radiomic analyses. While these problems have
been identified, previous studies have reported great potential in the radiomic assessments
for both CT and nuclear medicine imaging settings, suggesting that the discrepancy in
spatial resolution nor the choice of imaging modality does not hinder radiomic assessments.

In terms of discretization of the images, two methods exist: the fixed bin size (FBS)
and fixed bin number (FBN) [12]. Previous studies have identified that FBS may be the
method of choice for quantitative imaging modalities (PET and CT); however, its feasibility
on non-quantitative images (MRI) has not yet been evaluated. Therefore, it is of interest to
assess how different discretization processes and radiomic features may be employed in
MR imaging. Recently, the Image Biomarker Standardization Initiative (IBSI) has sought
to standardize the radiomic feature extraction process, resulting in nearly 1000 different
radiomics parameters [12]. One way to assess the influence of the discretization processes
may include using physical phantoms, such as fruits and vegetables. However, identifying
the most suitable phantom in MR imaging is not trivial, as the choice may affect both
repeatability and reliability of the radiomics indexes (RIs) during analyses [9,10,13–27].
Previous studies have mainly relied on biological phantoms, which decay over time, thus
limiting their applicability in longitudinal and multi-center studies [14–16]. Recent devel-
opments in 3D printing have facilitated the possibility of printing image modality-specific
phantoms at a low price and fast production time, which may serve as an alternative to bio-
logical phantoms [27–31]. The 3D-printing technique permits manufacturing complicated
phantoms, which may arise from mathematical objects or real patient data. These phantoms
are strict in shape and consistency and give the possibility to ignore or emphasize even
a small number of details. However, dedicated 3D designed and printed MR radiomics
phantoms have not yet appeared in the MR imaging literature.

This study aimed to compare radiomics obtained for biological and 3D printed phan-
toms. To this end, we developed fillable Quick Response (QR) code- and Hilbert curve-
based 3D printed models to introduce new MR radiomic phantoms. QR codes and Hilbert
curves are well structured and precisely defined mathematical objects, ensuring decent
reproducibility in manufacturing [32,33]. QR codes may provide an additional analytical
option through the potential of the read-out success rate of the information stored on a
deeper level in MR images [34]. The 3D-printed phantoms were compared to biological
phantoms that have previously been found useful in the literature (kiwis, onions, and
tomatoes) [35]. QR codes and Hilbert curves are well structured and precisely defined
mathematical objects, ensuring decent reproducibility in manufacturing [32]. QR codes
may provide an additional analytical option through the potential of the read-out success
rate of the information stored on a deeper level in MR images [34].

2. Methods
2.1. Biological Phantoms

Given the high water content, vegetables and fruits reflect different signal inten-
sities, shapes, and “tissue” textures in MR images, making them ideal as biological
phantoms [13,15,25,36]. For this study, the biological phantoms were selected using the
following criteria: the phantom must be water-rich, have an appropriate size (below
5 × 5 × 5 cm3), have certain degrees of hardness and heterogeneity, and have stable struc-
tural characteristics. Following the selection criteria, three fruits and vegetable types were
considered: kiwis (n = 4), tomatoes (n = 3), and onions (n = 3). Representative MR images
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of one of the selected kiwis are shown in Figure 1. For every acquisition, all the fruits
and vegetables were placed in two separate holders to fix and standardize the place of the
phantoms during the acquisition steps. Supplementary Photo S1 is shown the placement
of biological phantoms. Further, the fixation ensured a harmonic orientation of the phan-
toms across different acquisitions. The first holder contained four kiwis, while the second
contained the tomatoes and onions. A pre-selected kiwi was rotated perpendicularly to
its primary axis’s (labeled by kiwirot) between its three repetitions to examine the possible
influence of the phantom orientation on the computed RI [36–39].
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Figure 1. Representative orthogonal 3T MR images of a kiwi: 3D T1 weighted sagittal, coronal, and
axial high resolution (1 × 1 × 1 mm3).

2.2. 3D Printed Phantoms

Two types of distinct, hollow plastic objects were planned and constructed. First, a
Quick Response (QR) code was modeled within a fillable container, including the “UNIDEB
MRI Texture Analysis Phantom” text information. We used a web application for QR code
production (https://www.qrcode-monkey.com/#text (accessed on 6 May 2021)). The QR
code was printed into two 3D models with different sizes (large QR (5 × 5 × 4 cm3) and
small QR (4 × 4 × 3 cm3), with respective heights of the QR code of 3 and 2 cm) using
the Trimble SketchUp Pro 2020 (Trimble Inc., Sunnyvale, CA, USA). Both cubic QR code
containers were constructed and saved in Standard Tessellation Language (STL) file format
(Figure 2, first row) [33,34,40,41].

As the second type of printed phantom, we chose a 3D Hilbert cube with a volume of
5 × 5 × 5 cm3 [42]. The recursive process fills the entire space with one continuous line.
We used an STL file of a pre-created Hilbert cube from the Thingiverse website to embed
it to the mentioned volume (https://www.thingiverse.com/thing:1762713 (accessed on
10 June 2021)). From the downloaded STL files, the second recursion level was chosen
due to its sufficient complexity and ease of redesign. We redesigned the original model
containing several small vertical and horizontal support lines to achieve a more robust
form to ensure successful printing and make an extra chessboard-like pattern in three
dimensions. This model has an outside pattern with a plastic-air alternating rectangle and
includes the so-called Hilbert square pipe (Figure 2, second row).

All three phantoms were 3D printed from Polylactic Acid (3DJake ecoPLA, White)
filament on a Creality Ender 3, Fused Deposition Modeling (FDM) type 3D printer with
a 0.4 mm nozzle diameter [27,30]. The print plan was achieved using Repetier-Host (Hot-
World GmbH and Co. KG, Willich, Germany) software with the following settings: 100%
infill; 0.2 mm layer height; no support; brim adhesion; 40 mm/s print speed; 210 ◦C hot end,
and 60 ◦C print bed temperatures. The print time was around 4 h for each object [30,43].
Each 3D printed phantom was filled with 0.01 mM NiCL2 solution. Representative MR
images of the QR and the Hilbert cube phantoms are presented in Figure 3.

https://www.qrcode-monkey.com/#text
https://www.thingiverse.com/thing:1762713
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photo and the design image of the QR code, while the bottom row shows the design images of the
modified Hilbert cube after and before modeling from left to right.
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Figure 3. Representative coronal MR images of 3D printed phantoms. The left is the large QR cube,
and the right is the Hilbert cube. The interested readers can read the presented QR code MR image
using their smartphone’s QR code reader.

2.3. MR Scanning

All phantoms were scanned at the MR imaging facility of the Clinical Center, Univer-
sity of Debrecen. The phantoms were scanned in two MR systems, a 3 T Philips Achieva
and a 1.5 T Siemens Magnetom Essenza MRI scanner. The scans were performed with a
6-channel head coil in the 1.5 T MR and an 8-channel head or a 32-channel neurovascular
coil in the 3 T MRI system. In both devices, isotropic 3D T2-weighted and 3D T1-weighted
sequences were obtained using protocols employed in the clinical routine, with minor
adjustments to the number of repetitions to ensure sufficient image quality in the smaller
volumes. In the Philips MR system, the T1- and T2-weighted measurements were obtained
using a 3D BrainVIEW protocol which provides high-resolution isotropic data. For the
Siemens system, the SPACE (Sampling Perfection with Application optimized Contrasts us-
ing different flip angle Evolution) sequence was applied for T2 acquisitions, which provides
isotropic 3D images. For T1-weighted Gradient-Echo (GRE) measurements, the sequence
MPRAGE (Magnetization-Prepared Rapid GRE) was utilized [44–46].

The acquisition parameters for the acquisition protocols are listed in Table 1. Each imag-
ing protocol was performed using two different isotropic voxel resolutions (1 × 1 × 1 mm3

and 2 × 2 × 2 mm3). The phantoms were scanned thrice for each setting in both MR
systems, denoted as repeated scans or repetitions below. Specific to the Philips MR system,
a new table position had to be chosen before each repetition. After completing imaging
protocol, the acquisition software automatically moved the table from the gantry. How-
ever, the phantoms were always placed in the isocenter, the most homogeneous magnetic
field region.

Table 1. Parameters of the sequences used in this work. TR = repetition time, TE = echo time,
NSA = number of signals averaged.

MR Sequences TR
(ms)

TE
(ms) NSA Voxel Size

(iso mm)

3 Tesla
3D T2 BrainVIEW 2500 233 3 1, 2

3D T1 MPRAGE 600 28.3 2 1, 2

1.5 Tesla
3D T2 SPACE 1200 97 2 1, 2

3D T1 MPRAGE 1040 4 2 1, 2
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2.4. Image Visualization and Segmentation

A radiologist and a radiologist MR specialist with 30 and 10 years of MRI experience,
respectively, analyzed the image data qualitatively in 3D Slicer software [47,48] to determine
how close the imaged texture of each object was to the actual pattern and heterogeneity.

Image alignment was performed semiautomatically using the 3D Slicer open-source
software (version 4.10.2 r28257) [49]. A cubic volume of interest (VOI) was placed separately
on each 3D printed phantom using the CreateModels tool from the SlicerIGT and the
Segmentations modules. VOI sizes were 50 × 50 × 50, 55 × 55 × 55, and 45 × 45 × 45 mm3

for the Hilbert cube, the large QR, and the small QR phantoms, respectively. The “Grow
from seeds” algorithm was applied for biological phantoms to define VOIs that blend into
the surface of fruits and vegetables as much as possible. The semiautomatically generated
VOIs were manually corrected by excluding the border zone between fruit/vegetable and
surrounding air and the most apical and basal slice of each fruit/vegetable using a brush-
erase tool. Corresponding label maps from segmentations of all images were exported and
saved to Neuroimaging Informatics Technology Initiative (NIfTI) file format for further
processing and calculation [50,51].

2.5. Normalization and Discretization

In this study, we used a so-called µ ± 3σ normalization technique with µ being
the mean and σ the standard deviation of the image [52–56]. Two different discretization
techniques were considered; the FBS and the FBN techniques. The FBS method is defined as

IFBS(i) =
[

I(i)
B

]
− 1

where I(i) and IFBS(i) are the original and the transformed intensity level of the ith
voxel [53,54,57,58]. The [] brackets stand for the ceil operation. We choose B = 0.15 for
normalized images and B = 50 for non-normalized ones to have a similar number of bins in
both cases [7,12,59].

The FBN method is calculated by

IFBN(i) =

{
1 I(i) = Imin[

D· I(i)−Imin
Imax−Imin

]
otherwise

}

where IFBN(i) is the new intensity value of the i-th voxel intensity after the FBN discretiza-
tion, Imax is the maximum, Imin is the minimum original voxel intensity of the particular
lesion, and D is the number of bin parameters. We set D to 64.

2.6. Texture Calculation

RIs were extracted using the GLCM (Gray Level Co-Occurrence Matrix), GLSZM
(Gray Level Size Zone Matrix), and GLRLM (Gray Level Run Length Matrix)-based algo-
rithms implemented in MATLAB (version 2020) [7]. A total of 40 radiomic features were
extracted from each VOI, divided into 18 GLCM, 11 GLSZM, and 11 GLRLM metrics. All
40 RIs (Supplementary Table S1) were calculated according to the IBSI guideline [53,59]. In
addition, five basic histogram-based statistical parameters were also determined as the
minimum and maximum value, mean, median, and VOI volume in voxel numbers. All
45 features were determined for the segmented volumes for each acquisition and discretiza-
tion setup (Table 2).
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Table 2. Abbreviations for the different imaging setups. The second column shows the setup
parameters, listing the filed strength, the weighting (T1 or T2), the applied coil type, the acquisition
voxel size, and the discretization method. A total of 24 settings were considered for each RI calculation.

# Abbreviation Field
Strength Weighting Number of

Channels
Voxel Size

(mm3) Discretization

1 1.5T_T1_6ch_1mm_FBS 1.5 T T1 6 1 × 1 × 1 FBS

2 1.5T_T1_6ch_1mm_FBN 1.5 T T1 6 1 × 1 × 1 FBN

3 1.5T_T1_6ch_2mm_FBS 1.5 T T1 6 2 × 2 × 2 FBS

4 1.5T_T1_6ch_2mm_FBN 1.5 T T1 6 2 × 2 × 2 FBN

5 3T_T1_8ch_1mm_FBS 3 T T1 8 1 × 1 × 1 FBS

6 3T_T1_8ch_1mm_FBN 3 T T1 8 1 × 1 × 1 FBN

7 3T_T1_8ch_2mm_FBS 3 T T1 8 2 × 2 × 2 FBS

8 3T_T1_8ch_2mm_FBN 3 T T1 8 2 × 2 × 2 FBN

9 3T_T1_32ch_1mm_FBS 3 T T1 32 1 × 1 × 1 FBS

10 3T_T1_32ch_1mm_FBN 3 T T1 32 1 × 1 × 1 FBN

11 3T_T1_32ch_2m1m_FBS 3 T T1 32 2 × 2 × 2 FBS

12 3T_T1_32ch_2mm_FBN 3 T T1 32 2 × 2 × 2 FBN

13 1.5T_T2_6ch_1mm_FBS 1.5 T T2 6 1 × 1 × 1 FBS

14 1.5T_T2_6ch_1mm_FBN 1.5 T T2 6 1 × 1 × 1 FBN

15 1.5T_T2_6ch_2mm_FBS 1.5 T T2 6 2 × 2 × 2 FBS

16 1.5T_T2_6ch_2mm_FBN 1.5 T T2 6 2 × 2 × 2 FBN

17 3T_T2_8ch_1mm_FBS 3 T T2 8 1 × 1 × 1 FBS

18 3T_T2_8ch_1mm_FBN 3 T T2 8 1 × 1 × 1 FBN

19 3T_T2_8ch_2mm_FBS 3 T T2 8 2 × 2 × 2 FBS

20 3T_T2_8ch_2mm_FBN 3 T T2 8 2 × 2 × 2 FBN

21 3T_T2_32ch_1mm_FBS 3 T T2 32 1 × 1 × 1 FBS

22 3T_T2_32ch_1mm_FBN 3 T T2 32 1 × 1 × 1 FBN

23 3T_T2_32ch_2mm_FBS 3 T T2 32 2 × 2 × 2 FBS

24 3T_T2_32ch_2mm_FBN 3 T T2 32 2 × 2 × 2 FBN

3. Statistical Analysis
3.1. Coefficient of Variation

For each RI and each acquisition, we report the mean, standard deviation, and coeffi-
cient of variation (CV), defined as

CV =
std(RI)

mean(RI)
·100

where std(RI) and mean(RI) represent the standard deviation and mean for the three com-
puted radiomics indices. We utilized the CV parameter as a measure of the repeatability of
a group or object [9,18,60,61].
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3.2. Relative Parameter Differences

The relative parameter difference (RPD) value was employed to measure the relative
RI difference of a given phantom between two different measurement setups. The relative
parameter difference was defined as:

RPD =

∣∣∣∣∣ mean(RIsetup1)− mean(RIsetup2)

mean(RIsetup1)

∣∣∣∣∣·100

With mean(RIsetup1) and mean(RIsetup2) being the mean of the three RI at two different
acquisition setups (for the definitions of acquisition setups, see Table 2).

Table 3 shows all the acquisition setup pairs and the related abbreviation used in
the comparative analysis for each phantom type for T1 contrast. For the T2 contrast, the
number of comparisons was the same, giving a total of 14 comparisons for both contrasts.

Table 3. List of abbreviations for calculating the RPD at T1 and T2 contrast. The first column contains
the abbreviations, and the second and third columns show the serial number of the acquisition setup
defined in Table 2.

Abbreviation
Compared Setups

Setup 1
(Row # of Table 2)

Setup 2
(Row # of Table 2)

1.5T_T1_6ch_1mm-2mm 1 3

1.5T_T1_6ch-3T_T1_8ch_1mm 1 5

1.5T_T1_6ch-3T_T1_8ch_2mm 3 7

3T_T1_8ch_1mm-2mm 5 7

3T_T1_8ch-32ch_1mm 5 9

3T_T1_8ch-32ch_2mm 7 11

3T_T1_32ch_1mm-2mm 9 11

1.5T_T2_6ch_1mm-2mm 13 15

1.5T_T2_6ch-3T_T2_8ch_1mm 13 17

1.5T_T2_6ch-3T_T2_8ch_2mm 15 19

3T_T2_8ch_1mm-2mm 17 19

3T_T2_8ch-32ch_1mm 17 21

3T_T2_8ch-32ch_2mm 19 23

3T_T2_32ch_1mm-2mm 21 23

3.3. Interclass Correlation Coefficient

For the repeatability test, the interclass correlation coefficient (ICC) for two-way mixed
effects [62] was calculated for each RI based on absolute agreement, single rater/measurement
model. The ICC was determined by matching results (averages of the repeated measures)
from two different measurement setups and using every phantom with the following formula:

ICC =
MSR − MSE

MSR + (k − 1)MSE + k
n (MSC − MSE)

where MSR stands for mean square for rows, MSE is the mean square of error, MSC
the mean square of columns, n, and k are the numbers of subjects and the number of
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raters/measurements. Based on the ICC-values the RI were considered to be either excellent
(ICC > 0.9), good (0.75 < ICC ≤ 0.9), moderate (0.5 < ICC ≤ 0.75) and poor (ICC ≤ 0.5)
repeatability [21,63–66]. Every calculation was performed using MATLAB (2020, The
MathWorks Inc., Natick, MA, USA) and Microsoft Office Excel software.

3.4. QR Code Readability Test

The QR phantoms were evaluated using two analyses, the QR codes readability in the
MR scans and the radiomics analysis of the texture. The readability of the QR code was
tested for each of the coronal 2D images. An unsuccessful read-out of the QR code for any
coronal slice was defined as a significant image distortion (>25% data loss) and thereby
detrimental texture loss. The reading of the QR codes relied on two types of decoding
methods; first, we wrote a Python program, while the second decoding was obtained using
cell phone readings of the MR images. For the Python implementation, we utilized the
Pyzbar module (https://pypi.org/project/pyzbar (accessed on 29 June 2021)) to read the
coded textural information. The Pyzbar module ensures that multiple QR codes can be
decoded simultaneously from an image with multiple QR codes. The original DICOM
images must be converted to Portable Network Graphics (.png) format for this process.
The resulting .png images will be mentioned as ‘original images’ in this manuscript. The
original images were processed further and resized to 1024 × 1024-pixel resolution using
the Lanczos interpolation method implemented in the Python Pillow library to ensure the
read-out yield stability. The interpolated, 2D images will be referred to as ‘interpolated
images’ below. The evaluation program reads every coronal image from a scan of QR code
phantoms and tries to read out each coded information. The number of successful readings
was expressed as a percentage of the total number of coronal images, and this parameter
was defined as the reading ratio. For the second read-out method, we used commercial
mobile phones to detect the QR codes from the same monitor screen (ViewSonic VP2030B
monitor with 100% luminance and 1600 × 1200-pixel resolution) displaying the previously
constructed PNG images of the QR phantoms [67–70]. The displayed size of each PNG
image has been set to display the QR phantoms in their original, true size. Five phones
were involved from three manufacturers: iPhone 12, iPhone SE 2020, Samsung Galaxy A51,
Xiaomi Redmi 6A, and Xiaomi MI 9 lite, referred to respectively as Phone 1 through Phone
5 below. From a given scan, only the middle coronal image was processed by each phone.

4. Results
4.1. Visual Comparison

Figure 4A shows representative images of the large QR and the Hilbert phantoms at T1
weighted contrast and different acquisition resolutions (1 mm on the left and 2 mm on the
right). We report a robust read-out of the Hilbert cube disregarding the image resolutions.
In contrast, significant changes in the high-frequency patterns were reported for the QR
cubes when the image resolution was changed (Figure 4C). After visual inspection of the
high-resolution and low-resolution images, a radiologist and a radiographer MR specialist
reported that the textures observed in the biological phantoms were comparable to the
real heterogeneity. However, the finer structures (high-frequency features) were blurred
(Figure 4B,D).

https://pypi.org/project/pyzbar
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Figure 4. Representative 3D T1- and T2-weighted 3T MR coronal images of the 3D printed and
biological phantoms. The pairwise left and right images had isotropic resolutions of 1 × 1 × 1 mm3

and 2 × 2 × 2 mm3, respectively. (A): 3D T1-weighted 3T MR coronal images of the Hilbert cube
and the large QR phantoms. (B): 3D T1-weighted images of 3 tomatoes and three onions. (C): 3D
T2-weighted 3T MR coronal images of small and large QR code phantoms. (D): 3D T2-weighted
images of the same three tomatoes and three onions.

4.2. Coefficient of Variation

For repeatability purposes, CVs were determined using normalized and non-normalized
data from each object with each MR acquisition setup (Supplementary Figures S1 and S2).
Improved repeatability (lower CV) measures were observed for all phantoms following the
normalization of the data (Tables 4 and 5).
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Table 4. Repeatability is expressed via CVaverage, in the case of normalized and non-normalized
images. At normalized images, lower CV values can be observed in most cases.

Object without Normalization with Normalization

Hilbert 1.55 1.22

smallQR 2.75 2.08

largeQR 1.90 1.86

tomato1 2.91 1.59

tomato2 2.75 1.21

tomato3 2.28 1.39

onion1 2.90 1.03

onion2 2.73 1.05

onion3 2.77 1.15

kiwirot 4.82 4.40

kiwi1 2.98 3.87

kiwi2 3.60 0.46

kiwi3 1.73 2.71

Table 5. CVaverage computed for each radiomics parameter group for all objects.

Radiomics Parameter Group without Normalization with Normalization

GLCM 3.08 2.72

GLRLM 2.90 2.04

GLSZM 3.87 2.26

Histogram based 3.09 6.11

Below, we present only results from the normalized data. Given the poor repeatability
(CV > 10%), a subset of RIs were excluded from the subsequent analyses (Jmax, Energy,
ClusterShade, HGRE, SRHGE, LRHGE, LZE, LZLGE, LZHGE).

The CVs for the remaining 31 RI were obtained using the different weighting (T1 and T2),
and their repeatability coefficients are shown in Figures 5–7 and Supplementary Figure S3.
Table 6 comprises the corresponding CVaverage values for different property groups (Acquisi-
tion setup, Texture parameter, and Discretization method). In general, it may be observed that
most texture features’ repeatability was better at 1.5 T field strengths than at 3 T (CVaverage
is 1.94 at 1.5 T and 2.11 at 3 T) (Figures 5–7 and Table 4). In addition, no major differ-
ences were observed between the FBN and FBS discretization (CVaverage(FBN) = 2.04 and
CVaverage(FBS) = 2.06).

Each object’s CV result from different points of view is presented in Table 6. The
choice of discretization did not affect the repeatability measures (Table 6). In the texture
parameters group, increased histogram-based CV values can be observed at the kiwis
compared to the other objects’ same calculations. This phenomenon was not identified for
the kiwirot (kiwi rotated through its primary axis between measurements). Columns of the
acquisition setup group reveal that CV values are usually smaller at 1.5 T field strength
and 1 mm resolution. Further, when excluding the kiwis, no difference in the repeatability
was observed between the biological and 3D phantoms. Detailed CV data for all objects
and acquisition setups are presented in Figures 5–7 heatmaps.
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Figure 6. CV of radiomics data obtained for the second tomato, onion, and kiwi. Corresponding
figures for all phantoms can be found in the Supplementary Figure S3. The CV is expressed in %.
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Table 6. Average CV values for each object and different settings or properties. The last row shows
the CVaverage for the case when all objects’ data are included.

Acquisition Setup Texture Parameter Discretization
Method

Object 1.5 T 3 T 1 mm 2 mm T1 T2 GLCM GLRLM GLSZM Histogram
Base FBS FBN

Hilbert 0.60 0.75 0.85 0.55 0.71 0.69 0.55 0.64 1.09 0.64 0.67 0.73

largeQR 0.89 2.08 1.98 1.38 1.86 1.50 1.57 0.79 2.69 1.82 1.71 1.65

smallQR 1.08 2.04 1.21 2.23 2.17 1.27 0.66 0.55 1.30 7.46 1.76 1.68

onion1 0.73 2.04 1.48 1.73 1.60 1.61 1.49 1.05 1.51 2.98 1.61 1.60

onion2 1.50 1.38 1.03 1.80 1.80 1.03 1.26 1.17 1.46 2.22 1.46 1.38

onion3 1.23 2.03 1.43 2.09 1.78 1.75 1.37 1.26 1.60 4.00 1.74 1.78

tomato1 0.96 1.53 0.96 1.73 1.86 0.83 1.64 1.06 1.29 0.98 1.33 1.36

tomato2 0.72 1.61 0.65 1.98 1.99 0.65 1.75 0.78 1.11 1.23 1.32 1.32

tomato3 1.09 1.46 0.91 1.77 1.97 0.70 1.66 0.81 1.07 1.65 1.34 1.33

kiwi1 3.52 3.66 2.86 4.37 1.83 5.40 1.63 2.81 3.78 10.59 3.67 3.55

kiwi2 1.06 4.17 2.70 3.57 0.66 5.60 1.19 1.51 2.23 12.97 3.16 3.10

kiwi3 10.72 2.38 1.43 8.88 6.99 3.33 1.10 1.42 2.06 28.27 5.15 5.16

kiwirot 1.15 2.28 1.43 2.38 0.69 3.12 1.23 1.31 2.04 4.64 1.91 1.90

All included 1.94 2.11 1.46 2.65 1.99 2.11 1.32 1.17 1.79 6.11 2.06 2.04
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Figure 7 shows the sensitivity of the radiomics when the scanned object rotates in
the MR system. The CV calculated from the three orthogonal orientations (kiwirot) is
larger than the CVs obtained from three repetitions of a given kiwi in the conventional
acquisition orientation.

4.3. Relative Difference

The relative parameter difference (RPD) values are shown in the Supplementary Figure S6.
The biggest relative differences are observed when comparing results obtained at different MR
field strengths.

4.4. Interclass Correlation Coefficient

Figure 8 represents all ICC data of RI for the same comparison types as in the RPD
analysis (in the Supplementary Figure S5). The high ICC correlates well with the larger
RPD values for each object and RI.
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4.5. QR Code Readability Test

QR code readability outcomes show apparent dependency on the acquisition reso-
lution with a standalone Python code and mobile phones. None of the applied read-out
methods could detect the information from the 2 × 2 × 2 mm3 resolution scans, and only
some of the 1 × 1 × 1 mm3 resolution images could be successfully read. Read-out ratios
originating from the Python code-based process are presented in Figure 9. Ratios are
calculated from the three repeated measurements as the average read-out ratio for each
type of measurement.

Mobile phone read-out numbers are shown in Table 7. The related score distribution
is similar to the result shown in Figure 9. Many of the T1 images of the QR cubes were
readable by the phones.

Representative QR code images are shown in Figure 10 at T1 and T2 weighting and 3T
field strength.
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Figure 9. Averaged read-out ratios of the three repeated measurements in the case of the Python
program processing. All original and interpolated coronal images of small QR and large QR phantoms
were read by the developed Phyton code. Data from the 2 × 2 × 2 mm3 resolution are not presented
due to the lack of successful decoding.

Table 7. Read-out results by different smartphones. The middle coronal images of the three con-
secutive measurements were used to show the ratio of the successful and total decrypting of the
QR code information. Data from the 2 × 2 × 2 mm3 resolution are not presented due to the lack of
successful decoding.

# of Successful Read-Outs

Read-Out Ratio Phone 1 Phone 2 Phone 3 Phone 4 Phone 5

3T_T1_32channel_1mm_smallQR 2/3 - - - -

3T_T1_32channel_1mm_largeQR 3/3 3/3 2/3 3/3 3/3

3T_T2_32channel_1mm_smallQR - - - - -

3T_T2_32channel_1mm_largeQR - - - - -

3T_T1_8channel_1mm_smallQR 2/3 - - - -

3T_T1_8channel_1mm_largeQR 3/3 3/3 2/3 3/3 3/3

3T_T2_8channel_1mm_smallQR - - - - -

3T_T2_8channel_1mm_largeQR - - - - -

1.5T_T1_6channel_1mm_smallQR - - - - -

1.5T_T1_6channel_1mm_largeQR 3/3 3/3 3/3 3/3 3/3

1.5T_T2_6channel_1mm_smallQR - - - - -

1.5T_T2_6channel_1mm_largeQR 1/3 - - 2/3 -
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Figure 10. Representative coronal images from the small and the large QR phantom scans at 3 Tesla
field strength and 1 × 1 × 1 mm3 resolution. T1 and T2 contrast images are in the left and right
columns, respectively. The encoded information can only be read out with a smartphone from the T1
image of the large QR phantom.

5. Discussion

This study aimed to test the feasibility of using printed 3D phantoms with structural
information to analyze the robustness and repeatability of radiomics in MR imaging. To
this end, this was performed using three different types of printed 3D phantom models and
three types of biological phantoms (kiwis, tomatoes, and onions). The main finding of this
study was that 3D printed phantoms provide similar robustness and repeatability metrics
as biological phantoms and thus, may be favorable in identifying the optimal radiomics
in MR imaging protocols. Of note, for high-resolution MR images (isotropic volume of
1 × 1 × 1 mm3), it is possible to retrieve the structural QR information, thus providing
acceptable image quality for radiomic analyses. To the best of our knowledge, this finding
has not been previously demonstrated in studies evaluating radiomics.

Radiological assessments in tumor staging are primarily focused on the number
and the size of lesions in radiological settings when using MR; nevertheless, there is
also a growing interest in measuring and analyzing radiomic characteristics, which may
provide more insight into the lesion composition [71–80]. Furthermore, it is not fully
understood in all its details how the different MR systems and acquisition protocols affect
the robustness and reliability of radiomics parameters [64,81–84]. In general terms, radiomic
assessments are challenged by the non-quantitative nature of MR imaging. The intensities
in the MR images may be affected by shimming protocols and positioning of the scanned
objects, among other factors, which may pose challenges in the test-retest assessment of
the radiomic information [77,85]. In addition to the standard imaging parameters such
as field of view, spatial resolution, and reconstruction algorithm, other factors such as
magnetic field strength, repetition number, echo time, number of excitations (NEX or NSA),
or the signal-to-noise ratio itself have a high impact on calculations [86]. Nevertheless,
there is also a growing interest in measuring and analyzing radiomic characteristics [71–80].
One way to introduce radiomics into MR imaging protocols and to identify the relevant
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metrics for MR images may be through phantom studies. Previous studies have focused
on biological phantoms, showing that fruits and vegetables are suitable as phantoms
because they have sufficient water and organically fine texture [15,16,36,38,87]. In addition,
Werz et al. showed T1 and T2 relaxation times for fruits and vegetables are similar to
human tissues [36]. They found that the measured image quality of biological objects has
good reproducibility, making them useful for test measurements, sequence developments,
and optimization. Despite the positive findings as potential phantoms, the fruit and
vegetables have limited applicability in the multi-center studies of radiomics because of
their relatively rapid biological decay. Therefore, this study sought to identify if 3D printed
phantoms may act as replacements. Figures 5 and 6 and Tables 4 and 6 showed that the
3D-printed phantoms provided repeatability metrics similar to those obtained from the
biological phantoms. Further, it was found that the discretization process did not affect the
repeatability metrics.

In radiomics, it is important to identify the most relevant metrics for tumor characteri-
zation. The literature and IBSI guidelines have identified several hundred radiomic metrics
that may be extracted from segmented VOIs in medical images [1,3,53,54,57,88–91]. While
all metrics may contribute to the lesion assessment, many may be relevant only for a subset
of organs and tumor phenotypes, while others may have imaging modality-specific perfor-
mances. Therefore, a pre-selection of the metrics used for the initial radiomic assessments
may improve both the reliability of the identified metrics and the overall processing speed
of the applied machine-learning models [21,80,92,93]. Our proposed 3D printed phantoms
may suit such purposes.

Several studies of biological phantoms have proven that the segmentation procedure
may affect texture analysis; hence we chose two robust volume delineation methods: the
fixed cube-shaped VOI definition and the “grow from seeds” 3D Slicer tool [7,47]. Figure 4A
demonstrates that the visible robust texture of the Hilbert cube is not affected by the spatial
resolution when using 1 mm and 2 mm isotropic volumes. However, the image structure
of the finer patterned QR cubes deteriorates at 2 mm spatial resolution for both the large
QR and small QR cubes (Figure 4A,C). Similar findings were reported for the biological
phantoms (Figure 4B,D), where high-frequency objects such as the seeds were smeared.
These results emphasize that the performance level of RI is highly dependent on the spatial
resolution of the input images.

The radiomic analyses’ repeatability is important in translating their use into the
clinical routine. In this study, we investigated the repeatability measures at different
steps in the analyses, the normalization process, and the RI, in addition to how they
were affected by object size and imaging parameters. We report improved repeatabil-
ity for both biological and printed phantoms when normalization is applied to the data
(Supplementary Figures S1 and S2, Table 4), findings that are in concordance with previous
studies [7,52,56,94–97]. Similarly, when normalization was applied to the data, improve-
ments were observed for the two discretization methods (FBS and FBN). This finding is
concordant with previous findings for the FBS normalization [56,71,94,98]. Similarly, the
radiomics parameter groups (Table 5) had improved repeatability when normalization
was applied to the data, stressing the importance of using normalization of MR images
before radiomic analyses. Despite normalization, we observed that a subset of RIs was
performing poorly (CV > 10%) for all MR imaging protocols and objects. Because of their
poor performance, Jmax, Energy, ClusterShade, HGRE, SRHGE, LRHGE, LZE, LZLGE,
and LZHGE were omitted from further analyses in this study, and only normalized data
were used in all following evaluations. The resulting RIs were observed to perform better
at lower MR field strengths, in agreement with previous reports (Figures 5–7, Table 6,
and Supplementary Figure S3), findings likely caused by worsened field homogeneity at
3 T [10].

In terms of parameter performance, we observed that the relative difference (RPD)
might change by more than 20% for the same objects, depending on the MR systems’ field
strengths (Table 3, Supplementary Figure S5, and Figure 6). Further, a bias was observed
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for the RPD when altering the imaging resolution, regardless of the image weighting (T1
or T2) and phantom type. Based on RPD comparisons, it can be concluded that, from
the applicability point of view, 3D printed phantoms are as good as biological ones. It
should also be noted that artificial phantoms eliminate some problems related to biological
properties, such as putrefaction.

In terms of repeatability, high test-retest variance (high CV, poor repeatability) was
observed for the mean and median values obtained in the objects (Table 6). The poor
repeatability measures are likely introduced by the shimming the B0 field before each scan
(introducing small alterations in signal intensities) and the non-quantitative intensities of
the MR images [65,93,99,100]. The ICC was calculated by averaging the RI from the three
repetitions of a given setup and matching these results between two different measure-
ment setups (Table 3) involving all phantoms. Figure 8 shows the calculated ICCs of RI
for the same comparison types as in the RPD analysis (Supplementary Figure S4). The
expected negative correlation of the ICC and RPD values is clearly visible within each
parameter group. In general, a larger ICC corresponds to a smaller RPD value. Results
of the manufactured QR cubes show how to degrade the stored deep-level information
by MR imaging. Applying different coils, field strength, or even acquisition resolution
influences the level of information loss [10,15,71,72,101]. The metric of the degradation of
the embedded information could be used as a new, useful parameter besides the existing
radiomics characteristics.

In this study, the quality of the texture information analysis was also evaluated by
the read-out yield of QR codes. It was hypothesized that a successful read-out of the QR
code meant that the MR image series preserved most of the physical properties of the
original texture. Using Python read-out of the QR codes from the converted .png files, we
report read-out successes < 5% for the small QR when using the T2 sequence at 3 T, while
no read-outs were possible for the original (non-interpolated images) at 1.5 T (Figure 9).
However, at 3 T, the original and interpolated large QR phantom may be decrypted when
using the T1-weighted images. These findings were reproduced by reading the QR code
with smartphones (Table 7). In general, the read-out success rates were of varying success,
with read-out percentages ranging from 19% to 39%. The smartphone read-out success rates
highlight that the successful decoding of stored information depends on the acquisition
settings and the reader algorithm. This phenomenon is analog to the clinical situation
where lesion detection may depend on the physician’s practice.

The 3D printed phantoms developed in this study have many advantages and could
be helpful in the quality assurance of radiomic studies involving MR datasets. Printed
phantoms using the same materials and print settings at the local sites are an easy and
affordable method to compare the radiomics performance of different MR scanners. For
the analysis of radiomic characteristics, the flexibility of 3D printing could be a favorable
method. The newly proposed 3D printed phantoms and the results with the biological
phantoms of this study may benefit the radiomics community, which seeks to standardize
both imaging protocols and radiomic analysis strategies [21,43].

Our study has some limitations. First, the results from phantom studies cannot always
be transferred directly into clinical studies. In clinical studies, the patients are known to
move during the acquisition protocols, these patterns cannot be reproduced by simple
3D-printed phantoms examined in this study [92,102]. Therefore, the results obtained here
simulate a best-case scenario where no patient motion is observed. Unlike analyses solely
based on 3D printed and biological phantoms, results based on actual human tissue can
better indicate the usefulness of radiomics. This is because whatever phantom is proposed,
they are always a simplification of a real human tissue environment [35,38,103,104]. Second,
we examined only the 3D radiomic characteristics of certain texture classes. However, we
wanted to include only the most frequently used ones in this work [13,35]. In addition, the
number of MR devices and sequences included in the study was also limited.
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6. Conclusions

We report good agreements between observations obtained from biological and 3D-
printed phantoms. Three-dimensional-printed QR codes provide a unique opportunity to
analyze the reliability and challenges of radiomics in MR imaging protocols. This study
found that the large QR phantom provides better insight into identifying radiomic features
of interest than the usual Hilbert phantom. Further, the QR codes permit analyses of texture
distortion through external validation of the readability of the QR codes using smartphone
read-out success rates.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12092196/s1, Table S1: Nomenclature of the calculated
Texture Indices; Figure S1: Coefficient of Variation for all non-normalized Texture Indices and for
every phantom; Figure S2: Coefficient of Variation for all normalized Texture Indices and for every
phantom; Figure S3: Coefficient of Variation for the selected normalized Texture Indices; Figure S4:
Relative Parameter Difference for the selected normalized Texture Indices; Figure S5: Interclass
Correlation Coefficient for all normalized Texture Indices; Figure S6: Relative Parameter Difference
with different acquisition setups for every fantom; Photo S1: Placement of biological phantoms.
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